
ZH1

1. Feladat - Zenei albumok katalógusa (40%)

A mellékelt pontosvesszővel tagolt album_catalog.csv fájl egy zenei kiskereskedés katalógusát
tartalmazza, a megvásárolható könnyűzenei albumokkal. Egy sor egy kiadásnak felel meg, de egy
adott együttes adott albumának több kiadása is előfordulhat. Írjunk egy java programot, amely

segít a kereskedőnek rendszerezni a katalógus tartalmát!
A program beolvassa a katalógus fájlt, és eltárolja a benne lévő adatokat. A kiadásokat egy-egy

objektum reprezentálja, melynek mezői tárolják a katalógusban az albumokról fellelhető
információt (ezek sorrendben: katalógus azonosító, együttes neve, album címe, címke, formátum,
értékelés, kiadás dátuma valamint egy egyedi release ID szám.) Megjegyzés: bizonyos
kiadásokhoz nem áll rendelkezésre a kiadás éve, ez esetben a fájl megfelelő sorának megfelelő
oszlopában 0 szerepel.

● A kereskedő szerint a katalógusban vannak ismétlődések. Az azonos releaseID-vel

rendelkező sorokat csak egyszer adjuk hozzá a gyűjteményhez!
● Egy kereskedőpartner szeretne egy listát kapni a legjobb albumokról. Minden kiadáshoz

tartozik egy értékelés, amely egy 1 és 10 közötti egész szám. Írjunk egy olyan függvényt,
amely egy integerre visszaadja a legalább akkora értékelést kapott kiadások listáját! Írjunk
egy függvényt, amely egy együttes nevére visszaadja az albumainak listáját!

● Írjunk egy másik függvényt, amely az együttes és az album nevére visszaadja az album
kiadásainak listáját.

● A kereskedő szeretné, ha a katalógusa sorrendben lenne. Hozzunk létre egy olyan csv fájlt
az eredetivel analóg módon, amelyben az együttesek abc sorrendben szerepelnek, az
együttesen belül az album címek is abc sorrendben, az azonos albumok pedig a kiadás
éve szerint növekvő sorrendben. Ha a felsorolt három adat mind egyezik, akkor a releaseID
döntsön.

Készíts egy konzolos menüt, amelyből a megírt függvények meghívhatók.

2. Feladat - Reptér (60%)

Ebben a feladatban egy kisebb reptér működését kell szimulálni.
 A reptéren egy kifutópálya van, ahonnan a gépek felszállnak, és ugyanide érkeznek is. Ezen kívül
a reptérnek van 10 dokkolója, ahol a leszállt repülők várakozhatnak. A repülőket a példánkban
szálak fogják reprezentálni.
 A reptérre random időközönként, átlagosan másodpercenként egy repülő érkezik, ami megnézi,
hogy szabad-e a leszállópálya ÉS van-e szabad dokkoló. Ha igen, akkor a repülőgép nagyon
gyorsan, 0.3 másodperc alatt leszáll. Miután leszállt a már korábban lefoglalt dokkolóba megy,
majd szabaddá teszi a leszállópályát. A repülők addig köröznek a reptér körül, amíg nem sikerül
leszállniuk és 0.15 másodpercenként újrapróbálkoznak.
 A repülőgépek a reptéren 5 másodpercet töltenek ki- és berakodással. Ezután ismét megnézik,
hogy szabad-e a felszállópálya és a repülőgép 0.3 másodperc alatt felszáll. Ha nem sikerül
felszállniuk akkor 0.15 másodperc múlva újrapróbálkoznak. Miután felemelkedett egy repülő
megszakítja a kapcsolatot a reptérrel.
 A feladat megoldása során ne használj busy waitinget, használd helyette a Java nyelv beépített
lehetőségeit, amit a gyakorlaton is használtunk. A feladat megoldásakor figyelj arra, hogy a

programod szálbiztos legyen!
A program folyamatosan naplózza a gépek tevékenységeit, például:

● 08:30:11 A(z) 59. gép leszállt és elfoglalta a(z) 3. dokkolót.
● 08:30:14 A(z) 45. gép elhagyta a(z) 5. dokkolót és felszállt.

● 08:30:14 A(z) 60. gép nem tudott leszállni.
● 08:30:15 A(z) 61. gép leszállt és elfoglalta a(z) 8. dokkolót.
● 08:30:15 A(z) 60. gép nem tudott leszállni.
● 08:30:15 A(z) 59. gép nem tudott felszállni.
● 08:30:16 A(z) 59. gép elhagyta a(z) 3. dokkolót és felszállt.
● 08:30:16 A(z) 60. gép nem tudott leszállni.
● stb.

