

INTRODUCTION TO BIOINFORMATICS PRACTICE – 9th week

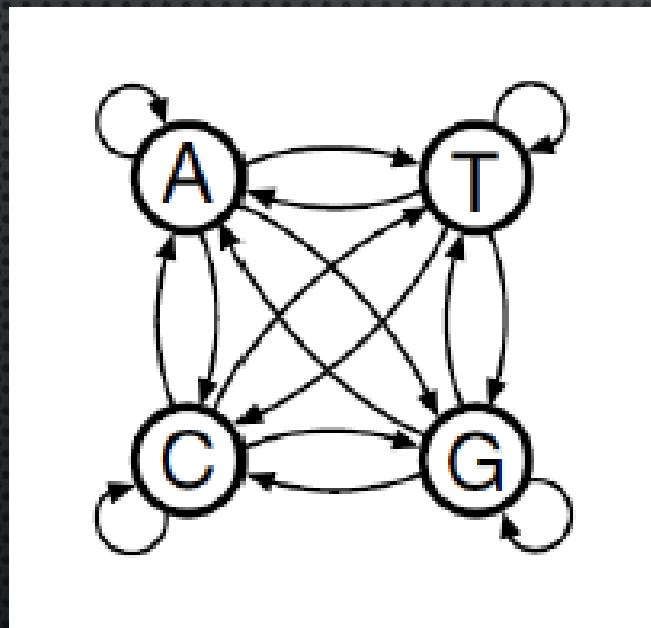
Hidden Markov Models

PROBABILITY THEORY

- CONDITIONAL PROBABILITY
- JOINT PROBABILITY

$$P(A | B)$$

$$P(A, B)$$


$$P(X) = \sum_Y P(X, Y) = \sum_Y P(X | Y)P(Y)$$

- BAYES THEOREM

$$P(X | Y) = \frac{P(Y | X)P(X)}{P(Y)}$$

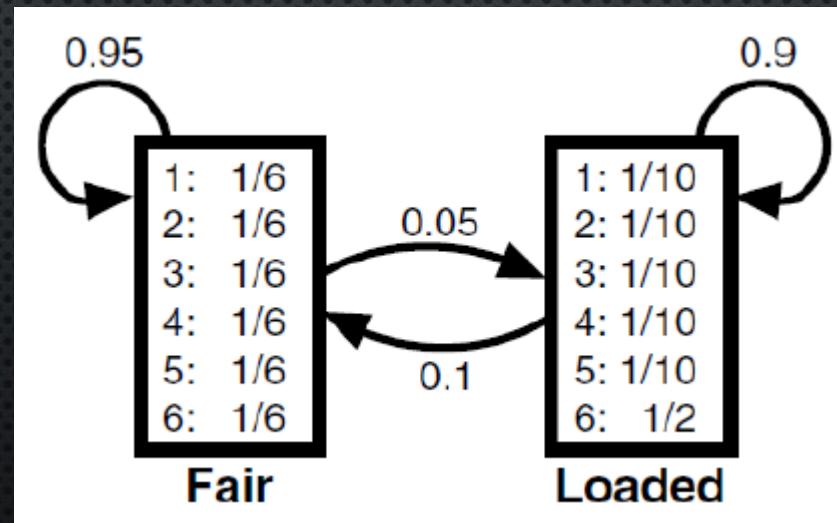
MARKOV CHAINS

MARKOV CHAIN FOR GENERATING RANDOM NUCLEOTIDE SEQUENCES:

- Each state represents a symbol
- The sequence is the ('time') series of states

MARKOV CHAINS

- MARKOV CHAINS CAN BE DESCRIBED BY STATE TRANSITIONS
- GIVEN A FINITE SET OF STATES: $X = \{x_1, x_2, x_3, \dots, x_L\}$
- AT TIME POINT $T+1$ THE PROCESS STAYS IN THE SAME STATE AS IN TIME STEP T OR MOVES TO ANOTHER STATE
- **TRANSITION PROBABILITY:** P_{ij} (THE PROBABILITY OF MOVING FROM THE i TH STATE TO THE j TH)
→ WE CAN BUILD A **STATE TRANSITION MATRIX** FROM THEM


$$P(x) = P(x_L, x_{L-1}, \dots, x_1) = P(x_L | x_{L-1}, \dots, x_1) \cdot P(x_{L-1} | x_{L-2}, \dots, x_1) \cdot \dots \cdot P(x_1)$$

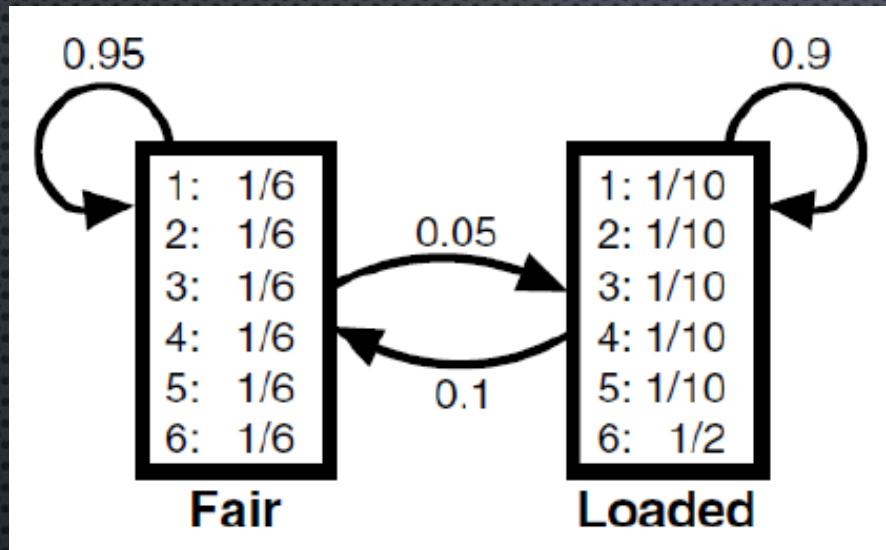
- **MARKOV PROPERTY:** NEXT STATE DEPENDS ONLY ON THE ACTUAL ONE:

$$P(x) = P(x_L | x_{L-1}) \cdot P(x_{L-1} | x_{L-2}) \cdot \dots \cdot P(x_2 | x_1) \cdot P(x_1)$$

HMM – UNFAIR CASINO

- AN UNFAIR CASINO USES 2 KINDS OF DICES: 99% OF THE DICES IS NORMAL, 1% IS LOADED. ROLLING 6 WITH THE LOADED DICE HAS A PROBABILITY OF 0.5.
- HMM MODEL OF THE UNFAIR CASINO:

HMM - UNFAIR CASINO


- GENERATING SEQUENCES OF SYMBOLS (I.E. NUMBERS)
 - THE SAME SEQUENCE COULD BE GENERATED BY EITHER A LOADED OR NORMAL DICE
- ONE CAN OBTAIN THE SEQUENCE ITSELF, BUT NOT THE STATES!
- HOW DO YOU FIGURE OUT WHAT WERE THE STATES (DICES), THAT ARE POSSIBLY GENERATED THE UNDERLYING SEQUENCES

WHICH ONE WAS MORE LIKELY GENERATED BY A LOADED DICE?

SEQ1: 45 **66**32 **66**164 **6666**411 **656656**312 **63366**233 **6636**21353

SEQ2: 251454242 **62516**1523445 **6555436**4345325 **6343246**14

HMM - COMPONENTS

- **HIDDEN STATE:** (LOADED/NORMAL DICE) AND (OBSERVABLE) **EMITTED SYMBOLS** ($\{\text{ACTG}\}/\{1,2,3,4,5,6\}$)
- **EMISSION MATRIX:** PROBABILITY OF OBSERVABLE SYMBOLS GIVEN THAT THE HIDDEN MODEL IS IN A CERTAIN HIDDEN STATE
- **INITIAL DISTRIBUTION:** THE PROBABILITY OF THE MODEL BEING IN A CERTAIN HIDDEN STATE AT TIME 0
- **STATE TRANSITION MATRIX:** PROBABILITY OF MOVING FROM ONE HIDDEN STATE TO ANOTHER HIDDEN STATE

DECODING - VITERBI ALGORITHM

QUESTION: WHAT IS THE SEQUENCE OF THE STATES THAT GENERATED THE FOLLOWING SEQUENCE?

- FIGURING OUT THAT AT EACH POSITION THE LOADED OR THE FAIR DICE HAD BEEN USED

45 **66** 32 **66** 164 **6666** 411 **656656** 312 **63366** 233 **6636** 21353251454242 **6**
251 **6** 1523445 **6555436** 4345325 **6343246** 14

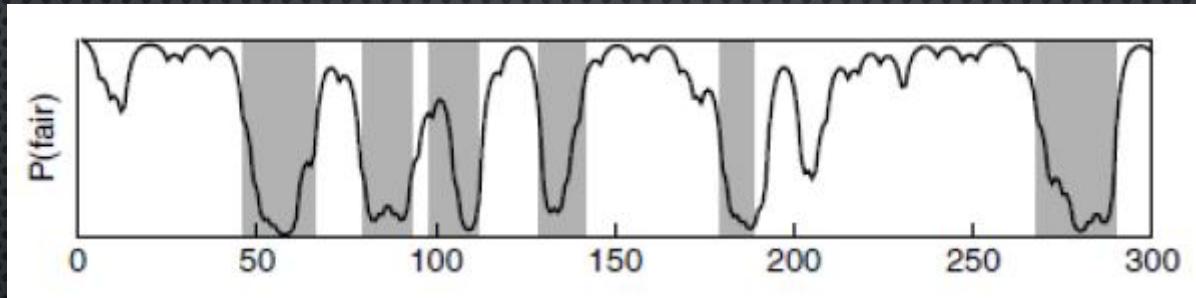
SOLUTION:

ASSUMING THAT WE KNOW THAT UNTIL THE POSITION 8 THE LOADED DICE WAS USED, HOW WOULD YOU DECIDE WHICH ONE IS THE NEXT STATE? SUGGESTIONS?

45 **66** 32 **66** 1

LLLLLLL?

DECODING - VITERBI ALGORITHM


- VITERBI: FINDING THE MOST PROBABLE PATH (PATH IS DENOTED AS π)
- MOST PROBABLE PATH: $\pi^* = \arg \max_{\pi} P(x, \pi)$
- LET $v_k(i)$ BE THE PROBABILITY THAT THE MOST PROBABLE PATH ENDS AT k . STATE WHERE IT EMITS SYMBOL x_i

$$v_l(i+1) = e_l(x_{i+1}) \max_k (v_k(i) a_{kl})$$

WHERE $e_l(x_{i+1})$ IS THE PROBABILITY OF EMITTING x_{i+1} AT THE l STATE; a_{kl} IS THE TRANSITION PROBABILITY FROM k TO l

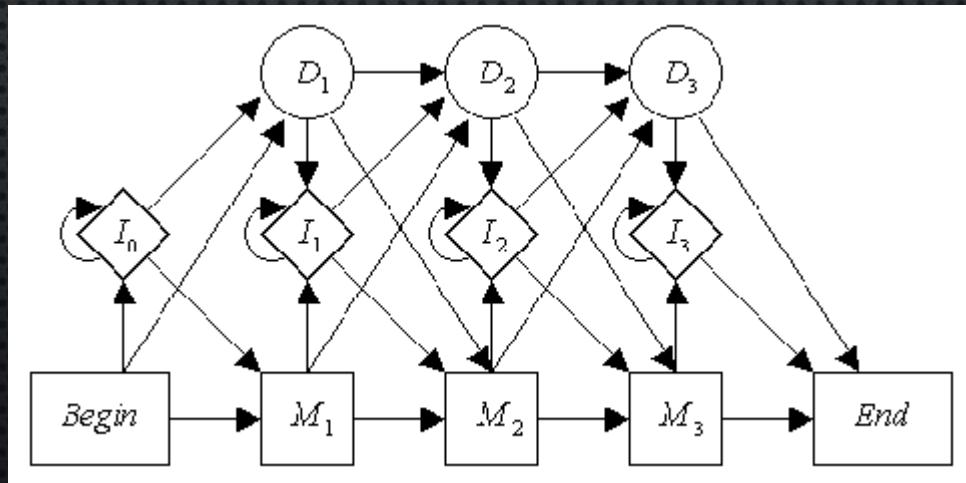
Viterbi - Unfair casino

- WITH DYNAMIC PROGRAMMING IT IS POSSIBLE TO FIND THE MOST PROBABLE PATH

- FINDING GENES IN A NUCLEOTIDE SEQUENCE

HMM - TRAINING

- UNTIL NOW WE ASSUMED THAT WE KNOW THE MODEL EXACTLY.
(MODEL: TRANSITION AND EMISSION PROBABILITIES)
- IN REAL LIFE IT IS NOT THE CASE
- THE MODEL PARAMETERS (EMISSION AND TRANSITION PROBABILITIES) MUST BE ESTIMATED SOMEHOW (~TRAINING THE MODEL)
- MUST HAVE A TRAINING SET, I.E. ANNOTATED GENOMES, ANNOTATED SEQUENCES
- ESTIMATION:
 - EXPECTATION-MAXIMIZATION ALGORITHM
 - BAUM WELCH TRAINING


PROFILE HMM

- GIVEN A PROTEIN FAMILY WE WANT TO FIND OTHER MEMBERS OF THIS FAMILY IN A GIVEN DATABASE
- WE CAN MAKE A PROFILE THAT REPRESENTS THE PROTEIN FAMILY AND WE COMPARE THE DATABASE ELEMENTS TO THIS PROFILE
- AN HMM CAN DESCRIBE SUCH A PROFILE

A	.72	.14	0	0	.72	.72	0	0
T	.14	.72	0	0	0	.14	.14	.86
G	.14	.14	.86	.44	0	.14	0	0
C	0	0	.14	.56	.28	0	.86	.14

PROFILE HMM

- STATES:
 - M: MATCH STATE
 - I: INSERTION STATE
 - D: DELETION STATE (SILENT STATE – NO EMISSION)
- N: LENGTH OF SEQUENCE (NUMBER OF MATCHES)

