

The point value of each question is listed in parentheses.

Total points: 100

1. Give a narrow and broad **definition of bioinformatics!** (4)

Narrow: Science of biological data. Mostly molecular biology. Description, management, interpretation.

Broad: Science of biological knowledge. All computer applications in (molecular) biology including modeling. (simulation of behavior)

2. Describe **structured** and **unstructured** data representation! (4)

Structured: - We know the internal structure in terms of Entities and Relationships
- Information-rich, allows detailed comparisons
- need alignment for comparison
- example: sequences, graphs

unstructured: - We know nothing about internal structure
- Only the properties are known (global description)
can be discreet or continuous.

3. Fill in the **missing elements!** (4)

Properties	Entities	Relationships
------------	----------	---------------

- Best described as vector

modeling (simulation of behavior)

2. Describe **structured** and **unstructured** data representation! (4)

Structured: - We know the internal structure in terms of Entities and Relationships

- Information-rich, allows detailed comparisons
- need alignment for comparison
- example: sequences, graphs

unstructured:
- We know nothing about internal structure
- Only the properties are known (global descr.)
can be discreet or continuous.

3. Fill in the **missing** elements! (4)

Models	Entities	Relationships
Molecules	Atoms	Atomic interactions (chemical bonds)
Pathways	Enzymes	chemical reactions
Genetic networks	Genes	co-regulation
Protein structure	Atoms	chemical bonds
Folds	Proteins	Peptide bond

- Best described as vectors
Sometimes large number of dimensions
- Vector operations are fast

4. Define **Levenshtein edit-distance** and **Hamming distance**! (4)

Levenshtein: edit distance between character string defined as sum of costs assigned to matches, replacements and gaps.

2 strings do not need to be of the same length

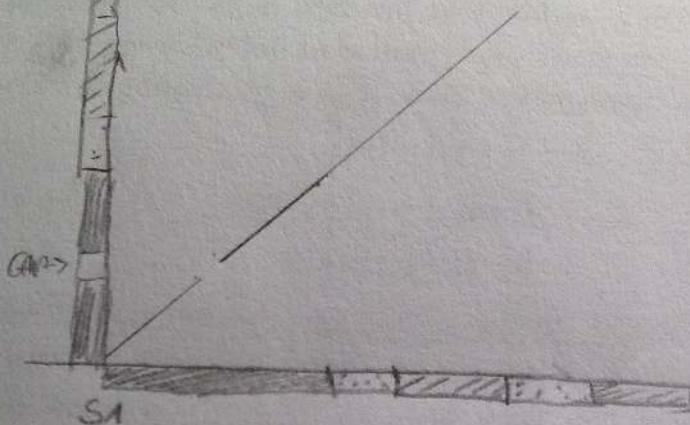
number of exchanges necessary to turn one

3. Fill in the missing elements! (4)

Models	Entities	Relationships
Molecules	Atoms	Atomic interactions (chemical bonds)
Pathways	Enzymes	chemical reactions
Genetic networks	Genes	co-regulation
Protein structure	Atoms	chemical bonds
Folds	Co-atoms	Peptide bond

- Best described as vectors
- Sometimes large number of dimensions
- Vector operations are fast

4. Define Levenshtein edit-distance and Hamming distance! (4)


Levenshtein: edit distance between character string defined as sum of costs assigned to matches, replacements and gaps.
 2 strings do not need to be of the same length

Hamming: number of exchanges necessary to turn one string of bits or characters into another one.
 2 strings are of identical length and no alignment is done

- The exchanges in character strings can have different costs, stored in a lookup table.
 In this case the value of the Hamming distance will be the sum of costs, rather than the number of exchanges.

S1: [REDACTED] [REDACTED]

S2: [REDACTED] GAP [REDACTED]

6. Calculate the **log odds ratio** of residues Alanine (A) and Valine (V) using the following multiple alignment! (4)

(A)	V	F	R	V	G
V	T	F	V	A	A
(A)	V	V	S	A	A
L	V	A	N	V	H

$$g(A) = 7 \quad g(V) = 8 \quad g(AN) = 5$$

$$m(A/V) = \frac{g(AN)}{g(A) \cdot g(V)} = \frac{5}{7 \cdot 8} = \frac{5}{56}$$

$$M(AN) = \log(m(A/V)) = -1,05$$

7. Define the following terms: (3)

running time: Defined as number of steps to be carried out.

V T F V A A
A V V S A A
L V A N V H

$$m(A/V) = \frac{-(AN)}{g(A) \cdot g(V)} = \frac{5}{7 \cdot 8} = \frac{5}{56}$$

$$M(AN) = \log(m(A/V)) = -1.05$$

7. Define the following terms: (3)

running time: Defined as number of steps to be carried out.

average case: using an average input problem - dependent, not trivial

worst case: inputs leading to an upper limit of running time / memory

8. Fill in the **missing** words! (9)

_____ algorithms find the best solution by constructing the solution from the stored optimal solutions of sub-problems. The Needleman-Wunsch algorithm is a well-known solution for global sequence alignment. In order to perform the alignment, a matrix is created which allows us to compare the two sequences. The score $F(i,j)$ is the score of the best alignment between the initial segment $x_{1..i}$ and $y_{1..j}$. We initialize $F(0,0) = 0$. Then we proceed to fill the matrix from top left to bottom right. There are 3 possible ways that the best score $F(i,j)$ of an alignment up to x_i, y_j could be obtained:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

where $s(x_i, y_j)$ is the score value for aligning and d is the penalty for inserting a x_i and y_j . The equation is applied repeatedly until we reach the bottom-right corner. As we fill in the $F(i,j)$ values we also keep a _____ in each cell showing the cell it was derived from. Using these _____ we can _____ the alignment of our sequences.

Smith-Waterman algorithm is a solution for local sequence alignment. The algorithm is similar to global alignment, there are two main differences. First, at calculating F matrix an extra possibility is added allowing $F(i,j)$ to take the value 0 if all other options are negative. If the best alignment up to some point _____ corresponds to starting a new

solution for global sequence alignment. In order to perform the alignment, a matrix is created which allows us to compare the two sequences. The score $F(i,j)$ is the score of the best alignment between the initial segment $x_{1..i}$ and $y_{1..j}$. We initialize $F(0,0) = 0$. Then we proceed to fill the matrix from top left to bottom right. There are 3 possible ways that the best score $F(i,j)$ of an alignment up to x_i, y_j could be obtained:

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

where $s(x_i, y_j)$ is the score value for aligning and d is the penalty for inserting a gap. The equation is applied repeatedly until we reach the bottom-right corner. As we fill in the $F(i,j)$ values we also keep a _____ in each cell showing the cell it was derived from. Using these _____ we can _____ the alignment of our sequences.

Smith-Waterman algorithm is a solution for local sequence alignment. The algorithm is similar to global alignment, there are two main differences. First, at calculating F matrix an extra possibility is added allowing $F(i,j)$ to take the value 0 if all other options are negative. Taking this option corresponds to starting a new _____. If the best alignment up to some point has a _____ score, it is better to start a new one rather than extend the old one. The second change is that now an alignment can end anywhere in the matrix, so at _____ instead of taking the value in the bottom-right corner, we look for the largest value $F(i,j)$ in the whole matrix, and start the backtrack from there.

9. How can you validate a multiple alignment using **3D structure** information? (2)

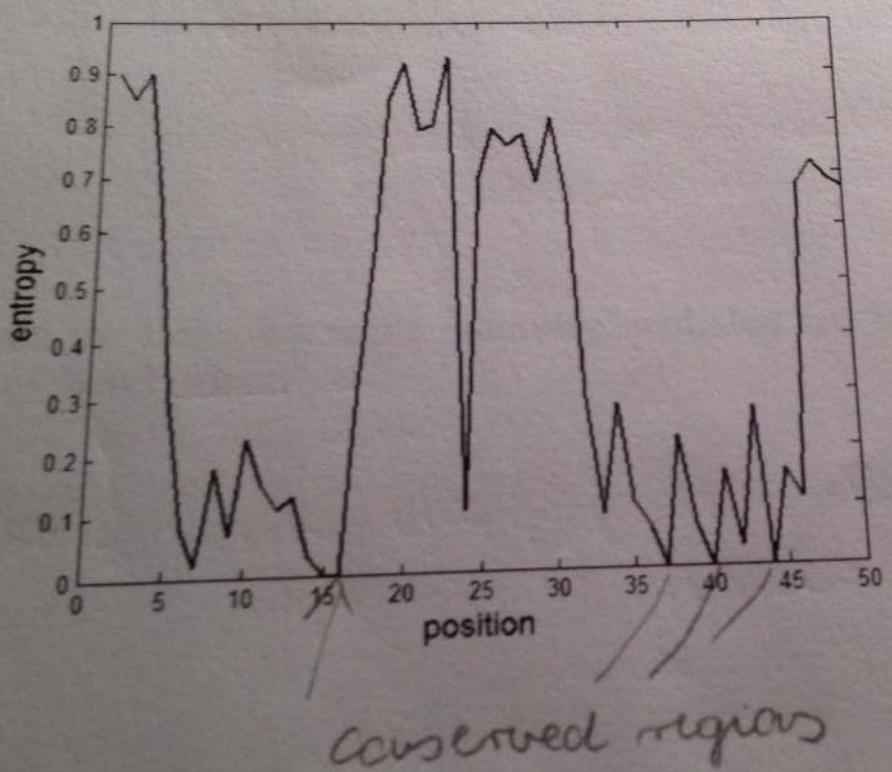
1. convert 3D structure into a series of secondary structure assignments, and write on top of the alignment
2. Maps conserved regions directly to 3D
eg. color the 3D with entropy plot values
conserved regions should map to the surface of the

Smith-Waterman algorithm is a solution for local sequence alignment. The algorithm is similar to global alignment, there are two main differences. First, at calculating F matrix an extra possibility is added allowing $F(i,j)$ to take the value 0 if all other options are negative. Taking this option corresponds to starting a new _____. If the best alignment up to some point has a _____ score, it is better to start a new one rather than extend the old one. The second change is that now an alignment can end anywhere in the matrix, so at _____ instead of taking the value in the bottom-right corner, we look for the largest value $F(i,j)$ in the whole matrix, and start the backtrack from there.

9. How can you validate a multiple alignment using **3D structure** information? (2)

1. convert 3D structure into a series of secondary structure assignments, and write on top of the alignment
2. Maps conserved regions directly to 3D
eg. color the 3D with entropy plot values
variable regions should map to the surface of the protein,
not in the buried parts

10. Which sequence has lower **complexity**? Support your statement by calculation! (3)


1. CGAGTAGCTCTGCTAA
2. GAGTGTCTTCTTATTG

0

?

Complexity: an empirical measure, proportional to the number of words (of arbitrary length) necessary to reproduce a sequence.

12. What can you conclude from the multiple alignment that has generated the following normalized **entropy plot**? (2)

WHAT THE ~~F~~UCK?

16. Given the following distance matrix draw a dendrogram based on the UPGMA method and briefly explain your calculation! (6)

	A	B	C	D
B	8			
C	6	8		
D	8	2	8	
E	4	8	6	8

17. Explain how **BLAST** algorithm works (what are the BLAST tricks). List the main computational steps and briefly describe them! (8)

→ me. 25

17. Explain how **BLAST** algorithm works (what are the BLAST tricks). List the main computational steps and briefly describe them! (8)

→ main

18. List 5 applications of **next generation sequencing!** (5)

medical, microbiological

agricultural, such as only human cancer genes,
only microbial genomes, etc

19. Compare traditional (Sanger) and next generation sequencing (list the advantages, disadvantages)!
(4)

Sanger:

- Accurate
- Also works on few samples
- Expensive for data
- Small capital investment
- Slow

NGS:

- less accurate
- shorter reads
- economical only with many samples
- ~1000 less expensive for data
- large capital investment
- very fast

20. What is the order of the following steps/stages at NGS sequencing? (4)

~

- (a) alignment
- (b) fragmented DNA
- (c) sample DNA sequence
- (d) parallel sequencing
- (e) (f) DNA fragments with sequencing adapters
- (g) PCR amplification

21. What are the future challenges of NGS in clinical medicine? Shortly explain at least 3 examples!

(3)

challenges for NGS: accuracy, interpretation, storage

Accuracy: 99.99% accuracy \rightarrow 3 billion nucleotides
 $= 300,000$ errors per patient
need for confirmation at present

- Expensive for data
- Small capital investment
- Slow

- Shorter reads
- Economical only with many samples
- ~1000 less expensive for data
- large capital invest need
- very fast

20. What is the order of the following steps/stages at **NGS** sequencing? (4)

~

- (a) alignment
- (b) fragmented DNA
- (c) sample DNA sequence
- (d) parallel sequencing
- (e) PCR amplification
- (f) DNA fragments with sequencing adapters
- (g) PCR amplification

21. What are the future challenges of **NGS in clinical medicine**? Shortly explain at least 3 examples!

(3)

challenges for NGS: accuracy, interpretation, storage

Accuracy: 99.99% accuracy \rightarrow 3 billion nucleotides
 $= 300,000$ errors per patient
 need for confirmation at present

Interpretation of the variant we find

Storage and access in the medical record \rightarrow each have ~ 4 million variants

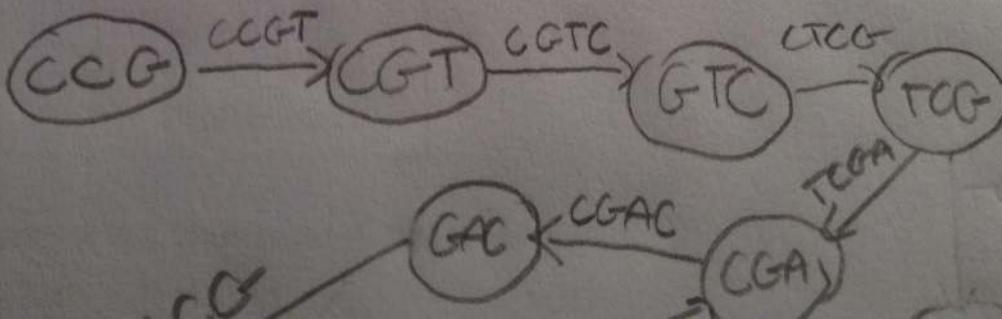
22. Given the reads {CCGT, GAAA, AAAC, AACG, CGTC, GTCG, GACG, ACGA, TCGA, CGAC, CGAA}. What is the original sequence? Use the **de Bruijn graph** (k -mer = 3) based algorithm for the computation! Very briefly describe your computation! (6)

CCGT

CGTC

GTCG

TCGA


CGAA

GAAA

AAAC

AACG

CCGT GAAA CGACG

21. What are the future challenges of NGS in clinical medicine? Shortly explain at least 3 examples!
(3)

challenges for NGS: accuracy, interpretation, storage

Accuracy: 99.99% accuracy \times 3 billion nucleotides
 $= 300,000$ errors per patient
need for confirmation at present

Interpretation of the variant we find

Storage and access in the medical record \rightarrow each have ~ 4 million variants

22. Given the reads {CCGT, GAAA, AAAC, AACG, CGTC, GTCG, GACG, ACGA, TCGA, CGAC, CGAA}. What is the original sequence? Use the de Bruijn graph (k -mer = 3) based algorithm for the computation! Very briefly describe your computation! (6)

CCGT

CGTC

GTCG

TCGA

CGAA

GAAA

AAAC

AACG

ACGA

CGAC

GACG

CGAA

GAAA

AAAC

AACG

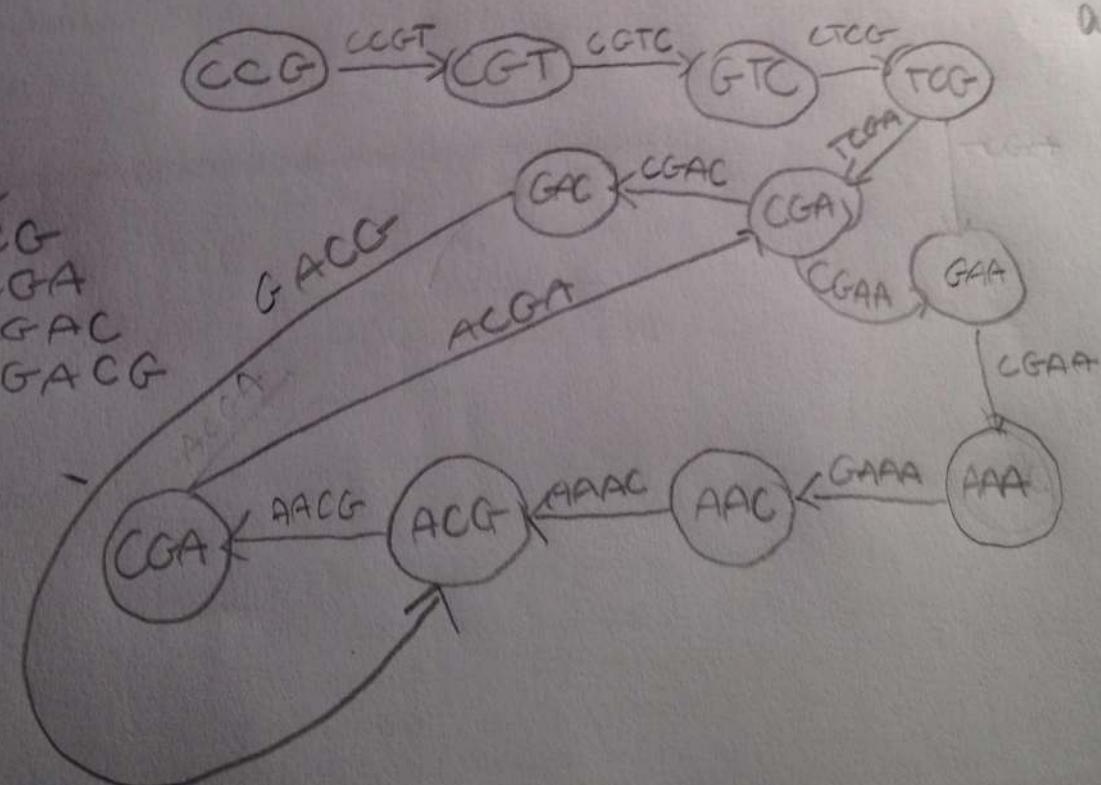
ACGA

CGAC

GACG

CGAA

GAAA


AAAC

AACG

ACGA

CGAC

CCGT CGTC GAAA CGACG established seq a
medical record
matrix val
data

