
„Utazó ügynök”-probléma megoldása

Hopfield hálózat segítségével

A projekt célja: Hopfield hálózat mint kvadratikus minimalizáló szemléltetése az „utazó ügynök”-

probléma megoldásán keresztül.

Implementáció nyelve: Python 2.7.6

Felhasznált modulok: numpy, matplotlib, random

Csatolt állományok:

➢ TSP.py: a feladat implementációja

➢ result, result2, result3 mappák: teszteredményeket tartalmazó mappák

Készítette: Hakkel Tamás

Tárgy: Neurális hálózatok

Dátum: 2016. december 02.

Matematikai interpretáció:

➢ Adott egy 2D ponthalmaz, melyek közt a távolságot Euklideszi távolsággal adom meg.

➢ A ponthalmaz elemeit indexszel látom el.

➢ Keresem az indexek azon permutációját, mely a városokat a permutációnak megfelelően

bejárva a legrövidebb utat kapom.

➢ Ennek érdekében az állapotteret leképezem egy V∈ {0; 1}nxn-es mátrixra, ahol n a városok

száma, és ha a mátrix (x,i) eleme 1 az azt jelenti, hogy az „ügynök” az útvonalában az x

indexű város az i-dik.

➢ Az így kapott V mátrixnak a következő kritériumoknak kell megfelelnie:

 A sorvektorai ortogonálisak legyenek egymásra

 Az oszlopvektorai szintén legyenek ortogonálisak

 Minden oszlopban és sorban legyen elem

➢ Definiálok egy energia-függvényt, ami megadja, hogy a V mátrix mennyire tér el a

kritériumoktól, és az általa meghatározott útvonal mennyire hosszú. A függvényt a

következőképp definiálom:

➢ Ezen energiafüggvény (lokális) minimumát keresem Hopfield hálózat és gradient descent

módszer segítségével.

Program működése:
1) 10 db térkép generálása: 10 város véletlenszerű elhelyezése egy 10x10-es (valós értékű

koordinátás) térképen, majd a távolság-mátrix számítása

2) Minden egyes térképen 10x futtatom a hopfield hálózatot a következőképp:

a) Az állapotot leíró V mátrixot véletlenszerű 0 és 1 közti számokkal feltöltöm.

b) Futtatok egy belső ciklust, mely 5*n2-szer kiválaszt egy véletlen elemet a tömbből és

értékét a következő két képlet szerint frissíti (ahol v(u) lesz a V mátrix elemének új

értéke):

c) A belső ciklus futásának befejezése után a korábban említett energiafüggvényt

kiértékelem, és ellenőrzöm, hogy ugyanazokat az értékeket kaptam-e az előző 5

kiértékelés alkalmával. Ha igen, akkor leáll a program, egyéb esetben tovább megy

egészen addig, míg 5-ször azonos értéket kap az energiafüggvény kiértékelésévél vagy

eléri a 200 lépéses limitet.

3) A futtatás során a sikeres optimalizálás után kapott útvonalakról képet készítek, melyet

megjelenítek, és el is mentek. Továbbá figyelem a 10 próbálkozás közül a legjobbat, ennek

elmentem az energiafüggvényének végső értékét és a szükséges ciklusok számát. Illetve

szintén mentem a 10 próbálkozás alatti energiafüggvény-értékek és ciklusszámok átlagát.

Eredmények:

➢ A program jelen állípotában képes arra, hogy az esetek kicsit több mint felében (a legutóbbi

300 próbálkozásból 162-szer) helyes (kritériumoknak megfelelő, stacionárium állípotba

elért) megoldást kap 200 lépéses limit mellett.

➢ Bár szemmel láthatólag legtöbbször nem a legrövidebb útvonalat találja meg, de 10-szer

futtatva még viszonylag gyorsan (a külső ciklus magját átlagosan 21.8-szor hajtja végre)

szuboptimális megoldást kapok.

➢ A hálózat paramétereinek finomhangolásával még lehet javítani a működésen, de általában a

paraméterek egymás ellen hatnak; nem érdemes egyszerre növelni mindegyik paraméter

értékét, és a paraméterek változtatásával drasztikusan nőhet a sikerektelen útvonalkeresési

kísérletek száma.

Irodalom:
http://www.mini.pw.edu.pl/~mandziuk/PRACE/TSP_DM.pdf

https://www.ece.uic.edu/~rgandhi/resume/Hope_tsp.PDF

http://www.mini.pw.edu.pl/~mandziuk/PRACE/TSP_DM.pdf
https://www.ece.uic.edu/~rgandhi/resume/Hope_tsp.PDF

Példa (result/result_map4_trial*.jpg): mosolygós fej jelöli a legrövidebb útvonalat

