

Mutation calling intro I.

Mutations can affect genes (eg. Cystic fibrosis and mutation in CFTR)

Mutation calling intro II

Mutation calling steps

● 1) Quality control (FastQC)

– QC, trimming

● 2) Aligning reads to genome

– BWA, bowtie2, novoalign

● 3) Identifying mutations

– GATK (haplotypecaller, mutect2, varscan2…..)

● 4) Annotation mutations

– SNPeff, Anovar

● 5) Post-analysis steps

Mutation callers used today

● Many programs are available

– Gold-standard: GATK haplotype caller and Mutect2

● Haplotype caller: germline mutation

● Mutect2: somatic mutations (tumor)

https://software.broadinstitute.org/gatk/best-practices/

Today: Breast cancer mutation calling
● Identify

– Germline mutations

– Somatic mutations

● Aligner

– Burrows-Wheeler aligner (BWA)

● Mutation callers (both fromGATK):

– Germline mutation: GATK haplotype caller

– Somatic mutation: Mutect2

Input data
Exome-seq data from tumor
and normal (blood) sample

Methods

Connect to server (node, not head):
-Ubuntu: ssh -X <username>@130.211.107.222

-Windows (PUTTY): <username>@130.211.107.222
SET X11 in settings!!!!!!

Sequence alignment I.
(We will be working with a subset of reads that will align to the human chromosome 17)

Script name: Align_and_sort.pl

Usage:
 “ Align_and_sort.pl <prefix> <genome.index> <input_fq>”

Aligning tumor reads

“ Align_and_Sort.pl tumor \
/gfs/data/mutation/genome/Homo_sapiens.GRCh38.dna.chromosome.17.fa \

/gfs/data/mutation/reads/tumor.fq”

Aligning normal reads

“Align_and_Sort.pl normal \
/gfs/data/mutation/genome/Homo_sapiens.GRCh38.dna.chromosome.17.fa \

/gfs/data/mutation/reads/normal.fq”

Output: normal_sorted.bam

Output: tumor_sorted.bam

1)

2)

Sequence alignment II.
● What happens in the script?

bwa mem -t 3 -R '\@RG\tID:gyak\tSM:ubi' <genome> <reads.fq> > unsorted.sam

samtools import <genome> unsorted.sam unsorted.bam

samtools sort unsorted.bam sorted.bam

samtools index sorted.bam

1) Align reads to genome (output is SAM format, simple alignment and mapping format)

2) Convert SAM to BAM (binary format)

3) Sort reads based on genomic position

4) Create a genome index

program 3 threads Add readgroup Genome (indexed) Input reads SAM output

program function genome SAM input BAM output (unsorted)

program function BAM output (unsorted) Sorted BAM file

program function Sorted BAM file

Creating the Burrows-Wheeler
transformed and alignment basics

Small comparison of alignment
methods

File size
313 bytes

File size
253 Mb

Bowtie2 stats
Real alignments!!

Running time (sec)

Small reference

Smith-Waterman BLAST Bowtie2

1,000 reads 5 0,2 0,08

10,000 reads 51 5 1

100,000 reads 120 60 6

Human genome chr 1

1,000 reads NA 0,4 0,2

10,000 reads NA 5 1

100,000 reads NA 65 9

Human genome indexing time

NA 5 mins. ~1 hour

BWT indexing
Input sequence

AGCAGCAGACT

BW matrix

Add $ to end
Sort

Sorted BW matrix

Index Sequence

0 A G C A G C A G A C T $

1 $ A G C A G C A G A C T

2 T $ A G C A G C A G A C

3 C T $ A G C A G C A G A

4 A C T $ A G C A G C A G

5 G A C T $ A G C A G C A

6 A G A C T $ A G C A G C

7 C A G A C T $ A G C A G

8 G C A G A C T $ A G C A

9 A G C A G A C T $ A G C

10 C A G C A G A C T $ A G

11 G C A G C A G A C T $ A

New Index Index Sequence

0 1 $ A G C A G C A G A C T

1 4 A C T $ A G C A G C A G

2 6 A G A C T $ A G C A G C

3 9 A G C A G A C T $ A G C

4 0 A G C A G C A G A C T $

5 7 C A G A C T $ A G C A G

6 10 C A G C A G A C T $ A G

7 3 C T $ A G C A G C A G A

8 5 G A C T $ A G C A G C A

9 8 G C A G A C T $ A G C A

10 11 G C A G C A G A C T $ A

11 2 T $ A G C A G C A G A C

Burrows-Wheeler transformed text: TGCC$GGAAAAC

Burrows-Wheeler transformed
is the last column in the sorted

matrix

New Index Index Sequence

0 1 $ A G C A G C A G A C T

1 4 A C T $ A G C A G C A G

2 6 A G A C T $ A G C A G C

3 9 A G C A G A C T $ A G C

4 0 A G C A G C A G A C T $

5 7 C A G A C T $ A G C A G

6 10 C A G C A G A C T $ A G

7 3 C T $ A G C A G C A G A

8 5 G A C T $ A G C A G C A

9 8 G C A G A C T $ A G C A

10 11 G C A G C A G A C T $ A

11 2 T $ A G C A G C A G A C

BWT matrix key points: Rank table

A C G T

rank 1 5 8 11

Rank table

Row index where given char appears in
first column

BWT matrix key points: Occurrence table

Occurance

New Index Index Sequence A C G T

0 1 $ A G C A G C A G A C T 0 0 0 1

1 4 A C T $ A G C A G C A G 0 0 1 1

2 6 A G A C T $ A G C A G C 0 1 1 1

3 9 A G C A G A C T $ A G C 0 2 1 1

4 0 A G C A G C A G A C T $ 0 2 1 1

5 7 C A G A C T $ A G C A G 0 2 2 1

6 10 C A G C A G A C T $ A G 0 2 3 1

7 3 C T $ A G C A G C A G A 1 2 3 1

8 5 G A C T $ A G C A G C A 2 2 3 1

9 8 G C A G A C T $ A G C A 3 2 3 1

10 11 G C A G C A G A C T $ A 4 2 3 1

11 2 T $ A G C A G C A G A C 4 3 3 1

Occurrence is the “rolling sum” of a given char in
the BWT

BWT

BWT input data needed for exact
string search (“alignment”)

First column
Last column Occurrence table

A C G T

rank 1 5 8 11

Rank table

Occurance

BW matrix A C G T

$.. T 0 0 0 1

A .. G 0 0 1 1

A .. C 0 1 1 1

A .. C 0 2 1 1

A .. $ 0 2 1 1

C .. G 0 2 2 1

C .. G 0 2 3 1

C .. A 1 2 3 1

G .. A 2 2 3 1

G .. A 3 2 3 1

G .. A 4 2 3 1

T .. C 4 3 3 1

Using the “Last to first” mapping
property

String recovery: last-to-first mapping

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

T

Start
BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

CT

T mapped to 3rd C in last
column

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

ACT

Look for 3rd C in the first
column

→ C maps to first A

1

2

3

1

2

3

3

1

2

1

3

4

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

GACT

Look for 1st A in the first
column

→ A maps to first G

1

2

3

1

2

1

3

4

4

Recovered textRecovered text Recovered text Recovered text

String recovery: last-to-first mapping
cont.

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

AGACT

Recovered text

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

CAGACT GCAGACT AGCAGACT CAGCAGACT

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

GACT

Recovered text

String recovery: last-to-first mapping
cont.

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

CAGCAGACT GCAGCAGACT

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

AGCAGCAGACT

BW matrix

$.. T

A .. G

A .. C

A .. C

A .. $

C .. G

C .. G

C .. A

G .. A

G .. A

G .. A

T .. C

Recovered text

$AGCAGCAGACT

Finish

Recovered text
AGCAGCAGACT

Input sequence

AGCAGCAGACT

String searching

Occurance

BW matrix A C G T

$.. T 0 0 0 1

A .. G 0 0 1 1

A .. C 0 1 1 1

A .. C 0 2 1 1

A .. $ 0 2 1 1

C .. G 0 2 2 1

C .. G 0 2 3 1

C .. A 1 2 3 1

G .. A 2 2 3 1

G .. A 3 2 3 1

G .. A 4 2 3 1

T .. C 4 3 3 1

A C G T

rank 1 5 8 11

Source: BWA article, 2009, Bioinformatics

From Rank table From occurrence table

String searching example
String: GCA Last to first mapping, so

we start with A

A C G T

rank 1 5 8 11

From: 1 + 0 = 1

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 1 + 4 = 5

Important: Occ(“A” -1)

String searching example
String: GCA Last to first mapping, so

we start with A

A C G T

rank 1 5 8 11

From: 1 + 0 = 1

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 1 + 4 = 5
A

String searching example
String: GCA Last to first mapping, so

we start with A

A C G T

rank 1 5 8 11

From: 1 + 0 = 1

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 1 + 4 = 5
A

String searching example
String: GCA

Next char is C A C G T

rank 1 5 8 11

From: 5 + 0 = 5

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 5 + 2 = 7

(last to first mapping, so
consider rows of A)

String searching example
String: GCA

Next char is C A C G T

rank 1 5 8 11

From: 5 + 0 = 5

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 5 + 2 = 7

(last to first mapping, so
consider rows of A)

String searching example
String: GCA

Next char is G A C G T

rank 1 5 8 11

From: 8 + 1 = 9

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 8 + 3 = 11

(last to first mapping, so
consider rows of AC)

String searching example
String: GCA

Next char is G A C G T

rank 1 5 8 11

From: 8 + 1 = 9

Occurance

New Index BW matrix A C G T

0 $.. T 0 0 0 1

1 A .. G 0 0 1 1

2 A .. C 0 1 1 1

3 A .. C 0 2 1 1

4 A .. $ 0 2 1 1

5 C .. G 0 2 2 1

6 C .. G 0 2 3 1

7 C .. A 1 2 3 1

8 G .. A 2 2 3 1

9 G .. A 3 2 3 1

10 G .. A 4 2 3 1

11 T .. C 4 3 3 1

To: 8 + 3 = 11

(last to first mapping, so
consider rows of AC)

There are two possible G chars
 → GCA is present two times in our input string

Input sequence AGCAGCAGACT

Position 1 Position 4

Mutation calling and annotation

1) Germline mutations

– HaplotypeCaller

2) Somatic mutations

– Mutect2

3) Annotating variants

– SNPeff

GATK_somatic_caller.pl <prefix> <genome> <tumor.sorted.bam> <normal.sorted.bam>

Script name: GATK_somatic_caller.pl

“GATK_somatic_caller.pl lorinc \
/gfs/data/mutation/genome/Homo_sapiens.GRCh38.dna.chromosome.17.fa \

tumor_sorted.bam \
normal_sorted.bam”

Example command:

Running the mutation caller
GATK_somatic_caller.pl <prefix> <genome> <tumor.sorted.bam> <normal.sorted.bam>

java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R <genome> -I <normal.bam> -o haplotypeCaller.vcf -nct 3

java -jar GenomeAnalysisTK.jar -T MuTect2 -R <genome> -I:tumor <tumor.bam> -I:normal <normal.bam> -o mutect2.vcf

java -jar snpEff.jar ann -canon GRCh38.86 mutect2.vcf > mutect2.snpeff.vcf

program algorithm genome Normal BAM file Output 3 threads

program algorithm genome Normal BAM file Normal BAM file Output

program algorithm Canonical
transcripts only

Genome
version

Input VCF Annotated VCF output

“GATK_somatic_caller.pl lorinc \
/gfs/data/mutation/genome/Homo_sapiens.GRCh38.dna.chromosome.17.fa \

tumor_sorted.bam \
normal_sorted.bam”

● What happens in the script?
1) Germline mutation calling

2) Somatic mutation calling

1) Germline mutation calling

3) Annotating somatic mutations

Post analysis steps

● 1) Identify gene affected by mutation

● 2) Somatic mutation

– Validate with IGV browser

● 3) Check published articles

● 4) perform survival analysis

– Kmplot.com, cbioprortal, g-2-o.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

