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Important information 

Dear Candidate! 

This booklet is made for the Oral Exam in Basic Image Processing Algorithms. The booklet 
contains the titles of the exam topics as well as the detailed form of these. In some cases you 
may find errors or typos in the text. If this happens please, feel free to report them on my 
website.  

 

We wish you a successful preparation! 

Edited by: 
Márton Bese NASZLADY– 2015 

 

 

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. 

 
This document is provided “as is” without warranty of any kind. 

In no event shall the author or copyright holder be liable for any claim!  
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Exam Topics 

Topic 1 Introduction to Human Vision, Digital representation of an 
image, Color Spaces 

Introduction to Human Vision 
The human vision gives us the ability to process visual stimulus, to be able to detect and in-
terpret information from visible light (build a representation of the surrounding environment). 
The ultimate goal of computer vision is to build a system that is capable of seeing as a human 
can (or even better). 

The Physiology of the Human Eye 
Photoreceptor cells of the retina 
Rods:  sensitive to intensity, but not color  form blurred images  rods are more sensitive to light than cones  at low levels of illumination the rods provide a visual response called scotopic vision 
Cones:  color sensitive: 3 types, each maximally sensitive to one of three different wavelengths  form sharp images,  cones respond to higher levels of illumination; their response is called photopic vision 

Information transfer from the retina to the brain 
The eye contains about 6 million cone and 100-120 million rod cells distributed over the reti-
na. The density of the cones is greatest at the fovea. The optic nerve bundle contains on the 
order of 800,000 nerve fibers. Therefore, the rods and cones must be interconnected to nerve 
fibers on a many-to-one basis. 

The Visual Pathway 
Parts of the Visual Patway 
Optic Nerve – The information from the retina is transmitted to the brain. 
Optic Chiasm – The information coming from both eyes is combined and split according to 

the visual fields. 
Optic Track – Transfers the information from each visual fields to the LGN. 
LGN – primary relay center for visual information received from the retina of the eye 
Optic Radiation – The optic radiation is a collection of axons from relay neurons in the LGN 

of the thalamus carrying visual information through two divisions (called Upper and Lower 
division) to the visual cortex 

Visual Cortex – It is the largest system in the human brain, it is responsible for processing the 
visual image. 

Visual Cortex 
The dorsal stream, sometimes called the “Where Pathway” or “How Pathway”, is associ-
ated with motion, representation of object locations, and control of the eyes and arms, 
especially when visual information is used to guide saccades or reaching. 
The ventral stream, sometimes called the “What Pathway”, is associated with form recog-
nition and object representation. It is also associated with storage of long-term memory. 
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A Few Properties of the Human Vision 

Contrast Sensitivity 
The response of the eye to changes in the intensity of illumination is nonlinear. Consider a 
patch of light of intensity ܫ + Δܫ surrounded by a background intensity ܫ. Over a wide range 
of intensities, it is found that the ratio Δܫ ⁄ܫ , called the Weber fraction, is nearly constant at a 
value of about Ͳ.Ͳʹ. This does not hold at very low or very high intensities. Furthermore, con-
trast sensitivity is dependent on the intensity of the surround. 
Many image processing systems assume that the eye's response is logarithmic instead of line-
ar with respect to intensity: logሺܫ + Δܫሻ − logሺܫሻ = log(ܫ + Δܫܫ ) = logሺͳ + ܿሻ = const 
Lateral Inhibition 
The response of receptor ܣ to illumination is decreased, if the nearby receptors ܤ are also 
illuminated. 

Chromatic Adaption 
An object may be viewed under various conditions; it may be illuminated by sunlight, the 
light of a fire, or electric light. In all of these situations, human vision perceives that the object 
has the same color. 

Illusions 
The visual system is optimized to process natural images (through evolution). It is faced with 
an ill-posed problem:  Ambiguity due to projection from 3D to 2D image  Uncertainty due to incomplete knowledge of the environment  Uncertainty due to noise in photoreceptors and neurons 
The visual system relies on a set of assumptions to solve this ill-posed problem  Assumptions presumably learned via evolution  Assumptions tailored for the natural visual world  Assumptions cause illusions/failures under impoverished conditions 
Illusions can provide insights into the brain’s assumptions. 

Digital Representation of an Image 
A digital image is discreet representation of a continuous measurement, usually a 2 or 3 di-
mensional array. An element of this array is a pixel (picture element). A pixel has a position 
and an intensity value. A digital image is discretized both in space and intensity:  Spatial discretization is referred to as sampling  Intensity discretization is referred to as quantization 

Sampling 
Sampling is the reduction of a continuous signal to discrete signal. A finite set of values 
(called samples) are selected to represent the original continuous signal. 
In case of 2D signals (images) a grid is used for sampling. The grid points will be represented 
as pixels. The frequency of the sampling defines:  How many grid points we have  What is the resolution of the image  How detailed the discretized image is 
Sampling usually leads to information loss. The sampling frequency determines how much 
information we lose. We have to decide what is the smallest detail that we still want to keep. 
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Quantization 
Intensity discretization is referred to as quantization. The digital image quality is highly de-
pending on how many bits we use for coding the discreet intensity values:  black&white coded on 1 bit  grayscale coded on 2/4/8/16/24/32 bits 

Color Spaces 
Humans can distinguish thousands of color shades and intensities, but only a few dozens of 
gray. Color can be useful descriptor for image segmentation, tracking, detection etc. 

Color Characteristics 
Brightness used to describe color sensation (it is similar to intensity of achromatic light) 

Hue it indicates the dominant wavelength in the mixture of light waves 

Saturation relative purity or amount of white light in the mixture 

Color Models 
They specify a coordinate system and a subspace within that system, where each color is rep-
resented by a single point. 

RGB 
Channels: Red, Green, Blue 

Most common color model. All components are depending on luminosity. All channels needs 
to be coded with the same bandwidth. Changing the intensity level is not efficient, all 3 chan-
nels has to be modified. 

 

HSL, HSV 
Channels: Hue, Saturation, Lightness or Value 

The components are more intuitive. Hue is the angle around the central vertical axis (defined 
in degrees). Saturation is the distance from the central axis. Lightness or Value is the height. 
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Y’UV 
Channels: Luma (Y’), Chrominance components (U, V) 

It is used in compression, in the PAL and SECAM composite color 
video standards. Luma is coded in a separate channel. It takes hu-
man perception into account allowing reduced bandwidth for 
chrominance components. 

Conversion from RGB to Y’UV:  ܻ′ = Ͳ.ʹͻͻ ⋅ � + Ͳ.ͷͺ͹ ⋅ ܩ + Ͳ.ͳͳͶ ⋅ = ܷ ܤ Ͳ.Ͷͻʹ ⋅ ሺܤ − ܻ′ሻ ܸ = Ͳ.ͺ͹͹ ⋅ ሺ� − ܻ′ሻ 
CMY, CMYK 
Channels: Cyan, Magenta, Yellow, (Black = Key) 

This color space is used in printing. It is based on the subtractive color model: describes what 
kind of inks need to be applied so the reflected light produces the given color. 

The CMYK model contains black as fourth channel because the black produced by the mix-
ture of CMY is not really black in practice. 

CIE 
Channels: X (mix of cone response curves), Y (luminance), Z (blue stimulation) 

The CIE color model is based on how humans perceive color. It was developed to be com-
pletely independent of any device. 
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Topic 2 2D Convolution and its Applications, Canny Edge Detec-
tor, Hough Transformation 

2D Convolution and its Applications 

Unit impulse function 
The 2D unit impulse function (Delta function) on ℤ as follows: ߜሺ�ଵ, �ଶሻ = {ͳ, �ଵ = �ଶ = ͲͲ, otherwise  

For any 2D function ݔሺ�ଵ, �ଶሻ: ݔሺ�ଵ, �ଶሻ = ∑ ∑ ሺ�ଵߜ − ݇ଵ, �ଶ − ݇ଶሻ ⋅ ,ሺ݇ଵݔ ݇ଶሻ∞
௞మ=−∞

∞
௞భ=−∞  

Convolution 
Impulse response is the output of an LSI transformation if the input was the Delta function. If � is an LSI system, then we can define convolution as follows: ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ �ଶሻ ∗ ℎሺ�ଵ, �ଶሻ = ∑ ∑ ℎሺ�ଵ − ݇ଵ, �ଶ − ݇ଶሻ ⋅ ,ሺ݇ଵݔ ݇ଶሻ∞

௞మ=−∞
∞

௞భ=−∞  

The Properties of Convolution  Commutative: ݂ ∗ ݃ = ݃ ∗ ݂  Associative: ݂ ∗ ሺ݃ ∗ ℎሻ = ሺ݂ ∗ ݃ሻ ∗ ℎ  Distributive: ݂ ∗ ሺ݃ + ℎሻ = ݂ ∗ ݃ + ݂ ∗ ℎ  Associative with scalar multiplication: ߙሺ݂ ∗ ݃ሻ = ሺ݂ߙሻ ∗ ݃ 

2D Convolution in Practice 
In practice both the kernel and the image have finite size. 
Let ℎ and ℎ̂ be ሺʹݎଵ + ͳሻ × ሺʹݎଶ + ͳሻ sized kernels, where ℎ̂ is the 180° rotated version of ℎ. 

ℎ = [ܽ−�భ,−�మ ڮ ܽ−�భ,�మڭ ⋱ భ,−�మ�ܽڭ ڮ ܽ�భ,�మ ] , ℎ̂ = [ ܽ�భ,�మ ڮ ܽ�భ,−�మڭ ⋱ భ�−ܽڭ ,�మ ڮ ܽ−�భ ,−�మ] ݕሺ�ଵ, �ଶሻ = ∑ ∑ ℎሺ݇ଵ, ݇ଶሻݔሺ�ଵ − ݇ଵ, �ଶ − ݇ଶሻ�మ
௞మ=−�మ

�భ
௞భ=−�భ = ∑ ∑ ℎ̂ሺ݇ଵ, ݇ଶሻݔሺ�ଵ + ݇ଵ, �ଶ + ݇ଶሻ�మ

௞మ=−�మ
�భ

௞భ=−�భ  

Size of the Convolved Image 
In general, if the size of the input image is ሺܣ × ܥሻ, the size of the kernel is ሺܤ ×  ሻ then theܦ
size of the output image will be ሺܣ + ܥ − ͳሻ × ሺܤ + ܦ − ͳሻ. 
Boundary Effects 
The convolution along the edges is not possible due to missing pixels. The original image can 
be padded so the convolution is possible. There are four main types of image padding:  zero padding  mirroring  circular padding  repeating border 
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Applications 
The possible application of convolution:  Smoothing/Noise reduction  Edge detection  Edge enhancement 
Depending on the task the sum of the elements of the kernel matrix can be different: 

1 → smoothing, edge enhancement 
0 → edge detection 

Smoothing/Blurring 

Simple average Gaussian blur ͳܰଶ [ͳଵ,ଵ ڮ ͳଵ,ேڭ ⋱ ͳே,ଵڭ ڮ ͳே,ே] [Ͳ.ͲͻͶ͹ Ͳ.ͳͳͺ͵ Ͳ.ͲͻͶ͹Ͳ.ͳͳͺ͵ Ͳ.ͳͶ͹ͺ Ͳ.ͳͳͺ͵Ͳ.ͲͻͶ͹ Ͳ.ͳͳͺ͵ Ͳ.ͲͻͶ͹] 
Parameters:  size of the window 

Parameters:  size of the window  standard deviation (�) 

Edge Detection 
Edge Location on the image where intensity changes sharply (usually at the contour of 

objects) 

So we are searching for places where the gradient of the 2D function is high. The main types 
of edge detection are:  first order derivative ݂׏ = ݔ߲݂߲] ்[ݕ߲݂߲   ≈ [݂ሺݔ + ͳ, ሻݕ + ݂ሺݔ, ሻݕ ݂ሺݔ, ݕ + ͳሻ − ݂ሺݔ,  [ሻݕ

since the smallest dݔ and dݕ are both ͳ. So the kernels for the gradient calculation 
with convolution (Prewitt kernels): [−ͳ ͳ] better localization→           [−ͳ Ͳ ͳ] noise reduction→          [−ͳ Ͳ ͳ] [ͳͳͳ] =    [−ͳ Ͳ ͳ−ͳ Ͳ ͳ−ͳ Ͳ ͳ]      [−ͳͳ ]      better localization→                  [−ͳͲͳ ]       noise reduction→          [−ͳͲͳ ] [ͳ ͳ ͳ] = [−ͳ −ͳ −ͳͲ Ͳ Ͳͳ ͳ ͳ ] 

 second order derivative ߲ଶ݂߲ݔଶ = lim�՜଴ ݔ߲݂߲ ሺݔ + ݀ሻ − ݔ߲݂߲ ݀ݔ ≈ ݔ߲݂߲ ሺݔ + ͳሻ − ݔ߲݂߲ ݔ = ݂ሺݔ + ʹሻ − ʹ݂ሺݔ + ͳሻ + ݂ሺݔሻ 
and for the ݕ direction the result is very similar. The kernel for the second order gradi-
ent calculation with convolution: [ ͳ−ͳʹ ] + [ͳ −ʹ ͳ] = [Ͳ ͳ Ͳͳ −Ͷ ͳͲ ͳ Ͳ] 

 other complex methods 

Edge Enhancement 

Kernel for edge enhancement with Laplace operator: [ Ͳ −ͳ Ͳ−ͳ ͷ −ͳͲ −ͳ Ͳ ] 
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Canny Edge Detector 

Properties of a „good” edge detector 

 Good detection: 
o detects as many real edges as possible 
o does not create false edges (because of e.g. image noise)  Good localization: 
o the detected edges should be as close to the real edges as possible  Isotropic: 
o all edges are detected regardless of their direction 

Main steps of the algorithm 

1. Noise reduction 
The original image is convolved with a Gaussian kernel to reduce image noise. 

2. Gradient intensity and direction calculation 
The horizontal and vertical derivative image is calculated (e.g. with Prewitt kernel). Based on 
them the gradient intensity and direction can be calculated: ݀ = ‖݂׏‖ = ଶ(ݔ߲݂߲)√ + ଶ(ݕ߲݂߲) , Θ = arctan ݔ߲݂߲) ⁄ݕ߲݂߲ ) 
3. Non-Maximum Suppression 
The goal is thinning the edges. Each edge is categorized into one of 4 main edge directions 
(0°, 45°, 90°, 135°), based on the gradient direction image (Θ). At every pixel, it suppresses 
the edge, by setting its value to 0, if its magnitude is not greater than the magnitude of the two 
neighbors in the gradient direction: 

4. Hysteresis thresholding 
Problem with simple thresholding:  if the threshold is low, many false edges will appear  if the threshold is high, true edges will disappear 
Solution: using two threshold instead of only one: ݐଵ, ଵݐ ଶ whereݐ > ,ଶ  if the edge magnitude at ሺ݅ݐ ݆ሻ point is higher than ݐଵ then it is an edge  if the edge magnitude at ሺ݅, ݆ሻ point is lower than ݐଶ then it is not an edge  if the edge magnitude at ሺ݅, ݆ሻ point is lower than ݐଵ but higher than ݐଶ, then it is an 

edge, only if one of its neighbors in the direction of Θሺ݅, ݆ሻ is an edge 

Hough Transformation 
The objective of the Hough transformation is to find the lines on a binary image, from frag-
ments/points of the line. 

Basic idea 
A line can be written in the following form: ݕ = ݔ݉ + ܾ, where ݉  is the slope and ܾ is the ݕ-
intercept. The above equation can be re-written in terms of ݉ and ܾ : ݉ = −ͳݔ ܾ +  ݔݕ

For a fixed ݕ = ,′ݕ ݔ = ,ݔpoint in the image’s ሺ′ݔ ,ሻ space, we get a line in the ሺ݉ݕ ܾሻ space. 
For the points that lie on the same line in the Euclidean space, their corresponding line in the 
parameter space will cross each other in one point. This point will be ݉ = ݉′ and ܾ = ܾ′. 
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Hough space 
There is a problem with the Euclidean equation of the line: vertical lines cannot be described 
(their slope would be infinite). To be able to describe all possible lines we will use the polar 
equation of the line. 
The ሺݎ, �ሻ parameter space is called the Hough space. A point in the Euclidean space is a si-
nusoid in the Hough space, described by the following equation: ݎሺ�ሻ = ݔ ⋅ cosሺ�ሻ + ݕ ⋅ sinሺ�ሻ 
All the sinusoid curves of the points in one line in the Euclidian space cross each other in one 
point in the Hough space. 
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Topic 3 Fourier Transformation, Sampling, Nyquist Theorem 

Fourier Transformation 
The Fourier Transform changes between the representation in the time domain and in the fre-
quency domain. The information is the same in both domains, only the representation is dif-
ferent. The Fourier transformation is a reversible transform. It builds on the fact that any func-
tion can be represented as a weighted sum of sinusoid functions. If we can describe sinusoids 
we can describe every function. 

Complex Exponential Function 
A sinusoid is defined by its frequency, amplitude and phase. In the frequency domain we need 
to “store” its frequency and phase. We use complex exponential functions to describe both. 

The complex exponential function is the following: ݁௝�� = cosሺ��ሻ + ݆ ⋅ sinሺ��ሻ 
As � changes, the ݁௝��  point rotates around the complex unit circle. The “speed” of this rota-
tion is determined by �.  

Periodicity 
In a continuous case (both � and � are continuous):  with the respect to the frequency (�ሻ it is not periodic  with the respect to the time/spatial variable (�) it is periodic 

In case of discrete time/spatial variable (� is continuous, � discrete):  with the respect to the frequency (�ሻ it is periodic with period ʹ� ݁௝ሺ�+ଶ�ሻ� = ݁௝�� ⋅ ݁௝ଶ�� = ݁௝��   with the respect to the time/spatial variable (�) it is may or may not be periodic de-
pending on the frequency � 
If periodic with period ܰ : ݁௝�ሺ�+ேሻ = ݁௝�� ⟹ ݁௝�ே = ͳ⟹ �ܰ = ݇ ⋅ ʹ� ⟹ ܰ = ݇ ⋅ ʹ��  

so ʹ �/� has to be a rational number. 

Eigenfunction of LSI systems 
Let � be an LSI system with impulse response function ℎሺ�ଵ, �ଶሻ, and ݔሺ�ଵ, �ଶሻ be a 2D 
complex exponential function: ݔሺ�ଵ, �ଶሻ = ݁௝ሺ�భ�భ+�మ�మሻ 
Then ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ}� �ଶሻ} = ,ሺ�ଵݔ �ଶሻ ∗ ℎሺ�ଵ, �ଶሻ = ݁௝ሺ�భ�భ+�మ�మሻ ∗ ℎሺ�ଵ, �ଶሻ = = ∑ ∑ ݁௝(�భሺ�భ−௞భሻ+�మሺ�మ−௞మሻ) ⋅ ℎሺ݇ଵ, ݇ଶሻ∞

௞మ=−∞
∞

௞భ=−∞ = 

= ݁௝ሺ�భ�భ+�మ�మሻ⏟        input function went throughunchanged
⋅ ∑ ∑ ݁−௝ሺ�భ௞భ+�మ௞మሻ ⋅ ℎሺ݇ଵ, ݇ଶሻ∞

௞మ=−∞
∞

௞భ=−∞⏟                        frequency response of the LSI system: ுሺ�భ ,�మሻ
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Fourier and inverse Fourier transform �ሺ�ଵ, �ଶሻ = ∑ ∑ ,ሺ�ଵݔ �ଶሻ ⋅ ݁−௝�భ�భ ⋅ ݁−௝�మ�మ∞
�మ=−∞

∞
�భ=−∞  

,ሺ�ଵݔ �ଶሻ = ͳͶ�ଶ∫ ∫ �ሺ�ଵ, �ଶሻ ⋅ ݁௝�భ�భ ⋅ ݁௝�మ�మ  d�ଵ�
−� d�ଶ�

−�  

Properties 

 Periodicity: �ሺ�ଵ, �ଶሻ = �ሺ�ଵ + ʹ�, �ଶ + ʹ�ሻ 
 Translation: ݔሺ�ଵ −݉ଵ, �ଶ −݉ଶሻ ՞ �ሺ�ଵ, �ଶሻ ⋅ ݁−௝�భ௠భ ⋅ ݁−௝�మ௠మ 
 Modulation: ݔሺ�ଵ, �ଶሻ ⋅ ݁௝�భ�భ ⋅ ݁௝�మ�మ ՞ �ሺ�ଵ + �ଵ, �ଶ + �ଶሻ 
 Hermitian property: for real ݔሺ�ଵ, �ଶሻ 

magnitude: |�ሺ�ଵ, �ଶሻ| = |�ሺ−�ଵ, −�ଶሻ| 
phase: arg(�ሺ�ଵ, �ଶሻ) = −arg(�ሺ−�ଵ, −�ଶሻ) 

 Parseval’s theorem: ∑ ∑ ,ሺ�ଵݔ| �ଶሻ|ଶ∞
�మ=−∞

∞
�భ=−∞ = ͳͶ�ଶ∫ ∫ |�ሺ�ଵ, �ଶሻ|ଶ d�ଵ�

−� d�ଶ�
−�  

 Convolution theorem: ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ �ଶሻ ∗ ℎሺ�ଵ, �ଶሻ ܻሺ�ଵ, �ଶሻ = �ሺ�ଵ, �ଶሻ ⋅ �ሺ�ଵ, �ଶሻ 
Discrete Fourier transform 
We sample one period of the Fourier transform in evenly spaced frequencies: 

�ሺ݇ଵ, ݇ଶሻ =  ∑ ∑ ,ሺ�ଵݔ �ଶሻ ⋅ ݁−௝ଶ�ேభ௞భ�భ ⋅ ݁−௝ଶ�ேమ௞మ�మேమ−ଵ
�మ=଴

ேభ−ଵ
�భ=଴  

,ሺ�ଵݔ �ଶሻ = ͳଵܰ ଶܰ ∑ ∑ �ሺ݇ଵ, ݇ଶሻ ⋅ ݁௝ଶ�ேభ௞భ�భேమ−ଵ
௞మ=଴

ேభ−ଵ
௞భ=଴ ⋅ ݁௝ଶ�ேమ௞మ�మ  

DFT is an exact transform, there is no transformation error. Most of the properties of continu-
ous FT hold for DFT, except linear shift of FT become circular shift for DFT. DFT and in-
verse DFT are computable transformations. There are fast ways to compute the DFT: Fast 
Fourier Transform. The FFT with row/column decomposition requires only ܰଶ logଶሺܰሻ mul-
tiplications. So the FFT makes the Fourier transformation applicable in many practical cases. 
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Sampling 
Sampling is the conversion from analog to discrete signal. 

Support of the spectrum of the analog image Support of the spectrum of the digital image 

  
The spectrum of the digital image is periodic. The sampling periods �ଵ and �ଶ controls:  in the frequency domain: how far away the replicas will be located  in the spatial domain: how often we take samples from the analog 

image �ሺΩଵ�ଵ, Ωଶ�ଶሻ = ͳ�ଵ�ଶ ∑ ∑ �� (Ωଵ − ݇ଵ ⋅ ʹ��ଵ , Ωଶ − ݇ଶ ⋅ ʹ��ଶ )∞
௞మ=−∞

∞
௞భ=−∞  

Critically Sampled �ଵ and �ଶ are chosen so that the supports of the spectrums are closest to each other, but they 
are not overlapping. The analog signal can be reconstructed without error, using only the cen-
ter part of the spectrum. 

Oversampled �ଵ and �ଶ are smaller than absolutely necessary, the supports of the replicas are farther apart, 
the spectrums are not overlapping. More samples are used than necessary. 

Under-sampled �ଵ and �ଶ are too high; the supports of the spectrums are overlapping. The low and high fre-
quencies are mixed; we cannot reproduce the original signal. Aliasing effect: the high fre-
quencies are aliasing themselves as low frequencies. 

Oversampled Critically sampled Under-sampled 

   
Nyquist Theorem 
Let the highest frequency in the horizontal and vertical directions be Ωேభ  and Ωேమ . As long as 
the following inequality holds, the spectrums won’t overlap: ʹ��ଵ ൒ ʹ ⋅ Ωேభ , ʹ��ଶ ൒ ʹ ⋅ Ωேమ 
If we use sampling frequency at least two times as high as the highest frequency of the origi-
nal analog signal, the analog signal can be reconstructed from the digital signal without error. 

The minimum frequency that is required for the sampling to be able to reconstruct the analog 
signal from the sampled signal is the Nyquist frequency. 

�ଵ 
�ଶ ��ሺ�ଵ, �ଶሻ 

Ωଵ 
Ωଶ �ሺΩଵ�ଵ, Ωଶ�ଶሻ 

Ωଵ 
Ωଶ 

Ωଵ 
Ωଶ 

Ωଵ 
Ωଶ 

Ωଵ 
Ωଶ ʹ��ଵ  ʹ��ʹ  
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Topic 4 Image Enhancement 

Image enhancement is the manipulation or transformation of the image to improve the visual 
appearance or to help further automatic processing steps. There is no general theory behind it, 
the result is highly application dependent and subjective. Image enhancement is closely relat-
ed to image recovery. 

The Histogram of the Image 
Histogram is the function ℎሺ݇ሻ which gives the number of pixels on the image with value ݇. 
The histogram normalized with the total number of pixels gives us the probability density 
function of the intensity values. 

Point-wise Intensity Transformation 
Point wise transformations are operating directly on pixel values, independently of the values 
of its neighboring pixels. We can describe the transformation as follows: 
Let ݔ and ݕ be two grayscale images and let � be a pointwise image enhancement transfor-
mation that transforms ݔ to ݕ :ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ}� �ଶሻ} 
Inverse Transformation ݕሺ�ଵ, �ଶሻ = ʹͷͷ − ,ሺ�ଵݔ �ଶሻ 
Log Transformation ݕሺ�ଵ, �ଶሻ = ܿ ⋅ logሺݔሺ�ଵ, �ଶሻ + ͳሻ 
Expands low and compress high pixel value range. It is commonly used to visualize the Fou-
rier transform of an image. 

Power-law transformation ݕሺ�ଵ, �ଶሻ = ܿ ⋅ ,ሺ�ଵݔ) �ଶሻ)� 
Commonly referred as gamma transformation. Originally it was developed to compensate the 
input-output characteristics of CRT displays. The expanded/compressed region depends on ߛ. 

Histogram Transformations 

Histogram Stretching 
Based on the histogram we can see that the image does not use the whole range of possible 
intensities. The following transformation stretches the intensity values so they use the whole 
available range: ݕሺ�ଵ, �ଶሻ = ʹͷͷݔmax − minݔ ⋅ ሺݔሺ�ଵ, �ଶሻ − maxݔ minሻݔ = max�భ,�మ(ݔሺ�ଵ, �ଶሻ) , minݔ = min�భ,�మ(ݔሺ�ଵ, �ଶሻ) 
Histogram Equalization 
The goal is to increase the contrast, by distributing the occurrences of the intensity values 
evenly through the entire dynamic range. 

Adaptive Histogram Equalization 
This applies histogram equalization on parts of the image (called tiles) independently. We use 
post processing to reduce artifacts at the borders of the tiles. 
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Spatial Filtering 
The goal of smoothing is to reduce the noise that may corrupt the image. The two types of 
noise (that we will work with):  impulse noise (salt&pepper noise  additive Gaussian noise 

Gaussian Smoothing 
Gaussian blur with a Gaussian kernel. It works not so well. 

Spatially Adaptive Noise Smoothing 
The smoothing takes into account the local characteristics of the image. ݕሺ�ଵ, �ଶሻ = ቆͳ − ��ଶ�௟ଶቇ ⋅ ,ሺ�ଵݔ �ଶሻ + ��ଶ�௟ଶ ⋅ ,ሺ�ଵݔ �ଶሻ 
where �௟ଶ =∑ ∑ ,ሺ�ଵݔ) �ଶሻ − ,ሺ�ଵݔ �ଶሻ)ଶሺ�భ,�మሻאே ,ሺ�ଵݔ  �ଶሻ = ͳ|ܰ|∑ ∑ ,ሺ�ଵݔ �ଶሻሺ�భ,�మሻאே  

local variance of the image local average of the image 

Variance of the noise ሺ��ଶሻ is either known a priori, or has to be measured. 

Median Filter 
This filter replaces each pixel with the median value of its analyzed neighborhood. (Median 
value: the center element of sorted values). This transformation is non-linear and very effec-
tive against impulse noise, however, not so effective against Gaussian noise. 

Order Statistic Filtering 
Based on the sorted pixel intensity levels in the analyzed neighborhood.  

Mid-point filtering ݕሺ�ଵ, �ଶሻ = ͳʹ ( maxሺ௠భ,௠మሻאே{ݔሺ݉ଵ,݉ଶሻ} + minሺ௠భ,௠మሻאே{ݔሺ݉ଵ, ݉ଶሻ}) 
This filter works well on Gaussian or uniform noise. 

Alpha-trimmed mean filter ݕሺ�ଵ, �ଶሻ = ͳ|ܰ| − ߙ ∑ ,ሺ݉ଵݔ ݉ଶሻሺ௠భ,௠మሻאே�  

where ܰ � is a reduced neighborhood, not containing the lowest and highest ߙ element of ܰ .  If ߙ = Ͳ, we get back the arithmetic mean.  If ߙ = |ܰ| − ͳ, we get back the median filter. 

Homomorphic Filtering 
It simultaneously normalizes the brightness across an image and increases contrast. This 
method assumes the following image model: the image is formed by recording the light re-
flected from the objects illuminated by a light source. ݕሺ�ଵ, �ଶሻ = ݅ሺ�ଵ, �ଶሻ ⋅ ,ሺ�ଵݎ �ଶሻ 
where ݅ሺ�ଵ, �ଶሻ: illumination; slowly varying, main contributor to dynamic range ݎሺ�ଵ, �ଶሻ: reflectance; rapidly varying, main contributor to local contrast 

We want to reduce the illumination component, and increase the reflectance component. 
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The main steps of homomorphic filtering 

1. To separate the two component we first use log transformation: log(ݔሺ�ଵ, �ଶሻ) = log(݅ሺ�ଵ, �ଶሻ) + log(ݎሺ�ଵ, �ଶሻ) 
2. Since we assume that the illumination component varies slowly and the reflectance 

varies rapidly, we can get the two component by using low and high pass filters: log(݅ሺ�ଵ, �ଶሻ) = ,ሺ�ଵݔ)log}ܨܲܮ �ଶሻ)} log(ݎሺ�ଵ, �ଶሻ) = ,ሺ�ଵݔ)log}ܨܲ� �ଶሻ)} 
3. Weight the two component: log(ݕሺ�ଵ, �ଶሻ) = ଵߛ log(݅ሺ�ଵ, �ଶሻ) + ଶߛ log(ݎሺ�ଵ, �ଶሻ) 
4. Transform back to the original range, using the exponential transform. 

Wallis Operator 
The Wallis operator can help to adjust local contrast. We can describe the image the following 
way: ݔሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ] �ଶሻ − ,ሺ�ଵݔ �ଶሻ]⏟              ሺଵሻ + ,ሺ�ଵݔ �ଶሻ⏟      ሺଶሻ  

where ሺʹሻ is the local mean and ሺͳሻ is the deviation from the local mean. With the transfor-
mation we want to push the local mean and standard deviation to a predefined desired value: ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ] �ଶሻ − ,ሺ�ଵݔ �ଶሻ] ���௟ሺ�ଵ, �ଶሻ + �ݔ�] + ሺͳ − �ሻݔሺ�ଵ, �ଶሻ] 
We are almost there, but if the local contrast is too low, the weighting in ሺͳሻ may get too 
high, this is why we maximize it with ܣmax. ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ] �ଶሻ − ,ሺ�ଵݔ �ଶሻ] ,max�௟ሺ�ଵܣ��maxܣ �ଶሻ + �� + �ݔ�] + ሺͳ − �ሻݔሺ�ଵ, �ଶሻ] 
where �௟  : local contrast: �௟ሺ�ଵ, �ଶሻ = ͳ|ܰ|√∑ ∑ ,ሺ�ଵݔ) �ଶሻ − ,ሺ�ଵݔ �ଶሻ)ଶሺ�భ,�మሻאே ,ሺ�ଵݔ :local average :ݔ  �ଶሻ = ͳ|ܰ|∑ ∑ ,ሺ�ଵݔ �ଶሻሺ�భ,�మሻאே  ��: the desired local contrast ݔ�: the desired mean value of all pixels �: weighting factor of the mean compensation ܣmax: minimizing the local contrast modification 

Anisotropic Diffusion 
The anisotropic diffusion is a technique aiming at reducing image noise without blurring sig-
nificant parts of the image content. This is a non-linear and space-variant transformation. The 
main idea is that the effect of blurring in each direction is inversely proportional to the gradi-
ent value in that direction: the transformation allows diffusion along the edges or in edge-free 
territories, but penalizes diffusion orthogonal to the edge direction. AD is an iterative process. 
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Total Variation Regularization 
Assumption  The image is smooth inside the objects, with jumps across the boundaries.  The noise component has high variation. 

The goal of Total Variation based noise removal is to minimize the total variation of the im-
age while keep the result as close to the original input image as possible. This transformation 
is defined as the integral of the absolute gradient of the signal: ܸሺݔሻ ሺ�ଵݔ|√∑∑= + ͳ, �ଶሻ − ,ሺ�ଵݔ �ଶሻ|ଶ + ,ሺ�ଵݔ| �ଶ + ͳሻ − ,ሺ�ଵݔ �ଶሻ|ଶ�మ�భ  

The goal function for total variation based regularization: ̂ݕ = argmin௬ ,ݔሺܧ) ሻݕ +  (ሻݕሺܸߣ
where ܧ is the ܮଶ norm and ߣ is the regularization parameter. 

Non-Local Means Denoising 
The local smoothing methods aim at a noise reduction and at a reconstruction of the main 
geometrical configurations but not at the preservation of the fine structure, details and texture. 

High frequency image components are removed along with the noise, because they behave in 
all functional aspects as noise. 

The non-local means algorithm tries to take advantage of the high degree of redundancy of 
any natural image:  Every small window in a natural image has many similar windows in the same image.  The non-local means algorithm estimates the value of a pixel ݔ as an average of the 

values of all the pixels whose Gaussian neighborhood looks like the neighborhood of ݔ. 
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Topic 5 Image Recovery 

Sources of Degradation and Forms of Recovery 
Sources of Degradation Forms of Restoration 

1. Motion 
2. Atmospheric turbulence 
3. Out-of-focus lens 
4. Finite resolution of the sensors 
5. Limitations of the acquisition system 
6. Transmission error 
7. Quantization error 
8. Noise 

 
1. Restoration/Deconvolution 
2. Removal of Compression Artifacts 
 
3. Super-Resolution 
4. Inpainting/Concealment 
 
5. Noise smoothing 

Inverse problem formulation of Recovery 
The original image ݔ goes through a system �, that introduces some type of degradation re-
sulting the observed image ݕ. 

 
The Goal of Recovery 
The objective is to reconstruct ݔ based on…  ݕ and � → recovery  ݕ → blind recovery  ݕ and partially � → semi-blind recovery 

These are the inverse problems. If we know ݔ and…  ݕ → system identification   � → system implementation 

Degradation and Restoration 

 
Degradation Model 
The model of degradation for restoration problems: ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ}� �ଶሻ} + �ሺ�ଵ, �ଶሻ 
If an LSI degradation system is assumed with signal independent additive noise: ݕሺ�ଵ, �ଶሻ = ,ሺ�ଵݔ �ଶሻ ∗ ℎሺ�ଵ, �ଶሻ + �ሺ�ଵ, �ଶሻ 
The restoration problem in this case is called deconvolution. 

� 
,ሺ�ଵݔ �ଶሻ ݕሺ�ଵ, �ଶሻ 

� 
��ሺݔ , �ଶሻ 

�ሺ�� , �ଶሻ 
� 

��ሺ ݔ , �ଶሻ ݕሺ�� , �ଶሻ 
Identification 

of � 
Knowledge 

of � 
Prior know-
ledge of � 

Noise 
measurement 

Knowledge of the 
noise statistics 

Prior know-
ledge of ݔ 
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Degradation/Restoration Metrics 

Signal to Noise Ratio ܵܰ� = ͳͲ lg ቆ�௫ଶ��ଶቇ 

Blurred Signal to Noise Ratio 

�ܰܵܤ = ͳͲ lgቌ ͳܰܯ∑ ∑ [݃ሺ݅, ݆ሻ − ݃ሺ݅, ݆ሻ]ଶ௝௜ ��ଶ ቍ 

where ݃ሺ݅, ݆ሻ = ,ሺ݅ݔ ݆ሻ ∗ ℎሺ݅, ݆ሻ ݃ሺ݅, ݆ሻ = �{݃ሺ݅, ݆ሻ} ��ଶ: variance of the noise 

Improvement in Signal to Noise Ratio ܰܵܫ� =  ͳͲ lgቆ∑ ∑ ,ሺ݅ݔ] ݆ሻ − ,ሺ݅ݕ ݆ሻ]ଶ௝௜∑ ∑ ,ሺ݅ݔ] ݆ሻ − ,ሺ݅ ݔ ݆ሻ]ଶ௝௜ ቇ 

ISNR is computable only in a simulation environment, where the original image is available. 

Convolution in matrix-vector form 
1D convolution can be represented in a matrix-vector form: ݕሺ�ሻ = ሺ�ሻݔ ∗ ℎሺ�ሻ �ሺ݇ሻℎሺݔ∑= − ݇ሻ௞         where ݔ: ͳ × ܰℎ: ͳ × :ݕܮ ͳ × ሺܰ + ܮ − ͳሻ 

[  
   
   

ሺͳሻݕሺͲሻݕ
ڭ

ሺܰݕ + ܮ − ʹሻ]  
   
   =

[  
   
   
 ℎሺͲሻ Ͳ Ͳ ڮ Ͳℎሺͳሻ ℎሺͲሻ Ͳ ڮ Ͳℎሺʹሻ ℎሺͳሻ ℎሺͲሻ ڮ Ͳڭ ڭ ڭ ܮℎሺڭ − ͳሻ ℎሺܮ − ʹሻ ℎሺܮ − ͵ሻ ڮ ℎሺͲሻͲ ℎሺܮ − ͳሻ ℎሺܮ − ʹሻ ڮ ℎሺͳሻͲ Ͳ ℎሺܮ − ͳሻ ڮ ℎሺʹሻڭ ڭ ڭ Ͳڭ Ͳ Ͳ ڮ ℎሺܮ − ͳሻ]  

   
   
 

[  
   
   
ሺͳሻݔሺͲሻݔ
ڭ

ሺܰݔ − ͳሻ]  
   
   
 

[ଵ×ሺே+௅−ଵሻ]ܡ = ۶[ே×ሺே+௅−ଵሻ]ܠ[ଵ×ே] 
Circular convolution represented in a matrix-vector form: 

[  
   

ሺܰݕڭሺͳሻݕሺͲሻݕ + ܮ − ʹሻ]  
   =

[  
   
ℎሺͲሻ Ͳ ڮ ℎሺܮ − ͳሻ ڮ ℎሺͳሻℎሺͳሻ ℎሺͲሻ Ͳ ڮ ڮ ℎሺʹሻℎሺʹሻ ℎሺͳሻ ℎሺͲሻ Ͳ ڮ ℎሺ͵ሻ⋱ ⋱ ⋱ ⋱ ⋱ ڮ⋰ ℎሺܮ − ͳሻ ڮ ℎሺͳሻ ℎሺͲሻ ͲͲ ڮ ℎሺܮ − ͳሻ ڮ ℎሺͳሻ ℎሺͲሻ]  

   
[  
ሺܰݔڭሺͲሻݔ    − ͳሻͲڭͲ ]  

    
[ଵ×ሺே+௅−ଵሻ]ܡ = ۶[ሺே+௅−ଵሻ×ሺே+௅−ଵሻ]ܠ[ଵ×ሺே+௅−ଵሻ] 



 „Korlátozott terjesztésű”  1. számú példány 
 

Basic Image Processing Algorithms — PPCU FIT 

 
 

 

Oral exam 1548 21 / 48 18 December 2015 
 

 „Korlátozott terjesztésű”   
 
 
 

Eigenvalues and eigenvectors of circulant matrices 
Let ۶ be an ሺܯ � where ,�ܟ and eigenvectors �ߣ ሻ size circulant matrix, with eigenvaluesܯ× = ͳ,… ۶ ܯ, = [ ℎሺͲሻ ڮ ℎሺܯ − ͳሻ⋱ℎሺܯ − ͳሻ ڮ ℎሺͲሻ ] , �ܟ۶ =  �ܟ�ߣ

Then ܟ� = [ͳ ݁௝ଶ�ெ � ݁௝ଶ�ெ ଶ� ڮ ݁௝ଶ�ெ ሺெ−ଵሻ�]் 
so the eigenvalues of this circulant matrix equals ܯ times the DFT of the � vector: {ߣ଴, … , {ெ−ଵߣ = ܯ ⋅ …,ℎሺͲሻ}�ܨܦ , ℎሺܯ − ͳሻ} 
The Singular Value Decomposition of this ۶ is the following: 

۶ = ڮ|଴ܟ] [ெ−ଵܟ| ଴ߣ] ⋱ [ெ−ଵߣ ڮ|଴ܟ] ெ−ଵ]−ଵܟ| =  ଵ−܅۲܅
Back to images 
If we stack the observed image lexicographically into a vector, the degradation can be de-
scribed the following way: ܡ = ܠ۶ + � 

If the system is LSI, then ۶ is a block circulant matrix, matrix, which can be decomposed as a 
circulant matrix: ۶ =  ଵ−܅۲܅
So the degradation of the image: 

ܡ  = ܠ۶ + � = ܠଵ−܅۲܅ + ܡଵ−܅ � = ܠଵ−܅۲  �ଵ−܅+

܇  = ܆۲ + � 

Since ۲ is diagonal, we have the following element-wise equation: ܻሺ�ଵ, �ଶሻ = �ሺ�ଵ, �ଶሻ�ሺ�ଵ, �ଶሻ + ܰሺ�ଵ, �ଶሻ,       where �ଵ = Ͳ,… ܯ, − ͳ�ଶ = Ͳ,… ܯ, − ͳ 

Restoration Algorithms 

Inverse Filter 
It is the simplest deconvolution filter, developed for LSI systems. This filter can be easily 
implemented in the frequency domain as the inverse of the degradation filter. Main limitations 
and drawbacks:  Strong noise amplification  The degradation system has to be known a priori 

The objective is to find ܠ that minimizes the following goal function: arg minܠ (ሻܠሺܬ) = arg minܠ ሺ‖ܡ −  ଶሻ‖ܠ۶
This goal function leads to the following equation: −ʹ۶்ܡ + ܠ۶்۶ʹ = � ՜ � = ሺ۶்۶ሻ†۶்ܡ 
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If the degradation system is LSI, then ۶ is a block circulant matrix. We can take the calcula-
tion to the frequency domain: � = ሺ۶்۶ሻ†۶்ܡ  ஽ி்→    �ሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ  ܻሺ�ଵ, �ଶሻ 
from which we can get �ሺ�ଵ, �ଶሻ as 

�ሺ�ଵ, �ଶሻ = {�∗ሺ�ଵ, �ଶሻܻሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ , |�ሺ�ଵ, �ଶሻ| ≠ ͲͲ                   , |�ሺ�ଵ, �ଶሻ| = Ͳ 

The drawback of this method is the strong amplification of noise: �∗ሺ�ଵ, �ଶሻܻሺ�ଵ, �ଶሻ|�ሺ�ଵ , �ଶሻ|ଶ = ܻሺ�ଵ, �ଶሻ�ሺ�ଵ, �ଶሻ = �ሺ�ଵ , �ଶሻ�ሺ�ଵ, �ଶሻ + ܰሺ�ଵ, �ଶሻ�ሺ�ଵ , �ଶሻ = �ሺ�ଵ , �ଶሻ + ܰሺ�ଵ, �ଶሻ�ሺ�ଵ, �ଶሻ⏟      amplifiednoise
 

To reduce this effect a threshold can be used on �: 

�ሺ�ଵ, �ଶሻ = {�∗ሺ�ଵ, �ଶሻܻሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ , |�ሺ�ଵ, �ଶሻ| ൒ �Ͳ                   , |�ሺ�ଵ, �ଶሻ| < � 

Constrained Least Square Methods 
The objective is to reduce the noise amplification effect of the inverse filter by adding extra 
constraints about the restored image. In this case we have two terms, one describing the solu-
tions fidelity, and the other gives some prior knowledge about the smoothness of the original 
image: arg minܠ (ሻܠሺܬ) = arg minܠ ሺ‖ܡ − ଶሻ‖ܠ۶ , ଶଶ‖ܠ۱‖ <  ߝ
Putting together the two terms with the introduction of ߙ: arg minܠ ሺ‖ܡ − ଶ‖ܠ۶ +  ଶଶሻ‖ܠ۱‖ߙ
This goal function leads to the following equation: ܠ = ሺ۶்۶ +  ܡ۱்۱ሻ† ۶்ߙ

The ۱ is a high pass filter and ߙ is the regularization parameter. In the frequency domain (for ۶ and ۱ block circulant) we have the following formula: �ሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ + ,ሺ�ଵܥ|ߙ �ଶሻ|ଶ  ܻሺ�ଵ, �ଶሻ 
Different types of regularization 

If ߙ = Ͳ, we get back the simple Least Square method (the Inverse Filter). 

CLS Maximum Entropy Regularization ݔ ሺߙሻ஼௅ௌ = arg minܠ ሺ‖ܡ − ଶ‖ܠ۶ + ሻொߙሺ ݔ ଶଶሻ‖ܠ۱‖ߙ = arg minܠ ܡ‖) ଶ‖ܠ۶− + ௜ݔ∑ߙ logሺݔ௜ሻே
௜=ଵ ) 

Total Variation Regularization �� norms ݔ ሺߙሻொ = ௫�݅݉ ݃ݎܽ ݕ‖) ଶ‖ݔ�− + ே|[௜ݔ�]|∑ߙ
௜=ଵ ሻݖሺܬ ( = ��‖ݖ‖ ௜|�ேݖ|∑=

௜=ଵ , ͳ ൑ � ൑ ʹ 
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Iterative Restoration Algorithms 
Pros Cons  Do not need to have the inverse of the 

degradation system explicitly 

 The process can be monitored as it pro-
gresses, the number of iteration can be 
used as some kind of regularization 
(noise amplification can be controlled) 

 Can be applied to spatially varying deg-
radations and blind degradations 

 Convergence of the algorithm is not al-
ways guaranteed 

 Possibly takes more time 

Successive Approximation Algorithm: 
Find a root for �ሺݔሻ by taking a reasonable initial point and iteratively go toward the root: ݔ଴ = Ͳ, ௞+ଵݔ = ௞ݔ +  ௞ሻݔሺ�ߚ
Restoration �ሺܠሻ = ܡ − ,ܠ۶ ௞+ଵܠ = ௞ܠ + ܡሺߚ − ௞ሻܠ۶ = ܡߚ + ሺ۷ −  ௞ܠ۶ሻߚ

If the degradation system is assumed to be LSI, the in the frequency domain we will have the 
following: �௞+ଵሺ�ଵ, �ଶሻ = ,ሺ�ଵܻߚ �ଶሻ + (ͳ − ,ሺ�ଵ�ߚ �ଶሻ)�௞ሺ�ଵ, �ଶሻ 
Convergence �௞ሺ�ଵ, �ଶሻ = �௞ሺ�ଵ, �ଶሻܻሺ�ଵ, �ଶሻ, �௞ሺ�ଵ, �ଶሻ = ͳ)∑ߚ − ,ሺ�ଵ�ߚ �ଶሻ)௟௞−ଵ

௟=଴  

So �௞ converges if |ͳ − ,ሺ�ଵ�ߚ �ଶሻ| < ͳ. 

Methods 
Iterative Least-Squares �ሺݔሻ = ͳʹ ݕ‖௫׏ − ,ଶ‖ݔ� ௞+ଵܠ = ܡ۶்ߚ + ሺ۷ −  ௞ܠ۶்۶ሻߚ

In the frequency domain (assuming ۶ is block circulant): �௞+ଵሺ�ଵ, �ଶሻ = ,ሺ�ଵ∗�ߚ �ଶሻܻሺ�ଵ, �ଶሻ + ሺͳ − ,ሺ�ଵ�|ߚ �ଶሻ|ଶሻ�௞ሺ�ଵ, �ଶሻ 
 

Iterative Constrained Least-Squares �ሺݔሻ = ͳʹ ݕ‖௫ሺ׏ − ଶ‖ݔ� + ,ଶଶሻ‖ݔܥ‖ߙ ௞+ଵܠ = ܡ۶்ߚ + (۷ − +ሺ۶்۶ߚ  ௞ܠ(۱்۱ሻߙ

In the frequency domain (assuming ۶ is block circulant): �௞+ଵሺ�ଵ, �ଶሻ = ,ሺ�ଵ∗�ߚ �ଶሻܻሺ�ଵ, �ଶሻ + (ͳ − ,ሺ|�ሺ�ଵߚ �ଶሻ|ଶ + ,ሺ�ଵܥ|ߙ �ଶሻ|ଶሻ)�௞ሺ�ଵ, �ଶሻ 
 

Spatially Adaptive CLS Iteration �ሺݔሻ = ͳʹ ܡ‖)௫׏ − ௪భଶ‖ܠ۶ + ௪మଶ‖ܠ۱‖ߙ ),    where  ‖ܠ‖௪ଶ = ܠ܅்܅்ܠ ௜ଶேݔ௜ଶݓ∑=
௜=ଵ  

௞+ଵܠ = ܡଵ܅ଵ்܅۶்ߚ + (۷ − +ଵ۶܅ଵ்܅ሺ۶்ߚ  ௞ܠ(ଶ۱ሻ܅ଶ்܅۱்ߙ
With the weight we can take into account the local variation of the image. For a human ob-
server the noise is most disturbing in flat regions, while it is more acceptable around the edg-
es. We can achieve the goal with the following weights: 
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ଶܹ = ͳ�௫ଶ , ଵܹ = ͳ − ଶܹ 
where �௫ଶ is the local variance of the image. Since ܹ is not block circulant, we cannot take 
this to the frequency domain. 

Wiener Filter 
Stochastic restoration approach: Treat the image as a sample from a 2D random field. The 
image is part of a class of samples (an ensemble), realizations of the same random field. �ሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ ௫ܲ௫ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ ௫ܲ௫ሺ�ଵ, �ଶሻ + ேܲேሺ�ଵ, �ଶሻ 
Autocorrelation: �௙௙ሺ�ଵ, �ଶ, �ଷ, �ସሻ = �{݂ሺ�ଵ, �ଶሻ݂∗ሺ�ଷ, �ସሻ} 
Power-spectrum: ௙ܲ௙ሺ�ଵ, �ଶሻ = ℱ{�௙௙ሺ݀ଵ, ݀ଶሻ} 
The Wiener-filter is the following formula: �ሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ ௫ܲ௫ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ ௫ܲ௫ሺ�ଵ, �ଶሻ + ேܲேሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ + ேܲேሺ�ଵ, �ଶሻ௫ܲ௫ሺ�ଵ, �ଶሻ  

if we assume white noise, ேܲேሺ�ଵ, �ଶሻ = �ேଶ so the filter’s formula is the following: �ሺ�ଵ, �ଶሻ = �∗ሺ�ଵ, �ଶሻ|�ሺ�ଵ, �ଶሻ|ଶ + �ேଶ௫ܲ௫ሺ�ଵ, �ଶሻ 
We can see, that with the right choice of ۱ and ߙ, CLS filter is the same as the Wiener filter. 

Ringing Artifact 
Ringing artifact comes from the fact that if we convolve the degradation and the restoration 
filters we get the following: ݏ�௟௟ሺ�ଵ, �ଶሻ = ℎሺ�ଵ, �ଶሻ ∗ ,ሺ�ଵݎ �ଶሻ, ,ሺ�ଵ ݔ �ଶሻ = ௟௟�ݏ ∗ ,ሺ�ଵݔ �ଶሻ 
In an ideal case ݏ�௟௟ሺ�ଵ, �ଶሻ = ,ሺ�ଵߜ �ଶሻ, ܵ�௟௟ሺ�ଵ, �ଶሻ = ͳ    ∀�ଵ, �ଶ 
But in practice this is not true. We can use a positivity constraint to get rid of (some of) the 
ringing artifact effect. The positivity constraint means that ݏ�௟௟ must be positive (or zero): ݏ�௟௟ሺ�ଵ, �ଶሻ = ௟௟�ݏ} , ௟௟�ݏ ൒ ͲͲ , ௟௟�ݏ < Ͳ 
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Topic 6 Introduction to Machine Learning 

What is Machine Learning? 
“A computer program is said to learn from experience ܧ with respect to some class of tasks � 
and performance measure ܲ, if its performance at tasks in �, as measured by ܲ, improves with 
experience ܧ.” 

Supervised Learning 
The supervised algorithms are trained on labeled data, where the desired output is known. The 
goal is to train a classifier that can work on previously unknown data. It has two branches:  regression: prediction of continuous valued output  classification: prediction of discrete valued output 

Learning Algorithms in General 

Summarization of a Learning Algorithm 

 

Learning 
In the case of supervised learning we have a training set and a hypothesis function ሺℎሻ. We 
want to find the best parameters for the ℎ, where the error is minimal. For this reason we cre-
ate a function called cost function and we search for min�  ሺ�ሻܬ
Linear Regression 
In this method we try to fit a line on the point of the training set. One point of the training set 
can be described with two parameters: (ݔሺ௜ሻ, �ሺ௜ሻ). The hypothesis function is therefore a line: ℎݕ = �଴ + �ଵݔ 

To find the best values for the parameter � we find parameters ሺ�଴, �ଵሻ so that ℎ�ሺݔሻ is close-
ly to ݕ for the training examples: min� ͳʹ݉ ∑(ℎ�(ݔሺ௜ሻ) − ሺ௜ሻ)ଶ௠ݕ

௜=ଵ  

where ݉  is the number of training examples. With the conventional notation of cost function 
the above is ܬሺ�଴, �ଵሻ = ͳʹ݉ ∑(ℎ�(ݔሺ௜ሻ) − ሺ௜ሻ)ଶ௠ݕ

௜=ଵ  

ℎ 
 ݔ

Training Data 

Learning 
Algorithm 

New, previously 
unseen data 

  ݕ
Estimated  
value of ݕ 

 ݐ
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Gradient Descent Method 
Gradient Descent method will be used to find the minimum of the cost function. The steps 
are: 

1. Start with arbitrary initial values (e.g. �଴ = Ͳ, �ଵ = Ͳ) 
2. In each iteration change �௝ so that ܬ is reduced, until it reaches its minimum value. To 

achieve this the following update rule is used: �௝ = �௝ − ߙ ߲߲�௝ ,ሺ�଴ܬ �ଵሻ       ݆ = Ͳ,ͳ 
3. The update is done simultaneously for all the �௝. 

Linear Regression with Multiple Variables 
Linear regression can be more powerful with multiple variables. The new hypothesis function: ℎ�ሺݔଵ, ,ଶݔ … , ሻ�ݔ = �଴ + �ଵݔଵ + �ଶݔଶ +ڮ+  �ݔ��
More convenient to write it in a matrix-vector form: 

ℎ�ሺܠሻ = ܠ்� = [�଴ �ଵ ڮ ��] [ ͳݔଵݔڭ�] , ሺ�ሻܬ = ͳʹ݉ ∑(ℎ�(ܠሺ௜ሻ) − ሺ௜ሻ)௠ݕ
௜=ଵ  

Logistic Regression 
Logistic Regression produces answers between [Ͳ,ͳ]: Ͳ ൑ ℎ�ሺܠሻ ൑ ͳ. To achieve this we take 
the logistic function of �்ܠ: ℎ�ሺܠሻ = ͳͳ +  ܠ��−݁
Interpretation of the hypothesis 
If for some ܠ the ℎ�ሺܠሻ = Ͳ.ͺ, it means, that ܠ has 80% probability to belong to the positive 
class. To predict binary class labels we use a threshold 0.5: ℙሺݕ = ͳ|ܠ; �ሻ ൒ Ͳ.ͷ ՜ ݕ = ͳ ℙሺݕ = ͳ|ܠ; �ሻ < Ͳ.ͷ ՜ ݕ = Ͳ 
Cost function 
In linear regression the cost function was the following: ܬሺ�ሻ = ͳ݉ ∑cost(ℎ�(ܠሺ௜ሻ), ሺ௜ሻ)௠ݕ

௜=ଵ  

The problem is that in the case of logistic regression the hypothesis function is non-linear and 
if we put it into the ܬሺ�ሻ the result will be a non-convex cost function. We need to replace the cost(ℎ�(ܠሺ௜ሻ) − ,(ሺ௜ሻܠ)�ሺ௜ሻ) function. We will use the following: cost(ℎܡ (ሺ௜ሻݕ = { − log(ℎ�ሺܠሻ) , ݕ = ͳ− log(ͳ − ℎ�ሺܠሻ) , ݕ = Ͳ 
 

if ݕ = ͳ if ݕ = Ͳ  the cost is equal to zero if ℎ�ሺܠሻ = ͳ  as ℎ�ሺܠሻ goes to 0, the cost goes to ∞ 
 the cost is equal to zero if hθሺxሻ = Ͳ  as hθሺxሻ goes to 1, the cost goes to ∞ 

The unified cost function of logistic regression is as follows: ܬሺ�ሻ = − ͳ݉ ሺ௜ሻݕ]∑ logሺℎ�(ݔሺ௜ሻ)]௠
௜=ଵ + [(ͳ − (ሺ௜ሻݕ log ቀℎ�(ݔሺ௜ሻ)ቁ] 
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Regularization 
If we have too many features we can learn a hypothesis that fits the training data very well, 
but fails on new samples (does not generalize well). 
To handle underfitting we can introduce new features. 

To handle overfitting:  We can reduce the number of features (but this might mean we lose information): 
o We can select manually which features to keep. 
o Use a model selection algorithm.  We can apply regularization: 
o We can keep all the features but we reduce their magnitude (the value of the � 

parameters). 
o Works well if we have a lot of features and each contributes a little bit to pre-

dict ݕ. 
o The idea is to keep the parameters low, to get a simpler hypothesis function, 

which is less prone to overfitting. 

Regularization term 
The cost function for linear/logistic regression with regularization: ܬሺ�ሻ = ͳ݉ ∑cost(ℎ�(ܠሺ௜ሻ), (ሺ௜ሻݕ + �௝ଶ�∑ߣ

௝=ଵ
௠
௜=ଵ  

The regularization parameter ߣ controls the trade-off between two goals:  Fitting the data well  Keeping the parameters low, to avoid overfitting 
If ߣ is too large all the parameters (except�଴) will be close to 0, the model won’t fit the data, 
we will see underfitting. 

Support Vector Machines 
There could be many decision boundaries that separate two classes. Which one is the best? 
The SVM aims to keep as large margin between the decision boundary and the closest sample 
as possible. 

Case of the logistic regression 
In case of logistic regression this would mean:  if ݕ = ͳ we want ℎ�ሺܠሻ ≈ ͳ, ሺ�்ܠ ب Ͳሻ  if ݕ = Ͳ we want ℎ�ሺܠሻ ≈ Ͳ, ሺ�்ܠ ا Ͳሻ 
To achieve this goal we need a different cost function: ܬሺ�ሻ = ܥ ሺ௜ሻݕ)∑⋅ costଵ(�்�ሺ௜ሻ) + (ͳ − (ሺ௜ሻݕ cost଴(�்�ሺ௜ሻ))௠

௜=ଵ + ͳʹ∑�௝ଶ�
௝=ଵ  

Hypothesis function of SVM ℎ�ሺܠሻ = {ͳ, ܠ்� ൒ ͲͲ, otherwise 
Using Kernels 
One way to define a complex non-linear decision boundary is by the use of high order terms: �଴ + �ଵݔଵ + �ଶݔଶ + �ଷݔଵݔଷଶ ڮ+ ՜ �଴ + �ଵ ଵ݂ + �ଶ ଶ݂ + �ଷ ଷ݂  ڮ+

What can we use as ݂? For example we can use the distance from landmark points ݈ ሺଵሻ, ݈ሺଶሻ, … 
In this case the ݂ functions will be 
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ଵ݂ = exp(−‖ݔ − ݈ሺଵሻ‖ଶʹ�ଶ ) ,… , �݂ = exp ݔ‖−) − ݈ሺ�ሻ‖ଶʹ�ଶ ) 

where these ݂௜ kernel functions measure the similarity between point ݔ and the landmark ݈ሺ௜ሻ. 
If ݔ is far from ݈ ሺ௜ሻ then ݂ ௜ ≈ Ͳ, but if ݔ is close to ݈ሺ௜ሻ, then ݂ ௜ ≈ ͳ. These kernels are called 
Gaussian kernels. In this case the hypothesis function is the following: ℎ�ሺܠሻ = {ͳ, �்� = �଴ + �ଵ ଵ݂ +ڮ+ �� �݂ ൒ ͲͲ, otherwise  

How do we get the landmarks? 
We place a landmark at the position of each training example. The decision is made based on 
how close/similar the test samples are to the positive and negative training samples. The fea-
ture vector ܠ which represented a sample is now replaced a new feature vector �, which con-
tains the similarities to the training samples 

Parameters of the SVM 
The ܥ parameter controls the trade-off between two goals:  Fitting the data well (high value for C)  Keeping the parameters low, to avoid overfitting (low value for C) 

The used similarity kernels may have further parameters. For the Gaussian kernel the band-
width parameter � contros:  High �, results a slowly changing Gaussian, which can cause high bias.  Low �, results a more rapidly changing Gaussian, which can cause high variance. 

Unsupervised Learning 
In case of unsupervised learning the training data is not labeled. The goal is to find meaning-
ful structure in the data. 

K-Means Clustering 
It aims to partition the data samples into k clusters. Each sample will belong to the cluster 
with the nearest mean. The objective is to minimize the within-cluster sum of squares: arg minௌ ݔ‖∑∑ − ௌ೔א௜‖ଶ௫ߤ

௞
௜=ଵ  

where ݔଵ, ,ଶݔ … , ݅ ௜ is the mean of the points in the cluster ௜ܵ, andߤ ,are the data samples �ݔ = ͳ,… , ݇ where ݇  is the total number of clusters. 

Iterative heuristic method for k-means clustering 
1. Initialize the ݇  cluster means 
2. Assignment step: assign each sample to the nearest mean 
3. Update step: calculate the new mean for each cluster: ߤ௜ሺ௧+ଵሻ = ͳ| ௜ܵሺ௧ሻ| ∑ ௌ೔ሺ�ሻא௝௫ೕݔ  

Limitation of k-means  Number of clusters has to be known a priori  Spherical cluster shapes  Could stuck in a local minimum 
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Mean-Shift Clustering 
Non-parametric iterative clustering technique introduced in 1975 by Fukunaga and Hostetler. 
We do not need to know the number of clusters a priori. This method does not constrain the 
shape of the cluster. Mean shift considers the points in the feature space as samples from an 
underlying probability density function. The objective of the algorithm is to find the modes of 
this probability density function, and associate each point with the node it is “attracted to”. 

Main steps 
1. A density estimation window (e.g. a Gaussian window) is placed on each sample 

point. 

2. Within each window the mean shift vector is calculated, which points toward the max-
imum density: 

݉ℎሺݔሻ ௜݃ݔ∑= ݔ‖) − ௜ℎݔ ‖ଶ)�
௜=ଵ∑݃(‖ݔ − ௜ℎݔ ‖ଶ)�
௜=ଵ

−  ݔ

where ݔ is a ݀ -dimensional feature point, ݃ሺݔሻ = -is a kernel func ܭ ሻ, whereݔሺ′ܭ−
tion (e.g. Gaussian kernel) and ℎ is the bandwidth parameter of the kernel. 

3. The window is shifted with the mean shift vector. 

4. Step 2 and 3 are repeated until convergence to a local density maximum. 

5. The sample points that converged to the same local maximum will belong to the same 
cluster. 

Other Clustering Methods 

DBSCAN (Density-based Spatial Clustering for Applications with Noise)  Don’t need to know the number of clusters  Can find arbitrary shaped clusters  Robust to outliers: has a built in noise handling technique  Quality depends on the distance measure (usually Euclidean distance, which doesn’t 
respond well to high dimensionality) 
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Topic 7 Local Feature Descriptors 

Types of Descriptors 
The detection and description of local features has an important role in many applications. 
There are different types of use of the descriptors. When we are talking about local feature 
descriptors we usually talking about one or both of the following two tasks:  Keypoint or feature detection  Feature extraction: generation of a descriptor for the feature point’s local neighbor-

hood. 
There are methods that do both or only one of the tasks: 

Feature point detectors Feature descriptors  Hessian/Harris corner detector  Laplacian of Gaussian  Difference of Gaussian (in SIFT)  SURF (uses Hessian Blob detector with 
integral image) 

 SIFT  SURF  HOG  BRIEF  LBP 

SIFT: Scale Invariant Image Transform 

Advantages 

 Invariant to translation, scaling, and rotation  Robust to illumination changes, noise, minor changes in viewpoint  Robust to local geometric distortion  Highly distinctive  SIFT based object detectors are robust to partial occlusion 

Steps of the Algorithm 
1. Scale-space extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint description 

1. Scale-space extrema detection 
Keypoint detection with Difference of Gaussians: 
Let ܫሺݔ, ,ݔሺܩ ሻ is the original image andݕ ,ݕ ݇�ሻ a Gaussian blur at scale �. The original im-
age convolved with Gaussian kernel at different scales: ܮሺݔ, ,ݕ ݇�ሻ = ,ݔሺܩ ,ݕ ݇�ሻ ∗ ,ݔሺܫ  ሻݕ
The convolved images are grouped by octave (in an octave � is doubled). The difference of 
consecutive convolved images is taken in an octave: ܦሺݔ, ,ݕ �ሻ = ,ݔሺܮ ,ݕ ݇௜�ሻ − ,ݔ)ܮ ,ݕ ௝݇�) 
Then we choose all extrema within a ͵ × ͵ × ͵ scale-space neighborhood. These extremas are 
the keypoints. 

2. Keypoint localization 
Localization is done with sub pixel accuracy, based on the interpolation of nearby data. Rejec-
tion of weak candidates: low contrasted points and poorly localized points along edges. 
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3. Orientation assignment 
Goal is to ensure rotation invariance: find the main orientation(s) and assign it to the key point 
and give the description of the keypoint relative to this orientation. Steps: 

1. Gaussian smoothed image is taken at the scale of the keypoint. 
2. The edge magnitude and orientation is calculated for each point in the neighborhood. 
3. A 36 bin orientation histogram is composed, where each bin represents a 10 degree in-

terval, and each neighboring point’s bin is determined based on its edge orientation 
and its weight based on the edge magnitude. 

4. Also the points are weighted with a Gaussian window, so the points farther away have 
less effect than the points closer to the keypoint. 

5. The orientation of the keypoint will correspond to the peak of the histogram. 

4. Keypoint description 
For every keypoint ሺݔ, ,ݕ �, �ሻ: 

1. Take a ͳ͸ × ͳ͸ point neighborhood around the keypoint and divide it into Ͷ × Ͷ gra-
dient window. 

2. Build the orientation histogram of the Ͷ × Ͷ samples in each window with 8 direction 
bins. 

3. Gaussian weighting around center (size is based on �) 
4. Ͷ × Ͷ × ͺ = ͳʹͺ dimensional feature vector 

HOG: Histogram of Oriented Gradients 
Originally developed for pedestrian detection by N. Dalal, B. Triggs in 2005 

Steps of the Algorithm 
1. Gradient Computation 
2. Orientation Binning 
3. Block Description 
4. Block Normalization 
5. Classification 

1. Gradient Computation 
Gradient calculation with the simple [−ͳ Ͳ ͳ] and [−ͳ Ͳ ͳ]் gradient detectors. 

2. Orientation Binning for a cell 
A cell is a rectangular (or circular) shaped ͺ × ͺ window. The histogram of gradient orienta-
tions is calculated over the cell, each pixel votes based on its magnitude on the gradient im-
age. A 9 bin histogram is made (form 0°to 180°). 

3. Block Description 
A block contains ʹ × ʹ cells. Pixels in the block are weighted by a Gaussian window. 

4. Block Normalization 
The blocks are overlapping; every cell is used 4 times in 4 different blocks. Also there are 
different versions of the normalization: ܮଵ norm ܮଵ sqrt ݒ ՜ ଵ‖ݒ‖ݒ + ݒ ߝ ՜ √ ଵ‖ݒ‖ݒ + ݒ ଶ Hysܮ ଶ normܮ ߝ ՜ ଶଶ‖ݒ‖√ݒ +  ʹ.is limited to Ͳ ݒ ଶ max value ofߝ
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Haar-Like Features 
They are named after the Haar wavelets. 

Cascade classifier 
The goal is to be able to reject many obvious non-face samples quickly and concentrate the 
computational power on the more difficult samples. By the concatenation of a lot of weak 
classifiers a highly effective classifier is built. Each weak classifier can reject a sample, so the 
following weak classifiers don’t have to evaluate it. Each weak classifier is tuned to compen-
sate the previous classifiers’ errors 

Integral Image trick 
A way to calculate Haar-like features very quickly, in constant time, regardless of the size of 
the feature. 

The integral image is defined as follows: ܫ௜�௧ሺݔ, ሻݕ = ∑ ,′ݔሺܫ ሻ௫′≤௫௬′≤௬′ݕ
 

Using the integral image the sum of any rectangular 
shaped area can be calculated with 4 operations: ܦ = ሺܣ + ܤ + ܥ + ሻ⏟          ሺସሻܦ + ሺܣሻ⏟ሺଵሻ − ሺܣ + ሻ⏟    ሺଶሻܤ − ሺܣ + ሻ⏟    ሺଷሻܥ = ሺͶሻ + ሺͳሻ − ሺʹሻ − ሺ͵ሻ 
LBP: Local Binary Patterns 
LBP is a computationally effective texture descriptor. It is comparable to the state of the art, 
while computable in ܱ ሺ�ሻ time. LBP is robust to monotonic changes in the illumination, no 
image preprocessing or parameter tuning is required. Produces a compact, 59 bin descriptor 
(SIFT has 128 bins), so it is faster to match. Its efficiency was proved in many applications 
such as face detection, face recognition, image retrieval, texture analysis etc. 

Steps of the Algorithm 
1. LBP Calculation 
2. Histogram Building 
3. Histogram Matching 

1. LBP Calculation 
Calculate the difference of a pixel and its 8 neighbors in a fixed radius circular pattern then 
binarize the result. Represent the result as a decimal number, this is the LBP value. 

Uniform LBP 
So far we have 256 dimension descriptor. In general 90% of the LBPs has one or two contin-
uous regions in it:  2 patterns with one region (full 1, or full 0)  7 patterns with 2 regions 
For each of the 7 pattern with 2 regions there can be 8 different orientations. Plus we keep one 
joker bin for everything else. Therefore we get a ʹ + ͹ × ͺ + ͳ = ͷͻ bin descriptor. This 
reduced dimension descriptor is also more robust to noise. 

2. Histogram Building 
Build the histogram from LBP values. 

3. Histogram Matching 
To match histograms the following measures is commonly used: Histogram Intersection, Chi-
Squared, Log-Likelihood. 

(1) (2) 

(3) (4) 

 ܦ ܥ ܤ ܣ
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Binary Descriptors 
The SIFT, SURF and HOG methods are based on histograms of gradients, which is costly to 
compute and the size of the descriptors can be problematic if we have many of them. Also 
SIFT is patent protected. 

Binary descriptors use simple intensity value comparisons to create binary strings to encode 
the information of the patch. It is fast to compute, easy to store and fast to match (the Ham-
ming distance is equivalent with XOR) 

In general, Binary descriptors are composed of three parts  sampling pattern  sampling pairs  orientation compensation 

Sampling pattern 
The use of binarized intensity value differences: take a sample at point ܣ and compare its val-
ue to a sample in an other point, ܤ. If ܣ’s intensity is higher add a 1 to the descriptor string, 
otherwise add 0. The sampling pattern defines the way we take samples: BRISK, FREAK, 
BRIEF, ORB… 

Sampling pairs 
BRIEF uses random sampling pattern and selects random pairs from them. 
BRISK uses only short distance pairs from the predefined pattern. 
FREAK and ORB learns the sampling pairs so that  their information content is maximal, the redundancy is minimal between the pairs,  the variance of the pairs is high to make the feature more discriminative. 
In case of FREAK the resulted pairs follow a coarse-to-fine structure:  the first pairs selected are comparing points in the outer ring  the last selected points make comparisons in the dense region  this resembles to the way the human vision operates. 

Orientation compensation 
The binary pairs are sensitive to rotation. In the orientation compensation phase the orienta-
tion angle of the patch is measured and the pairs are rotated by that angle to ensure that the 
description is rotation invariant. Different descriptors have different methods for orientation 
compensation:  BRIEF: does not have orientation compensation  ORB: based on the moments of the patch  BRISK: comparing gradient of long pairs  FREAK: comparing gradient of preselected pairs 

Feature Matching 
1. Given two keypoints, first procedure the binary descriptor for both of them, using the 

same sampling pattern and the same sequence of pairs. 
2. Once we have two binary strings, just count the number of bits where the strings are 

different. 
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Topic 8 Video Processing, Motion Estimation, Object Tracking 

Video Processing 
The main difference between a still image and a dynamic video is the motion. Estimating the 
motion on the video is a fundamental step for many algorithms: object tracking, video surveil-
lance, video compression etc. 

3D vs. 2D Motion 
In general, we are interested in the motion in the 3D scene, but we can only work with its 2D 
projection on the image plane. The interpretation of the 2D image can be ambiguous: “does 
the size of the object really changed or is it just further away from the camera”? 

True and Apparent Motion 
We want to know how an object, an image region or a single pixel moved on the image plane 
from one frame to the next. But the change of the pixel does not necessarily means that mo-
tion occurred in the real 3D world and a real world change might not result a change in the 
pixel value. 

Motion Estimation 
Direct Methods: they compute the optical flow between two consecutive frames.  Optical Flow  Phase Correlation  Block Matching  Spatio-Temporal Gradient 

Indirect methods:  Feature Matching, which locates feature points on both images, finds the pair of each 
feature point on the other image and calculates the motion based on the displacement 
of the feature points. For this different features can be used: SIFT, SURF, Harris… 

Phase Correlation 
This method can be used to estimate global motion, for image registration. It is based on the 
translation property of the Fourier transform: ݔሺ�ଵ −݉ଵ, �ଶ −݉ଶሻ ՞ �ሺ�ଵ, �ଶሻ݁−௝�భ௠భ݁−௝�మ௠మ 
The assumption is that between two consecutive frames the image was shifted by ሺ݉ଵ, ݉ଶሻ: ݔ௧ሺ�ଵ, �ଶሻ ݔ௧+ଵሺ�ଵ, �ଶሻ = ௧ሺ�ଵݔ −݉ଵ, �ଶ −݉ଶሻ �௧ሺ�ଵ, �ଶሻ �௧+ଵሺ݇ଵ, ݇ଶሻ = �௧ሺ݇ଵ, ݇ଶሻ݁−௝మ��భ௠భ௞భ݁−௝మ��మ௠మ௞మ 
Calculation of the crow power spectrum ܥሺ݇ଵ, ݇ଶሻ = �௧ሺ݇ଵ, ݇ଶሻ�௧+ଵ∗ ሺ݇ଵ, ݇ଶሻ|�௧ሺ݇ଵ, ݇ଶሻ�௧+ଵ∗ ሺ݇ଵ, ݇ଶሻ| = |�௧ሺ݇ଵ, ݇ଶሻ|ଶ ⋅ ݁−௝ଶ�ேభ௠భ௞భ݁−௝ଶ�ேమ௠మ௞మ|�௧ሺ݇ଵ, ݇ଶሻ|ଶ  

Transforming the ܥ back to the spatial domain we get the normalized cross correlation: ܿሺ�ଵ, �ଶሻ = ሺ�ଵߜ −݉ଵ, �ଶ −݉ଶሻ 
Dealing with the border regions 
Since we use DFT the linear shifts becomes circular shifts. In most cases the images are relat-
ed by linear shift not circular, so the border regions may corrupt our calculation. Solution: use 
a 2D Hamming window (or something similar) to down weight the values close to the border. 
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Block Matching 
Block matching is an intuitive motion estimation algorithm, widely used in video compres-
sion. It is based on the following assumptions:  The objects are rigid  The illumination of the scene is constant  Objects are not entering or leaving the scene  The motion is parallel to the image plane 

To estimate the local motion between two frames (ܣ and ܤ): 
1. Frame ܣ is divided into (usually squared shaped) blocks. 
2. For each block of ܣ, a search is made on frame ܤ, to find its best matching pair. 

Different measures can be used as matching criteria, to find the best fit for a block:  Mean Square Error  Mean Absolute Error  Correlation Function 

To get a dens field of motion vectors overlapping blocks can be used. To find the best match 
for a block with exhaustive search is computationally highly demanding. There are different 
ways to reduce the computational burden:  Reduced search window or block size  Block sub-sampling  Logarithmic search  Pixel projection 

Hierarchical Block Matching 
With the hierarchical structure we reduce the size of the images. Do the motion estimation 
first at the lowest resolution, with relatively large search window. Use the (properly up-
scaled) estimated vectors for initialization of the search at a higher level. The final motion 
vectors are calculated at the original dimension. 

Optic Flow 
Constant brightness constraint: It is assumed that the brightness of an object remains the 
same from one frame to an other, hence all the changes in brightness are solely due to the mo-
tion in the scene. ܫሺݔ, ,ݕ Ͳሻ = ݔሺܫ + ,ݑ ݕ + ,ݒ �ሻ 
where ݑ and ݒ are the displacement of the pixel in each dimension and � is the time (� = Ͳ is 
the reference frame). 

Using Taylor series expansion: 
The Taylor series expansion of a function ݂, that is infinitely differentiable at ܽ, is given with 
the following formula: ∑ d�dݔ� ݂ሺܽሻ�! ሺݔ − ܽሻ�∞

�=଴  

Then we take the Taylor series expansion of ܫሺݔ + ,ݑ ݕ + ,ݒ �ሻ at Ͳ: ܫሺݔ + ,ݑ ݕ + ,ݒ �ሻ = ,ݔሺܫ ,ݕ Ͳሻ + ,ݔሺܫ߲ ,ݕ Ͳሻ߲ݔ⏟      ூೣ ݑ + ,ݔሺܫ߲ ,ݕ Ͳሻ߲ݕ⏟      ூ೤
ݒ + ,ݔሺܫ߲ ,ݕ Ͳሻ߲ݐ⏟      ூ� � + �ܱ� 

So Ͳ = ݑ௫ܫ + ݒ௬ܫ +  �௧ܫ
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If we divide everything with �, we get velocities. Hence the optic flow equation is as follows: Ͳ = ௫ܫ ௫ܸ + ௬ܫ ௬ܸ +  ௧ܫ
This equation is under determined: 2 unknowns, 1 equation. Assuming that neighboring pixels 
undergo the same motion we can increase the number of equations: 

{ 
௫ሺ�ଵሻܫ  ௫ܸ + ௬ሺ�ଵሻܫ ௬ܸ = ௫ሺ�ଶሻܫ௧ሺ�ଵሻܫ ௫ܸ + ௬ሺ�ଶሻܫ ௬ܸ = ௫ሺ�ேሻܫڭ௧ሺ�ଶሻܫ ௫ܸ + ௬ሺ�ேሻܫ ௬ܸ = ௧ሺ�ேሻܫ ՜ [  

௫ሺ�ଵሻܫ  ௫ሺ�ଶሻܫ௬ሺ�ଵሻܫ ڭ௬ሺ�ଶሻܫ ௫ሺ�ேሻܫڭ   [௬ሺ�ேሻܫ
 [ ௫ܸܸ௬] = [௧ሺ�ேሻܫڭ௧ሺ�ଶሻܫ௧ሺ�ଵሻܫ] ՜ ܠ� = � 

This is an inverse problem: we know � and � and look for ܠ. Least square or constrained least 
square solutions can be used: ܠ = ሺ�்�ሻ†�்�, ܠ = ሺ�்� + �۱்۱ሻ†�்� 

Feature Matching 
The algorithm is based on the matching of key points that has a well-defined position on the 
image (e.g. corner). A descriptor is given to each point that is preferably…  Shift and rotation invariant  Robust against the changes of illumination  Scale invariant  Low dimensional  Robust to noise, etc. 
From the matched point pairs the global motion of the camera can be estimated. As feature 
point detectors SIFT or SURF can be used, and as feature descriptors SIFT, SURF, HOG, 
LBP, etc. 

Object Tracking 
The objective of object tracking is to associate target objects in consecutive video frames. It 
can be applied in human-computer interaction, traffic monitoring, vehicle navigation, motion-
based recognition, video indexing, automated surveillance, etc. 

The tracking task can be divided into two subtasks:  Build a model of the object you want to track  Use what you know about where the object was in the previous frame(s) to make pre-
dictions about the current frame to restrict the search. 

Repeat the two subtasks and possibly update the model. 

Tracking objects can be complex due to:  Loss of information caused by projection from 3D to 2D  Noise  Complex object shapes/motion  Non-rigid or articulated nature of objects  Partial and full occlusions of the object  Changes of the illumination  Real-time processing requirements 
Simplify tracking by making assumptions and the use of prior information:  The motion of the object is smooth with no abrupt changes  The object motion is assumed to be of constant velocity  Prior knowledge about the number and the size of objects, or the object appearance. 
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Modeling of the object: 
Shape:  Point model  Simple geometrical forms  Contour/Silhouette  Articulated shape models  Skeletal models 
Appearance:  Template (if the appearance is not changing)  Probabilistic representation of the object appearance (e.g. Histogram) 
Different features can be used to describe the appearance:  Color, Edge, Motion, Texture  HOG, SIFT, LBP, … 
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Topic 9 Image Segmentation 

What is on the image? – This is maybe the most important question we want to answer about 
an image. For a human observer it is a trivial task, for a machine it is still an unsolved prob-
lem. An important step toward our goal is to segment the image into meaningful parts. The 
objective is to group pixels together based on some common characteristics:  they belong to the same physical object  they have the same intensity level/color/texture  they belong to the background/foreground  … 
The segmentation can be knowledge-driven (top-down) or data-driven (bottom-up). 
Knowledge driven segmentation methods builds prior knowledge into the segmentation algo-
rithm:  hard to implement  cannot stand alone: need cues from bottom-up segmentation 
Data-driven methods builds on the raw pixel data:  they are easier to implement  they often fail on real life images 
There is the so-called semantic gap between the two approaches. The complex, high level 
definitions of top-down methods are hard to embed efficiently into low level algorithms. 

Intensity Level Based Segmentation 

Thresholding 
Assumption: the image parts (e.g. object and background) can be separated based on their 
intensity level. ݏሺ�ଵ, �ଶሻ = { object, ,ሺ�ଵݔ �ଶሻ < �background, ,ሺ�ଵݔ �ଶሻ ൒ � 

where ݏሺ�ଵ, �ଶሻ is the cluster of the ሺ�ଵ, �ଶሻ pixel of the ݔ image and � is a threshold. 

Otsu’s Method 
Automatically determines the optimal global threshold by minimizing the intra-class variance. 
The intra-class variance is defined as follows: �௪ଶሺ݇ሻ = �ଵሺ݇ሻ�ଵଶሺ݇ሻ + �ଶሺ݇ሻ�ଶଶሺ݇ሻ 
where �௜ and �௜ are the probability and the variance of the two classes separated by the 
threshold ݇ . Otsu showed that minimizing the intra-class variance is the same as maximizing 
inter-class variance: �௕ଶሺ݇ሻ = �ଶ − �௪ଶሺ݇ሻ = �ଵሺ݇ሻ�ଶሺ݇ሻ(ߤଵሺ݇ሻ −  ଶሺ݇ሻ)ଶߤ
where ߤ௜ are the means of the two classes separated by threshold ݇. To calculate �௜ and ߤ௜ the 
normalized histogram of the image is used: �ଵሺ݇ሻ = ∑�௜௞

௜=଴  �ଶሺ݇ሻ = ∑ �௜௅−ଵ
௜=௞+ଵ  

ଵሺ݇ሻߤ =∑݅�௜�ଵ௞
௜=଴ ଶሺ݇ሻߤ  = ∑ ݅�௜�ଶ௅−ଵ

௜=௞+ଵ  

where �௜ is the ݅-th entry in the normalized histogram of the image. 
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Region Based Segmentation Methods 
Let � be the entire image region, and �ଵ, … , �� are subregions. We want to find a segmenta-
tion that is  Complete ⋃�௜�

௜=ଵ = � 

 Points in the region �௜ are connected ݅ = ͳ,… , � 

 The regions are disjoint �௜ ת �௝ = ∅ ⇔ ∀݅ ≠ ݆ 
 All the pixels in a region have common properties that they do not share with pixels 

from other regions. 

Region Growing 
The method is initialized with a set of seed points as regions. We start growing the regions by 
adding neighboring pixels to the region if they have similar predefined properties as the seed 
points. The seeds can be selected based on prior information, or evenly, or random… 

The similarity criteria is usually depending on the segmentation result we want. (Commonly 
used properties are the intensity level, color, texture, motion, …) 
Pros: simple, works well on images with clear edges, prior knowledge can be easily utilized, 
robust to noise… 

Cons: time consuming 

Region Splitting and Merging 
Let � represent the entire image region and ܲ be a predicate. The splitting and merging steps 
are alternating:  We split the region �௜ into 4 sub regions if ܲሺ�௜ሻ = false  We merge 2 neighboring regions �௜ and �௝ if ܲ(�௜ ׫ �௝) = true 
The minimum region size has to be selected. 

Clustering in the Feature Space 
A clustering algorithm is used to find structure in the data. The pixels are represented in the 
feature space. Usual features: colors, pixel coordinates, texture descriptors, … 

Video Segmentation 
In bottom-up segmentation we want to group pixels with similar properties together. In case 
of video segmentation motion is an important feature to extract object of interest from the 
irrelevant background. 

Frame Difference 
We detect motion based on the difference of two consecutive frames: ݀௜,௝ሺݔ, ሻݕ = {ͳ, |݂ሺݔ, ,ݕ ݅ሻ − ݂ሺݔ, ,ݕ ݆ሻ| > �Ͳ, otherwise  

where � is a predefined threshold. 
Problems with frame difference:  We detect only the contour of the moving object  It is sensitive to the speed of the motion 
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Background Subtraction 

Main steps 
1. Model the background and create an image with only the background on it 
2. Subtract the background from the current frame. 
3. Threshold the difference frame to get the foreground mask 

Single frame as background 
Assumption: we have a frame which does not contain foreground objects. This method cannot 
handle changes of the background (illumination changes, object becomes part of the back-
ground, …) Because of the above constraints it cannot be used in a real life scenario. 

Running average 
The following equation is used to calculate the background ሺܤሻ for each time instance: ܤሺݔ, ,ݕ ݅ + ͳሻ = ߙ ⋅ ,ݔሺܤ ,ݕ ݅ሻ + ሺͳ − ሻߙ ⋅ ݂ሺݔ, ,ݕ ݅ሻ 
where ߙ is a predefined constant, which defines the adaptivity of the background. 

Running average with foreground masking 
The following equation is used to calculate the background ሺܤሻ for each time instance: ܤሺݔ, ,ݕ ݅ + ͳሻ = { ,ݔሺܤ ,ݕ ݅ሻ, if ሺݔ, ߙሻ is a foreground pixelݕ ⋅ ,ݔሺܤ ,ݕ ݅ሻ + ሺͳ − ሻߙ ⋅ ݂ሺݔ, ,ݕ ݅ሻ, otherwise  

where ߙ is a predefined constant, which defines the adaptivity of the background. 

Temporal Histogram 
The temporal histogram of each pixel is used to generate the background image. The value 
with the highest peak is the value of the background pixel at that location. 

Mixture of Gaussians 
Using the temporal histogram of each pixel means we have to store the histograms and have 
to find its maximum for each pixel for each frame. This means high memory and high compu-
tational power requirements! Better idea is to use Mixture of Gaussians to estimate the back-
ground. The main parameters of the model:  ܭ is the number of Gaussians,  the mean ሺߤ௜ሻ, the variance ሺ�௜ሻ and the weight ሺݓ௜ሻ of each Gaussian ሺ݅ = ͳ,… ,  ሻܭ
A pixel is considered background if it belongs to the Gaussian with the highest weight: ܯሺݔ, ሻܩ = {ͳ, ݔ| − �ߤ | < �Ͳ, otherwise  

where � is a predefined constant. 

Parameter updating: 

 Weight updating: ݓ௜ሺݐ + ͳሻ = ሺͳ − ሻߙ ⋅ ሻݐ௜ሺݓ + ,ݔሺܯߙ ,௜ሻܩ ௜ݓ = ∑௜ݓ ௝௄௝=ଵݓ  

 Gaussian parameter updating: 
If there is a matching Gaussian ሺܯሺݔ, ௜ሻܩ = ͳሻ we update its parameter as follows:  ߤ௜ሺݐ + ͳሻ = ሺͳ − ሻߩ ⋅ ሻݐ௜ሺߤ + ߩ ⋅ ݐ௜ଶሺ� ݔ + ͳሻ = ሺͳ − ሻߩ ⋅ �௜ଶሺݐሻ + ݔሺߩ −  ௜ሻଶߤ
If there is no matching Gaussian we replace the Gaussian with the lowest weight with 
a new Gaussian with the following parameters: ߤ௜ሺݐ + ͳሻ = ,ݔ �௜ଶሺݐ + ͳሻ = �initଶ , ݐ௜ሺݓ + ͳሻ =  initݓ
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Morphological Operations 
Morphological operations are affecting the form, structure or shape of an object. They are 
used in pre- or postprocessing (filtering, thinning, and pruning) or for getting a representation 
or description of the shape of objects/regions (boundaries, skeletons convex hulls). Two basic 
operations:  Dilation: expands the object, fills in small holes and connects disjoint objects.  Erosion: shrinks objects by removing (eroding) their boundaries. 

The basic idea in binary morphology is to probe an image with a structuring element (a sim-
ple, pre-defined shape), drawing conclusions on how this shape fits or misses the shapes in 
the image. 

Dilation 
A shift-invariant operator that expands the object, fills in small holes and connects disjoint 
objects. Steps:  The structuring element is placed on each pixel on the image.  If the pixel belongs to the foreground pixel, we do nothing.  If the pixel belongs to the background, we change it to a foreground pixel if any pixel 

covered by the structuring element is a foreground pixel. 

Erosion 
A shift-invariant operator that erodes away the boundaries of regions of foreground pixels. 
Thus areas of foreground pixels shrink in size, and holes within those areas become larger. 
Steps:  The structuring element is placed on each pixel on the image  If the pixel is a background pixel, we do nothing  If the pixel is a foreground pixel, we change this pixel to a background if any pixel 

covered by the structuring element is a background pixel. 

Using dilation and erosion 
Erosion on the image has the same effect as dilatation on the inverse image. 
Opening: Erosion + Dilation 
Closing: Dilation + Erosion 

  



 „Korlátozott terjesztésű”  1. számú példány 
 

Basic Image Processing Algorithms — PPCU FIT 

 
 

 

Oral exam 1548 42 / 48 18 December 2015 
 

 „Korlátozott terjesztésű”   
 
 
 

Topic 10 Image and Video Compression 

Compression is the reduction of the number of bits used for the representation of an image or 
video, while  being able to exactly reconstruct the original data (lossless compression)  maintaining an acceptable quality of the reconstructed data (lossy compression) 
Why are the signals compressible?  The signals contain redundancy (spatial or temporal), they have a structure which can 

be described in a more compact way.  There are parts of the image which are perceptually irrelevant, which can be discarded. 

Lossless Compression 
Reversible process: the original data can be exactly reproduced from the compressed data. 
Only limited compression ratio can be achieved with lossless compression, determined by 
the entropy of the source data. There is a tradeoff between:  Efficiency (compression ratio)  Complexity (required memory, computational power, etc.)  Coding Delay (how long does it take to code the signal) 

The two main groups of lossless coding techniques: 
1. Statistical methods: the statistics of the source is known. (e.g. Huffman coding, Ex-

tended Huffman coding) 
2. Universal methods: the statistics of the source is unknown (e.g. Arithmetic methods, 

Dictionary methods, Adaptive Huffman coding) 

Background 
Source: any information generating process can be viewed as a source that emits random se-

quence of symbols, from a finite alphabet. 
Discrete Memoryless Source (DMS): the generated successive symbols are independent iden-

tically distributed random variables. This is the simplest model which can be described by 
its symbols and the associated probabilities. However, it is not perfect, in the above exam-
ples there is a dependency among the symbols. 

Self information: How much information is provided by the emission of a certain symbol? 
The occurrence of a less probable event provides more information: ܫሺݏ௜ሻ = log(ͳ�௜) = − logሺ�௜ሻ ,    where    ܵ = ,ଵݏ} … , ,ଵ�}{�ݏ … , ��}  

In case of independent symbols: ܫሺݏଵݏଶሻ = log( ͳ�ሺݏଵݏଶሻ) = log( ͳ�ଵ�ଶ) = − logሺ�ଵሻ − logሺ�ଶሻ = ଵሻݏሺܫ +  ଶሻݏሺܫ
Entropy: It is the property of the source not only one symbol. For a DMS it is the average 

information per symbol: �ሺܵሻ =∑�௜ܫሺݏ௜ሻ�
௜=ଵ = −∑�௜ logଶሺ�௜ሻ�

௜=ଵ  

Simple example for the entropy of a two-symbol alphabet: � = −� logଶሺ�ሻ − ሺͳ − �ሻ logଶሺͳ − �ሻ 
The entropy is the maximum if the probability of the symbols is equal. The entropy is min-
imum if one symbol has probability 1, the others 0. 
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Uniquely Decodable (UD): any finite sequence of code words corresponds to only one mes-
sage sequence. 

Prefix Code: no codeword is a prefix to an other codeword. A prefix code is always UD, but a 
UD code is not necessarily prefix. Prefix codes are easy to design and easy to decode. Eve-
ry UD code can be converted to a prefix code with same rate. 

Binary Tree representation 
Not prefix code Prefix code 

  

First order codes 
Encodes each symbol independently of the others, every symbol has a code word. 

Block codes 
Group the symbols of the source ܵ into ܰ length blocks and generate a codeword for each 
block. It can be regarded as a new source ሺܵேሻ that generates symbols from an alphabet with �ே number of symbols (where � is the number of symbols in ܵ). �ሺܵேሻ = ܰ ⋅ �ሺܵሻ 
Non-block codes 
The non-block codes are arithmetic codes and Lempel-Ziv codes. 

Lossless coding pipeline source ՜ symbols: ݏଵ, ,ଶݏ … , �ݏ ՜ coding ՜ code words with length: ݈ଵ, … , ݈� 

The average code word length is the measure of code efficiency: ݈�௩௚ =∑݈௜�௜�
௜=ଵ  

Shannon’s Source Coding Theorem 
Let ܵ be a source with alphabet size � and entropy �ሺܵሻ and let consider coding ܰ source 
symbols into one binary codeword (block coding). Then for every ߜ > Ͳ it is possible by 
choosing the ܰ  large enough, to construct a code with average number of bits per symbol ݈�௩௚ 
that satisfies the following inequality: �ሺܵሻ ൑ ݈�௩௚ < �ሺܵሻ +  ߜ

This means that entropy is the lower bound of the code efficiency, we cannot beat it but we 
can come arbitrarily close to it by increasing ܰ. Increasing ܰ  results larger dictionary and a 
delay in decoding. In general it is not straightforward to calculate entropy (the formula is only 
for DMS). 
  

 ଷݏ ସݏ ଵ Ͳ ͳݏ ଶ Ͳ ͳݏ
Ͳ ͳ ݏଵ Ͳ ͳ 

 ସݏ ଶ Ͳ ͳݏ ଷݏ
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Huffman Coding 
Variable length, prefix code. Based on the Morse principle: the more common symbols have 
shorter code word. 

Algorithm 
1. Sort the symbols according to their probability. 
2. Combine the two least probable symbol to a composite symbol with probability equal 

the sum of the probabilities of its components. 
3. Repeat the first two steps until only one composite symbol remains. (if the alphabet 

has � symbols, the algorithm will have � − ͳ steps) 
The output of the algorithm is a binary tree that describes the code. The result is not unique. 

Properties  The average codeword length is bounded: �ሺܵሻ ൑ ݈�௩௚ < �ሺܵሻ + ͳ 
 If the maximum probability is less than 0.5: �ሺܵሻ ൑ ݈�௩௚ < �ሺܵሻ + �max 
 If the maximum probability is higher than 0.5: �ሺܵሻ ൑ ݈�௩௚ < �ሺܵሻ + �max + Ͳ.Ͳͺ͸ 
 Best possible outcome is achieved when the probabilities are �௜ = ʹ−௜: ݈�௩௚ = �ሺܵሻ 
 In general Huffman codes work better with large alphabet, since then the max prob-

ability is likely to be lower than 0.5, which means lower upper bound. 

Extended Huffman Coding 
The extended Huffman coding uses block code. Therefore it produces a more efficient code: �ሺܵேሻ = ܰ ⋅ �ሺܵሻ     and    ݈�௩௚ = ܰ ⋅ ݈�௩௚        ՝ �ሺܵேሻ ൑ ݈�௩௚� < �ሺܵேሻ + ͳ ܰ ⋅ �ሺܵሻ ൑ ܰ ⋅ ݈�௩௚ < ܰ ⋅ �ሺܵሻ + ͳ 

The drawback is that the number of codewords increases exponentially which leads to stor-
age, computational and delay problems. 

Arithmetic Coding 
Coding sequences of symbols or blocks together is more efficient than generating codewords 
for each symbol separately. The problem with Huffman coding is that the alphabet can get 
huge easily: if we want to assign codeword to an ܰ-length block of symbols, we have to as-
sign codewords to all possible ܰ-length blocks. 

In arithmetic coding a unique tag is generated for a sequence of symbols, and then the tag is 
coded into a binary code. One possible source of tags is the numbers between 0 and 1. Since 
there are infinitely many real numbers in this interval, we can generate a tag for arbitrary long 
sequence of symbols. 

Tag generation 
We want to map a sequence of symbols onto an interval. The cumulative distribution function 
will be used. Let ܵ be an alphabet with � symbols and known probabilities: 
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ܵ = ,ଵݏ} ,ଶݏ … , ,{�ݏ ܲሺݏ௜ሻ, ∑ܲሺݏ௜ሻ�
௜=ଵ = ͳ 

Let � be a random variable that maps the event of the appearance of a symbol onto the real 
line: �ሺݏ௜ሻ = ݅, ܲሺ� = ݅ሻ = ܲሺݏ௜ሻ 
The cumulative distribution function is the following: ܨ�ሺ݇ሻ =∑ܲሺݏ௜ሻ௞

௜=ଵ  

We map a sequence of symbols onto an interval using the cumulative distribution function. A 
sequence of symbols will be described by a tag (number between 0 and 1) and the number of 
symbols coded by the tag. The tag itself is coded. 

1. We can find the first symbol by placing the number on the 0-1 interval and check 
which symbol’s interval it is placed on. 

2. Proportionally map the division of the original intervals to the selected interval and 
check again which interval the tag is on. 

3. Repeat the first 2 steps as many times as many symbols are coded by the tag. 

Comparison with Huffman coding: 
AC has higher upper bound: �ሺܵሻ ൑ �ு௨௙௙௠�� < �ሺܵሻ + ͳܰ  �ሺܵሻ ൑ ��஼ < �ሺܵሻ + ʹܰ  

As the number of the symbols (coded by one tag) increases, the precision of the tag has to be 
increased too. AC does not suffer from the exponentially increasing alphabet size. In practice 
better rates can be achieved with AC. Arithmetic coding is used taking the local (past) neigh-
borhood statistics into account. 
Progressive transmission:  First a low resolution version of the image is transmitted.  Then if the higher resolution image is required, it can be coded assuming that the low 

res image is available at the decoding side. 

Dictionary Coding 
In many applications there are frequently repeated patterns emitted by the source. It can be 
efficient to create a list (a dictionary) of the most frequent patterns, so they can be encoded by 
their address in the dictionary. The source is split into two parts:  Frequently appearing patterns (coded by the dictionary address)  Infrequently appearing patterns (coded with a less efficient technique) 
The dictionary can be static or adaptive. 

Predictive Coding 
In predictive coding we use the “past” of the signal to predict the “present”. If we use the 
same prediction model at encoding and decoding, only the prediction error (the unpredictable 
part) needs to be coded for lossless compression: Reconstructed signal =  Prediction +  Prediction Error 
The prediction error can be coded with some of the lossless compression methods. It is better 
to encode the prediction error instead of the original signal, because the entropy of the origi-
nal signal is higher than the entropy of the prediction error. 
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Lossy Compression 
Main steps of a lossy data compression system: 
1. Redundancy Removal:  Predictor or Transformation 
2. Entropy Reduction:  Scalar quantization  Vector quantization 
3. Lossless Coding:  Huffman coding  Arithmetic coding  LZ coding techniques 

Scalar Quantization 

Uniform quantization 
Irreversible process: all the values in the same interval will receive the same quantized value. 

Non-uniform quantization 
The overall error can be reduced by using non-uniform quantizer. The region with more val-
ues can be quantized with higher frequencies. 
Instead of using a non-uniform quantizer first we use histogram transformation to stretch or 
compress the dynamic range of the input image. After that we use a uniform qunatizer in the 
compression process. At the end we invert the transformation used for histogram stretching or 
compression. 

Vector Quantization 
The input image is divided into small blocks, which are coded using a look-up table. The pa-
rameters of the codebook defines the compression rate. If we use � by � block size and each 
pixel is represented by ܾ bites, and the length of the codebook is ܮ = ʹ௟, which means ݈ bits 
are needed to code an entry of the codebook, then rate = � ⋅ � ⋅ ܾ݈  

Vector quantization is more effective than scalar quantization, as it can take into account the 
correlation in the data. 

Generalized Lloyd Algorithm 
With a set of training images it finds a locally optimal codebook: 

1. Start with an � sized random initial codebook. 
2. Partition the training vector set using the current codebook by assigning each training 

vector to the nearest vector in the codebook. 
3. Calculate the centroid of each cluster. These centroids will form the new codebook. 
4. Repeat step 2 and 3 until the distance between the old and new codebook vectors are 

below a predefined threshold. 
This algorithm will only find local optimum. The final result will be sensitive to the initializa-
tion of the codebook. 
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Transform Coding 
Very popular approach, it is part of most of the current image and video coding standards. 
Basic idea is to decorrelate the data with a suitable transformation, so that the transformation 
coefficients will describe the image perfectly. This transformation  has to decorrelate the data  has to compact the energy of the image  has to have image independent basis  has to have a fast implementation 
We do a coarse or fine quantization of the transformation coefficients based on their signifi-
cance (their variance, or their contribution to the total energy of the image). 

Encoding image block ՜ transformation ՜ quantization ՜ entropy coding ՜ ͲͳͳͲͳͲͳ 
Decoding ͲͳͳͲͳͲͳ ՜ entropy decoding ՜ "inverse"quantization ՜ "inverse"transformation ՜ reconstructedimage block  

Linear transformations 
Karhunen-Loeve Transformation: Discrete Cosine Transform: 
 Statistically optimal  Basis functions are image dependent 

 

 Close to KLT for typical images  Basis functions are image independent  Efficient implementation exist  Wildly used in image/video compression 
standards 

 
Given an ܰ  by ܰ  orthonormal matrix set: �ሺ௨,௩ሻ 
Then any ܰ  by ܰ  image can be represented as follows: ݂ = ,ݑሺܨ∑∑ ሻݒ ⋅ �ሺ௨,௩ሻே−ଵ

௩=଴
ே−ଵ
௨=଴  

where ܨሺݑ, ሻݒ = ݂ ⋅ �ሺ௨,௩ሻ, ݑ = Ͳ,… , ܰ − ͳݒ = Ͳ,… , ܰ − ͳ 

The 8 by 8 basis matrices for DCT:  In the first row we have a cosine function with increasing horizontal frequency.  In the first column we have a cosine function with increasing vertical frequency. 

JPEG (Joint Photographic Experts Group) 
International standard since 1991. Capable of compressing continuous-tone still images (gray-
scale and color images) with ratio 10-50 

Algorithm 
1. •Uses DCT on ͺ × ͺ blocks:  The blocks’ grey level is shifted by −ͳʹͺ to the range [−ͳʹͺ, ͳʹ͹].  The first coefficient is called DC, the rest of the coefficients AC coefficient. 
2. The DC coefficients of the blocks are quantized, then coded differentially. 
3. The AC coefficients are first quantized, vectorized by zig-zag scan and then entropy 

coded. 
4. •The quantizer is uniform, using quantization tables with different step sizes for the 

different frequencies (in general higher step sizes for the higher frequency coeffi-
cients). 
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