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Exam Topics

Topic 1  Introduction to Human Vision, Digital representation of an
image, Color Spaces

Introduction to Human Vision

The human vision gives us the ability to process visuudtis, to be able to detect and |
terpret information from visible light (build a represation of the surrounding environment).
The ultimate goal of computer vision is to build a systbat is capable of seeing as a human
can (or even better).

The Physiology of the Human Eye

Photoreceptor cells of theretina
Rods:
— sensitive to intensity, but not color
— form blurred images
— rods are more sensitive to light than cones
— at low levels of illumination the rods provide a visual resgotalled scotopic vision
Cones:
— color sensitive: 3 types, each maximally sensitive to onkreé different wavelengths
— form sharp images,
— cones respond to higher levels of illumination; their respassalled photopic vision

Information transfer from the retina to the brain

The eye contains about 6 million cone and 100-120 million rbsl distributed over the ret
na. The density of the cones is greatest at the fouea optic nerve bundle contains on the
order of 800,000 nerve fibers. Therefore, the rods and constbe interconnected to nerve
fibers on a many-to-one basss.

The Visual Pathway

Parts of the Visual Patway

Optic Nerve — The information from the retina is transmitted to tharb

Optic Chiasm — The information coming from both eyes is combined g according to
the visual fields.

Optic Track — Transfers the information from each visual fields toltG.

LGN — primary relay center for visual information receiveaiirthe retina of the eye

Optic Radiation — The optic radiation is a collection of axons frorfayeneurons in the LGN
of the thalamus carrying visual information through two diwisi(called Upper and Lower
division) to the visual cortex

Visual Cortex — It is the largest system in the human brain, it $po@sible for processing the
visual image.

Visual Cortex

Thedorsal stream, sometimes called tif&NVhere Pathway” or “How Pathway”, is assoE

atedwith motion, representation of object locations, and control of the eyes and arms,

especially when visual information is used to guide sacaadesaching.

Theventral stream, sometimes called tif&What Pathway”, is associated witform recog-

nition and object representation. It is also associated with storage of long-term memory
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A Few Properties of the Human Vision

Contrast Sengitivity

The response of the eye to changes in the intensityuofiiation is nonlinear. Consider a
patch of light of intensity + Al surrounded by a background intendityOver a wide range
of intensities, it is found that the ratid /I, called theWeber fraction, is nearly constant at a
value of aboud.02. This does not hold at very low or very high intensitlesthermore, ao-
trast sensitivity is dependent on the intensity of tiveosind.

Many image processing systems assume that the eye's respdogarithmic instead of e
ar with respect to intensity:

I+ Al
log(I + AI) — log(I) = log (T) =log(1 + ¢) = const

Lateral Inhibition
The response of receptarto illumination is decreased, if the nearby recepbBoese also
illuminated.

Chromatic Adaption

An object may be viewed under various conditions; it may lbenihated by sunlight, the
light of a fire, or electric light. In all of theséusations, human vision perceives that the object
has the same color.

[llusions
The visual system is optimized to process natural imagesi(th evolution). It is faced with
an ill-posed problem:

— Ambiguity due to projection from 3D to 2D image

— Uncertainty due to incomplete knowledge of the environment

— Uncertainty due to noise in photoreceptors and neurons

The visual system relies on a set of assumptions to godv/él-posed problem
— Assumptions presumably learned via evolution
— Assumptions tailored for the natural visual world
— Assumptions cause illusions/failures under impoverished dgonglit

[llusions can provide insights into the brain’s assumptions.

Digital Representation of an Image

A digital image is discreet representation of a continuous measurenmsurd]ly a2 or 3 di-
mensional array. An element of this array isg@xel (picture element). A pixel hasposition
and anntensity value. A digital image igdiscretized both in space and intensity:

— Spatial discretization is referred tossnpling

— Intensity discretization is referred to ggantization

Sampling
Sampling is the reduction of a continuous signal to discsiggeal. A finite set of values
(calledsamples) are selected to represent the original continuous signal.
In case of 2D signals (images) a grid is used for samplimg gfid points will be represented
as pixels. The frequency of the sampling defines:

— How many grid points we have

— What is the resolution of the image

— How detailed the discretized image is
Sampling usually leads to information loss. The sampling frequeletermines how much
information we lose. We have to decide what is the sistadletail that we still want to keep.
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Quantization

Intensity discretization is referred to as quantizatidre digital image quality is highlyed
pending on how manlyits we use for coding the discreet intensity values:

— black&white coded on 1 bit

— (grayscale coded on 2/4/8/16/24/32 bits

Color Spaces

Humans can distinguish thousands of color shades amgitnts, but only a few dozens of
gray. Color can be useful descriptor for image segmentdtacking, detection etc.

Color Characteristics

Brightness used to describe color sensation (it is similar to inigies achromatic light)
Hue it indicates the dominant wavelength in the mixturégbft waves
Saturation relative purity or amount of white light in the mixture

Color Models
They specify a coordinate system and a subspace withiayttaim, where each color is rep-
resented by a single point.

RGB
Channels: Red, Green, Blue

Most common color model. All components are depending mmhsity. All channels needs
to be coded with the same bandwidth. Changing the intdasiyis not efficient, all 3 cha
nels has to be modified.

HS., HSV
Channels: Hue, Saturation, Lightness or Value

The components are more intuitive. Hue is the anglenarthe central vertical axis (defined
in degrees). Saturation is the distance from therakesutis. Lightness or Value is the height.
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Yy’uv

Channels: Luma (Y”), Chrominance components (U, V)

It is used in compression, in the PAL and SECAM compasiler
video standards. Luma is coded in a separate channédes tba-
man perception into account allowing reduced bandwidth for
chrominance components.

Conversion from RGB to Y’UV: -,

yellow (&

Y’ =0.299-R+0.587-G+0.114- B o0, S
U =0492-(B—Y")

V =0877-(R—-Y") F o

CMY, CMYK

Channels: Cyan, Magenta, Yellow, (Black = Key)

This color space is used in printing. It is based on theattlve color model: describes what
kind of inks need to be applied so the reflected light pragitiegiven color.

The CMYK model contains black as fourth channel becausel#vi& produced by the mix-
ture of CMY is not really black in practice.

CIE
Channels: X (mix of cone response curves), Y (luminanc@)|ug stimulation)

The CIE color model is based on how humans perceive.dblvas developed to be o®
pletely independent of any device.
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Topic 2 2D Convolution and its Applications, Canny Edge Detec-
tor, Hough Transformation

2D Convolution and its Applications

Unit impulse function
The 2D unit impulse function (Delta function) @ras follows:

1, n=n,=0
5(”1;712):{ ! 2

0, otherwise
For any 2D functionc(n,, n,):

x(ny,n,) = Z Z 8(ny —ky,ny — k) - x(ky, k)

ki=—00 ky=—00

Convolution
Impulse response is the output of an LSI transformatithe input was the Delta function. If
T is an LSI system, then we can define convolution dsvisl

[o9] [o2]

y(ny,ny) = x(ny,ny) * h(ng,ny) = Z Z h(ng —ky,ny — k) - x(kq, k)

k1=—00 k2=—00

The Properties of Convolution
— Commutativef xg =g * f
Associative:if * (gxh) = (f*g) *h
Distributive:f * (g +h) =f*xg+ f*h
— Associative with scalar multiplicatior.(f * g) = (af) * g

2D Convolution in Practice
In practice both the kernel and the image have fsi#e.

Let h andh be(2r; + 1) x (2r, + 1) sized kernels, whete is the 180° rotated version of h.

a—r1,—7'z h a—‘"1,7”2 a’”1ﬂ”2 " aTL—rz
h = : . : ], ii: : . : ]
aTL—rz aT1,T2 a—TLTz a‘ﬁ:—rz
&1 T2 1 T2
youm) = D ) hlak)x(m —kum =k = ) > Rlkakdx(u + ko ms + ko)
ki=-11 ky=—-7, k1=—11 ky=—17,

Size of the Convolved Image
In general, if the size of the input image#sx B), the size of the kernel € x D) then the
size of the output image willbgd + C — 1) x (B+ D — 1).

Boundary Effects
The convolution along the edges is not possible due tongigskels. The original image can
be padded so the convolution is possible. There are foartguees of image padding:
— zero padding
mirroring
circular padding
— repeating border
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Applications

The possible application of convolution:
— Smoothing/Noise reduction
— Edge detection
— Edge enhancement
Depending on the task the sum of the elements of thelkmatex can be different:
1 — smoothing, edge enhancement
0 — edge detection

Smoothing/Blurring
Simple average Gaussian blur

1 [ 1,y 0.0947 0.1183 0.0947
| : : 0.1183 0.1478 0.1183
NZfg o Tyn 0.0947 0.1183 0.0947
Parameters: Parameters:
— size of the window — size of the window
— standard deviatiors
Edge Detection
Edge Location on the image where intensity changes shéuglyally at the contour of
objects)

So we are searching for places where the gradient @Henction is high. The main types
of edge detection are:
— first order derivative
of af1"
V=[5 5] SUGHLM G fey D - feoy)]
since the smallesix and dy are bothl. So the kernels for the gradient calculation
with convolution (Prewitt kernels):

better localization noise reduction 1 101
[-1 1] ————[-1 0 1]—[-1 0 1] 1 = |-1 0 1
-1 0 1

-1 better localization -1 n01se reduction -1 -1 -1
[ ) | ——— o 1 1 1]=0 o o
1 1 1 1

— second order derivative

2 f e+ ay-9L
0 i & i ox” f( 1)—%":f(x+2)—2f(x+1)+f(x)

W d—0 d

and for they direction the result is very similar. The kernel fog gecond order grad
ent calculation with convolution:

1 0 1 0
—2(+[1 -2 1]=|1 -4 1
1 0 1 0
— other complex methods

Edge Enhancement
0 -1 0
Kernel for edge enhancement with Laplace operatet: 5 —1
0 -1 0

Oral exam 1548 948 18 December 2015



Basic Image Processing Algorithms PPCU FIT

Canny Edge Detector

Properties of a ,,good” edge detector

— Good detection:

o detects as many real edges as possible

o does not create false edges (because of e.g. image noise)
— Good localization:

o the detected edges should be as close to the real edgesiatepo
— Isotropic:

o all edges are detected regardless of their direction

Main steps of the algorithm

1. Noise reduction
The original image is convolved with a Gaussian kernetdoice image noise.

2. Gradient intensity and direction calculation
The horizontal and vertical derivative image is cal@date.g. with Prewitt kernelBased on
them the gradient intensity and direction can be cédlkedia

o= (GG o= GL/5)

3. Non-Maximum Suppression

The goal is thinning the edges. Each edge is categorizedmet@f 4 main edge directions
(0°, 45°, 90°, 135°), based on the gradient direction imag®). At every pixel, it suppresses
the edge, by setting its value to O, if its magnitude iggnedter than the magnitude of the two
neighbors in the gradient direction:

4. Hysteresis thresholding
Problem with simple thresholding:
— if the threshold is low, many false edges will appear
— if the threshold is high, true edges will disappear
Solution: using two threshold instead of only otyet, wheret, > t,
— if the edge magnitude &t, j) point is higher tham, then it is an edge
— if the edge magnitude &t,j) point is lower tharm, then it is not an edge
— if the edge magnitude &t,j) point is lower tham; but higher tharm,, then it is an
edge, only if one of its neighbors in the directior®gf, j) is an edge

Hough Transformation

The objective of the Hough transformation is to find thedion a binary image, from frag-
ments/points of the line.

Basicidea

A line can be written in the following forny. = mx + b, wherem is the slope and is they-
intercept. The above equation can be re-written in tefms andb:

y

1
m=——-b+=
X X

For a fixedy = y’, x = x'point in the imag&s (x, y) space, we get a line in tke, b) space.
For the points that lie on the same line in the Euclidgate, their corresponding line in the
parameter space will cross each other in one point.pbiirig will bem = m’ andb = b'.
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Hough space

There is a problem with the Euclidean equation of the Uiedtical lines cannot be described
(their slope would be infinite). To be able to describe adispge lines we will use the polar
equation of the line.

The (r, 8) parameter space is called the Hough space. A point iBubkdean space is a s
nusoid in the Hough space, described by the following equation:

r(6) = x - cos(6) + y - sin(H)

All the sinusoid curves of the points in one line in the Bt space cross each other in one
point in the Hough space.
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Topic 3  Fourier Transformation, Sampling, Nyquist Theorem

Fourier Transformation

The Fourier Transform changes between the representatiba time domain and in theefr
guency domain. The information is the same in both domanig,the representation isfei
ferent. The Fourier transformation is a reversit@sform. It builds on the fact that any ¢un
tion can be represented as a weighted sum of sinusoigofusiclf we can describe sinusoids
we can describe every function.

Complex Exponential Function

A sinusoid is defined by its frequency, amplitude and phaseelfie¢guency domain we need
to “store” its frequency and phase. We use complex exponentiaidnado describe both.

The complex exponential function is the following:
e/*" = cos(wn) + j - sin(wn)

As n changes, the/®™ point rotates around the complex unit circle. The “speed” of this rota-
tion is determined by.
Periodicity
In a continuous case (boéhandn are continuous):
— with the respect to the frequeney)(it is not periodic
— with the respect to the time/spatial variabig i is periodic

In case of discrete time/spatial variabdei§ continuousn discrete):
— with the respect to the frequeney)(it is periodic with perio@m
ej(w+27‘r)n — ejam . ej27'm — ejam
— with the respect to the time/spatial variabi¢ i€ is may or may not be periodied
pending on the frequenay
If periodic with periodN:
21

ejw(nHV)=ej“m=>ej“’N=1=>a)N=k'2TL':>N=k'—
w

so2r/w has to be a rational number.

Eigenfunction of LSI systems

Let T be an LSI system with impulse response fumchitn,, n,), andx(n,,n,) be a 2D
complex exponential function:
x(nl' nz) e ej(w1n1+w2n2)
Then
y(ny,ny) = T{x(ny,n,)} = x(ny, ny) * h(ng,n,) = e/ @1m+@2n2) 5 h(ny,n,) =

= Z ej(w1(n1—k1)+w2(n2_k2)) : h(kl'kz) =

klz—oo kzz—OO

(o] (o]
— pj(wini+wyn —Jj(wik1+wyk
= el(@ini+wzny) | e J(wiky 22).h(k1,k2)
input function ki=—00 ky=—00
Wj;lct}f:;gzgh frequency response of the LSI system:

H(wy,w3)
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Fourier and inverse Fourier transform

o o)
X(wll wZ) = z z x(nlj nZ) . e—jw1n1 . e—jwznz

NnNy=—0 Ny=—00

1 (" (" . .
x(nl'nz) = 4_7-[Zf f X(wpwz) ceJ@1M . @) @22 dgy. dw,
-mJ-m

Properties
— Periodicity: X(w,, w;) = X(w, + 21, w, + 27)
— Trandation: x(n; — my,n, — m,) & X(wy, w,) - e /@11 . g=jw2m2
— Modulation: x(nq,n,) - e/ . eif2m2 & X(w, + 6,, w, + 6,)
— Hermitian property: for realx(n,,n,)
magnitude: [X(w;, w,)| = |X(—w,, —w,)]
phase: arg(X (wy, w,)) = —arg(X (—w;, —w,))

— Parseval’s theorem:

z z lx(ny,m2)1? —_j j X (w1, )| dw; dw,

Nn3g=—0 Nny=—o
— Convolution theorem:
y(ny, ny) = x(ny, ny) * h(ng,ny)

Y((Up (Uz) = X((Up (Uz) : H((Up (Uz)

Discrete Fourier transform
We sample one period of the Fourier transform in evep#ced frequencies:
Ni—1Ny—-1
N kany ]N Ton,
X(ky, ky) = x(ny,ny) - e 'M :
n{= =0 Ny= 0
Ni—1N,;-1

x(ny,ny) = NN Z Z X(ky,ky) - e klnl. ]N Skans
14V2

k1=0 kz=0

DFT is an exact transform, there is no transformatimar. Most of the properties of continu-
ous FT hold for DFT, except linear shift of FT become cacwhift for DFT. DFT and in-
verse DFT are computable transformatiofkere are fast ways to compute the DFT: Fast
Fourier TransformThe FFT with row/column decomposition requires okif/log,(N) mul-
tiplications. So the FFT makes the Fourier transfoionadpplicable in many practical cases.
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Sampling
Sampling is the conversion from analog to discrete signal.
Support of the spectrum of the analog ima Support of the spectrum of the digital imag

Xq(wq, w3) AW2 X(Q Ty, Q,T;) A0,

The spectrum of the digital image is periodic. The samgpderiodsrl’; and

T, controls: A2
- in the frequency domain: how far away the replicas wilosated oI
— in the spatial domain: how often we take samples fronatizdog T
. . @ w 1 _)Q
Image 21 1
1 © - 21 21 il
X(Q1T1; Qsz) = T,T, Z Z Xq (91 —ky - T—1, Q, —k, T_z)

ki=—0o0 ky=—00

Critically Sampled

T, andT, are chosen so that the supports of the spectrumsaaestcto each other, but they
are not overlapping. The analog signal can be reconatiructieout error, using only the ne
ter part of the spectrum.

Oversampled
T, andT, are smaller than absolutely necessary, the suppotte aéplicas are farther apart,
the spectrums are not overlapping. More samples acetiige necessary.

Under-sampled

T; andT, are too high; the supports of the spectrums are overlapfegiow and high f-
guencies are mixed; we cannot reproduce the original si§leasing effect: the higlire-
guencies are aliasing themselves as low frequencies.

Oversampled Critically sampled Under-sampled
A‘QZ A‘QZ A‘QZ
o, o, S,
(NN
Nyquist Theorem

Let the highest frequency in the horizontal and vertigactions bey, andQy,. As long as

the following inequaity holds, the spectrums won’t overlap:
21 s
TIZZ.QN]-' T_ZZZ'QNZ
If we use sampling frequency at least two times as higheakighest frequency of the oFig
nal analog signal, the analog signal can be reconstrércte the digital signal without error.

The minimum frequency that is required for the samplinbet@ble to reconstruct the analog
signal from the sampled signal is the Nyquist frequency
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Topic 4  Image Enhancement

Image enhancement is the manipulation or transformafitimeamage to improve the visual
appearance or to help further automatic processing step® i§hey general theory behind it,
the result is highly application dependent and subjectivagénenhancement is closely tela
ed to image recovery.

The Histogram of the Image

Histogram is the function(k) which gives the number of pixels on the image with vé&lue
The histogram normalized with the total number of pixeleg us the probability density
function of the intensity values.

Point-wise Intensity Transformation

Point wise transformations are operating directly melp/alues, independently of the values
of its neighboring pixels. We can describe the transftomas follows:
Letx andy be two grayscale images andTebe a pointwise image enhancement tramsfo
mation that transforms to y:

y(ny,ny) = T{x(ny, ny)}

Inverse Transformation
Y(Tl1,n2) = 255 — x(np nz)

Log Transformation
y(ny,my) = ¢ - log(x(ny, ny) + 1)

Expands low and compress high pixel value range. It is @ntynused to visualize the Fou-
rier transform of an image.

Power -law transfor mation
Y
y(ny,n,) =c- (x(nl; nz))

Commonly referred as gamma transformation. Originally & developed to compensate the
input-output characteristics of CRT displays. The expattdenpressed region dependsyon

Histogram Transformations

Histogram Stretching

Based on the histogram we can see that the image doesenkbte whole range of possible
intensities. The following transformation stretchas intensity values so they use the whole
available range:

255
y(ng,ny) = ——— - (x(ny, np) — Xpyin)
max — Xmin

Xmax = max(x(nl,nz)), Xmin = Min (x(nl,nz))
nyn; niny

Histogram Equalization
The goal is to increase the contrast, by distributitegatccurrences of the intensity values
evenly through the entire dynamic range.

Adaptive Histogram Equalization
This applies histogram equalization on parts of the imealée( tiles) independently. We use
post processing to reduce artifacts at the borders oifébe t
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Spatial Filtering
The goal of smoothing is to reduce the noise that maygbthe image. The two types of
noise (that we will work with):

— impulse noise (salt&pepper noise

— additive Gaussian noise

Gaussian Smoothing
Gaussian blur with a Gaussian kernel. It works not so well.

Spatially Adaptive Noise Smoothing
The smoothing takes into account the local characterstid®e image.

2 oF
y(ny,ny) = 1-— - x(ny,ny) +_2'X(n1,n2)
0 0

where
_ 2 _ 1
0'12 = Z Z (x(nl,nz) - x(nl,nz)) x(nl,nz) = WZ z x(n1,n2)
(Tl1,Tl2)EN (Tll,nz)EN
local variance of the image local average of the image

Variance of the noisés;?) is either known a priori, or has to be measured.

Median Filter

This filter replaces each pixel with the median valii@soanalyzed neighborhood. (Median
value: the center element of sorted values). This foemstion is non-linear and very etfe
tive against impulse noise, however, not so effectivenag@aussian noise.

Order Statistic Filtering
Based on the sorted pixel intensity levels in theyaeal neighborhoad

Mid-point filtering

1 |
y(un) =3 ((m%w{xmmz)} +,min_{x(m,, m2>})

This filter works well on Gaussian or uniform noise.
Alpha-trimmed mean filter

1
y(ny,n,) = IN| -« Z x(my, my)
(ml'mZ)ENT
whereN,. is a reduced neighborhood, not containing the lowest and higlesment ofv.
— If @ = 0, we get back the arithmetic mean.

— If a = |N| — 1, we get back the median filter.

Homomorphic Filtering

It simultaneously normalizes the brightness acrossn@aye and increases contrast. This
method assumes the following image model: the image isefbioy recording the lighter
flected from the objects illuminated by a light source.

y(ny,ny) = i(ng, ny) - r(ng,ny)
where
i(n4, n,): illumination; slowly varying, main contributor to dynamic rang
r(ny,n,): reflectance; rapidly varying, main contributor to locattrast

We want to reduce the illumination component, and increaseeflectance component.
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The main steps of homomor phic filtering
1. To separate the two component we first use log transfamat
log(x(ny,ny)) = log(i(ny, ny)) + log(r(ny,ny))

2. Since we assume that the illumination component vahwglysand the reflectance
varies rapidly, we can get the two component by usingaliod high pass filters:

log(i(ny,n;)) = LPF{log(x(ny,n,))}
log(r(ny,n,)) = HPF{log(x(ny,n;))}
3. Weight the two component:
IOg(Y(Tlp le)) =" IOg(i(nL nz)) + 72 1080’(”1:”2))
4. Transform back to the original range, using the exponenaiasform.

Wallis Operator
The Wallis operator can help to adjust local contrastc#edescribe the image the following
way:
x(ny, ny) = [x(ny, ny) —x(ny,nz)] +x(ny,n3)
€Y)] 2
where(2) is the local mean andl) is the deviation from the local mean. With the tfans
mation we want to push the local mean and standard deviat@predefined desired value:

y(nyny) = [x(ny,ny) — %(ny,my)] % + [pEg + (1 — p)x(ny,ny)]

We are almost there, but if the local contrast isltae, the weighting in(1) may get too
high, this is why we maximize it with,,,,.

Amax Oq

y(ny,n,) = [x(ng, ny) —x(nyg,n,)] + [pxq + (1 — p)x(ny,ny)]

Amaxal (n1:n2) + Ogq
where
o; . local contrast:

o(ny,ny) = ﬁ\/z Z (x(nl»nz) - E(nl’nz))z

(nlan)EN

E(nl'nz):“t—lz Z x(ny,1m;)

(nl'nZ)EN

x: local average:

o4 the desired local contrast

x,4. the desired mean value of all pixels

p: weighting factor of the mean compensation
A.«. Minimizing the local contrast modification

Anisotropic Diffusion

The anisotropic diffusion is a technique aiming at reducing inmajge without blurring sig-
nificant parts of the image content. This iscartinear and sacevariant transformation. The
main idea is that the effect of blurring in each direti®inversely proportional to the grad
ent value in that direction: the transformation allowffudion along the edges or in edge-free
territories, but penalizes diffusion orthogonal to ¢dge direction. AD is an iterative process.
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Total Variation Regularization

Assumption
— The image is smooth inside the objects, with jumpsssdite boundaries.
— The noise component has high variation.

The goal of Total Variation based noise removal is tomige the total variation of the-
age while keep the result as close to the original inpagéas possible. This transformation
is defined as the integral of the absolute gradient oditiheal:

Vi) = ) T + 1) — 2, n) P+ xC,my + 1) = x(u, )1

ny np

The goal function for total variation based regularization:
9 =argmin(E(x,y) + AV (y))
y

whereE is theL, norm andl is the regularization parameter.

Non-Local Means Denoising

The local smoothing methods aim at a noise reduction aladr@construction of the main
geometrical configurations but not at the preservationeofitie structure, details and texture.

High frequency image components are removed along withdise, because they behave in
all functional aspects as noise.

The non-local means algorithm tries to take advantagbeohigh degree of redundancy of
any natural image:
— Every small window in a natural image has many similar windawise same image.
— The non-local means algorithm estimates the valuexel x as an average of the
values of all the pixels whose Gaussian neighborhood loo&gHix neighborhood of
X.
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Topic 5 Image Recovery

Sources of Degradation and Forms of Recpve

Sour ces of Degradation Forms of Restoration
1. Motion
2. Atmospheric turbulence 1. Restoration/Deconvolution
3. Outof-focus lens 2. Removal of Compression Artifacts
4. Finite resolution of the sensors
5. Limitations of the acquisition system 3. Super-Resolution
6. Transmission error 4. Inpainting/Concealment
7. Quantization error
8. Noise 5. Noise smoothing

Inverse problem formulation of Recovery

The original imagec goes through a systek that introduces some type of degradaten r
sulting the observed image

x(ny,n;) y(ny,n,)
— 5 >

The Goal of Recovery
The objective is to reconstructbased on...
— yandH — recovery
-y — blind recovery
— vy and partiallyi — semi-blind recovery

These are the inverse problems. If we knownd. ..
-y — system identification
- H — system implementation

Degradation and Restoration

Prior know- N Identification N Knowledge Prior know-
ledge ofH of H of H ledge ofx
A
x(nn:nZ) Y(nn'nz) f(nnt nz)
—>— H =+ > R >
A
n(nn,nz)
Y

Noise ) Knowledge of the
measurement noise statistics

Degradation Model
The model of degradation for restoration problems:
y(ny,ny) = H{x(ny,n,)} + n(ny,n,)
If an LSI degradation system is assumed with signapiedéent additive noise:
y(n.,ny) = x(ny,ny) * h(ng, ny) + n(ng, ny)
The restoration problem in this case is called deconvalutio
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Degradation/Restoration Metrics

Signal to Noise Ratio
SNR = 101g(Z

Blurred Signal to Noise Ratio
1 LN = s
v 2i 2ilg @) — g @ NI?

BSNR = 101g —
n

where
9(i.j) = x(i,j) * h(i, )
9(,j) = E{g( )}

o2 variance of the noise

Improvement in Signal to Noise Ratio

ISNR = 101g <Zizf[x(i'f) ~ y(i,j)]2>

% Xjlx(@, ) — (@ )]

ISNR is computable only in a simulation environment, where tiggnat image is available.

Convolution in matrix-vector form
1D convolution can be represented in a matrix-vector:form

x:1XN
y(n) = x(n) » h(n) = Z x(k)h(n—k)  whereh:1XL
z y:1x (N+L—1)
y(0) h(0) 0 0 0 x(0)
y(1) h(1) h(0) 0 0 x(1)
h(2) h(1) h(0) 0
= |h(L — 1) h(L — 2) h(L — 3) h(:O)
0 h(L—1) h(L-2) h(1)
0 0 h(L—1) h(2)
byov+r-2] [ o 0 0 wt — Dy -1
X (N+L=D] = HINX(N+L-D] g [1XN]
Circular convolution represented in a matrix-vectomor
y(0) 'h(0) 0 h(L—-1) R x(0)
y(1) h(1)  h(0) 0 h(2) s
_|h(2) h(1) h(0) 0 h(3) [lx(N — 1)
h(L —1) h(1) h(0) 0 :
ly(N+L-2)1 L O h(L —1) h(1) h(0O)IL 0

yl

IX(N+L=1)] = gIN+L=DX(N+L=1D)] ¢ [1X(N+L-1)]
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Eigenvalues and eigenvector s of circulant matrices

Let H be an(M x M) size circulant matrix, with eigenvaluds and eigenvectores,,, where
n=1,... M

h(0) <+ h(M—-1)
H= , Hw, = 1,w,
h(M—-1) - h(0)
Then
W, =1 oA SR ejzﬁn(M—l)n]T

so the eigenvalues of this circulant matrix equélsmes the DFT of tha vector:
{20, » Ay-1} = M - DFT{h(0), ..., h(M — 1)}
The Singular Value Decomposition of tiHsis the following:
Ao

H = [wg | |wy_4] [wo |-+ [Wy—1]7" = WDW™!

AM—l

Back to images

If we stack the observed image lexicographically into a vether degradation can be-d
scribed the following way:
y=Hx+n

If the system is LSI, theH is a block circulant matrix, matrix, which can be deposed as a
circulant matrix:

H=wDwW!
So the degradation of the image:

y=Hx+n=WDW lx+n

W ly=DW ix+W™n
Y=DX+N
SinceD is diagonal, we have the following element-wise equation

Y(a)l; a)z) = H(a)l, a)z)X(w:L; a)z) + N(wll wZ); Where Z))l z

Restoration Algorithms

Inverse Filter

It is the simplest deconvolution filter, developed for Lsybktems. This filter can be easily
implemented in the frequency domain as the inverse of thadkgpn filter. Main limitations
and drawbacks:

— Strong noise amplification

— The degradation system has to be known a priori

The objective is to fina that minimizes the following goal function:
arg min(](x)) = arg min(|ly — Hx||?)

This goal function leads to the following equation:
—2H"y + 2H™Hx = 0 - x = (HTH)TH Ty
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If the degradation system is LSI, thHris a block circulant matrix. We can take the caleul
tion to the frequency domain:

DFT H* (w4, w5)
x=HHHY — X(w,w,) =———=Y(w,w,)
d O T Hwy w2
from which we can geX(w,, w,) as
H*(wp wz)Y((Ub 002)
, |H(wy, w,)| # 0
X((Ul,wz) = |H((1)1, wZ)lz ! 2
0 ) |H(wy, w,)| =0
The drawback of this method is the strong amplificationa$e:
H* (w1, w3)Y (wq, w3) _ Y(wq, w3) _ H(wq, w2)X (w1, w,) + N(wq, wy) = X(wr, 0,) + N(wq, ;)
|H(w1,w2)|2 H(wbwz) H(O)sz) vz H(wpwz)
amplified
. noise
To reduce this effect a threshold can be useH:0on
H*(wp (Uz)Y((UL (Uz)
) |H(wy, w,)| =T
X((l)l, (1)2) = |H(w11w2)|2 ! 2
0 , |H(wq, w)| <T

Constrained Least Square M ethods

The objective is to reduce the noise amplification ¢ftéahe inverse filter by adding extra
constraints about the restored image. In this case wetha terms, one describing the solu-
tions fidelity, and the other gives some prior knowledgeuaitite smoothness of the original
image:
arg min(J (x)) = arg min(|ly — Hx||?), lcx||3 < €
X X

Putting together the two terms with the introductiompf

arg min(|ly — Hx||* + allCx|I3)
X

This goal function leads to the following equation:
x=(H"H + aCTC)T HTy

The C is a high pass filter and is the regularization parameter. In the frequency doifar
H andC block circulant) we have the following formula:

H*(wli ‘Uz)
|H(wq, wy)|? + alC(wy, wy)|?

X(wy, wp) = Y(wq, wy)

Different types of regularization

If « = 0, we get back the simple Least Square method (the Invetsg.Fil

CLS Maximum Entropy Regularization
X(a)cys = arg min(ly — Hx||* + a[|Cx||3)

N
%(a)yp = arg min (Ily — Hx||? + az X; log(xi)>
X

i=1
Total Variation Regularization [, norms

N N
f(“)ME=argmiTl(”y—HX”Z+aZ|[Axi]|> J(2) = ||Z||§ :Z|Zi|p, 1<p<2
x i=1

i=1
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Iterative Restoration Algorithms

Pros Cons
— Do not need to have the inverse of 1 — Convergence of the algorithm is ndt
degradation system explicitly ways guaranteed

— The process can be monitored as @-f — Possibly takes more time
gresses, the number of iteration can
used as some kind of regularizati
(noise amplification can be controlled)

— Can be applied to spatially varying de
radations and blind degradations

Successive Approximation Algorithm:
Find a root forg(x) by taking a reasonable initial point and iteratively geanl the root:
X0 =0, Xer1 = X + P (xr)
Restoration
¢(x) =y — Hx, Xi+1 = X, + By — Hxy) = By + (I — fH)x,

If the degradation system is assumed to be LSI, tHeeifréquency domain we will have the
following:

Xk+1(a)1, wy) = .BY((UL wy) + (1 - ,BH((UL wz))Xk(wp w,)
Convergence

k-1
Xk(a)ll (l)z) = Rk(wl; wz)Y((Ul, (1)2), Rk(wll (1)2) = ﬁ Z(l - BH(wll wZ))l
=0

SoX, converges if1 — BH(w,, w,)| < 1.

Methods
Iterative Least-Squares

1
d(x) = va”y — Hx|>,  Xp41 = FH"y + (A - BHTH)X,
In the frequency domain (assumiHgs block circulant):
Xir1(wy, 03) = fH* (w1, 02)Y (wy, 5) + (1 — BIH (w1, 02)1?) Xy (w1, w2)

Iterative Constrained L east-Squares
P(x) = %Vx(lly — Hx|?> + allCx|l2),  Xg41 = BHTy + (1— B(HTH + aC"C))x,
In the frequency domain (assumiHgs block circulant):
Xies1 (01, 02) = BH* (01, ,)Y (01, @) + (1 = B(H (w1, w2)|? + alC(wy, 0,) 1)) Xy (w1, w,)

Spatially Adaptive CLS Iteration

N
1
P(x) = va(”)’ — HxllZ, + allCx|lZ,), where [Ix]|Z = x"WTWx = Z wix?
i=1
Xip1 = PHTWI W,y + (1 — S(HTW] W, H + aCTWI W, ) )x,
With the weight we can take into account the local vanadf the imageFor a human lo-

server the noise is most disturbing in flat regions, wihie more acceptable around the edg-
es. We can achieve the goal with the following weights:
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1
W2=_2, W1=1_W2
O-x

where o2 is the local variance of the image. Sirleis not block circulant, we cannot take
this to the frequency domain.

Wiener Filter

Stochastic restoration approach: Treat the image as plesdom a 2D random field. The
image is part of a class of samples (an ensemblelgasahs of the same random field.

H*((Ul, (Uz)Pxx((Ul, (1)2)
|H((U1; (Uz)lszx(wp 002) + PNN(wll 002)

R(wp (Uz) =

Autocorrelation:

Rsr(ny,my,m3,n4) = E{f (ny, np) f" (n3,14)}
Power-spectrum:

Pff(wl; wy) = T{Rff(dlx dz)}
The Wiener-filter is the following formula:

H*(wq, wy) Py (w1, w5) H* (w4, w5)

R(wy, w,) = =
v |H (w1, w2) 2Py (01, w2) + Pyy (w1, w3) H 2 Pyy (w1, w,)
|H(w;, w)|? +
Pex(wq, wy)
if we assume white nois@yy (w,, w,) = o7 so the filter’s formula is the following:
H (w{, w
R(wy, w,) = (w1, w3) -
H , 2 + — N
|H (wq, w,)] P (@, @y)

We can see, that with the right choiceCodinda, CLS filter is the same as the Wiener filter.

Ringing Artifact
Ringing artifact comes from the fact that if wenvolve the degradation and the restoration
filters we get the following:

Sall (nll nZ) = h(nll nZ) * r(nll nZ)J jz(nli nZ) = Sall * x(nlan)
In an ideal case

Sau(ny,mp) = 8(ny,myp), Saun(wy, wp) =1 Vo, w,

But in practice this is not true. We can use a positivatystraint to get rid of (some of) the
ringing artifact effect. The positivity constraint meahats,;; must be positive (or zero):

_ Sau Sau = 0
Sall(n1;n2) _{ 0 Sall <0
Y a
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Topic 6  Introduction to Machine Learning

What is Machine Learning?

“A computer program is said to learn from experieFiceith respect to some class of tagks
and performance measupeif its performance at tasks T as measured k¥, improves with
experiencet.”

Supervised Learning

The supervised algorithms are trained on labeled data, wWeedesired output is known. The
goal is to train a classifier that can work on previouslignown data. It has two branches:

— regression: prediction of continuous valued output

— classification: prediction of discrete valued output

Learning Algorithmsin General
Summarization of a Learning Algorithm

t Learmng
» Algorithm
Training Dat:

X y

— h —>—

New, previously Estimated
unseen data value ofy

Learning

In the case of supervised learning we have a training set hpposhesis functior{h). We
want to find the best parameters for thevhere the error is minimal. For this reason we cr
ate a function called cost function and we search for

min J(6)
Linear Regression

In this method we try to fit a line on the point of theiring set. One point of the training set
can be described with two parametns®, y®). The hypothesis function is therefore a line:

he = 90 +91x

To find the best values for the paramedexe find parameter&,, 8,) so thathg(x) is cloe-
ly to y for the training examples:

m
1 . .
A EICCORD)
=

wherem is the number of training examples. With the convealiontation of cost function
the above is

1 < _ _
](00' 01) = %Zl(he(x(l)) — y(l))z

Oral exam 1548 2b48 18 December 2015



Basic Image Processing Algorithms PPCU FIT

Gradient Descent Method
Gradient Descent method will be used to find the minimumetdst function. The steps
are:
1. Start with arbitrary initial values (e.§y = 0,6, = 0)
2. In each iteration changg so thaf is reduced, until it reaches its minimum value. To
achieve this the following update rule is used:

4 .
0, =0; — 0»’6—0]_](90;91) j=01
3. The update is done simultaneously for all éhe

Linear Regression with Multiple Variables
Linear regression can be more powerful with multiplealdes. The new hypothesis function:
he(xl, X2, ...,Xn) = 90 + 91x1 + 92X2 + -+ ann

More convenient to write it in a matrix-vector form:
1

1 < . .
ho() = 07x=[0, 6 - 6,][7[, ](B)zﬂZ(he(X(l))—y(l))
i=1

Xn

Logistic Regression
Logistic Regression produces answers betWédn: 0 < hg(x) < 1. To achieve this we take

the logistic function 087 x:
1

M) = e

Interpretation of the hypothesis
If for somex the hy(x) = 0.8, it means, that has 80% probability to belong to the positive
class. To predict binary class labels we use a threshold 0.5:

P(y=1|x;0)>05-y=1
P(y=1|x;0)<05->y=0

Cost function

In linear regression the cost function was the follawin
m

1 . .
J©) = = cost(hg(x), y®)
i=1
The problem is that in the case of logistic regrestierhypothesis function is non-linear and
if we put it into the/(0) the result will be a non-convex cost function. We rteedplace the
cost(he(x®) — y®) function. We will use the following:

DY —log(he(x)), =1
cost(na(x),y0) = 1og<1°f(h3<§>§ v

ify=1 ify=0
— the cost is equal to zerohif(x) = 1 — the cost is equal to zerohif(x) = 0
— ashg(x) goes to 0, the cost goescto — ashg(x) goes to 1, the cost goescto

The unified cost function of logistic regression is doves:

J(0) = _%i[y(i) log(he(x(i))] + [(1 — y(i))log (he(x(i)))]
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Regularization

If we have too many features we can learn a hypothesiditth#lie training data very well,
but fails on new samples (does not generalize well).

To handle underfitting we can introduce new features.

To handle overfitting:
— We can reduce the number of features (but this might medoseénformation):
o We can select manually which features to keep.
o Use a model selection algorithm.
— We can apply regularization:
o We can keep all the features but we reduce their magnitoee/gtue of thed
parameters).
o Works well if we have a lot of features and each contribatkisle bit to pe-
dicty.
o The idea is to keep the parameters low, to get a simpler Hegstfunction,
which is less prone to overfitting.

Regularization term
The cost function for linear/logistic regression witigularization:

m n
J(0) = %Z cost(he(x®),y®) + AZ 67
i=1 j=1
The regularization parametércontrols the trade-off between two goals:
— Fitting the data well
— Keeping the parameters low, to avoid overfitting
If A is too large all the parameters (exégptwill be close to 0, the model won’t fit the data,
we will see underfitting.

Support Vector Machines

There could be many decision boundaries that separatelasgses. Which one is the best?
The SVM aims to keep as large margin between the decisionléguand the closest sample
as possible.

Case of the logistic regression

In case of logistic regression this would mean:
— if y =1 we wanthg(x) = 1, (87x > 0)
— if y = 0 we wanthg(x) = 0, (87x < 0)

To achieve this goal we need a different cost function:
m 1 n
Jj(@®=cC- Z(y(i) cost; (07x®D) + (1 — y®) cost,(07xD)) + EZ 67
i=1 j=1

Hypothesis function of SYM

(1, 07'x >0
ho(x) = {O, otherwise

Using Kernels
One way to define a complex non-linear decision boundarytisebyse of high order terms:

60 + lel + szz + 93x1x§ + cee > 90 + Hlfl + szz + 93f3 + b

What can we use g For example we can use the distance from landmarksp6ih (2, ...
In this case th¢ functions will be
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Jx — 10 e = 1]
f1 = exp —T ,...,fn = exp —T

where thesg; kernel functions measure the similarity between poiand the landmark®.
If x is far froml® thenf; =~ 0, but if x is close ta(®, thenf; ~ 1. These kernels are called
Gaussian kernels. In this case the hypothesis functibwe i®llowing:

he (%) ={1' O7f =60+ 0:fi + -+ 0,/ 20

0, otherwise
How do we get the landmarks?
We place a landmark at the position of each trainiragrgste. The decision is made based on
how close/similar the test samples are to the positidenagative training samples. Theafe
ture vectorx which represented a sample is now replaced a new feact@r £, which con-
tains the similarities to the training samples

Parameters of the SYM
The C parameter controls the trade-off between two goals:
— Fitting the data well (high value for C)
— Keeping the parameters low, to avoid overfitting (low vdtreC)

The used similarity kernels may have further paramefensthe Gaussian kernel the band-
width parameteo contros:

— High o, results a slowly changing Gaussian, which can caubebimg.

— Low g, results a more rapidly changing Gaussian, which can tegiseariance.

Unsupervised Learning

In case of unsupervised learning the training data is noelb€&he goal is to find meaning-
ful structure in the data.

K-Means Clustering

It aims to partition the data samples into k clusteechEsample will belong to the cluster

with the nearest mean. The objective is to minimizentiti@n-cluster sum of squares:
k

arg minz Z llx — 17
§ i=1 x€S;
wherex,, x,, ..., x, are the data sampleg, is the mean of the points in the clussgr and
i =1,..,k wherek is the total number of clusters.

Iterative heuristic method for k-means clustering
1. Initialize thek cluster means
2. Assignment step: assigh each sample to the nearest mean
3. Update step: calculate the new mean for each cluster:

Limitation of k-means
— Number of clusters has to be known a priori
— Spherical cluster shapes
— Could stuck in a local minimum
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M ean-Shift Clustering

Non-parametric iterative clustering technique introduced in 1§75ukunaga and Hostetler.
We do not need to know the number of clusters a priors fif@thod does not constrain the
shape of the cluster. Mean shift considers the pointiseirfeature space as samples from an
underlying probability density function. The objective of #hgorithm is to find the modes of
this probability density function, and associate eachtpath the node it iSattracted t3.

Main steps
1. A density estimation window (e.g. a Gaussian window) igqulaon each sample
point.

2. Within each window the mean shift vector is calculated, wpimints toward the ma

imum density:
X —x;|?
ing (” h )

=1
my(x) = : —x

- X —x;|?
Zg (” h )
i=1
wherex is ad-dimensional feature poing(x) = —K'(x), whereK is a kernel fuo-
tion (e.g. Gaussian kernel) ahds the bandwidth parameter of the kernel.

S

3. The window is shifted with the mean shift vector.
4. Step 2 and 3 are repeated until convergence to a localyder@simum.

5. The sample points that converged to the same local ruaxiwill belong to the same
cluster.

Other Clustering Methods

DBSCAN (Density-based Spatial Clustering for Applications with Noise)
— Don’t need to know the number of clusters
— Can find arbitrary shaped clusters
— Robust to outliers: has a built in noise handling technique
— Quality depends on the distance measure (usually Euclidean distance, which doesn’t
respond well to high dimensionality)
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Topic 7  Local Feature Descriptors

Types of Descriptors

The detection and description of local features has anrtengorole in many applications
There are different types of use of the descriptors. Wie are talking about local feature
descriptors we usually talking about one or both of theviadig two tasks:

— Keypoint or feature detection

— Feature extraction: generation of a descriptor for the feature point’s local neighbor-

hood.
There are methods that do both or only one of the tasks:
Feature point detectors Feature descriptors

— Hessian/Harris corner detector - SIFT
— Laplacian of Gaussian — SURF
— Difference of Gaussian (in SIFT) - HOG
— SURF (uses Hessian Blob detector w — BRIEF

integral image) - LBP

SIFT: Scale Invariant Image Transform

Advantages

— Invariant to translation, scaling, and rotation

— Robust to illumination changes, noise, minor changes wpaet
— Robust to local geometric distortion

— Highly distinctive

— SIFT based object detectors are robust to partial occlusion

Steps of the Algorithm

1. Scale-space extrema detection
2. Keypoint localization

3. Orientation assignment

4. Keypoint description

1. Scale-gpace extrema detection

Keypoint detection with Difference of Gaussians:

Let I(x,y) is the original image an@(x,y, ko) a Gaussian blur at scate The original m-
age convolved with Gaussian kernel at different scales:

L(x,y, ko) = G(x,y, ko) = 1(x,y)

The convolved images are grouped by octave (in an oetaveloubled). The difference of
consecutive convolved images is taken in an octave:

D(x,y,0) = L(x,y,k;0) — L(x,y, kjo')

Then we choose all extrema withiBax 3 x 3 scale-space neighborhood. These extremas are
the keypoints.

2. Keypoint localization
Localization is done with sub pixel accuracy, basetherinterpolation of nearby datRejec-
tion of weak candidates: low contrasted points and pdocBlized points along edges.
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3. Orientation assignment
Goal is to ensure rotation invariance: find the main orierigs) and assign it to the key point
and give the description of the keypoint relative to thisrmation. Steps:

1. Gaussian smoothed image is taken at the scale of the keypoi

2. The edge magnitude and orientation is calculated for@aich in the neighborhood.

3. A 36 bin orientation histogram is composed, where each pregents a 10 degree in-
terval, and each neighboring point’s bin is determined based on its edge orientation
and its weight based on the edge magnitude.

4. Also the points are weighted with a Gaussian window, spadhes farther away have
less effect than the points closer to the keypoint.

5. The orientation of the keypoint will correspond to the pafatke histogram.

4. Keypoint description
For every keypointx, y, g, 8):
1. Take al6 x 16 point neighborhood around the keypoint and divide it #to4 gra-
dient window.
2. Build the orientation histogram of tlex 4 samples in each window with 8 direction
bins.
3. Gaussian weighting around center (size is baser) on
4. 4 x 4 x 8 = 128 dimensional feature vector

HOG: Histogram of Oriented Gradients
Originally developed for pedestrian detection by N. Dalalligygs in 2005

Steps of the Algorithm

1. Gradient Computation
2. Orientation Binning
3. Block Description

4. Block Normalization
5. Classification

1. Gradient Computation
Gradient calculation with the simple-1 0 1] and[—1 0 1]” gradient detectors.

2. Orientation Binning for a cell

A cell is a rectangular (or circular) shap@&c 8 window. The histogram of gradient oriant
tions is calculated over the cell, each pixel votesdaseits magnitude on the gradient-i
age. A 9in histogram is made (form 0°to 180°).

3. Block Description
A block contain® x 2 cells. Pixels in the block are weighted by a Gaussian window.

4. Block Normalization
The blocks are overlapping; every cell is used 4 time$ dlifferent blocks. Also there are
different versions of the normalization:

L; norm L, sqrt
v
Vo — »
”U”1 + ¢ S S —
vl + e
L, norm L, Hys
v
v m max value ol is limited t00.2
2
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Haar-Like Features
They are named after the Haar wavelets.

Cascade classifier

The goal is to be able to reject many obvious non-fas®les quickly and concentrate the
computational power on the more difficult samples. By dbacatenation of a lot of weak
classifiers a highly effective classifier is built. Eagbak classifier can reject a sample, so the
following weak classifiers don’t have to evaluate it. Each weak classifier is tuned to compe
sate the previous classifiers’ errors

Integral Imagetrick
A way to calculate Haar-like features very quickly, in canstime, regardless of the size of
the feature.

The integral image is defined as follows: @l A B )
It y) = ) 1(x',y")
x'<x C D
. . . y,Sy
Using the integral image the sum of any rectangulag) ~(4)

shaped area can be calculated with 4 operations:

D=((A+B+C+D)+(A)—-A+B)—-(A+0)=@AD)+ D -2)-(13)
(4) Tff ) (3)

LBP: Local Binary Patterns

LBP is a computationally effective texture descriptorslt@mparable to the state of the art,
while computable ir0(n) time. LBP is robust to monotonic changes in the illuminatimn,
image preprocessing or parameter tuning is required. Producespacto 59 bin descriptor
(SIFT has 128 bins), so it is faster to match. Its efficy was proved in many applications
such as face detection, face recognition, image relriexiure analysis etc.

Steps of the Algorithm
1. LBP Calculation
2. Histogram Building
3. Histogram Matching

1. LBP Calculation
Calculate the difference of a pixel and its 8 neightwra fixed radius circular pattern then
binarize the result. Represent the result as a decimaber, this is the LBP value.

Uniform LBP
So far we have 256 dimension descriptor. In general 90% d&fBRs has one or two conti
uous regions in it:

— 2 patterns with one region (full 1, or full 0)

— 7 patterns with 2 regions
For each of the 7 pattern with 2 regions there can bed@aliff orientations. Plus we keep one
joker bin for everything else. Therefore we ge? & 7 x 8 + 1 = 59 bin descriptor. This
reduced dimension descriptor is also more robust t@nois

2. Histogram Building
Build the histogram from LBP values.

3. Histogram Matching
To match histograms the following measures is commonly dtistbgram IntersectiqrChi-
SquaredLog-Likelihood.
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Binary Descriptors

The SIFT, SURF and HOG methods are based on histogramsdegrgea which is costly to
compute and the size of the descriptors can be probleihate have many of them. Also
SIFT is patent protected.

Binary descriptors use simple intensity value comparisortsdate binary strings to encode
the information of the patch. It is fast to compute ydasstore and fast to match (thieam-
ming distance is equivalent with XOR)

In general, Binary descriptors are composed of three parts
— sampling pattern
— sampling pairs
— orientation compensation

Sampling pattern

The use of binarized intensity value differences: takergkaat pointd and compare its \a
ue to a sample in an other poiBt, If A’s intensity is higher add a 1 to the descriptor string,
otherwise add 0. The sampling pattern defines the way we takdesarBRISK, FREAK,
BRIEF, ORB...

Sampling pairs
BRIEF uses random sampling pattern and selects randonfrpairshem.
BRISK uses only short distance pairs from the predefinedrpatte
FREAK and ORB learns the sampling pairs so that
— their information content is maximal, the redundancy isimmal between the pairs,
— the variance of the pairs is high to make the featume migcriminative.
In case of FREAK the resulted pairs follow a codrséne structure:
— the first pairs selected are comparing points in tiieraing
— the last selected points make comparisons in the deg&mr
— this resembles to the way the human vision operates.

Orientation compensation

The binary pairs are sensitive to rotation. In the oaigoh compensation phase the at&e
tion angle of the patch is measured and the pairs aatedoby that angle to ensure that the
description is rotation invariant. Different descriptorsehaifferent methods for orientation
compensation:

— BRIEF: does not have orientation compensation

— ORB: based on the moments of the patch

— BRISK: comparing gradient of long pairs

— FREAK: comparing gradient of preselected pairs

Feature M atching

1. Given two keypoints, first procedure the binary descrimotbbth of them, using the
same sampling pattern and the same sequence of pairs.

2. Once we have two binary strings, just count the numbéit®fwhere the strings are
different.
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Topic 8  Video Processing, Motion Estimation, Object Tracking

Video Processing
The main difference between a still image and a dynamic védg@ motion Estimating the

motion on the video is a fundamental step for many dlgos: object tracking, video surlei
lance, video compression etc.

3D vs. 2D Motion

In general, we are interested in the motion in the 3Mecbut we can only work with its 2D
projection on the image plan€he interpretation of the 2D image can be ambigutdses
the size of the object really changed or is it just erdway from the cameia

Trueand Apparent Motion

We want to know how an object, an image region or desppigel moved on the image plane
from one frame to the next. But the change of thel piges not necessarily means thai-m

tion occurred in the real 3D world and a real world changghtmot result a change in the
pixel value.

Motion Estimation
Direct Methods. they compute the optical flow between two consecutivedsam
— Optical Flow
— Phase Correlation
— Block Matching
— Spatio-Temporal Gradient

Indirect methods:
— Feature Matching, which locates feature points on bothes)dgds the pair of each
feature point on the other image and calculates the mbéisad on the displacement
of the feature points. For thisfttrent features can be used: SIFT, SURF, Harris. ..

Phase Correlation

This method can be used to estimate global motion, fagéntegistration. It is based on the
translation property of the Fourier transform:

x(ny —my,n, —my,) © X(w,, w,)e J@1M1g=j@2m,
The assumption is that between two consecutive franeeisriage was shifted kyn,, m,):

x¢(ny,mz) Xep1 (Mg, mp) = x (g — My, my; —my)
L2TC L2TC
X (ny,ny) Xier1(ky, ko) = Xt(kl:kz)e_]N_lmlkle Tt
Calculation of the crow power spectrum
2T 2T
Xi(ky, k) X{ 1 (ky k) _ X, (ey, p)I? - e_]N_lmlkle_]mmZkz

C(ky, ky) = 3 _
Uers o) = T e k) Xew1 G, )] TACHDE

Transforming the& back to the spatial domain we get the normalized crosslaton:
c(ny,ny) = 6(ny —my,ny —My)

Dealing with the border regions

Since we use DFT the linear shifts becomes circular shftsost cases the images arkate
ed by linear shift not circular, so the border regions omayupt our calculation. Solution: use
a 2D Hamming window (or something similar) to down weight the valies® ¢o the border.
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Block M atching
Block matching is an intuitive motion estimation alglomi, widely used in video comse
sion. It is based on the following assumptions:
— The objects are rigid
— The illumination of the scene is constant
— Objects are not entering or leaving the scene
The motion is parallel to the image plane

To estimate the local motion between two framdearidB):
1. FrameA is divided into (usually squared shaped) blocks.
2. For each block ofl, a search is made on frarBeto find its best matching pair.

Different measures can be used as matching criteriayddHe best fit for a block:

— Mean Square Error

— Mean Absolute Error

— Correlation Function
To get a dens field of motion vectors overlapping blocksbheansed. To find the best match
for a block with exhaustive search is computationally highlyatetimg. There are different
ways to reduce the computational burden:

— Reduced search window or block size

— Block sub-sampling

— Logarithmic search
Pixel projection

Hierarchical Block Matching

With the hierarchical structure we reduce the size ofirtteges. Do the motion estimation
first at the lowest resolution, with relatively largeasch window. Use the (properly up-
scaled) estimated vectors for initialization of therslkeaat a higher level. The final motion
vectors are calculated at the original dimension.

Optic Flow
Constant brightness constraint: It is assumed that the brightness of an object renthims
same from one frame to an other, hence all the chandeghtness are solely due to the-m
tion in the scene.

[(x,y,0) =I(x+u,y+v,1)
whereu andv are the displacement of the pixel in each dimensioitas the time{ =0 is
the reference frame).

Using Taylor series expansion:
The Taylor series expansion of a functjrthat is infinitely differentiable at, is given with
the following formula:

o d" f£(a)
=/ a
z dx” 7 _ g)n
n!

n=0
Then we take the Taylor series expansioh(ef+ u,y + v, 7) atO0:
dl(x,y,0) d1(x,y,0) d1(x,y,0)

u+ v+ T

I(x+uy+v1)=1(x7y0)+ 7 3y 5t + HOT
I Iy It

So
O0=Lu+ v+t

Oral exam 1548 3548 18 December 2015



Basic Image Processing Algorithms PPCU FIT

If we divide everything witlr, we get velocities. Hence the optic flow equation i#svs:
0=LV,+LV,+1I

This equation is under determined: 2 unknowns, 1 equation. Assumaingeighboring pixels
undergo the same motion we can increase the number ofcetpuat

{I M)V + I,(n)V, = I(ny) [I (ny) I (n1)] I;(ny)
{ L(n)V, + 1, (nz)V = I,(ny) il () 1, (n2)|[ ] It(nz) L Ax=b

kl (ny) Vs + I, (nN)V = I (ny) lI (nN) I (nN)J It(nN)

This is an inverse problem: we knadwandb and look forx. Least square or constrained least
square solutions can be used:

x = (ATA)TATD, x = (ATA + ACTC)*ATb

Feature M atching
The algorithm is based on the matching of key points thatahwell-defined position on the
image (e.g. corner). A descriptor is given to each pbati¢ preferably...

— Shift and rotation invariant

— Robust against the changes of illumination

— Scale invariant

— Low dimensional

— Robust to noise, etc.
From the matched point pairs the global motion of theera can be estimated. As feature
point detectors SIFT or SURF can be used, and as featweptes SIFT, SURF, HOG,
LBP, etc.

Object Tracking
The objective of object tracking is to associate tartpgtads in consecutive video frames. It

can be applied in human-computer interacttoaffic monitoring vehicle navigationmotion-
based recognitigrvideo indexingautomated surveillance, etc.

The tracking task can be divided into two subtasks:
— Build a model of the object you want to track
— Use what you know about where the object was in the prefiao(s) to make pr
dictions about the current frame to restrict the search.
Repeat the two subtasks and possibly update the model.

Tracking objects can be complex due to:
— Loss of information caused by projection from 3D to 2D
— Noise
— Complex object shapes/motion
— Non-rigid or articulated nature of objects
— Partial and full occlusions of the object
— Changes of the illumination
— Real-time processing requirements
Simplify tracking by making assumptions and the use of prformation:
— The motion of the object is smooth with no abrupt change
— The object motion is assumed to be of constant vglocit
— Prior knowledge about the number and the size of objectee object appearance.
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M odeling of the object:
Shape:
— Point model
— Simple geometrical forms
— Contour/Silhouette
— Articulated shape models
— Skeletal models
Appearance:
— Template (if the appearance is not changing)
— Probabilistic representation of the object appearangeHiéstogram)
Different features can be used to describe the appearance:
— Color, Edge, Motion, Texture
— HOG, SIFT, LBP.,...

Oral exam 1548 3748 18 December 2015



Basic Image Processing Algorithms PPCU FIT

Topic9  Image Segmentation

What is on the image? This is maybe the most important question we want to arescit
an image. For a human observer it is a trivial tkska machine it is still an unsolved fro
lem. An important step toward our goal is to segment thgeniato meaningful parts. The
objective is to group pixels together based on some cornshremacteristics:

— they belong to the same physical object

— they have the same intensity level/color/texture

— they belong to the background/foreground
The segmentation can keowledge-driven (top-down) ordata-driven (bottom-up).
Knowledge driven segmentation methods builds prior knowl@tgethe segmentation aig
rithm:

— bhard to implement

— cannot stand alone: need cues from bottom-up segmentation
Data-driven methods builds on the raw pixel data:

— they are easier to implement

— they often fail on real life images
There is the so-called semantic gap between the two agpms. The complex, high level
definitions of top-down methods are hard to embed effilyiemtio low level algorithms.

Intensity Level Based Segmentation

Thresholding
Assumption: the image parts (e.g. object and background) caepheated based on their
intensity level.

s(nnn,) = { object, x(ny,n,) <T
U727 7 \background,  x(ny,n,) =T
wheres(n,,n,) is the cluster of thén,,n,) pixel of thex image and" is a threshold.

Otsu’s Method
Automatically determines the optimal global threshold byimizing the intra-class variance.
The intra-class variance is defined as follows:

02 (k) = w;(k)of (k) + w,(k)az (k)

where w; and og; are the probability and the variance of the two claseparated by the
thresholdk. Otsu showed that minimizing the intra-class varianc@dssame as maximizing
inter-class variance:

2
a; (k) = 0% — 0, (k) = w1 (kK)w, (k) (uy (k) — w2 (K))
wherey; are the means of the two classes separated by thtdshito calculatev; andy; the
normalized histogram of the image is used:

wl(k)=ipi w, () = Z P

i=k+1

ko L-1
Lp; Lpi
o =y 2 OB
(— (U1 ) W

i=0 i=k+1

wherep; is thei-th entry in the normalized histogram of the image.

Oral exam 1548 3848 18 December 2015



Basic Image Processing Algorithms PPCU FIT

Region Based Segmentation Methods
Let R be the entire image region, aRg ..., R,, are subregions. We want to find a segraent

tion that is
n
U Ri =R
i=1

— Complete
— Points in the regioR; are connected=1, ...,n
— The regions are disjoint

— All the pixels in a region have common properties that tleenot share with pixels
from other regions.

Region Growing

The method is initialized with a set of seed pointseg®ns We start growing the regions by
adding neighboring pixels to the region if they have lsmnpredefined properties as the seed
points. The seeds can be selected based on preminfon, or evenly, or random. ..

The similarity criteria is usually depending on the segatent result we want. (Commonly
used properties are the intendityel, color, texture, motion, ...)

Pros. simple, works well on images with clear edges, prior kndgdecan be easily utilized,
robust to noise...

Cons: time consuming

Region Splitting and Merging
Let R represent the entire image region @be a predicate. The splitting and merging steps
are alternating:
—  We split the regiomR; into 4 sub regions iP(R;) = false
— We merge 2 neighboring regioRs andR; if P(R; UR;) = true
The minimum region size has to be selected.

Clustering in the Feature Space

A clustering algorithm is used to find structure in the datae pixels are represented in the
feature space. Usual features: colors, pixel coordinatearéekescriptors..

Video Segmentation

In bottom-up segmentation we want to group pixels with similapgrties together. In case
of video segmentation motion is an important featurextoaet object of interest from the
irrelevant background.

Frame Difference
We detect motion based on the difference of two consecfiimes:

dij(x,y) = {1' fGy, D) —fGy DI >T

0, otherwise
whereT is a predefined threshold.
Problems with frame difference:
— We detect only the contour of the moving object
— Itis sensitive to the speed of the motion
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Background Subtraction

Main steps
1. Model the background and create an image with only the bacldjouit
2. Subtract the background from the current frame.
3. Threshold the difference frame to get the foregrounckmas

Sngle frame as background

Assumption: we have a frame which does not contain foregrobjects. This method cannot
handle changes of the background (illumination changesctobgzomes part of the back-
ground, ...) Because of the above constraints it cannot be userkad bfe scenario.

Running average
The following equation is used to calculate the backgr@Bndor each time instance:

B(x,y,i+1)=a-B(x,y,i))+ (1 —a): f(x,y,i)
wherea is a predefined constant, which defines the adaptivity déalekground.

Running average with foreground masking

The following equation is used to calculate the backgr@Bndor each time instance:
B(x,y,i), if (x, y) is a foreground pixel

a-Blx,y,)+ (1 —a)-f(x,y,i), otherwise

wherea is a predefined constant, which defines the adaptivity dbalekground.

B(x,y,i+1) ={

Temporal Histogram
The temporal histogram of each pixel is used to generatéabtkground image. The value
with the highest peak is the value of the background pixébatocation.

Mixture of Gaussians
Using the temporal histogram of each pixel means we lmgtote the histograms and have
to find its maximum for each pixel for each frame. Theams high memory and high compu-
tational power requirements! Better idea is to use Me&ibf Gaussians to estimate the back-
ground. The main parameters of the model:
— K is the number of Gaussians,
— the mear(y;), the variance€o;) and the weigh€w;) of each Gaussiafi = 1, ..., K)
A pixel is considered background if it belongs to the Gaussitimthe highest weight:
|£:ﬂ
o

1, |<T

M(x,G) =
0, otherwise

whereT is a predefined constant.
Parameter updating:
— Weight updating:
Wi

wit+1) =0 —a) w(t) + aM(x,G,), e
j=1Wj
— Gaussian parameter updating:
If there is a matching Gaussi@M (x, G;) = 1) we update its parameter as follows:

pit+1D=>0Q-p) w@®)+p-x

of(t+1) = (1-p) o/ () + plx — p;)?
If there is no matching Gaussian we replace the Gausdiathe lowest weight with
a new Gaussian with the following parameters:

pi(t+1) =x, of(t+1) = o0 wi(t + 1) = Wiy
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Morphological Operations

Morphological operations are affecting the form, sutetor shape of an object. They are
used in pre- or postprocessing (filtering, thinning, and pruning)ragetting a representation
or description of the shape of objects/regions (boursiasieletons convex hulls). Two basic
operations:

— Dilation: expands the object, fills in small holes andrnemts disjoint objects.

— Erosion: shrinks objects by removing (eroding) their boundaries

The basic idea in binary morphology is to probe an imaitfe avstructuring element (arst
ple, pre-defined shape), drawing conclusions on how this ditape misses the shapes in
the image.

Dilation

A shift-invariant operator that expands the object, fillsmnall holes and connects disjoint
objects. Steps:
— The structuring element is placed on each pixel omthge.
— If the pixel belongs to the foreground pixel, we do nothing.
— If the pixel belongs to the background, we change it taeggfound pixel if any pixel
covered by the structuring element is a foreground pixel.

Erosion
A shift-invariant operator that erodes away the boundariggegidns of foreground pixels.
Thus areas of foreground pixels shrink in size, and heigsn those areas become larger.
Steps:

— The structuring element is placed on each pixel omthge

— If the pixel is a background pixel, we do nothing

— If the pixel is a foreground pixel, we change this pixeatbackground if any pixel

covered by the structuring element is a background pixel.

Using dilation and erosion

Erosion on the image has the same effect as dilatatiadhe inverse image.
Opening: Erosion + Dilation

Closing: Dilation + Erosion
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Topic 10 Image and Video Compression

Compression is the reduction of the number of bits usethéorepresentation of an image or
video, while

— being able to exactly reconstruct the original dhissless compression)

— maintaining an acceptable quality of the reconstructed(btssy compression)
Why are the signals compressible?

— The signals containedundancy (spatial or temporal), they have a structure which can

be described in a more compact way.
— There are parts of the image which are perceptually waate which can be discarded.

Lossless Compression

Reversible process: the original data canekactly reproduced from the compressed data.
Only limited compression ratio can be achieved with lossless compression, determined by
theentropy of the source data. There is a tradeoff between:

— Efficiency (compression ratio)

— Complexity (required memory, computational power, etc.)

— Coding Delay (how long does it take to code the signal)

The two main groups of lossless coding techniques:
1. Statistical methods: the statistics of the source @M (e.g. Huffman coding, >e
tended Huffman coding)
2. Universal methods: the statistics of the source is unkr@vgn Arithmetic methods,
Dictionary methods, Adaptive Huffman coding)

Background

Source: any information generating process can be viewed as a sbatcemits randomes
guence of symbols, from a finite alphabet.

Discrete Memoryless Source (DMS): the generated successive symbols are independent ide
tically distributed random variables. This is the simptastel which can be described by
its symbols and the associated probabilities. Howeves not perfect, in the above ena
ples there is a dependency among the symbols.

Saf information: How much information is provided by the emission of aatersymbol?
The occurrence of a less probable event provides monenafmn:

1 S ={sqy,...,Sy}
1(s) = lo <_> = —log(p;), where "
( l) 8 Di g(pl) {p1! "'ﬂpn}

In case of independent symbols:

1 1
I(s15,) = log (o) = log (5=~ = ~10g(p1) ~ log(p2) = 1(s) + 1(s2)

Entropy: It is the property of the source not only one symbol. & DMS it is the average
information per symbol:

H(S) = ipil(si) = —Zn:Pi log,(p:)

Simple example for the entropy of a two-symbol alphabet

H = —plog,(p) — (1 —p)log,(1 —p)
The entropy is the maximum if the probability of the syrabslequal. The entropy is min-
imum if one symbol has probability 1, the others 0.
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Uniquely Decodable (UD): any finite sequence of code words corresponds to only ose me
sage sequence.

Prefix Code: no codeword is a prefix to an other codeword. A prefix ae@éways UD, but a
UD code is not necessarily prefix. Prefix codes are gadgsign and easy to decodeeEv
ry UD code can be converted to a prefix code with same rate

Binary Tree representation
Not prefix code Prefix code

N N
y\i 52}/\1

S3 Sy

S3 Sy

First order codes
Encodes each symbol independently of the others, everyo$yiab a code word.

Block codes
Group the symbols of the sourSeinto N length blocks and generate a codeword for each
block. It can be regarded as a new soif@ that generates symbols from an alphabet with
nM number of symbols (whereis the number of symbols §).
H(Sy) =N -H(S)
Non-block codes
The non-block codes are arithmetic codes and Lempel-Ziv codes
Lossless coding pipeline
source — symbols: s4, S5, ..., s, = coding — code words with length: {4, ..., [,
The average code word length is the measure of codesaffici
n

lavg = Z lipi
i=1

Shannon’s Source Coding Theorem

Let S be a source with alphabet sizeand entropyH (S) and let consider codiny source
symbols into one binary codeword (block coding). Then faryy > 0 it is possible by
choosing theV large enough, to construct a code with average number gfesitsymbol,,,,
that satisfies the following inequality:

H(S) < lgyg <H(S)+6

This means that entropy is the lower bound of the codeieafliy, we cannot beat it but we
can come arbitrarily close to it by increasiNg IncreasingN results larger dictionary and a
delay in decoding. In general it is not straightforwardalulate entropy (the formula is only
for DMS).
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Huffman Coding
Variable length, prefix code. Based on the Morse priacifie more common symbols have
shorter code word.

Algorithm
1. Sort the symbols according to their probability.
2. Combine the two least probable symbol to a composite dywitio probability equal
the sum of the probabilities of its components.
3. Repeat the first two steps until only one composite sym#ohins. (if the alphabet
hasn symbols, the algorithm will have — 1 steps)
The output of the algorithm is a binary tree that dessttbe code. The result is not unique.

Properties

— The average codeword length is bounded:

H(S) < lgyy <H() +1
If the maximum probability is less than 0.5:
H(S) < layg < H(S) + Pmax
If the maximum probability is higher than 0.5:
H(S) < lypg < H(S) + Ppax + 0.086
Best possible outcome is achieved when the probabilitigs are2~:
lavg = H(S)

In general Huffman codes work better witlarge alphabet, since then the max poe
ability is likely to be lower than 0.5, whigheans lower upper bound.

Extended Huffman Coding
The extended Huffman coding uses block code. Therefpreduces a more efficient code:
H(Sy) =N-H(S) and lgyg = N - lgyg
)
H(Sy) < lgygy <H(Sy) +1
N-H(S) <N -lgyy <N-H(S)+1

The drawback is that the number of codewords increasesexaly which leads to ste
age, computational and delay problems.

Arithmetic Coding

Coding sequences of symbols or blocks together is momeetfithan generating codewords
for each symbol separately. The problem with Huffman apdnthat the alphabet can get
huge easily: if we want to assign codeword tavalength block of symbols, we have te-a
sign codewords to all possiblé-length blocks.

In arithmetic coding a uniquiag is generated for a sequence of symbols, and then the tag
coded into a binary code. One possible source ofisate numbers between 0 and 1. Since
there are infinitely many real numbers in this interwad,can generate a tag for arbitrary long
sequence of symbols.

Tag generation
We want to map a sequence of symbols onto an intd@rlkalcumulative distribution function
will be used. LefS be an alphabet with symbols and known probabilities:
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n
S=1{si5p.,5),  P(sp), ZP(si)zl
i=1

Let X be a random variable that maps the event of the appeacd a symbol onto the real
line:

X(s) =14, P(X =1i) =P(sp)
The cumulative distribution function is the following:

k
Fy(0 = ) P(s)

We map a sequence of symbols onto an interval usinguthalative distribution functionA
sequence of symbols will be described by a tag (humber beteech 1) and the number of
symbols coded by the tag. The tag itself is coded.
1. We can find the first symbol by placing the number om @kl interval and check
which symbol’s interval it is placed on.
2. Proportionally map the division of the original intervab the selected interval and
check again which interval the tag is on.
3. Repeat the first 2 steps as many times as many symateded by the tag.

Comparison with Huffman coding:
AC has higher upper bound:

1
H(S) < RHuffman < H(S) + N

2

As the number of the symbols (coded by one tag) incretimeprecision of the tag has to be
increased too. AC does not suffer from the exponentiallgasing alphabet size. In practice
better rates can be achieved with AC. Arithmetic codingsed taking the local (past) nkig
borhood statistics into account.
Progressive transmission:

— First a low resolution version of the image is trantadit

— Then if the higher resolution image is required, it barcoded assuming that the low

res image is available at the decoding side.

Dictionary Coding
In many applications there are frequently repeated pategmnitted by the source. It can be
efficient to create a list (a dictionary) of the mérequent patterns, so they can be encoded by
their address in the dictionary. The source is split iwb parts:

— Frequently appearing patterns (coded by the dictionary agldress

— Infrequently appearing patterns (coded with a less efficamfinique)
The dictionary can be static or adaptive.

Predictive Coding

In predictive coding we use the “past’ of the signal to predict the “present”. If we use the
same prediction model at encoding and decoding, onlgrédiction error (the unpredictable
part) needs to be coded for lossless compression:

Reconstructed signal = Prediction + Prediction Error

The prediction error can be coded with some of thddessompression methods. It is better
to encode the prediction error instead of the originaladjgoecause the entropy of the 6rig
nal signal is higher than the entropy of the predicéioor.
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Lossy Compression

Main steps of a lossy data compression system:
1. Redundancy Removal:
— Predictor or Transformation
2. Entropy Reduction:
— Scalar quantization
— Vector quantization
3. Lossless Coding:
— Huffman coding
— Arithmetic coding
— LZ coding techniques

Scalar Quantization

Uniform quantization
Irreversible process: all the values in the same iatevill receive the same quantized value.

Non-uniform quantization

The overall error can be reduced by using non-uniform quanfiber region with more \a
ues can be quantized with higher frequencies.

Instead of using a non-uniform quantizer first we use histogransformation to stretch or
compress the dynamic range of the input image. After thatseea uniform qunatizer in the
compression process. At the end we invert the transtarmased for histogram stretching or
compression.

Vector Quantization

The input image is divided into small blocks, which are codewjusilook-up table. Theap
rameters of the codebook defines the compressionlfate usen by n block size and each
pixel is represented hly bites, and the length of the codebook is 2!, which means bits
are needed to code an entry of the codebook, then

n-n-b

l

Vector quantization is more effective than scalar quaiizaas it can take into account the
correlation in the data.

Generalized Lloyd Algorithm
With a set of training images it finds a locally optimatiebook:
1. Start with am sized random initial codebook.
2. Partition the training vector set using the current codelbyckssigning each training
vector to the nearest vector in the codebook.
3. Cdculate the centroid of each cluster. These centmwiti$orm the new codebook.
4. Repeat step 2 and 3 until the distance between the oldeandodebook vectors are
below a predefined threshold.
This algorithm will only find local optimum. The final reswiill be sensitive to the initiale-
tion of the codebook.

rate =
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Transform Coding
Very popular approach, it is part of most of the curremge and video coding standards.
Basic idea is to decorrelate the data with a suitablsfoanation, so that the transformation
coefficients will describe the image perfectly. Thansformation

— has to decorrelate the data

— has to compact the energy of the image

— has to have image independent basis

— has to have a fast implementation
We do a coarse or fine quantization of the transfoomatoefficients based on their signif
cance (their variance, or their contribution to theltetergy of the image).

Encoding
image block — transformation — quantization — entropy coding - 0110101

Decoding
"inverse" "inverse" . reconstructed

0110101 - entropy decoding — quantization  ransformation image block

Linear transformations

Karhunen-Loeve Transformation: Discrete Cosine Transform:
— Statistically optimal — Close to KLT for typical images
— Basis functions are image dependent | — Basis functions are image independent|

— Efficient implementation exist
— Wildly used in image/video compressio
standards

Given anN by N orthonormal matrix setp v
Then anyN by N image can be represented as follows:

N-1N-1
F=2) Fwv) -
u=0 v=0
where
— o (w) u 0, . N-1
Fuv)=f-o™" o N-1

The 8 by 8 basis matrices for DCT:
— In the first row we have a cosine function with irasi®g horizontal frequency.
— In the first column we have a cosine function withré@asing vertical frequency.

JPEG (Joint Photographic Experts Group)
International standard since 1991. Capable of compressing womsiione still images (gya
scale and color images) with ratio 10-50

Algorithm
1. <Uses DCT on 8 X 8 blocks:
e The blocks’ grey level is shifted by —128 to the rangg—128, 127].
e The first coefficient is called DC, the rest of tleefficients AC coefficient.
The DC coefficients of the blocks are quantized, thenddiféerentially.
The AC coefficients are first quantized, vectorized lgyzag scan and then entropy
coded.
4. <The quantizer is uniform, using quantization tables with different step sizes for the
different frequencies (in general higher step sizes ferhigher frequency coeff
cients).

w N
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