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15. A GÉNEXPRESSZIÓ SZABÁ-
LYOZÁSA EUKARIÓTÁKBAN. 
 
A differenciális génexpresszió. Sejtdifferenciáció és a 
sejtek DNS-tartalma. Az eukarióta gének expresz-
szióját szabályozó DNS-szakaszok. Transzkripciós 
faktorok. DNS-kötő fehérjemotívumok. 
Riportergének. A génexpresszió szabályozásának 
szintjei. Kromatin és génexpresszió. Mikro-RNS-ek és 
RNS-interferencia. 
 
A fejezetet szabad János egyetemi tanár állította össze, 
módosította Lippai Mónika  
 
 
BEVEZETÉS 
A prokarióta élőlények életében a génexpresszió 
szabályozásának célja elsősorban az, hogy a baktérium 
a leghatékonyabban alkalmazkodjon környezetéhez. 
Mivel a soksejtű eukarióta élőlények sejtjei viszonylag 
állandó környezetben élik életüket, bennük a 
génexpresszió szabályozásának elsődleges célja nem a 
környezethez való alkalmazkodás, hanem a sejtdiffe-
renciáció kiteljesedése az egyedfejlődés folyamán, és a 
kifejlett élőlény sejtfunkcióinak összehangolása. 
Milyen mechanizmusok biztosítják a soksejtű 
élőlényekben, hogy a gének a megfelelő sejtekben, a 
megfelelő időben és mértékben fejeződjenek ki (azaz 
expresszálódjanak)? Melyek azok a DNS-szakaszok, 
amelyek a gének kifejeződésében szerepet játszanak? 
Milyen fehérjék és hogyan szabályozzák a gének 
expresszióját? Milyen szintjei vannak a génexpresszió 
szabályozásának? A jelen fejezet célja a fenti kérdések 
megválaszolása. 
 
 
A differenciális génexpresszió  
    A soksejtű eukarióta élőlények testét kétféle sejt 
alkotja: (i) az ivarsejt-vonal sejtjei, amelyekből a 
kifejlett élőlény ivarsejtjei származnak, valamint (ii) a 
testi sejtek, amelyekből a legtöbb élőlényben nem 
származnak utódok (a kivételek zömét az ivartalan 
szaporodás különféle típusai jelentik). Vajon a testi 
sejtek mindegyikében minden gén expresszálódik? A 
kérdés például a következő kísérlet alapján eldönthető. 
    Egy adott sejttípusból (pl. máj) származó különböző 
cDNS-eket rögzítenek egy nitrocellulóz filterhez 
(15.1. ábra). Miután a cDNS-eket mRNS-ek alapján 
lehet reverz transzkriptáz enzim segítségével 
szintetizálni, mRNS-ek pedig csak akkor keletkeznek, 
ha egy gén kifejeződik, egy adott cDNS jelenléte az 
jelenti, hogy a neki megfelelő gén kifejeződik a 
vizsgált sejtféleségben. Ugyanakkor csak az RNS-ekbe 
beépülő 32P-UTP-t adnak máj-, valamint vese-, és 
idegsejtekhez - ha egy gén átíródik ezekben a 
sejtekben, a róla képződő mRNS-ekbe is 32P-UTP épül 
be. Össz-mRNS mintákat izolálnak ezekből a máj-, 
vese- és agysejtekből, hibridizálják a 32P-UTP-vel 
megjelölt mRNS-ek-et a nitrocellulóz filterhez kötött, 
májsejtekből származó cDNS-ekhez. Az auto-
radiográfia módszerével el lehet dönteni, hogy 
képződött-e az adott sejttípusban olyan mRNS, ami a 

májsejtekben is jelen van. Ha expresszálódott a gén, 
képződött 32P-jelzett mRNS, amely hibridizál a májból 
származó cDNS komplementer szálával, és az 
autoradiogramon sötét folt képződik (15.1. ábra). 
    Nyilvánvaló, hogy ha nincs jel az autoradiogramon, 
nincs olyan 32P-el megjelölt mRNS, ami a cDNS-el 
hibridizálhatna, vagyis az adott szövetben nem 
expresszálódik az a gén, amelyet a mából származó 
cDNS reprezentál. Ugyanakkor a 15.1. ábrán láthatjuk, 
hogy (i) van olyan gén, amely alapján a máj-, a vese- 
és idegsejtekben is képződik mRNS. Ebben az esetben 
a 3. sor 1., 2. és 5. helyén levő cDNS-ek aktin, tubulin, 
és riboszomális fehérje géneknek felelnek meg, 
amelyek az ún. háztartási gének jellegzetes példái. A 
háztartási gének termékére minden sejtnek szüksége 
van. (ii) Vannak olyan gének, amelyek csak az egyik 
sejttípusban expresszálódnak (itt: csak a 
májsejtekben), más sejttípusokban nem. A jelenség 
neve differenciális génexpresszió. (iii) Egy sejttípuson 
belül is a különféle gének expressziójának mértéke 
erősen változó – lásd a 15.1. ábra első képét. Kell 
tehát, hogy legyenek olyan mechanizmusok, amelyek 
szabályozzák, hogy egyrészt mely sejttípusban mely 
gének expresszálódjanak, másrészt szabályozni tudják 
a gének expressziójának mértékét is. 
 

15.1. ábra. A differenciális génexpresszió bemutatása. 
A képen olyan nitrocellulóz filterekről készült 
autoradiogramok vannak, amelyekhez májsejtekből 
izolált különböző mRNS-ek alapján készült cDNS-
eket kötöttek foltokban. A szűrőpapírokhoz 32P-vel 
jelzett máj-, vese-, valamint idegsejtekből izolált 
mRNS-eket hibridizáltak. Látható, hogy kis számban 
ugyan, de vese- és agymintában is találhatóak olyan 
mRNS-ek, amelyek a májsejtekben is jelen vannak – 
ezek lehetnek például a minden sejtben működő 
háztartási gének termékei.  
 
 
A sejtek DNS-tartalma a differenciáció folyamán 

    Lehetséges ugyanakkor olyan magyarázat is, amely 
szerint azért nem expresszálódik valamely gén 
valamely sejttípusban, mert a sejt nem tartalmazza az 
illető gént. Elképzelhető, hogy az egyedfejlődés során, 
miközben egy testi sejttípus valamely speciális feladat 
elvégzésére differenciálódik, elveszti azokat a géneket, 
amelyekre nem lesz szüksége hátralevő élete során. A 
feltételezés nem alaptalan. Vannak olyan féreg- és 
rovarfajok, amelyek testi sejtjeinek differenciálódása 
során kromoszómák vagy kromoszóma-részek vesznek 
el. (A jelenség neve a kromoszóma-diminúció, 
mechanizmusa pedig a következő: kromoszómák vagy 
kromoszóma részek erősen kondenzálódnak (úgy, mint 
a heterokromatin), majd a sejtosztódások során 
elvesznek a sejtekből.)  

Az mRNS-ek forrása 

Máj Vese Agy 
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   Itt említjük meg a kromoszóma(rész) elimináció-
jával ellentétes folyamatot, a génamplifikációt, amely 
folyamat során a DNS olykor meglehetősen nagy 
szakaszai replikálódnak (és néha a kromoszómából 
kivágódva független életet élnek). A DNS-kópiák 
tovább replikálódnak, miáltal néhány (vagy csak 
egyetlen) gén kópiaszáma megsokszorozódik. Ismert 
példa a selyemhernyó nyálmirigy-sejtjeiben, a gubó 
képződése során az úgynevezett selyem-gének 
amplifikációja, valamint az multidrog-rezisztencia gén 
amplifikációja a daganatsejtek bizonyos típusaiban (a 
multidrog-rezisztenciáért felelős fehérje egy pumpa: a 
sejthártyába épül, és miután eltávolítja a sejtekből a 
káros anyagokat, lecsökkenti a kemoterápia 
hatékonyságát).  
   Vajon a magasabbrendű élőlények differenciálódott 
sejtjei tartalmaznak minden gént? A kérdésre a 
következő két kísérlet is adhat választ.  
1. A sárgarépa-klónozás tanulsága 

Egy kísérletsorozatban sárgarépa gyökeréből származó 
sejteket különítettek el és tették egyenként steril 
táptalajra (15.2. ábra). A répasejt osztódni kezdett, az 
utódsejtek úgynevezett kalluszt képeztek. Megfelelő 
hormontartalmú táptalajra téve a kalluszból répa 
keletkezett. Az a tény, hogy egyetlen, már 
differenciálódott sejtből növényt lehetett regenerálni, 
azt jelenti, hogy a kiindulási sejt tartalmazta mindazt a 
genetikai információt, amely a sejtek osztódáshoz, és a 
differenciálódásához szükséges, vagyis a répagyökér-
sejtből nem veszett el gén.  
 
 

15.2. ábra. A sárgarépa klónozása. A répa terminá-
lisan differenciálódott testi sejtjeinek mindegyikéből 
egy-egy répa regenerálható, jelezve, hogy a 
differenciálódott testi sejtek DNS-tartalma nem 
változott a sárgarépa élete során. 
 
 
   Az a technika, amellyel egy növény testi sejtjeiből 
nagyon sok utódnövényt lehet előállítani, példa a 
klónozás egyik típusára, és mindennapos eljárás a 
növénynemesítésben. (Klón: egyetlen sejt vagy élőlény 
ivartalan szaporodással/szaporítással létrejött, azonos 
genotípusú leszármazottai.)  
 
2. A béka-klónozás tanulsága 

   Vajon az előző kísérlet működik az állatvilágban is? 
Igen, amint azt először J. Gurdon az 1960-as évek 
közepén megmutatta. Gurdon az afrikai karmosbéka 
(Xenopus laevis) ebihal bélhámsejtjeiből, a 
terminálisan differenciálódott sejtek egyik típusából 
izolált sejtmagokat (15.3. ábra). A sejtmagokat 

egyenként olyan meg nem termékenyített petesejtekbe 
ültette, amelyek sejtmagját előzőleg vagy eltávolí-
totta, vagy ultraibolya sugárzással tönkretette. A testi 
sejtek magját tartalmazó peték némelyikéből olyan 
békák fejlődtek, amelye utódai ma is élnek (15.3. 
ábra). Gurdon 2012-ben Nobel-díjat kapott 
munkásságáért.  
   A Gurdon-kísérlet elegánsan bizonyítja, hogy a béka 
bélhámsejtek örökítőanyagának anyaga sem csökken a 
sejt-differenciáció során - és azt is, hogy akár egy 
terminálisan differenciálódott sejt génexpressziós 
mintázata is áthangolható. Ezzel a módszerrel 
„készítették” többek között a világhírű Dolly birkát is 
1996-ban.   
 

15.3. ábra. A béka klónozása. Béka fejlődhet abból a 
„zigótából”, amelyet úgy hoztak létre, hogy a 
sejtmagtól megfosztott petesejtbe ebihal 
bélhámsejtjének magját ültették.  
 
 
A génexpressziót szabályozó DNS-szakaszok 
típusai 

   Nyilvánvaló, hogy a génexpresszió szabályozásához 
szükség van (i) olyan DNS-szakaszokra, amelyek 
befolyással vannak a gének kifejeződésére és (ii) olyan 
fehérjemolekulákra is, amelyek szabályozzák a gének 
transzkripcióját. A génexpressziót szabályozó DNS-
szakaszoknak eukariótákban három fő típusa van.  
 
(1) Promóter 

   Amint azt a 9. fejezet áttekinti, a gén átíródó 
részének 5’ vége közelében van a promóter, az a DNS-

Táptala
j 

Egy klónozott répa 
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szakasz, amelyhez - egyebek mellett - az RNS 
polimeráz enzim kapcsolódik. Az RNS polimeráz 
végzi a transzkripciót, a génexpresszió első lépését. 
Eukariótákban, hasonlóan a prokariótákhoz, a 
promóter része az A=T bázispárokban gazdag TATA-
(Hogness-) box, az evolúció folyamán erősen 
konzerválódott szekvenciák egyike (15.4. ábra).  
 

15.4. ábra. A TATA-box 60 eukarióta gén promótere 
alapján.   
 
 
    A TATA-box a gén 5’ vége közelében levő kb. 300 
bp-nyi DNS-szakasz része (15.5. ábra). A 
promóterben olyan további DNS-szakaszok vannak, 
amelyekhez a transzkripciót szabályozó fehérje-
molekulák, ún. transzkripciós faktorok kapcsolód-
hatnak. Minthogy ezek a szekvenciák a gén 5’ vége 
közelében, “felfelé” vannak, élesztőkben UAS-nek 
(Upstream Activating Sequences) nevezik őket. A 
soksejtű eukarióta promóterekben sok esetben nagyon 
nagyszámú olyan DNS-szakasz van, amelyekhez 
különféle transzkripciós faktorok kapcsolódhatnak. A 
kötődő transzkripciós faktorok típusa, száma, 
kombinációja, a kapcsolódás helye és erőssége 
határozza meg, hogy mely sejttípusban és milyen 
mértékben expresszálódik az általuk szabályozott gén.  
 

 
15.5. ábra. A génexpressziót szabályozó DNS-
szakaszok szerveződése egysejtű (élesztő) és soksejtű 
eukarióta élőlényekben. 
 
 
(2) Enhanszer 

Az enhanszerek olyan DNS szakaszok, amelyekhez (i) 
transzkripciós faktorok kapcsolódhatnak, szabályozva 
gének expresszióját, (ii) amelyek a szabályozott 
gén(ek)től akár nagyon messze is lehetnek (akár 100 

kb-nyira), és (iii) a gén strukturális részéhez 
viszonyítva 5’ és 3’ irányban, sőt, az intronokban is 
lehetnek.  
 
(3) Szilenszer 

A szilenszerek olyan DNS-szakaszok, amelyek 
csökkentik egy gén kifejeződésének mértékét. A 
szilenszerek is lehetnek az 5’ vagy 3’ irányban, vagy 

akár az intronokban is.   
   Hogyan szabályozhatják a génexpressziót az 
enhanszerek és a szilenszerek? Ne feledjük, 
hogy a gén a strukturált kromatin része, vagyis 
például egy gén promótere és egy adott 
enhanszer a DNS-szekvenciában távol, de térben 
egymás közelében is lehet. Vannak olyan 

fehérjék is, amelyeknek feladata éppen az, hogy 
egymás közelébe hozzák az enhanszert és a promótert. 
Tehát a génexpresszió szempontjából nagyon fontos, 
hogy milyen fehérjék kapcsolódnak a génexpressziót 
szabályozó DNS szakaszokhoz, és fontos a DNS-
fehérje komplex térbeli szerkezete is (15.6. ábra). 
Például egyetlen foszfátcsoport jelenléte a DNS-hez 
kapcsolódott fehérjén már drámai módon 
megváltoztathatja a génexpresszió jellegét és mértékét. 

 
15.6. ábra. Egy példa: a promóter és az enhanszer, 
illetve a hozzájuk kapcsolódó (+) illetve nem 
kapcsolódó () fehérjék kombinációinak hatása a 
szabályozott gén expressziójára és az expresszió 
mértékére.  
 
A riportergének és a transzgénikus élőlények 
szerepe a génexpresszió tanulmányozásában 

    A génexpresszió megfelelő szabályozása olyan 
mechanizmusokat feltételez, amelyek funkcióképes 
fehérjék képződését jelentik (i) az egyedfejlődés 
megfelelő szakaszában, (ii) a megfelelő sejtekben és 
(iii) a megfelelő mértékben. Hogyan lehetne 
azonosítani azokat a DNS szakaszokat, amelyek egy 
adott gén kifejeződését szabályozzák? Hogyan lehetne 
kideríteni az egyes szakaszok szerepét a gén 
kifejeződésében? A riportergének elegáns megoldást 
adnak a fenti kérdések megválaszolására (15.7. ábra).  

+1 5’ 3’ 

A  17 22 13  7 97  7 85 63 89 50 33 18 
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15.7. ábra. Egy Drosophilában alkalmazott riporter-
konstrukció szerkezete. Egy transzpozon kétoldali 
fordítva ismétlődő szekvenciái (IR) a következő DNS-
szakaszokat fogják közre: (i) azt, amely a riportergén 
expresszióját szabályozza. (Ugyanez a szekvencia 
szabályozza a +-szal jelölt tanulmányozni kívánt gént) 
expresszióját!) (ii) a riportergént (itt az E. coli lacZ 
génjét), valamint (iii) egy úgynevezett markergént (a 
markergén itt mini-w+, ami a w-/w- – fehér szemű -
háttéren narancssárga szemszínt eredményez). A fenti 
elemeket hordozó DNS-szerkezet a kromoszómák 
egyikébe inszertálódott (). A kromoszómák annak a 
génnek a két ép kópiáját (+) is hordozzák, amelynek 
az expresszióját szabályozó elemeket és szerepüket 
kívánjuk megismerni.   
 
 
   Vegyük azt a DNS-szakaszt, amely tartalmazza 
azokat a szekvenciákat, amelyek a vizsgált gén 
kifejeződését szabályozzák (15.7. ábra). Készítsünk 
egy olyan rekombináns konstrukciót, amely különböző 
eredetű DNS-darabokból áll: ligáljuk a vizsgálandó 
szabályozó DNS-szakaszt például az E. coli lac 
operonjának lacZ génjével (a lacZ gén a -
galaktozidáz enzimet kódolja) A konstrukcióban a 
lacZ gén expresszióját tehát a mesterségesen hozzá 
kapcsolt szakaszok szabályozzák. Ennek megfelelően 
a lacZ gén expressziója (azaz a -galaktozidáz enzim 
képződése) pontosan úgy alakul, amint a 
tanulmányozandó gén expressziója: a lacZ gén, mint 
egy riporter, tudósít a vizsgálandó (+) gén 
expressziójáról. Érthető, hogy a lacZ gént 
riportergénnek nevezik. A -galaktozidáz 
aktivitásának kimutatásához egy olyan színtelen X-gal 
nevű (-galaktozid típusú laktóz-analóg) vegyületet 
használnak, amelyből a -galaktozidáz enzim hatására 
kékszínű vegyület képződik (15.8. ábra). Néhány más 
riportergén is “forgalomban van”, mint például a 
luciferáz enzim, amelynek működése miatt világítanak 
a szentjánosbogarak, a CAT (kloramfenikol-acetil-
transzferáz) vagy a ma már leggyakrabban alkalmazott 
riporter, egy medúzafaj zölden fluoreszkáló proteinje, 
a GFP, illetve sokféle színben világító „rokonai” 
(YFP, CFP, RFP..).  
   A riportergén kifejeződésének időtartama függ a 
sejten belüli sorsától. (i) A riportergént is tartalmazó 
konstrukciót például plazmidban eukarióta sejtekbe 
juttatják (transzfektálják), és úgynevezett tranziens 
génexpresszió során követik a riportergén 
expresszióját. A sejtekbe juttatott DNS-szakaszok egy 
ideig jelen vannak, és működnek a transzformált 
sejtekben, majd degradálódnak. (ii) A rekombináns 

konstrukciót beleültetik a genomba. Erre alkalmasak 
például a transzpozonok: a mesterséges DNS 
„széleire” egy transzpozon fordítva ismétlődő 
szekvenciáit ligálják, és vektorban ivarsejt-vonal 
sejtekbe juttatják. Természetesen transzpozáz enzim 
jelenlétében, hogy a “szerkezet” eredeti helyéről 
kivágódhasson és a kromoszomális DNS-be 
inszertálódhasson. Így olyan transzformánsok 
képződnek, amelyek stabilak, és genomjuk átadásával 
utódaikra is örökítik a transzgént. Az ivarsejt-
transzformáció során létrejövő élőlények 
transzgénikusak: saját DNS-ük mellett idegen fajból 
származó (vagy akár mesterségesen előállított) DNS-t 
is hordoznak. A megfelelően megtervezett transzgén 
nem befolyásolja a sejtek normális funkcióját.  
   A szabályozó elemeket tartalmazó DNS-szakaszok 
egyes részeit, különböző kombinációit a riportergénnel 
kombinálva specifikus génexpressziót szabályozó 
szakaszokat lehet azonosítani, és szerepüket vizsgálni 
a génműködés szabályozásában (15.8. ábra). 
 

15.8. ábra. Riportergén felhasználása annak 
vizsgálatára, hogy milyen DNS-szakaszok biztosítják a 
Drosophila Ketel génjének expresszióját a különféle 
sejttípusokban. A transzgénekhez tartozó vastagított 
szakaszok azt mutatják, hogy a promóter mely 
szakaszai voltak a lacZ génnel kombinálva. A kéken 
festődő szövetekben a β-galaktozidáz riportergén 
expresszálódik. A jel egy olyan in vitro indukált 
mutáció helyét mutatja, amely megszüntetette egy 
transzkripciós faktor kötőhelyét. (Részletesen lásd: 
Villányi et al. Mech. Dev. 125, 822–831206, 2008.) 
 
 
A DNS-kötő fehérjék jellemzői 
   A génexpresszió szabályozásának további fontos 
tényezői a fehérjék. Közülük a transzkripciót „végző” 
RNS polimerázok szerepe kézenfekvő, de az eukarióta 
gének transzkripciójához nem elegendőek az RNS 
polimerázok. A transzkripció iniciációjához szükség 
van arra, hogy a promóter megfelelő szakaszához 
transzkripciós faktorok (TF-ek) kötődjenek (15.9. 
ábra).  
   Az általános transzkripciós faktorok olyan fehérjék, 
amelyek közvetlen szerepet játszanak a  transzkripció  
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szabályozásában. Például a TFIID a TATA-boxhoz 
kapcsolódik, és kötődése úgy változtatja meg a fehérje 
és a DNS térbeli szerkezetét, hogy további TF-ek, 
valamint az RNS polimeráz II is csatlakozhat a 
komplexhez, és végül elkezdődhet a transzkripció. TF-
ek azonban nemcsak a promóterhez, hanem az 
enhanszerekhez és a szilenszerekhez is 
kapcsolódhatnak. A minden sejtben jelen lévő 
általános TF-eken kívül a specifikus TF-ek csak 
bizonyos típusú sejtekben, az egyedfejlődés bizonyos 
stádiumaiban fejtik ki hatásukat, biztosítva a 
differenciális génexpressziót. 
 

15.9. ábra. Az eukarióta gének transzkripciójához 
nem csak az RNS polimerázra, hanem általános (és 
specifikus) transzkripciós faktorokra is szükség van. 
 
 
DNS-kötő fehérjemotívumok 

    Azok a fehérjék, amelyek a DNS-hez 
kapcsolódhatnak, tartalmaznak olyan funkcionális 
egységeket (doméneket), amelyek ehhez a 
kapcsolódáshoz szükségesek. A legfontosabb DNS-
kötő motívumok a következők (15.10. ábra):  
(1) A hélix-turn-hélix motívumot tartalmazó fehérjék 
dimert képezve kapcsolódnak a DNS-hez, úgy, hogy a 
hélixek egyike a DNS nagy árkába illeszkedik, és 
felismeri a bázispárok megfelelő szekvenciáit. Hélix-
turn-hélix motívumot tartalmaz egyebek között a 
triptofán-operon expresszióját szabályozó represszor 
fehérje, vagy a testszelvények kialakulásában fontos 
szerepet játszó, később bemutatásra kerülő 
úgynevezett homeodomén.  
(2) A cink-ujj motívumokban egy Zn2+-ion úgy létesít 
kapcsolatot négy ciszteinnel, hogy a közbenső 
aminosavak kétdimenziós ábrázolásokon ujjszerű 
kitüremkedést képeznek. Ezek a fehérjerészletek 
szintén a DNS nagy árkába illeszkednek, és a 

megfelelő bázispár-sorrendet felismerve a DNS-hez 
kapcsolják a fehérjét. A Zn-ujjakat tartalmazó fehérjék 
jellegzetes példái a szteroid hormon receptorok (lásd 
16. fejezet).  
(3) A leucin-cipzárak szintén dimert képeznek, a 
hidrofób leucin oldalláncok cipzárszerűen illesz-
kednek egymáshoz, miközben DNS-kötő fehérje-
motívum alakul ki (15.10. ábra). Leucin-cipzárt 
tartalmaz néhány, a sejtosztódásban szerepet játszó 
transzkripciós faktor (funkciónyeréses mutációjuk sok 
esetben rákos daganat forrása).  
(4) A hélix-hurok-hélix (angolul helix-loop-helix) 
motívum például az immunglobulinok és bizonyos 
izomfehérjék szintézisét kódoló gének expresszióját 
szabályozó fehérjékben található meg.  
 

 
15.10. ábra. A DNS-kötő fehérjemotívumok típusai. 
 
 
A kromatin és génexpresszió 

   Az eukarióta génműködés szabályozásában a 
kromatinnak is óriási szerepe van. Az eukarióta genom 
nagy (emberben ~3x109 bp). Nem kis feladat a 
genomonként kb. 10-30 ezer gén között a megfelelőt 
megtalálni, be- vagy kikapcsolni. Annál kevésbé, mert 
a DNS nukleoszómákba van tekeredve, a 
nukleoszómák pedig szupertekercseket képeznek. 
Ismertek olyan kromatin-fehérjék, amelyek “nyitva 
tartanak” bizonyos kromatin-szakaszokat, mások más 
kromatin-szakaszokat “örökre bezárnak”. Vannak 
olyan fehérjék, amelyek a kromatinhoz kapcsolódva a 
transzkripcióra alkalmas, nyitottabb területekre 
irányítják a transzkripciós faktorokat.  
   Az X-kromoszóma inaktiváció a génexpresszió 
szabályozásának olyan típusa, amely nőnemű emlősök 
sejtjeiben az egyik X-kromoszóma nagy részét, és 
ezzel együtt persze a benne levő géneket inaktiválja. 
Az inaktiváció alapja a kromatin erős feltekeredése 
(Barr-test képződése; 15.11. ábra). „Értelme” pedig 
az, hogy a nő- (XX) és a hímneműek (XY) sejtjeiben a 
X kromoszómához kapcsolt gének termékeinek dózisa 

 

 

 

 

 

 

 
 

 

 

  

 

  

 
 



                                                                                                            A génexpresszió szabályozása eukariótákban  6 

azonos legyen a sejtekben. Az X-kromoszóma 
inaktiváció mechanizmusa a dóziskompenzáció egy 
fajtája. 

15.11. ábra. Az X-kromoszóma inaktiváció mechaniz-
musának modellje. Az inaktiváció első lépésében az 
X-kromoszómához kapcsoltan öröklődő Xist gén 
transzkripciója nyomán úgynevezett interferáló RNS 
molekulák képződnek. Az interferáló RNS molekulák 
ahhoz az X kromoszómához kötődnek, amelyen levő 
Xist gén alapján képződtek. A kötődés hatására hiszton 
metilációk és deacetilációk játszódnak le (lásd 
később), heterokromatin képződik, miközben az X 
kromoszóma inaktiválódik. Az ábra jobb oldala egy 
Barr-testet mutat, amely az egyik hetero-
kromatinizálódott X kromoszóma. 
 
 
   A kromatinszerkezet szabályozására többféle 
lehetőség is van. Az emlősök promótereiben található, 
guanin előtt lévő citozinok metilációja (15.12., 15.13. 
ábra) azt eredményezi, hogy a metilált DNS-hez olyan 
fehérjék csatlakoznak, amelyek a kromatin 
tömörítésével megakadályozzák a transzkripciót. A 
metilált citozinok mintázata a replikáció során is 
fennmarad, és az utódsejtekbe átörökíthető, de a 
metiláció meg is szüntethető (15.13. ábra).   
 
 
 
 
 
 
 
 
 
15.12. ábra. A citozin metilációja.  
 
 
   A DNS metilációjának szerepe különösen fontos az 
egyedfejlődés folyamán. Az érő spermiumban illetve 
petesejtben szinte valamennyi gén demetilálódik, azaz 
aktiválható állapotba kerül. A megtermékenyítés után, 
ahogy az embrió fejlődik, szövetei differenciálódnak, 
azok a génjeik, amelyekre az adott sejttípusban 
immáron nincs szükség, metilálódnak, inaktiválódnak, 
„elhalkítódnak” (angolul: silenced). A metiláltság 

15.13. ábra. A metilált citozin mintázata megőrződik 
a replikáció során, így öröklődhet az utódsejtbe. Az 
ivarsejtekben törlődik a mintázat, hogy a 
megtermékenyítés után az embrióban még minden gén 
működhessen  
 
 
normális állapotának megváltozása, amint azt egy 
későbbi fejezetben látni fogjuk, gyakran vezet rákos 
daganatok kialakulásához. 
   Az eukarióták sejtjeiben a DNS nukleoszómákra van 
feltekerve (lásd a 3.13. ábrát). Ebben az állapotában a 
DNS-hez nem tud hozzáférni a transzkripciós 
apparátus. Amint azt a 15.14. ábra mutatja, a 
nukleoszómákat alkotó hisztonfehérjéknek van egy kb. 
20 aminosav hosszúságú „farka” az N terminálisuknál, 
amely kilóg a nukleoszómákból. A „farkak” lizinjei, 
argininjei és szerinjei módosulhatnak. A hiszton acetil-
transzferázok, amelyek acetil csoportokat kapcsolnak 
ezen aminosavak némelyikéhez, mintegy kinyitják a 
kromatint, lehetővé téve a transzkripciót (15.15. ábra). 
Ezzel szemben a hiszton deacetilázok, amelyek 
eltávolítják az acetil-csoportokat, tömörítik a 
kromatint, megnehezítve a transzkripciót. A hisztonok 
metilációja szintén ilyen hatást gyakorol, így a gének 
inaktiválódásához vezet. A szerinek foszforilációja 
pedig attól függően vezet gének aktiválódásához vagy 
éppen inaktiválódásához, hogy melyik hiszton melyik 
szerinjét érinti. A fent említett módosulások 
reverzibilisek, különféle kombinációkban 
következhetnek be, és a gének aktivitását rendkívül 
komplex módon szabályozhatják – a mára elterjedt 
„hiszton-kód” kifejezés ezt tükrözi.  

Citozin 5-metil-citozin 

Xist gén 

Transzkripció 

koromoszómához 
kötődő Xist RNS  

Heterokromatinizáció, 
kromoszóma-inaktiváció 

Bar-test 

Metiláció 

A transzkripció 
represszált, ha 
DNS-metil-
transzferáz 
hatására 
5-metil-citozinok 
alakulnak ki 

Replikáció 
 

 

Replikációt követően 
a citozinok nem 
metiláltak az újonnan 
képződött DNS szálon 

Metiláció 
Metiláció 

Az ún. fenntartó metil-
transzferáz aktivitása 
miatt a citozinok 
metilálódnak az újonnan 
képződött DNS szálon 

A metiláz aktivitása következtében 
a fejlődő ivarsejtekben a 
citozinokról eltűnnek a metil-
csoportok, ezért az első embrionális 
sejtekben még valamennyi génről 
történhet transzkripció 

Demetiláció 



                                                                                                            A génexpresszió szabályozása eukariótákban  7 

 
15.14. ábra. A hisztonok „farkában” levő aminosav-
oldalláncok módosításainak leggyakoribb példái.  
 

 
15.15. ábra. A hisztonok acetilációja a kromatin 
lazítása révén teszi lehetővé a gének expresszióját. A 
hisztonok deacetilációja a kromatin tömörödésével jár, 
hatására az expresszió gátlódik. 
 
 
   A DNS egyes citozinjainak metilációja és a 
hisztonok fent említett módosulásai olyan, a 
kromoszómák állapotával kapcsolatos jellemzők, 
melyek anélkül öröklődnek sejtről sejtre, olykor 
generációról generációra, hogy magának a DNS-nek a 
genetikai információ-tartalma megváltozna. A fenti 
jelenséget epigenetikus öröklődésnek nevezik.  
   Emlősökben az ivarsejtek képződése folyamán – bár 
a legtöbb gén metiláltsága megszűnik, ahogy erről már 
volt szó - egyes gének esetében a DNS mégis 
metilálódik, mégpedig a nemekre jellemzően. A 

folyamat két lépésben történik. Először az 5-metil-
citozinokról a metiláz eltávolítja az összes metil-
csoportot, majd közvetlenül a meiózis előtt egy metil-
transzferáz néhány génben a megfelelő citozinokat – 
nemtől függően - metilálja. A DNS metilációs 
mintázata mintegy 200 génben különbözik a 
spermiumban és a petesejtben: egy részük csak az 
anyában (a petesejtben), másik részük csak az apában 
metilálódik. A megtermékenyítés után a metiláció új 
mintázata, mint egyfajta epigenetikus információ 
megőrződik (15.16. ábra). Az ivarsejtekben 
bekövetkező, nemtől függő metiláció mintegy előre 
programozza némely gén inaktivitását az utódban. A 
jelenség neve: genom-imprintálódás, bevésődés.  
   A jelenség következményei nyilvánvalóak: ha 
például egy utód az anyától egy ép, ám metilált 
(inaktív) gént örököl, az apától pedig annak egy 
mutáns, funkcióképtelen változatát, kifejeződik benne 
a mutáns fenotípus, bár heterozigóta a recesszív 
mutáns allélra…   
 

15.16. ábra. Egy csak az anyában imprintálódó gén 
metilációs mintázatának öröklődése. A genom 
imprintálódása az epigenetikus öröklődés egyik típusa.  
 
 
MikroRNS-ek 

A gének az eukarióta fajok többségében a genom kis 
hányadát teszik ki. A nem kódoló részt a legutóbbi 
időkig feleslegesnek, „hulladéknak” (angolul: junk) 
vélték a szakemberek. A közelmúltban arra derült 
fény, hogy az eddig nem kódolónak hitt DNS egyes 
szakaszairól is íródhatnak át RNS-molekulák. Miután 
ezek az RNS molekulák rövidek, mikroRNS-eknek 
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(miRNS) nevezték el őket. A 2000-es évek elején vált 
nyilvánvalóvá, hogy a miRNS-ek fontos szerepet 
töltenek be az eukarióta gének expressziójának 
szabályozásában, elsősorban csökkentésében, azaz a 
gének „csendesítésében” (angolul: gene silencing) 
(15.17. ábra). És miután a miRNS-ek nagyon ősi 
eukarióta fajokban is jelen vannak, a gének 
csendesítése miRNS-ekkel a génexpresszió 
szabályozásának minden bizonnyal ősi, konzervált 
mechanizmusa. A miRNS-ekkel és legismertebb 
hatásmechanizmusukkal, az úgynevezett RNS-
interferenciával kapcsolatos kutatások elismeréseként 
Andrew Z. Fire és Craig C. Mello 2006-ban Nobel-
díjat kapott.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15.17. ábra. A génfunkció „csendesítése” mikroRNS-
ekkel, RNS-interferenciával. Az RNS egy úgynevezett 
RISC-komplex segítségével (angolul: RNA-induced 
silencing complex) semmisül meg.  
 
 
     Az első miRNS-t Victor Ambros és munkatársai 
fedezték fel 1993-ban a Caenorhabditis elegans 
fonalféregben. Először arra derítettek fényt, hogy a 
lin-14+ gén terméke egy olyan transzkripciós faktor, 
amely a féregben az első fejlődési stádium 
bekövetkeztét teszi lehetővé. Azok a férgek, 
amelyekben a lin-14 nevű gén elvesztette funkcióját, a 
fejlődés első stádiumát kihagyva a második stádiumba 
lépnek. Ugyanakkor a lin-4 nevű mutánsokban a sejtek 
némelyike az első stádium eseményeit ismételgette. 
Kiderült, hogy az ép lin-4+ gén terméke gátolja a lin-
14+ gén működését: így teszi lehetővé, hogy a normális 
fejlődés során a férgek az első stádium után a második 
stádiumba jussanak. Arra számítottak, hogy a lin-4+ 
gén terméke egy olyan fehérje, amely a lin-14+ gén 
funkcióját gátolja. Ehelyett azt találták, hogy a lin-4+ 
gén terméke nem fehérje, hanem egy olyan, mindössze 
22 nukleotidból álló kis (mikro-)RNS amely 
megsemmisíti a lin-14+-kódolt mRNS-t, csendesítve a 
lin-14 gén funkcióját (15.17. ábra).  

   Időközben sok száz miRNS-féleséget írtak le. 
Mindegyik kb. 22 nukleotidból áll, és egyetlen miRNS 
általában különböző mRNS-ek tucatjait ismeri fel és 
járul hozzá megsemmisítéséhez. A humán genom 
többezerféle miRNS-t kódol, amelyeknek célpontjai a 
géneknek mintegy 60%-át teszik ki.  
 
RNS interferencia (RNSi, angolul RNAi)  

   Az RNS-interferencia szerepe nagyon fontos a sejtek 
a vírusokkal szembeni védekezésében és a 
génexpresszió szabályozásában, különösen az 
egyedfejlődés során. A kis RNS molekuláknak két 
típusa van: az előbb bemutatott miRNS-ek, valamint 
az úgynevezett kis interferáló RNS-ek (angolul: small 
interfering RNA, siRNA), amelyek az RNS-
interferencia „kívülről történő” indukálásának 
kulcsfontosságú tényezői. Míg a miRNS-ek a saját 
genom által kódolt, eredetileg egyszálú RNS alapján 
képződnek, a siRNS-ek kívülről (vírusok által, vagy 
mesterségesen) bejutó rövid kettős szálú RNS-ek, és 
legtöbbször szintén a sejt saját mRNS-eihez 
kapcsolódva, RNS-interferencia révén fejtik ki 
hatásukat.  
    Akár miRNS, akár siRNS váltja ki, a mechanizmus 
fontos szereplője a Dicer fehérjekomplex, amely a 
hosszú, kétszálú RNS molekulákat kb. 20-22 
nukleotidból álló, szintén kétszálú fragmentekre aprítja 
(15.17. ábra). A képződő kis kettősszálú RNS 
molekulákat a RISC (RNA-induced silencing complex) 
két egyszálúvá tekeri szét. Közülük az egyik 
degradálódik, a másik pedig a RISC-komplex részévé 
válik, és hibridizál a citoszolban található azon 
mRNS-ekkel, amelyek komplementer szakaszt 
tartalmaznak. A párosodás hatására a RISC-komplex 
egyik alkotója, az Argonaute fehérje teljes egészében 
elemészti a felismert mRNS-t.  
   Az RNSi annyira hatékony technika, hogy vele egyes 
kiválasztott gének funkcióját lehet mesterségesen 
eliminálni, a génfunkció hiányában pedig az ép gén 
funkciójára következtetni. Az RNSi technikát egyre 
szélesebb körben igyekszik felhasználni a modern 
orvostudomány is, olyan esetekben, amikor hibásan 
túlműködő gének gátlására lenne szükség.  
 
A génexpresszió szabályozásának szintjei 

   A normális génexpresszió nemcsak funkcióképes 
fehérjék képződését jelenti, hanem azt is, hogy a 
sejtekben éppen megfelelő mennyiségű fehérje van a 
funkció ellátásához (bizonyos fehérjékből sejtenként 
csak néhány, másokból milliónyi molekula van). A 
fehérjék számának és aktivitásának szabályozására a 
transzkripción túl további lehetőségek is vannak 
(15.18. ábra). A génexpresszió szabályozásának 
leglényegesebb szintjei a következők. (1) A 
transzkripció, amely mind közül a legfontosabb. (2) A 
képződött pre-mRNS molekulák érése: milyen 
kombinációban vágódnak ki az intronok, azaz milyen 
érett mRNS keletkezik. (3) Az mRNS-ek kijutása, azaz 
exportja a sejtmagból szintén befolyásolható lépés. (4) 
Szabályozható a citoplazmába jutott mRNS molekulák 
élettartama, vagyis hogy mennyi ideig „élnek”, hány 
fehérje képződhet egy-egy mRNS alapján. (5) A 
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miRNS-ek tevékenysége is meghatározhatja az egyes 
mRNS-ek koncentrációját a citoplazmában. (6) A 
transzlációs kontroll azt jelenti, hogy a citoplazmába 
jutott mRNS-ek transzlációjának hatékonysága is 
szabályozható (15.19. ábra). Vannak olyan mRNS-ek, 
amelyek transzlációját adott fehérjék kapcsolódása 
serkentheti vagy éppen gátolhatja; szabályozható, 
hogy hozzáférhet-e hozzájuk a transzlációs apparátus. 
(7) A fehérjék aktivitását kémiai módosításukkal is 
lehet szabályozni. Akár egyetlen foszfátcsoport 
kapcsolása (például egy tirozin oldallánchoz) döntően 
megváltoztathatja a fehérje aktivitását. Ezeket a 
szerkezeti változásokat poszttranszlációs 
módosításnak nevezik gyűjtőnéven. (8) A fehérjék sem 
örökéletűek, egy idő multán mindenképpen 
degradálódnak, de élettartamuk (amit féléletidejük 
jellemez) szintén szabályozható.  

 
15.18. ábra. A génexpresszió szabályozásának 
lehetséges szintjei. 
 
 
 
ÖSSZEFOGLALÁS 
  A sejtek jellegzetességeit döntően az határozza meg, 
hogy bennük mely gének, mikor és milyen mértékben 
expresszálódnak. A génexpresszió szabályozása 
soktényezős folyamat. Az alapot a DNS biztosítja, 
nemcsak azzal, hogy fehérjék szintézisét kódolja, 
hanem azzal is, hogy benne olyan szakaszok vannak, 
amelyekhez különféle fehérjemolekulák 
kapcsolódhatnak. A DNS-hez kapcsolódó fehérjék 
nemcsak azt határozzák meg, hogy kifejeződjenek a 
gének vagy sem, hanem azt is, hogy a gének melyik 
sejtben, az egyedfejlődés mely stádiumában, és milyen 
mértékben expresszálódjanak. A génexpresszió 
szabályozásának fontosságát az is jelzi, hogy a 
folyamat több szinten valósul meg.  

 
15.19. ábra. A transzlációs kontroll.  
 
 
 
   Ugyanakkor a sejtek nem csupán saját belső 
harmóniájukat valósítják meg a génexpresszió 
szabályozása révén, de arra is képesek, hogy a 
szomszédságból, vagy akár a távolról érkező 
üzeneteket is észleljék, és egyes génjeik 
kifejeződésének megváltoztatásával az üzeneteknek 
megfelelően módosítsák funkciójukat. A sejtek 
működése közötti összhang biztosítja az élőlény életét, 
alkalmazkodását a változó környezeti feltételekhez. A 
sejtek közötti kommunikációt lehetővé tevő jelátviteli 
folyamatokat a következő fejezet mutatja majd be.  
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