OOP
Modellezési alapelvek (absztrakció, megkülönböztetés, osztályozás, általánosítás-specializálás)
OOP alapelvek (dinamikus kötés (futási időben dől el, h melyik implementáció fut), enkapszuláció, altípusos polimorfizmus (rögzített típusú változó, több a típus altípusának példányára is hivatkozhat), öröklődés, nyílt rekurzió (this))
Fogalmak (overload (két azonos nevű metódus, különböző szignatúra), override (leszármazott osztály azonos névvel, szignatúrával bevezet egy másik fv-t), ha van dinamikus kötés, csak akkor override, különben elfedés)
Polimorfizmus (egy rögzített típusú változó több (altípus) típusú obj-ra hivatkozhat)
Dinamikus kötés (egy obj-n statikus típus által megengedett művelet van meghívva, a műveletnek mindig a dinamikus típusnak megfelelő implementáció fog lefutni) (-> felüldefiniált metódusokra)
Programozási minták
Abstract Factory, Factory Method, Singleton, Adapter, Composite, Proxy, Observer
Abstract Factory (obj létrehozási minta, interface biztosítása konkrét osztályok megadása nélkül, egy interfész -> AFactory, BFactory, mindkettőben createA(), createB() fv-k)
Factory Method (obj létrehozási minta, alosztályra átruházni, hogy miként kerüljön létrehozása az obj, megvalósítás: létrehozó absztrakt osztály, létrehozó konkrét osztály, paraméterezett gyártófüggvény)
Singleton (obj létrehozási minta, egy osztályból csak egyet enged meg, és ehhez globális hozzáférési pontot ad, megvalósítás: egy példányt lehessen létrehozni egy rejtett osztályműveleten keresztül)
Adapter (szerkezeti objektum/osztály minta, az adott osztály felületét az ügyfelek által igényelt felületté alakítani (azaz biztosítani az egyébként nem kompatibilis interfacek együtt működését)
Composition (szerkezeti objektumminta, objektumokat faszerkezetbe rendezni, hogy az önálló objektumokat és az objektum-összetételeket egységesen tudjuk kezelni, pl. grafikus alkalmazásban alapelemek, összetett elemek kezelésének egységesítése, ha ezek egymás csoportosításával keletkeznek)
Proxy (szerkezeti objektumminta, egy adott objektumot képviselőn keresztül irányítani, feladat: akkor használandó, amikor egy egyszerű objektum mutatónál rugalmasabb vagy kifinomultabb hivatkozás szükséges) van A, B-n belül és Bről kéred hogy adjon meg valamit, A osztály számlaszám, B firewall, hozzá tartozik.
Observer (viselkedési objektumminta, objektumok között 1:n függőségi kapcsolatot létrehozni, így amikor az objektum megváltozik, minden tőle függő objektum értesül erről és automatikusan frissül, feladat: pl. különböző grafikus megjelenítők használják ugyanazokat az adatokat, ha változik az adat, minden megjelenítőnek tudnia kell róla, megvalósítás: megfigyelők nyilvántartása, ha egynél több alany van figyelve, a megfigyelőnek tudnia kell, ki hívta meg, csak bizonyos módosítások figyelése)
Delegate (egy adott objektum egy feladatát nem hajtja végre, hanem azt egy másik objektumnak adja tovább, felelősség is továbbadódik, megvalósítás: interface osztályokon keresztül)
Target-Action (eseményvezérelt programok esetén gyakran használatos, obj-k között dinamikus kapcsolat, meghatározzuk az üzenet célját (target), és az akciót, melyet egy esemény hatására végre kell hajtania)
Tervezési paradigmák (Modell-View-Controller, Modell-View-Presenter, Modell-View-ViewModell, Target-Action)
MVC (input -> controller, ->-> view, model)
Modell (alkalmazás által kezelt információk ábrázolása)
Nézet (megjeleníti a modellt egy megfelelő alakban, alkalmas felhasználói interakcióra)
Vezérlő (eseményeket, felhasználói műveleteket dolgozza fel, és válaszol rájuk)
felhasználó csinál valamit -> vezérlő átveszi a bejövő eseményt -> kapcsolatot teremt a modellel, frissíti is esetleg -> a nézet a modell alapján megfelelő felhasználói felületet hoz létre, nézet modellből nyeri az adatait -> majd újra..
Modell-View-Presenter (Input -> View, Presenter van a másik 2vel összekapcsolva)
Modell, nézet ugyanaz, mint előbb,
Presenter: középen elhelyezkedő réteg, egyben tartja az alkalmazást, itt található a folyamatvezérlés, adattovábbítás rétegek között
Modell-View-ViewModell (input -> View, View a ViewModel-lel, Model és ViewModel oda vissza kötve)
NézetModell: a nézet modellje, speciális kontroller, ami konvertálja a modellből származó információt a nézet felé, valamint a nézet felől érkező parancsokat a modell felé, adat koncepcionális állapotát reprezentálja (szemben a valós adattal, ami a modellben van)
Android
Activity: legfontosabb alkalmazáskomponens, egy tevékenységet ír le (egy képernyő), feladatok: felhasználóval kapcsolattartás, GUI kezelés, funkciók végrehajtása. Több is tartozhat egy app-hoz.
Életciklus folyamatábra (onCreate() -> Created -> onStart() -> Started (visible) -> onResume() -> Resumed (visible) -> onPause() -> Paused (partially visible) -> onResume()/onStop() -> stop: Stopped (hidden), innen: onRestart(), onStart() -> Started vagy onDestroy() -> Destroyed.
Életciklus függvények:
onCreate(): amikor legelőször indul el az Activity vagy teljesen leállított állapotból indul el, akkor fut le. Itt szokás GUI-t és a változókat beállítani.
onStart(): akkor fut le, amikor maga az Activity láthatóvá válik a felhasználó számára.
onResume(): elkezdjük a munkát a felhasználóval
onPause(): akkor fut le, ha az Activity részben látszik (partially visible), többablakos esetben, ha nem ez az aktív. Amennyiben szükséges, itt kell elmenteni az adatokat, és leállítani a futó folyamatokat. Gyorsan fusson le, mert amíg fut, addig a következő Activity nem látszik. Ha leáll az Activity, ez az utolsó metódus, ami garantáltan meghívódik!
onStop(): ez az a pillanat, amikor az Activity már egyáltalán nem látszik
onDestroy(): finish() meghívása esetén vagy ha kell a memória akkor fut le. Teljesen leállítja/törli az Activity-t. Ha gyorsan kell a memória, a rendszer nem minden esetben futtatja le, időhiány miatt nincs erre lehetősége. Ne itt mentsünk adatokat! Szükséges változók null-ra állítása és erőforrások felszabadítása itt.
Összes életciklus metódusban kötelező meghívni a szülőosztály implementációját, ha ezt nem tesszük meg, futásidőben kivétel!
Log.i(„címke, melyik osztály pl”, „Hello logging!”)
GUI
A GUI widgetekből épül fel -> View, ViewGroup elemek fába rendezve. Hierarchiába rendeződve adják egy Activity felületét.
GUI elemek attribútumai: layout_width, layout_height (wrap_content, match_parent, xx dp), id, gravity (igazítás), layout_weight (fontosság), visibility, padding, background
Egy gyökér elem van. Minden ViewGroup elem felelős azért, hogy a gyerekei rajzolás függvénye meghívódjon (összetétel minta). Kirajzolás a gyökértől indul, gyerekek felül.
Inflation: xml-ben lehet definiálni View hierarchiákat
setContentView() metódus az Activity-ben beállítja a hierarchiát.
Widgetek (TextView, EditText, Button, ImageView)
GridView: rácsos elrendezés, lista adapter kell hozzá
ListView: szekvenciális adatszerkezet, görgetéssel változik, recycling
Adapterek: BaseAdapter, ArrayAdapter<T>
GUI elemekkel történő interakció Observer minta alapján.
res/values -> string.xml values-fr/string.xml (több nyelven kommunikáló program)
orientation: álló vagy fekvő
Dpi: dots per inch, képernyőn elhelyezkedő pixelek száma (pixelsűrűség), screen density-t határozza meg
Dp: sűrűség független pixel, virtuális, azt érjük el vele, hogy nagyjából azonos fizikai mérete lesz az objektumoknak, GUI xml-ben kell használni, dot independent pixel
low density, medium density, high density: pixelsűrűség mértéke
pl. res/layout-high/my_layout.xml
Nine-Patch: szükség lehet arra, hogy egy képet háttérként beállítva ne az egész képet nyújtsuk, hanem csak egy részét
A nyújtható területeket úgy adjuk meg, hogy a kép bal és felső végére egy pixel széles csíkot húzunk, a jobb és alsó csíkkal a padding-ot állíthatjuk.
Fragment: önálló Activity lifecycle, felhasználói felület egy darabja a hozzá tartozó logikával együtt. Activity-t újra felhasználható alegységekre lehet bontani vele -> újrafelhasználhatóság. Mindig egy Activity része. Tablet és telefon támogatás esetén nagy segítség. Ugyanúgy vannak életciklus függvényei: onAttach(), onCreate(), onCreateView(), onActivityCreated(), onStart(), onResume(), onPause(), onStop(), onDestroyView(), onDestroy(), onDetach(). Használat: Activity-be ágyazva, hozzáadva Activity-hez dinamikusan, vagy veágyazhatjuk kövzvetlenül layout xml-be.

WP
c#: névtér van, típusok (érték, referencia, mutató)

IOS
Fejlesztés eszközei: Xcode, iOS SDK-val
új iOS -> új Xcode -> új OS x -> új hardware $$$
SDK magába foglal egy szimulátort, nem tényleges eszköz teljes op rendszere, hanem csak egy bementre meghatározza a kimenetet
Objective-C: .h -> osztály publikus interface, .m -> privát megvalósítás
C++: foo->bar (parameter);
Obj-C: [foo bar:parameter]
(int)doIt:(int)param1 withSomeInt:(int)param2;
(int)doIt:(int)param1 withSomeString:(NSString*)param2;

SWIFT
var: változtatható érték, let: konstans
opcionális érték: változó tárolhat tényleges értéket vagy nil-t, jelölés:? var optinalString: String? = „Hello”
for i in 0..<4 {} 0 és 3 közötti értékek, 0…4 -> 0 és 4 közötti értékek, van sima for ciklus szintaktika is.
func greet(name: String, day: String) -> String {
return „Hello \(name), today is \(day).” }
greet(„Bob”, „Tuesday”)
func calculateStats(scores: [Int]) -> (min: Int, max: Int, sum: Int) {return (min, max, sum}
függvényt ad vissza:
func makeIncrementer() -> (Int -> Int) {
func addOne(number: Int) -> Int {
return 1 + number }
return addOne }
var increment = makeIncrementer() increment(7)
struct és enum érték szerinti típusok, míg az osztályok referencia szerint típusok

[bookmark: _GoBack]Android API támogatott szenzorok (accelometer, ambient temperature, gravity, gyroscope, light, linear acceleration, magnetic field)
GPS, GLONASS, BeiDou, Galileo, NAVIC
aGPS: mobil szolgáltató szerverétől is kaphat navigációs adatokat a telefon
