2. Introduction to Quantum Mechanics of the Electron

a. Particle-wave duality of the electron. Louis de Broglie wave

In 1923, Louis de Broglie, a French physicist, proposed a hypothesis to explain the theory of the atomic structure.By using a series of substitution de
Broglie hypothesizes particles to hold properties of waves. Within a few years, de Broglie's hypothesis was tested by scientists shooting electrons and
rays of lights through slits. What scientists discovered was the electron stream acted the same was as light proving de Broglie correct.

Definition of Wave-Particle Duality

The property of particles behaving as waves and the property of waves behaving as particles as well as waves. Although the duality is not very
effective in large matter. The wave characteristic of the electron implicates many of the electron's particle behaviors.

Planck's Hypothesis of the Quantum Theory states that energy is emitted in quanta, little packets of energy, instead of a continuous emission. He stated
that energy emitted is related to the frequency of the light emitted. Planck's hypothesis states that a quantum of energy was related to the frequency by
his equation E=hv

.
De Broglie Wavelength
De Broglie derived his equation using well established theories through the following series of substitutions:
1. De Broglie first used Einstein's famous equation relating matter and energy:
E=mc
E= energy, m = mass, ¢ = speed of light
2. Using Planck's theory which states every quantum of a wave has a discrete amount of energy given by Planck’s equation:
E=h
E = energy, h = Plank's constant(6.62607 x 103 J s), u = frequency
3. Since de Broglie believes particles and wave have the same traits, the two energies would be the same:
me* = h
4. Because real particles do not travel at the speed of light, De Broglie subsituted v, velocity, for ¢, the speed of light.
m? = hy

5. Through the equation 4, de Broglie substituted v/A for v and arrived at the final expression that relates wavelength and particle
with speed

hv

Hence:




b. Nature of the matter-wave: complex-valued wave-function with probabilistic
interpretation of the absolute square.

A W(r,t) fUggvény complex értékd, ezaltal fizikai tartalma nincsen, viszont, egyfajta valdészinliséget ad meg, igy ha kiintegraljuk az
abszolutértékének négyzetét a teljes konfiguracios téren, akkor 1-et kell adnia. Tehat a |W(r)I*2 dV az megadja, hogy egy elemi V
térfogatba mekkora az adott részecske megtalalasi valdészinisége.

2. Annak a valdszintisége, hogy a részecskét a konfiguraciés tér egy dV térfogataban
taldljuk

wydV,
amibdl pedig kovetkezik, hogy

/ VUV =1,
R

azaz W négyzetesen integralhatd fiiggvénye a konfigurédcids tér valtozdinak.



c. The time-dependent Schrodinger equation.

Erwin Schrodinger 4ltal megalkotott egyenlet sok valaszt adott az addigi nyitott kérdésekre
a kvantummechanikaban. Célja az volt, hogy egy hulldmfiiggvénnyel leirja az elektront.

Az elektron hulldmszertien (is) viselkedik, és interferencidt mutat (ami szuperpozicié-
szerli), ezért a hullimfiiggvény linedris. A hulldmfiiggvény a térbeli valtozdsokat koti Ossze
az id6beli valtozasokkal.

Adott egy részecske (elektron), ennek van m, tomege és g, toltése. Tovdbba potencidljaval
adott egy er6tér, amelyben mozog az elektron. Ekkor a kovetkezé egyenletet nevezziik
idofiiggd Schrodinger-egyenletnek:

HU = ma_\ll_

U az elektron hulldmfiiggvénye (igazdbdl az egyenlet ismeretlene), és H a Hamilton-

operator, ami igazabdl az elektron Gsszenergidja, tehat:

#2
H = _%A 3 g Epota
ahol
Ekin — ﬁ_2
k2  2m’
hiszen
p=hk
és

p= (mov)z. (15)



d. The time-independent Schrodinger equation. Eigen-values and eigen-functions.

3.7.2. Az idofiiggetlen Schrodinger-egyenlet

" 7

A masik egyszerlsitett egyenletet pedig atrendezve
HV = EV.

Ez tehét az idofiiggetlen Schrodinger-egyenlet. Ehhez az egyenlethez analitikus médon is
eljuthatunk, ha egy sima Helmholtz-féle hulldmegyenletbdl indulunk ki, amely a kovetkez6
alakii:

ViU = — k%0,
ahol V2 = A.
A ¥(rt) fliggvényre mindig igaz az aldbbi Osszefiiggés:
/ U*odV =1,
1%
hiszen a
T = |2

jelentése valdsziniiség, és V pedig az adott konfiguracids tér, igy hat annak a valdszintiségnek,
hogy a konfiguraciés térben van az elektron egynek kell lennie.

A U hullamfiiggvény jellemzi a rendszert, és egy komplex értékii fiiggvény, tehat U*
fiiggvény ennek konjugéltja.



Eigenvalue Problem:

A subject concerning the time-independent Schrodinger equation we have not yet touched
is its interpretation as an eigenvalue equation. Clearly, from its form we see that stationary
states | 1) are eigenvectors/eigenfunctions of the Hamiltonian H with eigenvalues E

H|y) =E|[¥). (4.10)

It implies the exact determination of the energy F. A stationary state has a precisely
defined energy. Calculating the expectation value of the Hamiltonian for a stationary
system just gives

(H) =(y| H|v)=(¢| E|¢) =E(¢|¢) =E. (4.11)

Consequently, there is no energy uncertainty AE for these states

AE = AH = \/(H?) = (H)* = VE? = B? = 0. (4.12)

Generally eigenvalue equations for linear operators take the form

Al¢) =al9), (4.13)

where a is an eigenvalue of the linear operator A with corresponding eigenvector | ¢).
For hermitian operators there exist important statements about their eigenvalues and
eigenfunctions.

Theorem 4.3
The eigenvalues of hermitian operators are real and the eigenvectors corre-
sponding to different eigenvalues are orthogonal.




