
Introduction to Bioinformatics
2​nd​ practice ­ Linux II.

During the session we will get more familiar with 1D plot and some standard unix tools that
are useful for manipulating data in large scale. You are going to investigate the biophysical
properties of the Epidermal Growth Factor Receptor (EGFR) protein for human, with a view
to discovering membrane spanning region(s). You will also practice how to build simple
pipelines, filter large body of data. More specifically, you will understand the concept of
regular expressions and you will apply the concept in the ​sed​ , ​grep​ and ​awk​ commands.
The required softwares are a web browser (Using the site: ​ ​http://web.expasy.org/protscale/​)
and a unix terminal, since all the above mentioned programs are normally available in a unix
environment.

Files you need:

­ 5j8v.pdb ­ protein structure information

1. Locating the membrane spanning region in the EGFR protein for human

For the sake of simplicity, we will investigate a
protein with just one, very clear membrane
spanning region in its middle. “Real Life” is
often not so kind … but “Real Life” is not the
problem of the day. As we will hopefully have
discussed, when a protein is traveling through a
membrane it is typically: hydrophobic, and
highly hydrophobic regions are membrane
spanning. Also, there is a statistical property of
amino acids to be found in membrane spanning
regions. This is correlated with hydrophobicity,
but it is determined by independent methods.
Where both properties coincide, maybe we can
reasonably suspect a membrane spanning
region?

http://web.expasy.org/protscale/
http://web.expasy.org/protscale/

> EGFR_HUMAN
MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLI
ALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQN
HLGSCQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTCPPLMLYNPT
TYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTS
ISGDLHILPVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNITSLGLRSLKE
ISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEP
REFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCP
TNGPKIPSIATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGSGAFGTVYK
GLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCV
QIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSYGVTVWELMTF
GSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRAL
MDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPEY
INQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLNTVQPTCVNSTFDSPAHWAQKGSHQISLDNPDYQQDFFPKEAKP
NGIFKGSTAENAEYLRVAPQSSEFIGA

You now must load the protein you wish to investigate from the sequence databases. To
make this simple, we copied the sequence into the text above. This is in FASTA format, has
a name after the “>” sign in the first line, and is followed by a long sequence in the second
line. This is a continuous line now, but it can also be split into separate lines. Copy it into the
form.

Now look at the hydrophobicity of your protein using the simple method of Kyte and
Doolittle. Below the upload box you see a number of options. These are all physicochemical
properties of the amino acids that you can plot along the sequence. Hyphob Kyte Doolittle is
the default, so you do not need to do much just hit the submit button, but before that, select
the window length of 21. This will give you a smooth curve. The server will generate a long
output. First it will show your sequence. Then it will show the numerical values of the
hydrophobicities used, this is called a “scale”

The program will replace these numbers instead of the amino acids of your sequence.
It will also show a weighting scheme that is used for the window of plotting.

As you see, all weights are equal, i.e. we will simply plot the average of the values in the
middle of the window.

Now comes plot showing the way the hydropathy of the protein varies along its length. It
should be clear to you already where the most likely position of the membrane spanning
region might be. We put a red arrow there, for the sake of security .

Next, take a look at a statistical property called Transmembrane tendency. This is a scale
that represents the frequency of an amino acid found in transmembrane regions, so we
expect a similar curve. Go back with the back arrow, your sequence should still be in the
loading window. Select Transmembrane tendency, do not forget to set the window size to 21.
Hit Submit.

Hopefully you can see that the charge around the most probable membrane spanning region
is as expected. From the two plots we can conclude that there is a membrane spanning
region around say 610 and 680. We can now check if we are right. In the central protein
sequence database, UNIPROT, the transmembrane regions are annotated. Go to
www.uniprot.org

In the search window, key the identifier of this protein: ​egfr_human
You will see the only protein corresponding to this name to come up:

Below this you can read the entire CV of this protein. However, we want to see if we were
right with our prediction.
Then go to the “Topology” section. Since his is a large record, type control F and key in
topology. This is what you will hopefully see:

So, in fact we see a transmembrane segment in the region we located, and one which was
confirmed experimentally. This tells us an important lesson: looking at 1D curves is simple
but not very accurate.

2. Regular expressions

Many times various patterns exist in text files. In many cases the data is stored as simple,
unstructured text file, rather than in XML. Usually, each row represents a single database
record, where the attributes are separated by tabulators, semicolons, etc.
These are often non normalized data, with various dependency between the attributes.
In an other typical unstructured data representation the data belonging to one object is
scattered through many lines. Usually these are descriptional information (annotations,
structural information, etc.) An example for this format is genbank (.gb), pdb (.pdb), etc.
The common in these is that there are “rules” or patterns in the text file, therefore they are
machine readable. The patterns are described by so called regular expressions. Some
examples are shown in table 1 (for more details see i.e.
https://www.math.utah.edu/docs/info/gawk_5.html). The regular expressions are almost the
same through various programming languages (i.e. one may be able to use the same
regular expression in python and awk).

Table 1. Examples for regular expression

PATTERN DEFINITION EXAMPLE

OPERATORS

\ escape character \$ ­ match to $sign

^ matches the beginning of a
string

^aa ­ matches any line starting with two aa

$ matches the ending of
string

^aa ­ matches any line ending with two aa

. matches any single
character

aa.aaa ­ mathes to aabaaa or aacaaa, but
not aabbaaa

* match to any number of
occurrences

a*bb ­ matches to acbb or abbbb

+ match to at least one
occurrences

a+bb ­ matches to abb or aaabbbb

[....] set of characters a[abc]d ­ matches to aad, abd, acd;

[:alnum:] matches to alphanumeric
characters (i.e. words)

matches to words like cat434

[:digit:] matches to numbers i.e. 51464545

https://www.math.utah.edu/docs/info/gawk_5.html

(.....) grouping It makes the partitioning of the matches
possible.

^ not operator [^abc]+ it matches to every string that does
not contain a or b or c.

| logical OR A|b ­ matches to strings beginning with A
or b

SPECIAL CHARACTERS

\\ backslash Matches to the ‘\’ (it is important, since ‘\’ is
an escape character)

\n newline matches to the end of line

\t tab matches to the tabulator

\r carriage return matches to the carriage return

SPECIAL CHARACTERS (more language specific, i.e. available perl, python, c++, etc.)
\d matches to numbers

\D matches to NOT numbers

\s matches to whitespaces
(equivalent to [\t\n\r\f\v])

\S matches to NOT
whitespaces

3. Simple UNIX utilities

Grep ​is typically used for filtering lines according to certain criteria (i.e. list the atoms that are
in a certain chain, described by an id). The ​awk ​is a very simply but powerful tool for basic
string manipulation. The ​sed ​is also useful tool for simple text transformation (i.e. replacing a
string described by a pattern, to another).
The PDB file contains the 3D structure of a protein. In the PDB file format, each line – so
called record – starts with maximum 6­character long record name that indicates the type of
information stored in the record. For example: HEADER – the header section, CMPND – the
compound name and properties, ATOM – the names and 3d coordinates of the atoms, etc.
Most records have strict formats.
For more information on PDB file format, see
http://www.wwpdb.org/documentation/file­format­content/format33/v3.3.html

GREP

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html

Syntax:
grep [OPTIONS] PATTERN [FILE...]

Some options:

­i ignore case sensitivity

­E use extended regular expression

Examples: ​finding all users having nag in its name:

ls /home/ | grep ­i ­E 'nag'

SED (for string replacement)

Syntax:
sed ‘​s/regexp/replacement/flags​’ INPUTFILE

Examples:
Replacing the the usernames starting with ‘nag’ with ‘XX’:

ls /home/ | grep ­E '^nag' | sed s/^nag/XX/

AWK
Syntax:

awk ['program'] [file ...]

where ‘prog’ is the ​awk​ program; file is the input ​file. ​ The ‘program’ part has a

match part and an action part. The columns (or fields) can be accessed directly by
their index (i.e. $0 ­ all column, $1, first, ... $5 fifth column, etc). You can also create
variables, loops, condition, etc. Some examples are described here. For detailed
description about the progs please see
http://www.computerhope.com/unix/uawk.htm​.

Examples:
I.e. simple processing of a tabular file​ /home/olaba/bioinfo/table.tsv​ :
Selecting the first 2 columns with awk:
 awk '{print $1 "\t" $2}' /home/olaba/bioinfo/table.tsv

Selecting the records, where the row contains the character ‘D’:
 awk '/D/ {print $0}' /home/olaba/bioinfo/table.tsv

Adding the values in the 4th and 5th columns:
awk ' {x=$4; y=$5; print x+y}' /home/olaba/bioinfo/table.tsv

Printing the records having an id between 10 and 50.

awk ' {if ($1 > 10 && $1<50) print $0}'

/home/olaba/bioinfo/table.tsv

http://www.computerhope.com/unix/uawk.htm

Connect to a server (tempus.itk.ppke.hu) via terminal or putty.
Download the ​5j8v.pdb from ​users.itk.ppke.hu/~olaba/​5j8v.pdb using the ​wget​ command:
wget users.itk.ppke.hu/~olaba/5j8v.pdb

For answering all the following questions, use the downloaded PDB file called 5j8v.pdb.

1. How many lines, words and bytes does the 5j8v.pdb PDB file consists of?
2. What is the title of the PDB file? Print it on the console. (TITLE records)
3. How many authors does the PDB file have? Print the line(s) to the console that

start(s) with “AUTHOR”.
4. Lines starting with “REMARK 2” provide information about the highest resolution.

Print those lines to the console, without the record name.
5. How many CA atoms are there? (ATOM records, atom name is located in the 3​rd

column.)
6. Print the atoms with serial number between 500 and 550 to the console. (ATOM

records, the serial number is located in the 2 ​nd​ column.)
7. Print all the atoms to a file called 5j8v_atoms.pdb, but rename each C atom to CO.
8. Print the serial number of each atom, and their distance from the origin. Take care

that the coordinates cannot be considered according to column number, because in
certain lines there is no whitespace between the columns. Use instead the ​subsrt
function, based on the character positions of the x, y and z coordinates in the ATOM
records. (Example: ​subsrt($0,31,8) ​extracts 8 characters from the whole line starting
from 31.) For reference:
http://www.wwpdb.org/documentation/file­format­content/format33/sect9.html#ATOM

9. In certain CONECT lines, the “CONECT” string is immediately followed by any
number of digits. Print those lines again in a way that there is one whitespace
character immediately after the CONECT string.

10. How many atoms belong to the chains A, B, C and D, respectively? (ATOM records;
chain ID is in position 22.)

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM
http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM

