
The Single-Electron Problem in Quantum Mechanics 

a. Electron in a one-dimensional potential box. 

In quantum mechanics, the particle in a box model (also known as the infinite potential well or the infinite square well) describes a 
particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to 
illustrate the differences between classical and quantum systems.

One-dimensional solution 

The simplest form of the particle in a box model considers a one-dimensional system. Here, the particle may only move backwards and 
forwards along a straight line with impenetrable barriers at either end.[1] The walls of a one-dimensional box may be visualised as regions 
of space with an infinitely large potential energy. Conversely, the interior of the box has a constant, zero potential energy.[2] This means 
that no forces act upon the particle inside the box and it can move freely in that region. However, infinitely large forces repel the particle if 
it touches the walls of the box, preventing it from escaping. The potential energy in this model is given as

where !  is the length of the box and !  is the position of the particle 
within the box.
n quantum mechanics, the wavefunction gives the most fundamental 
description of the behavior of a particle; the measurable properties of the 
particle (such as its position, momentum and energy) may all be derived 

from the wavefunction.[3] The wavefunction  can be found by solving the Schrödinger equation. Inside the box, no forces act 
upon the particle, which means that the part of the wavefunction inside the box oscillates through space and time with the same form as 
a free particle:[1][4]

   where !  and !  are arbitrary complex numbers. The       frequency of the 

oscillations through space and time are given by the wavenumber !  and the 
angular frequency !  respectively. These are both related to the total energy of the particle by the expression 

which is known as the dispersion relation for a free particle.

https://en.wikipedia.org/wiki/Free_particle


b. Electron in a one-dimensional harmonic oscillator 

Harmonic oscillator = potential energy depends on square of the space coordinate- force (-gradient of the potential ) has a linear 

dependence on the coordinate. 

Many symmetric “potential wells” can be approximated by harmonic oscillator potentia close to the potential minimum ( lowest order in 

the Taylor expansion which is symmetric for negative-positive coordinate. ) 

Thus many physical problems which involve small oscillations of the system not too far from equilibrium are approximated by harmonic 

oscillator. 

Out of many examples: oscillations of “electron clouds” of atoms “provoked” by electromagnetic fields or temperature , molecules, 

electromagnetic fields itself etc etc 

 

 



c. Electron in a three-dimensional potential box. Electron in a cubic box. Electron in 

a quantum well; quantum line and quantum dot. 

Let us explore the workings of wave mechanics in three dimensions through the example of a particle confined to a cubic “box.” The box 

has edge length L and occupies the region 0 < ︎ a, b, c ︎< L. We assume the walls of the box are smooth, so they exert forces only 

perpendicular to the surface, and that collisions with the walls are elastic. A classical particle would rattle around inside such a box, 

colliding with the walls. At each collision, the component of particle momentum normal to the wall is reversed (changes sign), while the 

other two components of momentum are unaffected. 

 

A változók szétválasztása módszerrel az alábbi energia képletet kapjuk: 



 

d. 

Transmission of a particle through a potential barrier (quantum tunneling) 

When a particle doesn't have as much energy as the potential of a barrier, you can use the 
Schrödinger equation to find the probability that the particle will tunnel through the barrier's 
potential. You can also find the reflection and transmission coefficients, R and T, as well as 
calculate the transmission coefficient using the Wentzel-Kramers-Brillouin (WKB) 
approximation. 
Here's how it works: When a particle doesn't have as much energy as the potential of the 
barrier, you're facing the situation shown in the following figure 



 

 

 

 



e. The classical and quantum ping-pong oscillator 

We have seen that a monochromatic electromagnetic field as a cavity mode is mathematically equivalent to a quantum mechanical 

harmonic oscillator of the same resonant frequency. First, let us recall the classical one-dimensional oscillators. The simplest oscillator is 

the classical ‘ping-pong’ ball. Let us initiate the ping-pong dynamics by an initial velocity v0. 

 

 

 

 

 

 

Note that the constant energy can be changed continuously by changing the initial velocity v0. 

=First period of oscillation
=kinetic Energy

=momentum

 The potential Energy and the p(t)  momentum as 
a function of time
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f. The classical and quantum harmonic oscillator 

 

   

In a classical mechanical one-dimensional harmonic oscillator a mass m is  oscillating the end of a string, characterized by its constant, C. 

The position of the mass is x, its at 



 

 In case of the harmonic oscillator, the eigen-values and eigenunctions have  

been derived as: 


