The Single-Electron Problem in Quantum Mechanics

a. Electron in a one-dimensional potential box.

In quantum mechanics, the particle in a box model (also known as the infinite potential well or the infinite square well) describes a
particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to
illustrate the differences between classical and quantum systems.

One-dimensional solution

The simplest form of the particle in a box model considers a one-dimensional system. Here, the particle may only move backwards and
forwards along a straight line with impenetrable barriers at either end.['l The walls of a one-dimensional box may be visualised as regions
of space with an infinitely large potential energy. Conversely, the interior of the box has a constant, zero potential energy.[?! This means
that no forces act upon the particle inside the box and it can move freely in that region. However, infinitely large forces repel the particle if
it touches the walls of the box, preventing it from escaping. The potential energy in this model is given as
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’ ) n quantum mechanics, the wavefunction gives the most fundamental
description of the behavior of a particle; the measurable properties of the
particle (such as its position, momentum and energy) may all be derived
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from the wavefunction.8l The wavefunction [ ( X, t) can be found by solving the Schrédinger equation. Inside the box, no forces act
upon the particle, which means that the part of the wavefunction inside the box oscillates through space and time with the same form as
a free particle:['14]

lrv ( x. f) = [‘—l sin ( Al) — B C(_“)S(k;lf)]e_mt, where . and I3 are arbitrary complex numbers. The frequency of the
' ' ' oscillations through space and time are given by the wavenumber k and the
angular frequency W respectively. These are both related to the total energy of the particle by the expression
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_ h I‘ which is known as the dispersion relation for a free particle.
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https://en.wikipedia.org/wiki/Free_particle

b. Electron in a one-dimensional harmonic oscillator

Harmonic oscillator = potential energy depends on square of the space coordinate- force (-gradient of the potential ) has a linear
dependence on the coordinate.

Many symmetric “potential wells” can be approximated by harmonic oscillator potentia close to the potential minimum ( lowest order in
the Taylor expansion which is symmetric for negative-positive coordinate. )

Thus many physical problems which involve small oscillations of the system not too far from equilibrium are approximated by harmonic
oscillator.

Out of many examples: oscillations of “electron clouds” of atoms “provoked” by electromagnetic fields or temperature , molecules,
electromagnetic fields itself etc etc
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c. Electron in a three-dimensional potential box. Electron in a cubic box. Electron in
a quantum well; quantum line and quantum dot.

Let us explore the workings of wave mechanics in three dimensions through the example of a particle confined to a cubic “box.” The box
has edge length L and occupies the region 0 < a, b, ¢ < L. We assume the walls of the box are smooth, so they exert forces only
perpendicular to the surface, and that collisions with the walls are elastic. A classical particle would rattle around inside such a box,
colliding with the walls. At each collision, the component of particle momentum normal to the wall is reversed (changes sign), while the
other two components of momentum are unaffected.

A U hulldmfiiggvény meghatarozasahoz meg kell oldanunk a Schrodinger-egyenletet, amit
tovabbra is a valtozdk szétvalasztdsa mddszerrel tehetiink meg legkonyebben, hisz ekkor
tudjuk, hogy

U(r,t) = U(r)e(t),

és
B(t) = eI,
Miel6tt azonban ratérnék a ¥(r) meghatdrozdsara, adjuk meg a konfigurdciés téren a
potencialt:

Bl = 0 ha x € (0,a), y € (0,0), z € (0,¢)
PO/ 1 oo kiilénben

Innetdl csak az idéfiiggetlen Schrodinger-egyenletet kell megoldanunk, ami a kévetkezo:
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A viéltozok szétvalasztdsa mddszerrel az alabbi energia képletet kapjuk:
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Transmission of a particle through a potential barrier (quantum tunneling)

When a particle doesn't have as much energy as the potential of a barrier, you can use the
Schrédinger equation to find the probability that the particle will tunnel through the barrier's
potential. You can also find the reflection and transmission coefficients, R and T, as well as
calculate the transmission coefficient using the Wentzel-Kramers-Brillouin (WKB)
approximation.

Here's how it works: When a particle doesn't have as much energy as the potential of the
barrier, you're facing the situation shown in the following figure




A potential barrier E < V.

In this case, the Schrodinger equation looks like this:
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All this means that the solutions for

w1(x), wz(x). and W:;(X)

are the following:

« Where x <0: y,(x)=Ae"" +Be "

« For theregion0<x <a: y,(x)=Ce"?" +De "

e Where x>a: y,(x)=Fe"* +Ge "
In fact, there's no leftward traveling wave in the region x > a; G=0,
S0 W5 (x) is w4(x) =Fe™™.

This situation is similar to the case where E > Vj, except for the region

O<x<a.

The wave function oscillates in the regions where it has positive energy, x <0
and x > a, but is a decaying exponential in the region

O<x<a Jplx)l?

You can see what the probability density,
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looks like in the following figure.




e. The classical and quantum ping-pong oscillator

We have seen that a monochromatic electromagnetic field as a cavity mode is mathematically equivalent to a quantum mechanical
harmonic oscillator of the same resonant frequency. First, let us recall the classical one-dimensional oscillators. The simplest oscillator is

the classical ‘ping-pong’ ball. Let us initiate the ping-pong dynamics by an initial velocity v0.

The Quantum ,Ping-pong’ Oscillator (Particle in a Box )
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The Classical Particle in a One-dimensional Potential
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a function of time

Note that the constant energy can be changed continuously by changing the initial velocity vO.



f. The classical and quantum harmonic oscillator

The Classical Harmonic Oscillator
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In a classical mechanical one-dimensional harmonic oscillator a mass m is oscillating the end of a string, characterized by its constant, C
The position of the mass is x, its at



momentumis p=m- X. The kinetic energy of the mass is pz / 2m, and the potential energy

of the string is C-x*/2. The resonant frequency is @=+/C/m. The Lagrangian is
L=p’/2m—-ma’q/2,and the Hamiltonianis H = P’/ 2m+ma‘ql2.
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The classical Hamilton equations of motion are: x=p/m; p=-mw'x-fat1=0 we

pull (or push) the string to position X, then the dynamics will be x(t) =x,cos@t and the

momentum is  p(?) = mx(t) =—mx,sin@1-

The the accuracy of the simultaneous

measurement of the position and momentum can be accurate, i.e. the product of the variances can

approach zero without any theoretical limit Ax - Ap —0.

In case of the harmonic oscillator, the eigen-values and eigenunctions have

been derived as:
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