
Sztochasztikus folyamatok 1. házi feladat megoldások

1. ξi ∼ N(m,σ2), i = 1, . . . 15, ahol m ismeretlen, σ = 2.5 ismert. Az ada-

tokból ξ̄15 = 11.89 adódik. Tudjuk, hogy η = ξ̄n−m
σ/

√
n
∼ N(0, 1), ez az átlag

standardizáltja.

a) Szimmetrikus konfidencia itervallum kell, ı́gy keressünk olyan a-t, melyre
P (|η| < a) = 0.99, azaz 2φ(a) − 1 = 0.99. Ekkor φ(a) = 0.995 és a = 2.57

adódik a normális eloszlás táblázatából. P (| ξ̄n−m
σ/

√
n
| < a) = P (|η| < a) = 0.99,

másrészt | ξ̄n−m
σ/

√
n
| < a ⇐⇒ |m − ξ̄n| < a σ√

n
⇐⇒ ξ̄n − a σ√

n
< m <

ξ̄n + a σ√
n
, ı́gy [ξ̄n − a σ√

n
, ξ̄n + a σ√

n
] = [11.89 − 2.57 2.5√

15
, 11.89 + 2.57 2.5√

15
] =

[10.23; 13.55] 99%-os biztonságú szimmetrikus konfidencia-intervallum az m
várható értékre, vagyis a bor alkoholtartalmára.

b) A [ξ̄n−a σ√
n
, ξ̄n+a σ√

n
] szimmetrikus konfidencia-intervallum hossza 2a σ√

n
=

2 egyenletbõl
√
n = aσ = 2.57 ∗ 2.5 = 6.425 azaz n = 41.28 adódik. Így

legalább 42 mérést kell végeznünk.

c) A feladat a) és b) részéhez hasonlóan σ továbbra is ismert, és η =
ξ̄n−m
σ/

√
n

∼ N(0, 1), ı́gy ebben a részben is a normális eloszlás táblázatát kell

használnunk. A különbség csak annyi, hogy nem szimmetrikus, hanem egy-
oldali konfidencia intervallumot keresünk. Kell γ ∈ R, melyre
P (m ∈ (−∞, ξ̄n + γ)) = 0.95. Használjuk fel, hogy m ∈ (−∞, ξ̄n + γ) ⇐⇒
m < ξ̄n + γ ⇐⇒ m− ξ̄n < γ ⇐⇒ m−ξ̄n

σ/
√

n
< γ

σ/
√

n
. Tehát kell γ ∈ R, melyre

P (−η < γ
σ/

√
n
) = 0.95. Az egyszerûség kedvéért jelölje: a = γ

σ/
√

n
. Ezzel

P (−η < a) = 0.95. Mivel η standard normális eloszlású, és ez a 0-ra szim-
metrikus eloszlás, ezért −η is standard normális eloszlású, ı́gy φ(a) = 0.95
és a = 1.64 adódik. Mivel a = γ

σ/
√

n
, ezért γ = a σ√

n
= 1.64 ∗ 2.5/

√
15 =

1.06, azaz (−∞, ξ̄n + a σ√
n
) = (−∞, 11.89 + 1.06) = (−∞, 12.95) megfelelõ

konfidencia intervallum. A fentiek alapján megállaṕıthatjuk, hogy ismert σ
esetén a várható értékre,m-re vonatkozó szimmetrikus konfidecia intervallum
[ξ̄n−a σ√

n
, ξ̄n +a σ√

n
], ahol 2φ(a)−1 = 1−α a megb́ızhatósági szint. Egyoldali

konfidencia intervallum pedig: (−∞, ξ̄n + a σ√
n
) vagy (ξ̄n − a σ√

n
,+∞), ahol

φ(a) = 1 − α a megb́ızhatósági szint.

2. Most m és σ is ismeretlen (utóbbit is csak a mintából tudjuk becsülni) ı́gy
ebben a feladatban t eloszlást kell használnunk.

a) A várható értéket a mintaátlaggal becsülhetjük: ξ̄6 = 15.8, a szórást pedig
a korrigált tapasztalati szórással: s∗6 = 0.1532.

b) Ismert, hogy t = ξ̄n−m
s∗n/

√
n

közeĺıtõleg t(n−1). Így a szimmetrikus konfidencia

intervallum ismeretlen szórás esetén [ξ̄n − a s∗n√
n
, ξ̄n + a s∗n√

n
] alakú, ahol P (|t| <

a) = 1−α a megb́ızhatósági szint. 95%-os megb́ızhatósági szint esetén 1−α =
0.95, azaz α = 0.05. A szabadsági fok most n− 1 = 5, és kétoldali érték kell,
ı́gy a t eloszlás táblázatából a = 2.571 adódik. Azaz a 95%-os szimmetrikus
konfidencia intervallum a várható értékre:
[15.8 − 2.5710.1532√

6
, 15.8 + 2.5710.1532√

6
] = [15.64; 15.96].
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99%-os megb́ızhatósági szint esetén 1−α = 0.99, azaz α = 0.01. A szabadsági
fok most is n − 1 = 5, és kétoldali érték kell, ı́gy a t eloszlás táblázatából
a = 4.032 adódik.

Azaz a 99%-os szimmetrikus konfidencia intervallum a várható értékre:
[15.8 − 4.0320.1532√

6
, 15.8 + 4.0320.1532√

6
] = [15.55; 16.05]. Ez természetesen az

elõbbinél bõvebb intervallum.

3. A titkárnõ által egy-egy oldalon vétett hibák száma: ξi ∼ Poisson(λ), i =
1, . . . , 10. A λ paraméter maximum likelihood becslését keressük. A likeli-

hood függvény: L(λ, x1, . . . , xn) =
∏n

i=1 P (ξi = xi) =
∏n

i=1

[

λxi

xi!
e−λ

]

, ahol

x1, . . . , xn az egy-egy oldalon vétett hibák száma. Most n = 10. A loglikeli-

hood függvény: H(λ, x1, . . . , xn) = lnL(λ, x1, . . . , xn) = ln
∏n

i=1

[

λxi

xi!
e−λ

]

=
∑n

i=1 ln
[

λxi

xi!
e−λ

]

=
∑n

i=1

[

xi lnλ−ln(xi!)−λ
]

=
∑n

i=1 xi lnλ−
∑n

i=1 ln(xi!)−
nλ. Így ∂H

∂λ
=

∑n
i=1

xi

λ
− n = 0, azaz λ̂ =

∑n
i=1

xi

n
= x̄n. ∂2H

∂λ2 = −
∑n

i=1
xi

λ2 < 0,
ı́gy ez lokális maximum hely. A λ paraméter maximum likelihood becslése

tehát: λ̂ =
∑n

i=1
xi

n
= x̄n = x̄10 = 2, 4. Poisson eloszlásról lévén szó, a várható

értéket és a szórást is ezzel becsülhetjük.

4. Itt a likelihood függvény: L(λ, x1, . . . , xn) =
∏n

i=1 f(xi) =
∏n

i=1

[

1√
2πσ

e−
(xi−m)2

2σ2

]

.

A loglikelihood függvény:H(λ, x1, . . . , xn) = lnL(λ, x1, . . . , xn) = n ln 1√
2πσ

−
1

2σ2

∑n
i=1(xi − m)2. A ∂H

∂m
= 0 egyenletbõl m̂ = x̄n, a ∂H

∂σ
= 0 egyenletbõl

σ̂ =
√

∑n
i=1

(xi−m̂)2

n
adódik. Így m̂ = x̄n-t felhasználva σ̂ =

√

∑n
i=1

(xi−x̄n)2

n

adódik. Azaz σ maximum likelihood becslése σ̂ = sn, a (nem korrigált!)
tapasztalati szórás. A konkrét értékekkel: m̂ = x̄5 = 316, σ̂ = s5 = 3.52.

5. (Szorgalmi házi feladat.) b maximum likelihood becslése max{x1, . . . , xn}.
Ez nem toźıtatlan becslés. n+1

n
max{x1, . . . , xn} = 6

5
max{x1, . . . , x5} torźıtatlan

becslés b-re.
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Sztochasztikus folyamatok 2. házi feladat megoldások

1. ξi ∼ N(m,σ2), i = 1, . . . 18, ahol m = Eξi ismeretlen, σ = D(ξi) = 2
(cl) ismert. A feladat szerint a mérési adatokból ξ̄18 = 52 (cl) adódott. A
nullhipotézis H0 : m = m0 = 50 (cl), figyeljünk a mértékegységre, az
ellenhipotézis H1 : m 6= 50 (cl).

σ ismert, ezért egymintás u-próbát használhatunk. AH0 nullhipotézis mellett
ξi ∼ N(m0, σ

2), ahol m0 = 50, és ı́gy u = ξ̄n−m0

σ/
√

n
∼ N(0, 1). A megadott

szignifikanciaszint 95%, ı́gy 1 − α = 0.95. Mivel kétoldali az ellenhipotézis,
az elfogadási tartomány E = [−a, a] alakú, ahol P (u ∈ [−a, a]) = P (|u| <
a) = 2φ(a) − 1 = 0.95 kell hogy teljesüljön. Így φ(a) = 0.975 és a standard
normális eloszlás táblázatából a = 1.96 adódik. Tehát E = [−1.96, 1.96]

Most u = ξ̄18−m0

σ/
√

18
= 52−50

2/
√

18
= 4.24. Azaz u 6∈ E, tehát H0-t elvetjük, vagyis

95%-os szignifikanciaszinten nem fogadható el az a feltételezés, hogy a gépsor
szabványos mennyiséget tölt.

H0-t akkor vethetjük el, ha u = 4.24 6∈ E = [−a, a], azaz, ha a < 4.24.
a = 4.24 esetén a szignifikanciaszint 2φ(a) − 1 = 1, mivel φ(4.24) = 1-
nek tekinthetõ. Így minden szinten, azaz teljes biztonsággal elvethetõ az a
feltételezés, hogy a gépsor szabványos mennyiséget tölt. (Azaz le kell álĺıtanunk,
és be kell újra álĺıtanunk a gépsort, hacsak nem akarunk a vásárlókkal jótékony-
kodni.)

2. Mivel a valódi szórások ismertek, kétmintás u-próbát alkalmazhatunk. A
nullhipotézis H0 : m1 = m2, (a két város átlagos csapadékmennyisége
megegyezik), az ellenhipotézis H1 : m1 6= m2.

H0 teljesülése esetén u = ξ̄n−η̄m√
σ2

M
/n+σ2

L
/m

∼ N(0, 1). Itt n és m a megfelelõ

minták elemszáma. u = 35−28√
53/10+47/10

= 2.21 A megadott szignifikanciaszint

99% és H1 kétoldali ellenhipotézis, ı́gy az elfogadási tartomány E = [−a, a]
alakú, ahol P (|u| < a) = 2φ(a) − 1 = 0.99, azaz φ(a) = 0.995, vagyis
a = 2.57. Így t = 2.21 ∈ E = [−2.57, 2.57], azaz H0-t elfogadjuk.

3. Arról a hipotézisrõl, hogy a két város csapadékmennyiségének szórása azonos-
e, F -próba seǵıtségével dönthetünk. Itt a nullhipotézis H0 : σ1 = σ2,
az ellenhipotézis H1 : σ1 6= σ2. Általában a következõ próbastatisztikát

használjuk: F = max
{

s2

M

s2

L

,
s2

L

s2

M

}

. Ez a H0 nullhipotézis mellett F -eloszlású

n−1,m−1 szabadsági fokkal, ahol n és m a nevezõhöz illetve a számlálóhoz

tartozó minta elemszáma. Jelen esetben F =
s2

M

s2

L

= 42
38

= 1.11, és F (9, 9)

szabadságfokú. A táblázat szerint a megfelelõ kritikus érték c = 3.18, azaz
P (F < c) = 0.95. Mivel F = 1.11 < c = 3.18, ezért 95%- os szignifikancia-
szinten elfogadjuk azt a hipotézist, hogy a két csapadékmennyiség szórása
azonos. Miután teszteltük, hogy a két független mennyiség szórása azonos-
nak tekinthetõ, a várható értékek egyenlõségének vizsgálatára kétmintás t-
próbát használhatunk (ugyanis a két szórás azonos, de NEM ISMERT.) A
nullhipotézis H0 : m1 = m2, (a két város átlagos csapadékmennyisége
megegyezik), az ellenhipotézis H1 : m1 6= m2.

3



H0 teljesülése esetén t = ξ̄n−η̄m√
(n−1)s2

M
+(m−1)s2

L

√

nm(n+m−2)
n+m

t eloszlású n+m−2

szabadságfokkal. Itt n és m a megfelelõ minták elemszáma. t értéke most

t = 35−28√
9∗42+9∗38

√

10∗10∗18
20

= 2.475. A megadott szignifikanciaszint 99% és H1

kétoldali ellenhipotézis, ı́gy az elfogadási tartomány E = [−a, a] alakú, ahol
P (|t| < a) = 0.99. Másrészt t n + m − 2 = 18 szabadságfokú. Így a t
eloszlás táblázatából a = 2.878 és E = [−2.878, 2.878]. Mivel t = 2.475 ∈ E
H0-t elfogadjuk, azaz 99%-os megb́ızhatósági szinten álĺıthatjuk, hogy a két
város átlagos csapadékmennyisége megegyezik. (Megjegyzés. 95%-os szig-
nifikanciaszint esetén a = 2.101, ı́gy 95%-os megb́ızhatósági szinten már nem
álĺıthatjuk, hogy a két város átlagos csapadékmennyisége megegyezik. )

4. A két minta (szerviz elõtti és szerviz utáni értékek) nem független, ı́gy
a két minta autónként vett különbségére, azaz a fogyasztás megváltozására
kell egymintás próbát használnunk. Így a következõ adatsort kapjuk:
−0.4,−0.6,−0.7, 0.0,−0.3. Ehelyett érdemesebb a −1-szeres értékéket te-
kinteni: 0.4, 0.6, 0.7, 0.0, 0.3 ami azt adja meg, hogy mennyivel csökkent a
fogyasztás. A mintaátlag ξ̄5 = 0.4, a korrigált tapasztalati szórásnégyzet
illetve szórás: s∗25 = (0.04 + 0.09 + 0.16 + 0.01)/(5 − 1) = 0.075, s∗5 = 0.274.

A nullhipotézisH0 : m = 0, (a szerv́ız elõtti és utáni fogyasztás megegyezik),
az ellenhipotézis H1 : m > 0 (a szerv́ız után a fogyasztás csökkent).

Mivel a szórás nem ismert, csak becsülni tudtuk, t próbát kell használnunk.
A H0 hipotézis mellett t = ξ̄5−0

s∗
5
/
√

5
4 szabadságfokú t eloszlású. Az adatok

szerint t = 0.4−0
0.274/

√
5

= 3.26.

Az ellenhipotézis most egyoldali, H1 alapján a kritikus tartomány K =
(a,+∞) alakú, ahol a > 0. A 0.025 elsõfajú hibavalósźınûséghez tartozó kri-
tikus érték 2.776, azaz ekkor t = 3.26 ∈ K, ı́gy 97.5%-os szinten elvethetjük
H0-t, azaz azt álĺıthatjuk, hogy a fogyasztás csökkent, vagyis a szerviz hatása
szignifikáns.
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Sztochasztikus folyamatok 3. házi feladat megoldások

1. RX(0) = D2(Xt) = σ2(1 + 9 + 4 + 16) = 90.

RX(1) = cov(εt + 3εt−1 − 2εt−2 + 4εt−3, εt+1 + 3εt − 2εt−1 + 4εt−2) =
σ2(1 · (−3) + 3 · (−2) + (−2) · 4) = −33.

RX(2) = σ2(1 · (−2) + 3 · 4) = 30.

RX(3) = σ2 · 1 · 4 = 12.

RX(k) = 0, ha k ≥ 4.

RX(k) = RX(−k).

2. RZ(k) = cov(Z0, Zk) = cov(X0 +W0, Xk +Wk) = cov(X0, Xk) = RX(k),

ha k 6= 0, mivel az X-ek a W -ktől függetlenek, és W0 is független Wk-tól.

RZ(0) = D2X0 +D2W0 = RX(0)+9. Az órán tanultak alapján k ≥ 1 esetén

RZ(k) = RX(k) =
4
(

1
m+1

)k

1 − ( 1
m+1

)2

RZ(0) = RX(0) + 9 =
4

1 − ( 1
m+1

)2
+ 9.

Ezek után k ≥ 2 esetén:

RU(k) = cov(Z0 − 1
m+1

Z−1, Zk − 1
m+1

Zk−1) =

RZ(k) − 1
m+1

RZ(k − (−1)) − 1
m+1

RZ(k − 1 − 0) + ( 1
m+1

)2RZ(k − 1 − (−1)) =

RX(k) − 1
m+1

RX(k + 1) − 1
m+1

RX(k − 1) + ( 1
m+1

)2RX(k) = 0,

némi számolgatással.

Ha k = 0 vagy 1, akkor a fentiekből:

RU(1) = (1 + ( 1
m+1

)2)RZ(1) − 1
m+1

[RZ(2) +RZ(0)],

és
RU(0) = (1 + ( 1

m+1
)2)RZ(0) − 1

m+1
[RZ(1) +RZ(−1)].

Ezek RZ(k) fent megadott értékei alapján számolhatóak. Mivel RU(k) = 0
ha |k| ≥ 2, ezért mozgó átlag folyamattal van dolgunk (bár az nem világos,
hogy mi most a fehér zaj).
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Sztochasztikus folyamatok 4. házi feladat megoldások

1. Láttuk, hogy ha |a| < 1 és b 6= −a, akkor az

Xt − aXt−1 = εt + bεt−1

ARMA folyamat létezik, és megkonstruáltuk kauzális végtelen mozgó átlag
elõálĺıtását:

Xt = εt +
∞

∑

j=1

(a+ b)aj−1εt−j.

Így

Xt =
∞

∑

j=0

ψjεt−j,

ahol ψ0 = 1, ψj = (a+ b)aj−1, ha j ≥ 1. (Emlékeztetõ: ha Zt =
∑∞

j=0 ψjεt−j

végtelen mozgó átlag, akkor RZ(k) = σ2
∑∞

j=0 ψjψj+k.) Így

RX(0) = σ2
∑∞

j=0 ψ
2
j = σ2[ψ2

0 +
∑∞

j=1 ψ
2
j ] = σ2

[

1 +
∑∞

j=1[(a + b)aj−1]2
]

=

σ2[1 + (a+b)2

1−a2 ].

RX(1) = σ2
∑∞

j=0 ψjψj+1 = σ2[ψ0ψ1 +
∑∞

j=1 ψjψj+1] =

σ2[(a+ b) +
∑∞

j=1(a+ b)2a2j−1] = σ2[a+ b+ (a+b)2a
1−a2 ].

RX(2) = σ2
∑∞

j=0 ψjψj+2 = σ2[ψ0ψ2 +
∑∞

j=1 ψjψj+2] =

σ2[(a+ b)a+
∑∞

j=1(a+ b)2a2j] = σ2[(a+ b)a+ (a+b)2a2

1−a2 ].

RX(k) = σ2[(a+ b)ak−1 + (a+b)2ak

1−a2 ], ha k ≥ 1.

2. H0 : a két készség független, H1 : a két készség nem független.

Függetlenségvizsgálatot kell végeznünk. A próbastatisztika

χ2 =
3

∑

i=1

3
∑

j=1

(νij − νi·ν·j
n

)2

νi·ν·j
n

.

Itt n = 144 a táblázat elemeinek összege, νi·-k a sor összegek (83, 51, 10),
ν·j-k az oszlop összegek (71, 50, 23). Így

χ2 =
(35 − 83·71

144
)2

83·71
144

+ · · · + (1 − 10·23
144

)2

10·23
144

=

0.857 + 0.048 + 1.696 + 0.59 + 0.004 + 2.11 + 0.868 + 0.624 + 0.223 = 7.02

jön ki a statisztika értékére. r = s = 3, hiszen mindkét szempont szerint az
osztályok száma 3. Ezért a próbastatisztikának megfelelõ χ2-eloszlás
szabadsági foka (r − 1)(s − 1) = 4, a táblázat alapján c = 9.49 a 95%-
os szinthez tartozó kritikus érték (e fölött utaśıtunk el). Mivel a statisztika
értéke, 7.02 a kritikus érték alatt van, elfogadjuk a nullhipotézist. Megj. A
90%-os megb́ızhatósági szinthez tartozó kritikus érték 7.78. Így még 90%-os
szinten is elfogadhatjuk a nullhipotézist, azaz a két készség 90%-os szinten
is függetlennek tekinthetõ.
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3. H0 : a tetraéder szabályos, H1 : a tetraéder nem szabályos.

Illeszkedésvizsgálatot kell végeznünk. A lehetséges dobott értékek: 1, 2, 3, 4.

A próbastatisztika

χ2 =
4

∑

i=1

(νi − npi)
2

npi

,

ahol n = 100, mivel 100-szor dobunk, pi = 1/4, npi = 25, i = 1, . . . , 4
elméleti valósźınûségek és gyakoriságok felelnek meg a nullhipotézisnek.

νi, i = 1, . . . , 4 az 1, 2, 3, 4-es dobások valódi száma. A próbastatisztikának
megfelelõ χ2-eloszlás szabadsági foka 4−1 = 3, a táblázat alapján c = 11.35 a
99%-os szinthez tartozó kritikus érték (e fölött utaśıtunk el). Így feladatunk
olyan nemnegat́ıv egész νi, i = 1, . . . , 4 értékeket találni, melyek összege 100,
és amelyekre a próbastatisztika értéke c = 11.35 alatt illetve c = 11.35 felett
van. A következõek pl. megfelelõek:

1. ν1 = 21, ν2 = 24, ν3 = 26, ν1 = 29. Ekkor

χ2 =
(21 − 25)2

25
+

(24 − 25)2

25
+

(26 − 25)2

25
+

(29 − 25)2

25
= 1.36,

ez kisebb mint a kritikus érték, ı́gy a nullhipotézist itt 99%-os szinten elfo-
gadjuk.

2. ν1 = 48, ν2 = 9, ν3 = 12, ν1 = 31. Ekkor

χ2 =
(48 − 25)2

25
+

(9 − 25)2

25
+

(12 − 25)2

25
+

(31 − 25)2

25
= 39.6,

ez nagyobb mint a kritikus érték, ı́gy a nullhipotézist itt 99%-os szinten
elutaśıtjuk.
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Sztochasztikus folyamatok 5. házi feladat megoldások

1.

Xt +
1

20
Xt−1 −

1

20
Xt−2 = 2εt −

3

5
εt−1 −

1

5
εt−2,

azaz A(z)Xt = B(z)εt, ahol A(z) = 1 + 1/20z − 1/20z2, B(z) = 2 − 3/5z −
1/5z2. A(z) = 0 acsa. ha z2 − z − 20 = 0, azaz z = 5 vagy z = −4. A(z)
gyökeinek abszolút értéke nagyobb mint 1, ı́gy az ARMA folyamat stabil.
B(z) = 0 acsa. ha z2 +3z− 10 = 0, azaz z = 2 vagy z = −5. B(z) gyökeinek
abszolút értéke nagyobb mint 1, ı́gy az ARMA folyamat invertálható.

a) Rekurzió egy lépéses elõrejelzésre:

B(z)X̂t+1 = (B(z) − β0A(z))Xt+1.

β0 = 2, ı́gy

B(z) − β0A(z) = 2 − 3

5
z − 1

5
z2 − 2(1 +

1

20
z − 1

20
z2) = − 7

10
z − 1

10
z2.

Tehát

(2 − 3

5
z − 1

5
z2)X̂t+1 = (− 7

10
z − 1

10
z2)Xt+1,

azaz

2X̂t+1 −
3

5
X̂t −

1

5
X̂t−1 = − 7

10
Xt −

1

10
Xt−1,

vagyis a keresett rekurzió:

X̂t+1 =
3

10
X̂t +

1

10
X̂t−1 −

7

20
Xt −

1

20
Xt−1.

b) Ha két lépésre akarjuk elõrejelezni a folyamatot, akkor a rekurziót a köv.
egyenlet adja meg

B(z)X̂t+2 = (B(z) − (ψ0 + ψ1z)A(z))Xt+2,

ahol ψ0 és ψ1 a köv. egyenletbõl határozható meg:

B(z) = A(z)(ψ0 + ψ1z +
∞

∑

j=2

ψjz
j),

azaz

2 − 3

5
z − 1

5
z2 = (1 +

1

20
z − 1

20
z2)(ψ0 + ψ1z +

∞
∑

j=2

ψjz
j).

Innen 2 = ψ0 és −3/5 = ψ1 + 1/20ψ0, azaz ψ1 = −7/10. Ebbõl

B(z) − (ψ0 + ψ1z)A(z) = − 13

200
z2 −− 7

200
z3

adódik. (Megj. Itt a konstans és elsõfokú tagoknak ki kell esnie.) Tehát

(2 − 3

5
z − 1

5
z2)X̂t+2 = (− 13

200
z2 −− 7

200
z3)Xt+2,

8



amibõl

X̂t+2 =
3

10
X̂t+1 +

1

10
X̂t −

13

400
Xt −

7

400
Xt−1

a keresett rekurzió kétlépéses elõrejelzés esetén.

2. Vegyük az

Xt +
1

20
Xt−1 −

1

20
Xt−2 = 2εt

egyenlet mindkét oldalának kovarianciáját Xt-vel, ebbõl

cov(Xt +
1

20
Xt−1 −

1

20
Xt−2, Xt) = cov(2εt, Xt) = cov(2εt, ψ0εt) =

= 2ψ0cov(εt, εt) = 2ψ0σ
2 = 12

adódik. (Figyelem: itt majdnem mindenki lehagyta a 2-es szorzót a jobb-
oldalon, és lemásolta változtatás nélkül azt, ami a gyakorlaton levõ feladat
megoldásában szerepelt.) A baloldali kovariancia kifejtésébõl

RX(0) +
1

20
RX(1) − 1

20
RX(2) = 12

adódik. Vegyük most az eredeti egyenlet kovarianciáját Xt−1-gyel, ebbõl

cov(Xt +
1

20
Xt−1 −

1

20
Xt−2, Xt−1) = cov(2εt, Xt−1)

azaz

RX(1) +
1

20
RX(0) − 1

20
RX(1) = 0

adódik hiszen εt és Xt−1 független.

Tudjuk, hogy léteznek olyan C1, . . . , Cp konstansok, hogy

RX(k) =

p
∑

j=1

(

1
gj

)|k|
,

ahol p az A(z) = 1 + 1/20z − 1/20z2 gyökeinek száma, azaz most p = 2, és
g1 = −4, g2 = 5 az A(z) polinom gyökei. Így RX(0) = C1 + C2, RX(1) =
(−1/4)C1 + (1/5)C2, RX(2) = (−1/4)2C1 + (1/5)2C2 = 1/16C1 + 1/25C2.
Így a fentiekbõl a köv. két egyenlet adódik:

(C1 + C2) +
1

20
(−1

4
C1 +

1

5
C2) −

1

20
(

1

16
C1 +

1

25
C2) = 12,

és

(−1

4
C1 +

1

5
C2) +

1

20
(C1 + C2) −

1

20
(−1

4
C1 +

1

5
C2) = 0.

Azaz C1
315
320

+ C2
504
500

= 12 és C1

(

− 15
80

)

+ C2
24
100

= 0, amibõl C1 = 6.77 és
C2 = 5.29. Tehát

RX(k) =
(

− 1

4

)|k|
6.77 +

(1

5

)|k|
5.29.
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Sztochasztikus folyamatok 6. házi feladat megoldások

1.

φX(t) = σ2
∣

∣

∣

B(eit)

A(eit)

∣

∣

∣

2

= σ2
∣

∣

∣

1 − 1
2m
eit

1 − 1
3
eit

∣

∣

∣

2

= σ2 (1 − 1
2m
eit)(1 − 1

2m
e−it)

(1 − 1
3
eit)(1 − 1

3
e−it)

=

σ2 1 − 1
m

cos t+ 1
4m2

1 − 2
3
cos t+ 1

9

2.

RX(k) =
1

2π

∫ π

−π

φX(u)eiuk du =
1

2π

∫ π

−π

e−m|u|eiuk du =

=
1

2π

[

∫ π

0

e−m|u|eiuk+

∫ π

0

e−m|u|eiuk
]

du =
1

π
Re

∫ π

0

e−m|u|eiuk du =
1

π
Re

[e(−m+ik)u

−m+ ik

]π

0
=

=
1

π
Re

e(−m+ik)π − 1

−m+ ik
=

1

π
Re

[e(−m+ik)π − 1](−m− ik)

m2 + k2
=

=
1

π(m2 + k2)
Re[(e−mπ(cos kπ+i sin kπ)−1)(−m−ik)] =

−m
π(m2 + k2)

[e−mπ(−1)k−1]

3. Létezik kauzális MA(∞) elõálĺıtás, acsa, ha
∫ π

−π

∣

∣ ln e−1/u2
∣

∣ du <∞.

∫ π

−π

∣

∣ ln e−1/u2
∣

∣ du = 2
∫ π

0
1/u2 du = 2

[

− 1
u

]π

0
= +∞. Így nem létezik kauzális

MA(∞) elõálĺıtás.
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Sztochasztikus folyamatok 7. házi feladat megoldások

1. Egy példa a sok közül, amit ı́rtatok, és tetszett:

4 város között személyvonat közlekedik, A,B; B,C illetve C,D között van
vasúti pálya. Egy ellenõr utazik a városok között a következõ átmenetvalósźınûség
mátrix szerint:

Π =









1/2 1/2 0 0
3/4 0 1/4 0
0 1/10 1/10 8/10
0 0 0 1









.

Mindig csak vasúton szomszédos városba tud utazni, indõnként kicsit meg-
pihen, illetve idõnként lustaságból nem megy tovább, és valamelyik (A,C
vagy D) városban idõzik. D városban az állomáson van egy játékterem, és
kalauzunk szenvedélyes játékos, ı́gy, ha odaérkezik, akkor nem tud ellenálni
a ḱısértésnek, és a nap hátralevõ részét a játékteremben tölti.

2. a) p = 1/2 , q = 1/4.

b) 1.mo.

P (X2 = 1|X0 = 2) = p
(2)
2,1 = p21p11 +p22p21 +p23p31 =

1

2
· 1
2

+
1

4
· 1
2

+
1

4
·0 =

3

8
.

2.mo

Π2 =





1/2 1/2 0
1/2 1/4 1/4
0 1/3 2/3





2

=





1/2 3/8 1/8
3/8 19/48 11/48
1/6 11/36 19/36



 ,

ı́gy P (X2 = 1|X0 = 2) = (Π2)2,1 = 3/8.

c) A ML homogén, ı́gy P (X5 = 1|X3 = 2) = P (X2 = 1|X0 = 2) = 3/8.

d) Ha X0 eloszlása Q(X0) = (2/10, 3/10, 5/10), akkor X2 eloszlása

Q(X2) = Q(X0)Π
2 = (2/10, 3/10, 5/10)





1/2 3/8 1/8
3/8 19/48 11/48
1/6 11/36 19/36



 =

= (71/240, 499/1440, 103/288).

e) Felhasználva a Markov tulajdonságot:

P (X0 = 3, X1 = 2, X2 = 2, X3 = 1) =
P (X0 = 3)P (X1 = 2|X0 = 3)P (X2 = 2|X1 = 2)P (X3 = 1|X2 = 2) =
P (X0 = 3)p32p22p21 = 5/10 · 1/3 · 1/4 · 1/2 = 1/48.

f) Rajzoljuk le a ML átmenetgráfját! A gráfnak 3 csúcsa van {1, 2, 3}, és az
i csúcsból a j csúcsba (i = j is lehet) akkor rajzolunk iránýıtott élet, ha az
egylépéses átmenetvalósźınûség pi,j = (Π)i,j > 0. Mivel a Π mátrixban csak
két elem p1,3 = p3,1 = 0, ezért az átmenetgráfban csak két iránýıtott él (1, 3)
és (3, 1) nincs berajzolva, és 7 iránýıtott él van az ábrán: (1, 1),(2, 2),(3, 3),(1, 2),
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(2, 1),(2, 3),(3, 2) (e léırás helyett elég rajzolni). Az irreducibilitás azt je-
lenti, hogy az átmenetgráfban minden pontból minden pontba el lehet jutni
iránýıtott élek mentén. Ez a gráfból látszik, hogy teljesül (pl. 1-bõl 3-ba el
lehet jutni két lépéssel: (1, 2),(2, 3) mentén, 1-bõl 1-be egy lépéssel: az (1, 1)
hurokél mentén, stb.). Így a ML irreducibilis. Ez a Π mátrixról is leolvasható,
ugyanis Π-ben a fõátló alatti és feletti mellékátlóban is csupa pozit́ıv elemek
vannak, és szerepelt az a tétel, hogy ilyenkor a ML irreducibilis. (Megj. Ez
az irreducibilitásnak elégséges, de nem szükséges feltétele.)

g) A Markov lánc aperiodikus. Indoklás: legyen Li = {n ∈ N
+ : p

(n)
i,i > 0},

azaz Li azon pozit́ıv egész számok halmaza, ahány lépésben el lehet jutni i-bõl
i-be pozit́ıv valósźınûséggel. Most L1 = {1, 2, 3, . . . }, L2 = {1, 2, 3, . . . }, L3 =
{1, 2, 3, . . . }, mivel a három hurokél miatt akárhány lépésben el lehet jutni
i-bõl i-be pozit́ıv valósźınûséggel. Az L1-ben szereplõ számok legnagyobb
közös osztója 1, ı́gy az 1 állapot aperiodikus. Az L2-ben szereplõ számok
legnagyobb közös osztója 1, ı́gy a 2 állapot is aperiodikus. Az L3-ben szereplõ
számok legnagyobb közös osztója 1, ı́gy a 3 állapot is aperiodikus. Mivel
mindegyik állapot aperiodikus, ezért a ML is aperiodikus. Az aperiodicitás
a Π mátrixról is leolvasható, mivel a fõátlóban minden elem pozit́ıv, ezért a
ML aperiodikus . (Megj. (Tétel volt), hogy ha a ML irreducibilis, akkor elég
egy állapotról tudni, hogy aperiodikus, ebbõl következik, hogy az egész ML
is aperiodikus. Így, pl. (Tétel volt) ha a fõátló alatti és feletti mellékátlóban
csupa pozit́ıv elemek vannak, és a fõátlóban legalább egy elem pozit́ıv, akkor
a ML irreducibilis és aperiodikus. Azonban van olyan ML is, amelyre nem
teljesül, hogy a fõátló alatti és feletti mellékátlóban csupa pozit́ıv elemek
vannak, és a fõátlóban legalább egy elem pozit́ıv, és a ML mégis irreducibilis
és aperiodikus.)

Megj. zh-ban, vizsgában indokolni kell, hogy a ML irreducibilis ill. aperi-
odikus, ha ezt álĺıtjuk, persze az indoklás lehet rövid, de helytálló.

átmenetvalósźınûség mátrix szerint:

Π =









1/2 1/2 0 0
3/4 0 1/4 0
0 1/10 1/10 8/10
0 0 0 1









.
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Sztochasztikus folyamatok 8. házi feladat megoldások

1. A játékot léıró Markov-lánc állapottere S = {0, 1, 2, 3}, átmenetvalósźınûség
mátrixa

Π =









2/3 1/3 0 0
2/3 0 1/3 0
2/3 0 0 1/3
2/3 0 0 1/3









.

Irreducibilis a ML, mivel pl. van egy 0,1,2,3,0 iránýıtott kör a ML gráfjában,
ı́gy minden pontból minden pontba el lehet jutni pozit́ıv valósźınûséggel.
Mivel p00 > 0 (azaz van egy hurokél is), a ML aperiodikus is.

p = (p0, p1, p2, p3) eloszlás stacionárius eloszlás, ha pΠ = p avagy ΠTpT = pT .

Ezt átrendezve (Π − E)TpT = 0T adódik, azaz









−1/3 2/3 2/3 2/3
1/3 −1 0 0
0 1/3 −1 0
0 0 1/3 −2/3

















p0

p1

p2

p3









=









0
0
0
0









Az együttható mátrix második sorához az elsõt hozzáadva








−1/3 2/3 2/3 2/3
0 −1/3 2/3 2/3
0 1/3 −1 0
0 0 1/3 −2/3

















p0

p1

p2

p3









=









0
0
0
0









majd a harmadikhoz a másodikat hozzáadva








−1/3 2/3 2/3 2/3
0 −1/3 2/3 2/3
0 0 −1/3 2/3
0 0 1/3 −2/3

















p0

p1

p2

p3









=









0
0
0
0









Az elsõ három sort 3-mal szorozva a következõ egyenletek adódnak (a ne-
gyedik egyenletbõl ugyanaz adódna mint a harmadikból):

−p0 +2p1 +2p2 +2p3 = 0 ,−p1 +2p2 +2p3 = 0 ,−p2 +2p3 = 0 Ebbõl p2 = 2p3,
−p1 + 4p3 + 2p3 = 0, azaz p1 = 6p3, ı́gy −p0 + 12p3 + 4p3 + 2p3 = 0, azaz
p0 = 18p3. Mivel p = (p0, p1, p2, p3) eloszlás, p0 + p1 + p2 + p3 = 27p3 = 1,
ezért p3 = 1/27, p2 = 2/27, p1 = 6/27, p0 = 18/27. Egyensúlyi állapotban a
pénzem várható értéke 0p0 +1p1 +2p2 +3p3 = 0 ·18/27+1 ·6/27+2 ·2/27+
3 · 1/27 = 13/27.

2. Irreducibilis a Markov lánc, mert minden állapotból minden állapotba el
lehet jutni pozit́ıv valósźınûséggel. (Ez látszik a gráfjáról, ha lerajzoljuk.)
A ML aperiodikus is, noha most nincs hurokél a gráfban. Mivel a ML irre-
ducibilis, elég pl. az 1 állapotról belátni, hogy aperiodikus. 1-bõl az 1-be vis-
sza lehet térni 2 lépésben, 4 lépésben, 7, lépésben, stb. pozit́ıv valósźınûséggel.
E számok legnagyobb közös osztója 1, ı́gy az 1 állapot aperiodikus.
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3. Egy példa

π =









0 1 0 0
0 0 1 0

1/2 0 0 1/2
1 0 0 0









.

Ennél több 0 nem lehet a mátrixban, ha irreducibilis és aperiodikus a ML.
Ez valóban irreducibilis, ez leolvasható a gráfról, ahogy az is, hogy 1-bõl
az 1-be vissza lehet térni 3 lépésben is és 4 lépésben is, melyek legnagyobb
közös osztója 1. Így az 1 állapot, és az irreducibilitás miatt az egész ML is
aperiodikus.

4. A játék léırható egy ML-cal, melynek állapottere S = {A,B,C}, átmenetvalósźınûség
mátrixa

Π =





0 1/2 1/2
0 1/3 2/3

1/3 1/3 1/3



 .

A gráfról látható, hogy irreducibilis a ML és aperiodikus is, mivel a gráfban
van hurokél is. A stacionárius és egyben határeloszlás a fentiekhez hasonlóan
határozható meg, p1 = 4/25, p2 = 9/25, p3 = 12/25 adódik. Annak az esélye,
hogy Botondnál van a kulcs 9/25.

Mivel a ML stabil, ezért a π átmenetmátrix πn hatványa konvergál egy olyan
mátrixhoz, amelynek minden sorában a p1 = 4/25, p2 = 9/25, p3 = 12/25
stacionárius eloszlás van. Ezt tapasztalhatjuk, ha nagy n-re kiszámoljuk πn-
t.
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Sztochasztikus folyamatok 9. házi feladat

1. A Nagyesze professzor szobája elõtt tekergõ sor hosszát bináris modell seǵıtségével
ı́rhatjuk le. Az érkezés valósźınûsége most minden percben q = 0.45, a
kiszolgálás valósźınûsége p = 0.5. Az átmenetvalósźınûségi mátrix:

π =















1 − q q 0 0 0 . . .
a r b 0 0 . . .
0 a r b 0 . . .
0 0 a r b 0 .
...

...
. . . . . . . . .















,

ahol a = (1 − q)p = 0.55 · 0.5 = 0.275, b = (1 − p)q = 0.5 · 0.45 = 0.225,
r = 1−a−b = 0.5. Mivel q < p, a rendszer stabil. A stacionárius eloszlás ω =
(ω0, ω1, . . . ), ahol ω0 = 1− q/p = 1−0.45/0.5 = 0.1, ωi = ω0(b/a)

i/(1−p) =
0.1(9/11)i/0.5 = 0.2(9/11)i. Az átlagos sorhossz EX∞ = q(1 − q)/(p− q) =
0.45·0.55/0.05 = 4.95.. Annak a valósźınûsége, hogy több mint három diák áll
sorban: P (X∞ > 3) = 1−P (X∞ = 0)−P (X∞ = 1)−P (X∞ = 2)−P (X∞ =
3) = 1 − ω0 − ω1 − ω2 − ω3 = 1 − 0.1 − 0.164 − 0.134 − 0.109 = 0.492

A bináris modellben érvényes a Little a formula, és az alapján az átlagos
késleltetés: D̄ = E(X∞)/E(percenkénti érkezések száma) = 4.95/0.45 = 11,
avagy D̄ = (1 − q)/(p − q) = 0.55/0.05 = 11. Azaz átlagosan 11 percet kell
várnia egy diáknak, hogy béırják a jegyét.

2. A folytonos idejû ML állapottere S = {M,L,N}. Mivel álagosan 3, 5 ill.
4 hónapig tartózkodik ezeken a helyeken, ezért a Q rátamátrix fõátlójában
rendre q11 = −1/3, q22 = −1/5, q33 = −1/4 áll. A rátamátrix sorösszegei
0-k. Mivel Marseille-bõl mindig Nápolyba utazik, ezért q12 = 0 és q13 = 1/3.
Lisszabonból kétszer olyan valósźınû, hogy Marseille-be megy, mint hogy
Nápolyba, ı́gy q21 = 2q23, másrészt q21 + q23 = −q22 = 1/5, tehát 3q23 = 1/5,
azaz q23 = 1/15 és q21 = 2/15. Nápolyból egyforma valséggel megy a másik
két városba, ı́gy q31 = q32, másrészt q31 + q32 = −q33 = 1/4, azaz q31 = 1/8
és q32 = 1/8. Tehát

Q =





-1/3 0 1/3
2/15 -1/5 1/15
1/8 1/8 -1/4



 .

A ML átmeneti ráta gráfjában (ott húzunk be iránýıtott élet, ahol a Q
mátrixban pozit́ıv szám áll, hurokélek most nincsenek, ezt zh-ban vizsgában
le kell rajzolni) minden csúcsból minden csúcsba el lehet jutni iránýıtott út
mentén, ı́gy a ML irreducibilis. A ML véges állapotterû, és ez a kettõ együtt
folyztonos idejû ML esetén elég is a stabilitáshoz. Így létezik határeloszlás,
ami az egyértelmû stacionárius eloszlás. Ez kieléǵıti a pQ = 0 egyenletet.
Ezt transzponálva a következõt kapjuk:





−1/3 2/15 1/8
0 −1/5 1/8

1/3 1/15 −1/4









p1

p2

p3



 =





0
0
0




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A harmadik sorhoz az elsõ sort hozzáadva ebbõl




−1/3 2/15 1/8
0 −1/5 1/8
0 3/15 −1/8









p1

p2

p3



 =





0
0
0





adódik. Így két egyenletet kapunk (a harmadikból ugyanazt kapnánk, mint
a másodikból): −1/3p1 + 2/15p2 + 1/8p3 = 0, és −1/5p2 + 1/8p3 = 0. Így
p3 = 8/5p2, p1 = 3(2/15p2+1/5p2) = p2, azaz p1+p2+p3 = p2+p2+8/5p2 =
18/5p2 = 1. Tehát p2 = 5/18, p1 = 5/18, p3 = 8/18. Annak a valósźınûsége,
hogy egy véletlenszerûen kiválasztott napon Lisszabonban van: p2 = 5/18,
ha tudjuk, hogy a három város valamelyikében van.

3. a) Mivel az autók érkezése percenkénti λ = 4 intenzitású Poisson folyamattal
reprezentálható, ezért az érkezések között eltelõ idõ Exp(λ) eloszlású, azaz
annak a valósźınûsége, hogy érkezik autó 10 másodperc=1/6 perc alatt:
1 − e−λ1/6 = 1 − e−4·1/6 = 1 − e−2/3 = 0.487

b) A 10 másodperc alatt érkezõ autók száma Poisson(λ1/6)=Poisson(4/6)
eloszlású. Így P(megússza a kalandot)=P(0 vagy 1 autó jön 10 másodperc
alatt)=e−4/6 + 4/6e−4/6 = 0.856.

c) Annak a valósźınûsége, hogy érkezik autó 30 másodperc=1/2 perc alatt:
1 − e−λ1/2 = 1 − e−4·1/2 = 1 − e−2 = 0.865 Ha csak 30 másodperc alatt
tud átvánszorogni az úton, de egy autót ki tud kerülni, akkor P(megússza a
kalandot)=P(0 vagy 1 autó jön 30 másodperc alatt)=e−2 + 2e−2 = 0.405.

d) Most ment el egy autó. Mivel Exp(4) eloszlású perc múlva jön a következõ,
ezért várhatóan 1/4 perc=15 másodperc múlva jön a következõ.

e) Most ment el egy autó. Annak az esélye, hogy a következõ autó több mint
30 másodperc múlva érkezik=e−λ1/2 = 1 − e−4·1/2 = e−2 = 0.135.

f) Most ment el egy autó. A következõ 2 percben várhatóan 4 érkezik,
azaz az érkezõ autók száma Poisson(2λ)=Poisson(8) eloszlású. Így annak a
valósźınûsége, hogy a következõ 2 percben 5 autó érkezik=85/5!e−8 = 0.092.
Annak a valósźınûsége, hogy a következõ két percben 5 autó és az azt követõ
három percben 4 autó érkezik=85/5!e−8 ·124/4!e−12 = 0.092·0.005 = 0.00046,
hiszen diszjunkt intervallumokról van szó, és 3 perc alatt várhatóan 12 autó
érkezik, azaz az érkezõ autók száma Poisson(12) eloszlású.

g) Annak a valósźınûsége annak, hogy 2 percen belül 5 autó és 3 percen
belül 7 autó érkezik=annak a valósźınûsége, hogy 2 percen belül 5 autó és az
azt követõ 1 percben pedig 2 autó érkezik. (A vizsgált eseményt fel kell ı́rni
diszjunkt intervallumokról szóló események uniójaként, mert csak a diszjunkt
intervallumokon való érkezések száma független.) Így a keresett valósźınûség:
85/5!e−8 · 42/2!e−4 = 0.092 · 0.147 = 0.00135.

h) A d)-g) kérdésekre, ugyanaz a válasz akkor is, ha az utolsó autó 1 perce
ment el, és akkor is ha nem láttuk, hogy mikor ment el az utolsó autó,
mivel homogén Poisson folyamat szerint érkeznek az autók, azaz az érkezések
között eltelõ idõ exponenciális, tehát örökifjú eloszlású.
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