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1. ALAP TEREK 1

Bevezetés

A Funkcionalanalizis szerves folytatasa lesz az els6 évben tanult Matematikai Analizis I. és
I1. targyaknak. Akkor, els félévben, valos szamsorozatokkal kezdtiink, majd egyvaltozos
valos fiiggvényekkel folytattuk. Itt értelmeztiik a folytonossigot, differencidlhatésigot,
integralszamitast. Masodik félévben mindezeket a fogalmakat kiterjesztettiik a tobbval-
tozos, valos fliggvényekre, majd egy kicsit beletanultunk a vektorértéki, tobbvaltozos

fiiggvények tudoményaba.

A Funkcionalanalizis egy olyan alapvets dga a matematikanak, mellyel latszolag egészen
kiilonb6z6 matematikai problémak egységes modon kezelhetGk. A modern miiszaki, fizikai
problémék megoldasai elképzelhetetlenek a Funkciondlanalizis médszereinek alkalmazasa
nélkiil. A Parcialis differencidlegyenleteknél nélkiilozhetetlenek az itt megtanulandé es-
zkozok, és szinte nincs olyan mérndki tudoméany, ahol ne fordulnanak el6 parcialis differ-

encialegyenletek.

A targy lényegét egészen tomoren, megkozelitSleg igy foglalhatjuk Ossze: a kozonséges
vektorok, a véges dimenzios Euklideszi tér fogalmdt dltaldnositjuk. Ennek segitségével e-
gészen absztrakt halmazok — példaul sorozatok tere, fiiggvény halmazok — vektortérként
kezelhetSk, ezeken sorozatok, fiiggvények értelmezheték. Altalanositjuk a hatarérték,

folytonossag, derivalt fogalmét, a jol ismert tételeket kiterjesztjiik.

Valoban izgalmas és igen érdekes tudomanyteriiletbe kezdiink most.

1. Alap terek

Ebben a fejezetben bevezetjiik azokat az alapvetd "terek"-et, ahol dolgozni fogunk.

A Funkcionalanalizisben hasznalt absztrakt terek az altalanos topoldgikus tér-t6l indulnak,

egyre gazdagabb struktiuraval:
Topologikus tér < Metrikus tér < Normalt tér < Skalarszorzat tér

Ebben a felsorolasban balrol jobbra haladva az egyszerd struktura feldl az egyre bony-

olultabb struktarakhoz jutunk.

Masrészt, éppen a struktira "gazdagsaga" miatt, a jobboldalon allo terekben sokkal kén-
nyebb lesz tételeket bizonyitani, itt lesz "konnyt dolgozni" - de ezek a tételek sajnos nem

feltétleniil lesznek igazak a téliik balra all6 terekben.

A konkrét feladat hatarozza meg, hogy melyik strukturat tudjuk hasznalni.
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1.1. Metrikus tér

A Topodgikus tér olyan altalanos fogalom, amire nem lesz sziikségiink ebben a kurzusban.
A Metrikus terekkel kezdiink.

1.1. Definicio. Adott eqy M alaphalmaz (alaptér) és eqy d : M x M — R fiiggvény. Ezt

metrikdnak nevezzik, ha teljesilnek az aldbbi tulajdonsdgok:

1. d(z,y) > 0 - nem negativ.
2. d(z,y) =0 <=z =y - nem degenerdlt.
3. d(z,y) = d(y,x) - szimmetrikus.
4. d(z,y) +d(y,z) > d(x, z) - hdromszdg egyenldtlenség teljestil.
Megjegyzés. A fenti definicibban az M halmazon nincs semmiféle struktira. Az elemeket

nem tudjuk sem Osszeadni sem Osszeszorozni, nem tudunk sem nytdjtani, sem forgatni.

(Legalabbis most érdektelen mindez a metrikus tér szempontjabol.)

Példak:

1. R"™ az alaptér. A metrika:
" 1/2
i=1
ha x = (1, ..., 2) és Yy = (Y1, -, Yn)-
2. M = C, a metrika: d(z,w) = |z — w].
3. Diszkrét metrika.

M barmilyen halmaz. A metrika:

1 hazx
d(z,y) = 7Y , YV, yeM.
0 haz=y

4. Adott neN rogzitett természetes szam. Legyen M = {n hossztusaga 0— 1 sorozatok}.
Tehat M pontjai az n hosszu kodszavak: © = (xy, ..., x,), ahol z;¢{0, 1}.

A metrika azt méri, mennyiben kiilénbozik két kodszo.

d(z,y) = 8{i | ¥ # i}
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Pl. n=5és2=1(0,0,0,1,1), y = (1,0,0,1,0). Ekkor a tavolsag d(x,y) = 2.

(Kodelméletbdl ismerés lehet a példa.)

1. Gyakorlat. Gondoljuk meg, hogy valoban metrika.

1.2. Definicié. (M,d) egy metrikus tér. (x,) C M sorozat a térben. Azt mondjuk, hogy
(x,,) konvergens és (x,,) hatarértéke xo, ha Ve > 0-hoz AN melyre

d(x,, 1) < € ha n > N.

1. Feladat. Gondoljuk meg, hogy a (IR, d), diszkrét metrikus térben melyek a konvergens

sorozatok.

1.3. Definicio. M és N metrikus terek, hozzd tartozé metrikdkkal: (M, dyy) és (N, dy).
Adott eqy fiigguény f : M — N. Legyen xoeM tetszdleges pont. Az f fiiggvény folytonos
xo-ban, ha ¥Ye > 0-hoz 36 > 0 melyre

dM(JI,(Eo) <0 = dN<f(l’),f(l’0)) <e€

M

2. Feladat. Gondoljuk meg, hogy ha a képtérben a diszkrét metrika van, akkor csak a

konstans fiiggvény folytonos.

3. Feladat. Ha az alaptérben a diszkrét metrika van, mikor lesz a fiiggvény folytonos?
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1.2. Normalt tér

A most kovetkezs struktirakban az alaptérrdl feltessziik, hogy vektortér. Ez a fogalom jol
ismert Linearis algebrabol. Nagyon roviden, egy V' halmaz vektortér - méas szoval linedris
tér - a K test felett, ha az elemek kozott értelmezve van egy Osszeadéas (+) miivelet, és a

skalarral-valo-szorzas miivelete:

v, V26V = v, + vV
eV, deK = v eV

és ezekre a miiveletekre bizonyos (ismert) tulajdonsagok teljesiilnek. A K testrdl egyel6re

feltessziik, hogy K = IR, a val6s szamtest.

1.4. Definicio. V egy vektortér. A norma egy olyan || - || : V' — R fiiggvény, melyre

teljesiilnek az aldabbi tulajdonsdgok:

1. ||v|| = 0 - nem negativ.

2. |lv|=0 <= v =0 - nem degenerdlt.

3. N -v|| = A - lvl| - multiplikativ.

4. |lv+w| < |jv|| + ||w]| - hdromszdg egyenldtienséy teljesiil.

Ekkor (V)| - ||) normalt tér.
Példak.

L V=R, |z] = Ja.

2. V =TR",

Bz az Euklideszi norma, vagy négyzetes norma.

3. IR"-ben tovabbi normaék:

el =D lwil, el = max |a
i=1
1.1. Allitas. A (V.|| -||) normdlt tér egyben metrikus tér is az aldbbi metrikdval:

d(l’,y) = ||JZ - y”? ZE:QGV-
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2. Gyakorlat. Gondoljuk meg, hogy ez valoban metrika.

Példa folytatatasa: IR*-ben a frissen definialt normakhoz tartozé metrikak, ha o =
(71, 22) €5y = (y1,2):

di(z,y) = |x1 — | + |z2 — yal,

do(z,y) = /(21 — y1)2 + (22 — ¥2)?
doo(7,y) = max(|x; — y1, |12 — y2l)
(Rajzoljuk fel.)

1.2. Allitas. (IR, d) legyen a valds szimok halmaza a d diszkrét metrikdval. Ekkor nem

létezik olyan norma, melyre a metrika d(z,y) = ||z — y|| alakban felirhato lenne.

4. Feladat. Igazoljuk ezt az Allitést.

1.3. Skalarszorzat tér

1.5. Definicio. Legyen V' egy vektortér. Adott egy (-,-) : V x V — R mdvelet az aldbbi
tulagdonsdgokkal:

1. (v,v) >0 - nemnegativ.

2. (v,v) = 0 <= v =0 - nem degenerdlt.
3. (Av,w) = ANv,w), AeRR - multiplikativ.
4. (v,w) = (w,v) - szimmetrikus.

5. (v, w4 u) = (v,w) + (v,u) - disztributiv.

Ekkor (V,(-,-)) valds skalarszorzat tér.

Komplex skaldrszorzat tér esetén a skalarszorzat miiveletre (-,-) : V x V' — C, tehat (v, w)

nem feltétleniil valos szam. A szimmetria tulajdonsag ebben az esetben igy modosul:

(v, w) = (w,v).
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Példak:
1. V= IR'nJ <$7y> = Z?:l TilYi
2. V=C" (vyw)y =301 vw;
(Itt méar joval kevesebb példat sorolunk fel...)

1.3. Allitas. Egy (V,(-,-)) skaldrszorzat térben norma értelmezhetd:

loll = (v, 0)"2.

Megjegyzés. A Gyakorlatokon belatjak, hogy a fenti allitds nem megfordithat6. Van olyan
norma, amihez nincs skalarszorzat. Példaul IR"-ben csak ||z||2 esetén van skalarszorzat, a

|lz]|1 és ||z||cc normak mellett nincs!
1.4. Allitas. (Ismétlés DM-bdl.) Cauchy-Schwartz-Bunyakovszkij (CBS) egyenldtlensé.

[{v, W) < o]l - fJwl]

1.4. Lényeges alap terek I. Sorozat terek
Legyen V' a szdmsorozatok tere. Ez linearis tér, melynek pontjai szamsorozatok:
x=(x,) = (1, T2, ey Tpy -.0).

Ebben alterek:

1. ¢ C V: konvergens sorozatok. Lehetséges norma c-ben:
[2]|oo = sup{|a], i =1,2,...}.

2. ¢o C c: nullsorozatok.

3. co-ban altér ¢* ("kis el-egy”) tér.

o0

0t ={(z,): Z |z, | < o0}

n=1

A norma:

o
lzlh = Jail.
i=1
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4. Masik fontos sorozattér (kis el-kett&”):

2 ={(z,) : in < 00}.

Itt a norma

lzlla = O w2)'.
n=1

1.6. Definicio. p > 1 esetén az (7 teret (“kis el-p”) igy értelmezziik:

O ={(z) : Y |zl < oo}
n=1
A norma ebben a térben: .
Izl = O a7
n=1
Ha p = +oo, akkor a (> tér ("kis el-végtelen”):
0>° ={(x,) : korldtos}, |z]|co = sup |x,].

Kérdés. A fenti /P normalt tér mikor skalarszorzat tér?

Vilasz. p = 2 esetén (P-ben VAN skalarszorzat:

(2,9) = Ty
n=1

Ha p # 2, akkor nem skalarszorzat tér.

Megjegyzés. Pontosabban azt irhatjuk, hogy (7 = (P(N). Ez az altalanos Lebesgue-tér egy

specialis esete. Késébb fogunk errdl tanulni.

1.5. Lényeges alap terek IlI. Fiiggvényterek

Adott halmazon értelmezett valés vagy komplex értéki fiiggvények Osszegét és
skalarszorosat értelmezni tudjuk (pontonként). Legyen [a,b] C IR rogzitett intervallum.

Az itt értelmezett korlatos fiiggvények halmaza vektortér:
V={f:|a,b)) = R, 3IB:|f(z)|<B, Vz}.
A térben norma definidlhato:

11} = sup{|f (=) : we[a,b]}. (1)
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3. Gyakorlat. Gondoljuk meg, hogy valéban norma.

Ebben a térben alteret alkotnak a folytonos fiiggvények, melyet Cla, b] jelol:
Cla,b] ={f : [a,0] = R, folytonos}.

Cla, b]-ben skalarszorzat is definialhato:

b
(f.g) = / F(2)g(w)da

4. Gyakorlat. Gondoljuk meg, hogy valoban skalarszorzat.

A skalarszorzat a megszokott moédon egy normat indukal:

1= ([ ra) "

Lathato, hogy az igy kapott norma kiilonbozik attol, amit (1)-ben definidltunk. Ez utobbit

masképp is fogjuk jeldlni, és elnevezése négyzetes norma:

1= ( | b Payic) " )

Az (1)-ben definialt norma elnevezése sup-norma, jele || - ||s. Altalaban || f|lso # || f]l2-

Jelilés. C?*[a,b]: az [a,b]-n értelmezett folytonos fiiggvények tere a négyzetes norméval.

Kérdés: Cla,bl-n a sup-norma skalarszorzathol szarmazik-e?

5. Feladat. A Vilasz NEM. Igazoljuk.

Dimenzi6

Normalt térben és skalarszorzat térben az alap valamilyen V' vektortér. A tér dimenzidja

n, ha van n elemt vy, ..., v, linearisan fiiggetlen vektorokbol &ll6 generator rendszer.
1.7. Definicié. A V wvektortér dimenziéja +o0o, ha minden n-re van n db fiiggetlen vektor.
1.1. Kovetkezmény. Az eddig megismert alap példak dltaldban végtelen dimenzidsak, pl.

dim(#*) = 400, dim(C|a,b]) = +o0

6. Feladat. Adjunk meg tetszGleges n-re n elemi linearisan fiiggetlen elemet ¢*°-ben és
Cla, b]-ben.
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2. Metrikus tér topologiaja

Ebben a fejezetben olyan alapfogalmakat vezetiink be, melyeket majd a bonyolultabb
strukturakban is hasznalni tudunk. Célszeri tehat a legegyszertibb struktirat tekinteni

most. Legyen (M, d) egy metrikus tér.

2.1. Nyilt és zart halmazok
2.1. Definici6. zeM kézépponti, r > 0 sugari nyilt gémb

B.(z) ={y : d(z,y) <r}.

2.2. Definicio. Adott E C M. xzeE belsé pontja E-nek, ha van olyan r > 0, melyre
B.(x) C E. E C M nyilt halmaz, ha minden pontja belsd pont.

2.3. Definicio. teM torlédasi pontja E-nek, ha Ve > 0-ra

B.(t)NE # 0.
E C M zért halmaz, ha minden t torléddsi pontjdt tartalmazza.
Példak:
1. M = IR, Euklideszi tavolsaggal. Ekkor [a,b] zart, (a,b) nyilt.
2. M = Cla,b]. k> 0 fix valos szam.
E={f:|f(x)| <k, Vx} = FE CCla,b] nyilt

Eo={f:|f(x)| <k, Va} = Ey CCla,b] zart

2.1. Allitas. Egy E halmaz pontosan akkor nyilt, ha M \ E zdrt.

7. Feladat. Lassuk be a fenti allitast.

2.2. Kompakt halmazok

2.4. Definicié. E C M korlatos, ha YreE-hez Ir > 0, melyre E C B,.(z).
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2.5. Definicié. E C M egy részhalmaz a térben.
Lefedése: olyan részhalmazok halmaza, melyek unidja tartalmazza E-t.
— nyilt lefedés, ha a lefedd halmazok nyiltak,

— véges lefedés, ha a lefedd halmazok szdma véges.

2.6. Definicié. £ C M kompakt halmaz, ha minden nyilt lefedésbdl kivdalaszthato véges
lefedés.

Példa. R-ben E; = [0, 1] kompakt és Ey = (0,1] NEM kompakt.
Belatjuk, hogy Es NEM kompakt. Valoban, legyen

1 1
/rn N (_ - ) ’ Gn N BT" <l) '
n n+1 n

Ekkor (0,1] C |JG,, és nem valaszthato ki véges sok, ami lefedné.

8. Feladat. Fejezziik be a fenti bizonyitast. Miért nem vaszthato ki véges lefedés a fenti

példaban?
1. abra. A fenti Példabeli £y = (0, 1] halmaz nyilt fedése.
-
3
— G
€ )

L 1 i ! 3\
< : ' 7

T 1
4/9 s 4/2.

A fenti 2.6 Definici6 alapjan nem konnytd belatni egy konkrét halmazrél, hogy valoban

kompakt. Ezért egy masik kritériumot mondunk Kki.

2.7. Definicié. Az E C M halmaz sorozat kompakt halmaz, ha minden (x,) C E sorozat-

bol kivdlaszthatd konvergens (x,,) sorozat, melynek hatdrértéke E-beli:

lim z,, = xoek.
Np—00

2.1. Tétel. Tetszdleges metrikus térben eqy E halmaz pontosan akkor kompakt, ha sorozat

kompakt.



2. METRIKUS TER TOPOLOGIAJA 11

Bizonyitds vazlat: Indirekt. Tegyiik fel, hogy M kompakt halmaz, és mégis van benne
olyan sorozat, melynek nincs konvergens részsorozata. Jelolje ennek kiilonb6z6 pontjait yx,
keN. Ezek lefedhetSk paronként diszjunkt nyilt gdmbokkel, amihez hozzavéve a M\ U{y; }
halmazt egy nylt lefedést kapunk - és nem valaszthato ki belGle véges lefedés.

2.2. Allitas. Minden E C M kompakt halmaz korldtos.

9. Feladat. Lassuk be a fenti allitast.

2.3. Allitas. Minden E C M kompakt halmaz zdrt.

10. Feladat. Lassuk be a fenti allitast.

Vajon megfordithato-e a fenti két allitas? Bizonyos esetben igen.

2.2. Tétel. (Heine-Borel tétel) R"-ben eqy E C IR" részhalmaz pontosan akkor kompakt,

ha korldtos és zart.

Bizonyitds. A Bolzano-Weierstrass tételt Analizis I-ben belattuk. Eszerint minden korla-
tos szamsorozatbol kivalaszthatd konvergens részsorozat. Ezért egy n-dimenzios korlatos
pontsorozathol is kivalaszthato konvergens részsorozat. Ennek hatarértéke a halmaz tor-

l6dési pontja, a zartsdg miatt halmazbeli.

Végtelen dimenzioban a Heine-Borel tétel nem igaz. Erre mutatunk egy példat.
Példa. C]0,1]-ben tekintsiik a zart egységkort:
By(0) = {f :]0,1] = IR, folytonos, max |f(x)| < 1}.

Ez korlatos és zart is. Mégis, belatjuk, hogy nem kompakt. Megadunk egy olyan (f,) C

C'[0, 1] sorozatot, melyre || f,|| = 1 minden n-re.
( 1
1 ha z=-—
"1 1
0 ha z< vagy r > ——
n+1 n—1
f(@) =9 . 1 1
linearis ha e , —
n+1ln
1 1
linearis ha xe| —,
L nn—1

Koénnyen lathaté, hogy a fenti sorozatnak nincs konvergens részsorozata. Tehat a zart

egységkor nem kompakt.
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5. Gyakorlat. Lassuk be, ami "kénnyen lathato" a fenti példaban.

Megjegyzés: Végtelen dimenzioban a kompakt halmaz szerepe az lesz, mint IR"-ben egy

korlatos, zart halmaznak.

2.3. Szeparabilis metrikus tér

2.8. Definicio. (M, d) egy metrikus tér. A C B C M tetszdleges halmazok. Az A halmaz

sdriin van B-ben, ha

VeeB Ve >0: dacA d(x,a) < e.

Ha A C M siird M-ben, akkor mindeniitt sird.

Példa. IR-ben racionalis szamok halmaza Q C IR stirii.

2.9. Definicié. Az (M,d) metrikus tér szeparabilis, ha létezik benne megszamlalhato el-

emszdmu mindenttt sdrd halmaz.

Példak:
1. (R,d) diszkrét metrikdval nem szeparabilis.
2. C[0,1] szeparébilis.

3. C?[0,1] is szeparabilis.
Az utobbiak az alabbi tétel alapjan lathatok:

2.3. Tétel. (Weierstrass féle approximdcios tétel). A polinomok tere
Pl0,1] ={p:[0,1] = R polinom}

strd C0, 1]-ben.

Mas szoval, ha f : [0,1] — R folytonos fiiggvény és ¢ > 0 tetszGleges, akkor van olyan p
polinom, melyre sup,. 4 |f(z) — p(x)| < e.

(Otlet a bizonyitdshoz: Adott f fiiggvényhez megkonstrualhatjuk az alabbi t.n. Bernstein-
polinomot:

i) = 3 (§) s/t = oy

k=1
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ahol nelN tetszéleges. Megmutathato, hogy Ve > 0-hoz létezik elegendGen nagy n, melyre
| f — Pulloo < e. Tehat P[0, 1] stird C[0, 1]-ben.)

Legyen Q[0, 1] a raciondlis egyiitthatos polinomok tere, ez megszamlalhato szamossagu.
Q[0, 1] € PJ0, 1] stirtd, ezért Q[0, 1] siirt C[0, 1]-ben is.

2.4. Teljes metrikus tér

2.10. Definicié. (z,) C M Cauchy sorozat, ha Ve > 0-hoz van olyan N kiszébinder,
melyre
d(zp, Ty) <€ Vn,m > N.

2.4. Allitas. Ha (z,) konvergens, akkor Cauchy sorozat.

Bizonyitds. Tegyiik fel, hogy (z,) konvergens és lim xz, = z(. Legyen € > 0 tetszéleges.

n—oo

Ekkor van olyan N, melyre
d(xp, x9) <e/2, ¥n>N.
Ezért ha n,m > N, akkor a haromszogegyenlGtlensget hasznélva:

A(xp, Tm) < d(Tp, To) + d(z0, 2m) < €/2+€/2 =¢.
2.11. Definicio. Az M metrikus tér teljes, ha minden Cauchy sorozat konvergens.

2.12. Definicio. (V.|| - ||) teljes normdlt tér Banach-tér. (V,(-,-)) teljes skaldrszorzat tér
Hilbert-tér.

Példak.

1. R" teljes az ismert normakkal.

2. (R,d) diszkrét metrikaval teljes, hiszen minden Cauchy sorozat egy index utan
konstans, ezért konvergens.

3. Cla,b] vajon teljes-e?
Igen. Legyen (f,) C Cla,b] Cauchy sorozat.
Ekkor Ve > 0-hoz IN, melyre ||f, — fm|| < . Ezért

| fo = fiull = gl[aa’};] |fu(2) = f(2)] <,
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és emiatt MINDEN z-re
|fn($) - fm(x)‘ <e.

Tehat rogzitett xela,bl-re az (fn(x)) szamsorozat Cauchy sorozat, ezért létezik

hatérértéke:

fo(x) = lim f,(z).

n—0o0
Igy fo : [a,b] — IR jol definialt fiiggvény. Raadasul fyeCla,b], hiszen a supremum-

norma-beli konvergencia ugyanaz, mint az egyenletes konvergencia.

11. Feladat. Lassuk be, hogy C|a,b]-ben a normabeli konvergencia egybeesik a
fiiggvények egyenletes konvergencidjaval.

4. C?[a,b] nem teljes. Itt a norma:

Hf—mf=¢/pmw—amvw

Példa. Belatjuk be, hogy C?[0, 1] nem teljes. Legyenek

( 1 1
0 ha 2 < - ——
2 n
1
falz) =< 1 ha x>§
1 1 1
linearis ha - —— <z <=
\ inearis ha 5 <z< 5

Ekkor konnyi szadmolassal igazolhatd, hogy

A
1 _;...-. S mm————————
.
| :
Y "
|

1
A<mw—mmfm+a azar ||fo— fulls = 0,
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tehat ez a sorozat Cauchy sorozat. A hatarérték fiiggvény, pontonként:

_ lhax>1/2
gﬁlofn(x) = f=) = Ohaz<1/2

Mivel f nem folytonos, ezért f £C?[0,1]!! Ennek a Cauchy sorozatnak nem létezik hatér-
érteke C?[0, 1)-ben.

12. Feladat. Tekintsiik C?[—1, 1]-ben az alabbi fiiggvényeket:
fn(z) =sgn(x) - /x|, n=1,2...
Igazoljuk, hogy ez Cauchy sorozat, és nem konvergens.

13.  Feladat. Lassuk be, hogy ennél tobb is igaz: a [0, 1]-n értelmezett négyzetesen
integrdalhato fiigguények tere SEM teljes.
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3. Lebesgue mérték és Lebesgue integral

Az el6z6 fejezet végén lattuk, hogy a [0,1]-n értelmezett Riemann-integralhato fiig-
gvények tere nem teljes. Ezért Gj integralfogalom kellett. 1900 koriil alkotta meg Henri
LEBESGUE a mértékelméleten alapul6 1j integralfogalmat. Ebben a fejezetben réviden

osszefoglaljuk a Lebesgue integral bevezetésének legfontosabb lépseit.

3.1. Meérhetd tér, mértéktér

Adott X egy tetszéleges halmaz. Az &sszes részhalmazok halmazat jelslje 2X. Legyen

R C 2%, X bizonyos részhalmazainak halmaza.

3.1. Definici6. R algebra, ha teljesiilnek az aldbbi tulajdonsdgok:

1. XeR,
2. A, BER esetén AU BeR,

3. A, BeR esetén A\ BeR.

3.2. Definicié. Az R algebra o-algebra, ha zdrt a megszamldlhatd unidra is:
2.+ AreR, k=12, .. esetén | J;—, AxeR

3.3. Definicié. Ha R C 2% o-algebra, akkor az (X, R) pdros eqy mérhets tér. R elemei

a mérheté halmazok.

Példak.
1. X tetszéleges halmaz, és R = 2%, &sszes részhalmazok halmaza.

2. X tetsz6leges halmaz, és R = {0, X }.

3. X = RR. A legsziikebb o-algebra, ami tartalmazza a nyilt halmazokat BOREL o-
algebra, ennek jele B. A B-beli halmazok Borel-halmazok.

3.4. Definicié. A mérték egy olyan halmaz-fiigguény, 1 R — RYU{+o00} (azaz minden
AeR esetén p(A) > 0, esetleg pu(A) = 4+00), mely o-additiv. Ez azt jelenti, hogy ha

Al,...,An,...ER, AZQAJZQ, Z#]
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paronként diszjunkt halmazok, akkor
I (U Ak) = u(Ap).
k=1 k=1
3.5. Definici6. (X, R, u) mérték tér, ha R o-algebra és p eqy mérték.

Példak.

1. (folyt.) X tetsz6leges, R = 2%, AeR esetén legyen

|A|  ha véges elemszamu

p(A) =

+00 ha nem véges elemszamiu

6. Gyakorlat. Lassuk be, hogy ez valoban mérték.

2. X véges vagy megszamlalhato elemszami, X = {zy,79,...,2,,...}. A o-
algebra legyen R = 2%, az Osszes lehetséges részhalmazok halmaza. Adottak

P1,D2s ey Py .. > 0 szdmok, melyekre Y2 pp = 1. A mérték:

ACX: M(A):Zpi-
zeA

A kovetkezd példa mér a Lebesgue mérték bevezetéséhez fog vezetni.

3.2. Lebesgue mérték IR-n

Legyen X = R. A mértéket és a mérhets halmazokat fokozatosan fogjuk definialni.
1. lépés. Legyen T a véges intervallumok halmaza. Ennek elemei:
I={x:a<xz<b}, a,beR,
ahol a < relacio helyett < is lehet. Z-n mérték ("=hosszusag"): m(I) = b — a.
2. lépés. Kiterjesztjilk a mértéket az £ egyszert halmazokra, ezeket igy értelmezziik:
E={ACR | A=U}_ I, I€Z diszjunktak}

Ha Ae&, akkor ennek mértéke legyen
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14. Feladat. Igazoljuk, hogy m valoban o-additiv £&-n. 7. Gyakorlat. Igazoljuk, hogy

&€ nem o-algebra..

Mivel £ nem o-algebra, ezért (IR, €, m) nem mérték tér

3. lépés. 2%-n fogunk definialni egy G.n. kiils6 mértéket. Ha A C IR tetszéleges halmaz,

akkor legyen kiils6 mértéke m*(A), amit igy definidlunk:

m*(A):inf{f:m(Ik) : AC le} (3)

m*: 2R — RT U {+o0}.

8. Gyakorlat. Mutassuk meg, hogy m*(A) = 400 is lehet.

3.1. Kovetkezmény. Ha Ae€ egyszerd halmaz, akkor m*(A) = m(A).

9. Gyakorlat. Igazoljuk a fenti kvetkezményt.

DE - sajnos - m* nem o-additiv. Sziikség van még egy lépésre.

4. lépés. Amit eddig latunk:
&-n értelmezve van az m o-additiv halmazfiiggvény. Viszont £ nem o-algebra

2R o_algebra, viszont az m kiterjesztése mar nem o additiv.

& C ? C 2R
nem o-algebra o-algebra
m o-additiv m* nem o-additiv

A két véglet kozott VAN kozéput. 3M o-algebra, mely az egyszerti halmazokat tartal-

mazza.:
Ec Mc 2k,

és m*|p @ o-additiv, azaz m* megszoritasa M-re mérték, melyet Lebesgue mértéknek
neveziink. Ezt a konstrukciét nem mutatjuk be. A tankonyvben megtalalhatd, nem

trivialis.

3.6. Definicio. M elemei az R-beli Lebesgue-mérhets halmazok. Az m* kiilsé mérték
megszoritisa M-re a Lebesgue mérték. Ezt m fogja jelolni.
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Kérdés. Mik tartoznak M-be? Milyenek a mérheté halmazok?
Vilasz. Pontos vélaszt nehéz adni. Egészen furcsa halmazok is mérhetGek.

Egyrészt, minden nyilt és minden zart halmaz mérhets. Tovabba azok a halmazok, melyek
nyilt és zart halmazok megszamlalhato unioja és metszeteként elGallnak. (Ez azt jelenti,
hogy B C M, bar B # M. Tehat a Borel halmazok mind mérhet6k, de nem minden

mérhetd halmaz Borel halmaz.)

Masrészt, VAN nem mérhet6 halmaz, bar nem kénnyen konstrualhato. (Egy ilyen példa

a konyv Appendix részében talalhato.)
3.7. Definicio. Null-mértékii halmaz, melyre m(A) = 0. Jelélés: N.

N zart a megszamlalhatoé metszetre és uniora. o-gyirt, de nem o-algebra, hiszen az

alaphalmaz (IR) nem null-halmaz. A mérték definicioja alapjan m(A) = 0 azt jelenti,
inf {Zm([k), AcC U Ik} = 0.
k=1 k=1

3.2. Kovetkezmény. Ha AeM és m(A) = 0, akkor tetszdleges € > 0-ra megadhatd

legfeljebb megszamldlhato sok intervallum: Iy, k = 1,2, ... melyre:

AC G[k’ im([k) < €.
k=1 k=1

3.3. Kovetkezmény. Ha A = {z}eM egy-elemd halmaz, akkor m(A) = 0. Ha A =

{z1, ..., xn, ...} TR megszdmldlhats elemszamii, akkor m(A) = 0.

Van azonban olyan null-mértékd halmaz is, melynek szamossaga nem megszamlalhato.

Példa. CANTOR halmaz. T6bb 1épésben konstrualjuk meg.
0. lépés. Legyen Cy = [0, 1].
1. lépés. Legyen Cy = Cp \ (3,

2. lépés. Legyen C = Cy \ (5,2)\ (£, 3).

Es igy tovabb... ami marad ...
3.8. Definici6. C' =),_,Cy a Cantor halmaz.

Mi marad? Egyrészt, minden lépésben a kihagyott intervallumok végnontjai:

12 1278

5, g, §, §, 5, §, EC

0,1,
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0 1
0 1/3 2/3 "1
0 1/9 2/9 13 2/13 719 8/9 1

2. abra. A Cantor halmaz konstrukcidjanak elsé harom lépése

De van maés is.

15. Feladat. Igazoljuk, hogy pl. 1/4eC.

3.1. Allitas. A Cantor halmaz alaptulajdonsdgai:

1. C zrt.
2. C szdmossdga kontinuum.

3. C mérhetd és m(C) = 0.

Bizonyitds. A zartsag: minden k esetén C} zart. Zart halmazok metszete zart.

16. Feladat. Igazoljuk az allitas harmadik részét. (Otlet: mennyi a kihagyott interval-

lumok 6ssz-hossza?)

3.3. Lebesgue mérték IR"-ben
Altalanos eset, amikor X = R". A mérték "jelentése"

n = 1: hossz.
n = 2: teriilet.
n = 3: térfogat.
n=4 ..7
A konstrukcio lépései teljesen hasonlok az el6z6 fejezetben elmondottakhoz. Egy I =

la1, b1] X [ag, ba] X ... X [ay, b,] n-dimenzios intervallum mértéke legyen

n

m(I) = [ [(bx — ax).

k=1
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& az egyszert halmazok halmaza, amik véges sok diszjunkt intervallum uni6jaként allnak
els. Ezekre a mérték kiterjesztése egyértelmi. A C R" esetén az m*(A) kiils6 mérték
definicioja hasonlo a (3) képlethez. A Lebesgue-mérték R"-ben is értelmezhetd tehat,

természetes modon.

3.4. Meérhet6 fiiggvények

3.9. Definicié. [ : R" — R U {+o0} figgvény mérhets, ha minden aclR esetén az
{z: f(x) <a} CIR" halmaz Lebesgue mérhetd.

A fenti definicioban a (—oo, a) nyilt halmaz &sképét tekintjiik.

3.2. Allitas. Az f fiiggvény mérhetdsége ekvivalens az aldbbi dllitdasok barmelyikével:
— VaelR eseén {z: f(x) > a}eM
— VaeRR eseén {x : f(z) > a}eM

- VaeRR eseén {z : f(z) < a}eM
3.4. Kovetkezmény. Mérhetd figguény esetén YaeR-ra {z : f(z) = a}eM

3.3. Allitas. Ha f, g mérhetd figguények, akkor
— [+ g is mérhetd.
~ [ - g is mérhetd.
— min(f, g) is mérhetd.

Ha (f,) mérhetd figguények sorozata, akkor (inf f,) és lim(f,) is mérhetd.

Bizonyitds. (Vazlat) Belatjuk példaul, hogy f + ¢ mérhets. Legyen aelR. Ekkor
{z : f(&)+g(x)<a}=Uo{z : flz)<rin{z : g(z) <a—r1}). (4)
Ugyanis, ha f(x) + g(x) < a akkor f(x) < a — g(x). Ezért Ir racionéalis szam
flz)y<résr<a—gr) = glx)<a-—r.

Ebbdl a (4) osszefiigges kovetkezik. {x : f(z) + g(z) < a} eldallithato megszamlalhato

sok mértheté halmaz uniojaként, tehat maga is mérhetd.
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Példa. £ C IR" mérhetS. Legyen xg az alabbi fiiggvény:

1 xzeFE
xe(r) =
0 z 4FE

A xg fliggvény mérhets. Ez az E karakterisztikus fliggvénye.
3.10. Definicié. Az f fiigguény egyszerd, ha Ry értékkészlete véges elemszami. Ez azt

jelenti, hogy Ry = {v1,...,yn}. Ekkor Ey, = {z : f(x) = yx} jeloléssel az [ egyszerd
fiigguény az alabbi alakban irhato:

f:Zyk'XEka EyNE; =0, yrelR.
k=1
3.4. Allitas. f egyszerd figguény pontosan akkor mérhetd, ha EneM.

Megjegyzés. Egyszerti fiiggvény maésik elnevezése lépcsés fliggvény.

3.5. Allitas. Ha f mérhetd, akkor I(s,) egyszerd fiigguények sorozata, melyre

lim, ... S, = f egyenletesen. Tovdbbd, ha f memnegativ, akkor monoton névd lépcsds

fiigguényekbdl dllo sorozat is létezik, melynek hatdrértéke f.

3.5. Kovetkezmény. Az eqyszeri figguények sdrin vannak a mérhetd figguvények kozt.

Példa. Ha f folytonos, akkor mérhets. Ez abbol kovetkezik, hogy VaelR esetén F = {z :

f(z) < a} nyilt halmaz, ezért mérhetd is.

17. Feladat. Lassuk be az el6z6 allitast. Igazoljuk, hogy ha f folytonos fiiggvény, akkor
E ={x: f(x) < a} nyilt halmaz minden aelR esetén.

3.11. Definicié. f,g mérhetd figguények. Azt mondjuk, hogy f ~ g (ekvivalensek), vagy

mdasképp f = g majdnem mindeniitt (m.m.) ha
m({z : f(z) #g(z)}) =0.

f = g m.m. nyilvan ekvivalencia relacio.

10. Gyakorlat. Gondoljuk meg, hogy, ha f = ¢ m.m. és g = h m.m., akkor f = h m.m.

3.6. Allitas. Ha [ és g folytonosak és f = g m.m., akkor f(x) = g(x) minden x-re.
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18. Feladat. Igazoljuk a fenti allitast.

Folytonossag nélkiil nem igaz: ha f ~ g, akkor egyéaltalan nem biztos, hogy f(x) = g(z)
Vo !

Megjegyzés. A mérhetd fiiggvények "majdnem" folytonos fliggvények.
3.1. Tétel. (Luzin) f : [a,b] — IR mérhet6 figgvény. Ekkor ¥Ye > 0-hoz 3s : [a,b] - R

folytonos fiigguény, melyre

m(x - f(x) # g(x)) <e.

Tehét a mérhetd fiiggvényeken beliil a folytonos fiiggvények stirtin vannak.

3.5. Lebesgue-integral. Bevezetd gondolatok

Az alaptér legyen X = [a,b] C IR, M pedig az [a, b]-beli mérhets halmazok Osszessége.
Alapvetd gond a Riemann-integralndl a hatdratmenet és integral sorrendjének felcserél-

hetGsége — illetve nem-felcserélhetGsége. Nézziik a kovetkezs példat.

1 haz=ryre .. m

fn(x) =
0 egyébként,

ahol az [a, b] intervallumba ess racionalis szamok felsorolasa QNla, b] = {ry,re,...}. Ekkor

fn€R|a, b], Riemann integralhatd. Mégis, a hatarérték fiiggvény f £R|a, b]:

1 ha x racionélis

lim fo(z) = f(z) =

n—oo
0 ha x irracionélis

3.6. Lebesgue-integral értelmezése

Fokozatosan fogjuk definidlni az integralt. Most is a szemléletes jelentés a fiiggvény graf

alatti elGjeles teriilet.

1. lepés. Tegyiik fel, hogy f egyszert, azaz

f(l') = chXEka Ek6M7 Ek N EJ = @, Ckﬁ]];{
k=1
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m

3. dbra. Az f = c1xp, + caXg, 1épcss fiiggvény integralja az E halmazon. Az integral
megegyezik a két téglalap Osszteriiletével: Ty = ¢ - m(E N Ey) és To = co - m(E N Ey)

3.12. Definicié. FeM. Az f figgvény integrilja az E halmazon az m mérték szerint:

n

/Efdm = chm(E N Ek).

k=1

2. lépés. Tegyiik fel, hogy f : [a,b] — IRT nemnegativ, mérhets fiiggvény. Ekkor az

integralt igy értelmezziik:

/fdm = sup{/ sdm : s egyszerd, s(x) < f(x) m.m.}
E E

Megjegyzés. A fenti integral értéke +oo is lehet.

3. lépés. f:a,b] — R tetsz6leges mérhetd fiiggvény. Eloszor elgallitjuk két nemnegativ
fiiggvény kiilonbségeként:
f=r—1
ahol
f(@) ha f(x) >0 ~f(x) ha fz) <0

f(z) = f-(z) =
0 egyébként, 0 egyébként

Ezek integralja mar jol definialt:

/E £ dm, /E f-dm.
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3.13. Definicio. f Lebesgue-integralhaté, ha a mind a két fenti integrdal véges. Ebben az
esetben f integralja az E halmazon a Lebesgue mérték szerint:

éfwwzéﬁdm—éﬁﬁm

L(R) jeloli az R halmazon értelmezett Lebesgue-integralhato fiiggvények terét.

11. Gyakorlat. Gondoljuk meg, hogy L(R) vektortér.

3.6. Kovetkezmény. Ha f : [a,b] — R korldtos, mérhetd figguény, akkor Lebesgue-
integrdlhato.

Tulajdonsagok:

1. f,geL, akkor

/E(erg)dm:/Efdm—l—/Egdm, /Ec-fdm:c-/Efdm

2. Ham(F) < o0 és a < f(x) < b, akkor
a-m(E)S/fdeb-m(E).
E

3. Ha f,gel és f(x) < g(x), akkor

‘éMmSéMm

[ gaml < [ \fldm.

A Lebesgue integral esetén ez forditva is igaz: Ha |f|eL, akkor feL is teljesiil.

4. Ha feL, akkor |f|eL és

5. Ha m(FE) = 0, akkor minden mérhetd fiiggvényre / fdm = 0.
E

6. Ha FF = E; U Es, ahol Fy és E5 diszjunktak, akkor

/ fdm = fdm + fdm.
FE1UE>

Eq Eo

5)-+6) tulajdonsagokbol kovetkezik, hogy ha f = g m.m., akkor / fdm = / gdm
E E

2) és 3) tulajdonsagok akkor is igazak, ha a megfelels feltételek m.m. teljesiilnek csak.
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3.7. Lebesgue- és Riemann integral osszehasonlitasa

3.2. Tétel. Ha feRla,b], akkor feLlla,b] is, és

b
/ flz)dx = fdm.
a [a,b]

A bal oldalon a fiiggvény Riemann integralja van, a jobb oldalon pedig a Lebesgue integral.
Bizonyitds. Konyvbdl dtnézni.

Megjegyzés. Elény, hogy tobb fliggvény Lebesgue integralhatd, mint Riemann integral-
hato. Példaul a Dirichlet fiiggvény nem Riemann integralhato:

1 ha €0, 1], raciondlis
fx) =

0 ha z€[0, 1], irracionalis
Mégis, mivel f =0 m.m. ezért Lebesgue integralhato, és

fdm = 0dm =0

[0,1] [0,1]
Megjegyzés. Masik elény, hogy a hatardtmenet kénnyen atlathato.

3.3. Tétel. (Lebesgue féle monoton konvergencia tétel) Adott nemnegativ, mérhetd, mono-

ton novd fiigguények sorozata

0< fi(z) < folz) < filz) < ..

melyre a pontonkénti hatdarérték fiigguény:

lim fu(x) = f(2).

n—oo

Ekkor
/ fdm = lim fn dm.

n—0o0

Tehat nem sziikséges a fliggvénysorozat egyenletes konvergencidja. Az integral és a

hataratmenet a fenti feltétellel "automatikusan" felcserélhetdk.

3.4. Tétel. (Lebesgue féle dominélt konvergencia tétel)  Adottak az (f,), mérhetd fig-
guények, a pontonkénti hatdrérték lim, ., fn.(x) = f(x). Tegyiik fel, hogy létezik geL(IR)
kézos felsd korlat, melyre

fa(z) < g(2), YV, Vn.
Ekkor

/ fdm = lim [ f,dm

n—oo E
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3.8. L7 terek (Lebesgue terek)

Legyen p > 1. R = [a,b].

3.14. Definicié. A LP(R) figguény-halmazt a kovetkezdképpen értelmezziik:

LP(R) = {f:[a,b] = R, /R|f\pdm < o0}

Megjegyzés. Ezek a "nagy el p" terek.

3.7. Allitas. LP vektortér.

Bizonyitds. Be kell latni, hogy L£P(R) zart a skalarral valo szorzéasra és az Osszegre. Ha
feLP  akkor valoban c- feLP. Ha f, geLP, akkor vajon f+ geLP? Mas szoval, kovetkezik-e,
hogy [, |f + glPdm < co?

Hasznaljuk fel az alabbi becslést:
Va,beR = |a+b| < |a| + |b|.
Ebbdl kévetkezik, hogy
ja+ 0" < (la] + )" < 27 (max{lal”, [b]"}) < 2°(laf” + [b]F).
Ezt alkalmazva a = f(z) és b = g(x) valasztassal azt kapjuk, hogy
[f (@) +g(x)[” < 2°(|f(2)[" + [g(z)[P),  VaeR,

és ezt kiintegralva:

15w gran <2 [isran -+ [lgpan) < o0

< o0 < 00

LP-ben azonosnak tekintjiik a m.m. egyenl6 fliggvényeket. Més szoval, a fenti fiiggvényteret

faktorizaljuk ~ szerint. Az igy faktorizalt £P térben normét definidlunk. Ha fel?:

i = ([ Ifl”dm)l/p )

3.8. Allitas. A (5) képlet valdban normdt definidl.
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Bizonyitas.

— Nem negativ. Valoban.
— Nem degeneralt. Ez azt jelenti, hogy | f|, = 0 pontosan akkor, ha f =0 m.m.

— Haromszog egyenl6tlenség. Ez nem trividlis. S&t, kiilon tétel forméjaban fogjuk

kimondani.

12.  Gyakorlat. Igazoljuk, hogy ha [ |f|dm = 0, akkor f =0 m.m.

3.5. Tétel. (Minkovszkij-egyenldtlenség) Ha 1 < p < +o0, akkor

1F+glle <11 fllp+ llglls

A bizonyitas nehéz, ha p > 1.

p = 1 esetben ez a tulajdonsag "haromszog egyenlGtlenség" néven jol ismert: minden z-re
|f(x) +g(2)] < |f(x)] + |g(x)], ezért

I+ gl = [ 1f +gldm < [ |sldm+ [ Jglam =71 + gl
R R R
3.15. Definicio. Az f: R — C komplex érékii tiiggvény mérhetd, ha az

f(x) = Ref(x) + ilmf ()

kanonikus alakban szerepld valds értéki Ref, Imf : R — IR fiigguények mérheték. Tovdbbd
/ fdm = /(Ref)dm+i/(lmf)dm
R R R

Legyen most p = +o00. Ertelmezni fogjuk az £>°(X) fiiggvényteret.

3.16. Definicio. f : X — C lényegében korldtos, ha van olyan MeIR konstans és van

olyan Ee M null-mértékid halmaz, melyre:

F@I<M,  ha o fE.

3.17. Definicié. Ha f lényegében korldtos, akkor lényeges supremum-a

ess sup f :=inf{M | IE, m(E) = 0: |f(z)| < M, Va¢E}
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Példa. Legyen X = [—1,1]. Két fiiggvényt adunk meg.

1
2?  ha x%O,x;ﬁ:Izﬁ
f(z) = 22, gx)=49 2 ha x=0
1
4 h =4-
a 5

A két fiiggvény supremuma kiilénboz6: sup f = 1, supg = 4.. Lényeges supremum

9

-l
-

&
L

- o me——— g e -

- ——————

-4

4. abra. Az f és g fliggvények grafja.
azonban ugyanaz, mert f =g m.m.:

esssup f =1, esssupg=1.

3.18. Definicié. Az L>(X) figgvénytér az X-n értelmezett, lényegében korldtos fiig-

gunyek dsszessége. A m.m. eqyenld fiigguényeket most is azonosaknak tekintjik.

LX) =A{f: X — C, lényegében korldtos}.
L2(X) nyilvan vektortér. Normaélt tér lesz belgle az alabbi norméval:
| flloo := ess sup f.

13.  Gyakorlat. Gondoljuk meg, hogy ez valbban norma.

3.6. Tétel. (Riesz tétel) 1 < p < 400 esetén az LP(X) tér teljes. Mds széval ez azt je-
lenti, hogy minden (f,) C LP(X) Cauchy sorozatnak van hatdrértéke, 3lim f,, = feLP(X).
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A Riesz tétel alapjan £7(X) BANACH tér.
Bizonyitds. Nem konnyt. Az ajanlott irodalomban el lehet olvasni.

Kérdés. Vajon ha p < g, akkor £LP(X) és L9(X) kozott mi a kapcsolat?

Vilasz (részben):
19. Feladat. Igazoljuk, hogy £2[a,b] C L'[a, b].

14. Gyakorlat. Igazoljuk, hogy £>[a,b] C L[a,b].

Megjegyzés. Belattuk egy korabbi el6adasban, hogy C?[a,b] nem teljes. Ennek a normalt
térnek a teljessé tétele £2[a, b]. Tehat C?[a, b]-t "kiegészitettiik" azokkal a fiiggvényekkel,

melyek Cauchy sorozatok hatarértékei.

3.9. Altalanos £P terek

Kiindulasképp tekintsiink egy mértékteret, legyen ez (X, R, ). R egy o-algebra, u ezen
értelmezett mérték. A p mérték szerinti integralt definialhatjuk, teljesen hasonléan a

Lebesgue integral bevezetéséhez. Ha p > 1, akkor
LP(X):={f: X —=C, / |f|P dp < oo}
b's
Altalaban is igaz a Riesz tétel.

3.7. Tétel. LP(X) teljes normdlt tér, tehdt Banach tér.

Specidlis eset. X = N. A c-algebra R = 2N, az Osszes részhalmazok halmaza. p a

szamlalo-meérték, azaz ha A C N, akkor pu(A) = "A elemeinek szama".

Ekkor p > 1 esetén
Lr=LP(N)={f:N—=C, /|f]pd,u< oo}
N

Mit is jelent ez? Az f fiiggvény minden n-hez hozzarendel egy f(n)eC szamot: ez egy
szamsorozat.

A tér elemei sorozatok, szokasos jeloleéssel: (zy,).

Integral a szamldlo mérték szerint egyszerd Osszeg:

[ foaldi =Y ol
N n=1
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Osszefoglalva azt kaptuk, hogy

LAN) = {(a) : ) lwal’ <00} =07 ()

15. Gyakorlat. Léassuk be, hogy ez p = +oo-re is igaz.

Megjegyzés. A legfontosabb esetek, amikkel foglakozni fogunk:

- X =[a,b),
- X =1,

— X C IR™ mérhets.

3.9. Allitas. LP tér akkor és csak akkor skaldrszorzat tér, ha p = 2.

Mostantol a esetet tekintjiik. Az £2 = £*(X, R, 1) térben van skalarszorzat:
(f.9) =/ f-gdp
X
3.7. Kovetkezmény. L? tér teljes, tehdt HILBERT-tér

Megjegyzés. Latni fogjuk, hogy bizonyos értelemben £? az "egyetlen" Hilbert-tér.
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4. FOURIER analizis £2-ben

4.1. Klasszikus Fourier sorfejtés. Ismétlés

Tegyiik fel, hogy f : [—m, 7] — IR kielégiti az alabbi feltételeket (Dirichlet feltételek):

— szakaszonként folytonosan differencialhato fiiggvény,
— csak els6fajia szakadasai vannak,

— aszakadasi helyeken a fiiggvényérték a jobb- és baloldali hatarérték szamtani atlaga.

Akkor minden x€[0, 27 esetén

a/ o
=5 + kz:; ay, cos(kx) + by sin(kx)),

_ % /_ : (@) cos(he) de, by — % /_ ﬂ F(@) sin(kz) dz

4.2. Ortonormalt fliggvények

ahol

Tekintsiik az £2(X, R, u) teret. (Roviditett jelolés £2(X)).
£ = {f:X > [ | <o)
X

ahol a m.m. egyenl§ fiiggvényeket azonosnak tekintjiik. A norma | fll2 = ([ |f|2d,u)1/2,

mely skalarszorzatbol szarmaztathato. Ezzel £2(X) Hilbert teér.
4.1. Definicié. Az f és g figguények ortogonalisak, ha (f,g) =0, azaz

<f,g>=/ng dyi =0

4.2. Definicié. Az fi, ..., [neL*(X) fiigguények linearisan fiiggetlenek, ha az X halmazon
a1f1+oz2f2+...—|—anfn =0 m.m.

csak akkor teljesilhet, ha oy = ... = a,, = 0.

4.3. Definici6. (f,), neN linedrisan fiiggetlenek, ha minden n-re (fr,k = 1,..,n)

linedrisan fiiggetlen.



4. FOURIER ANALIZIS £?*-BEN 33
4.4. Definici6. feL%(X) fiigguény normalizélt, ha || f|2 = 1.

4.5. Definicid. (fi, k =1,...,n) ortogondlis figguényrendszer, ha k # j esetén (fy, f;) =
0. A (¢, keN) fiigguényrendszer ortonormalt (ON), ha

1 ha k=j

o) = O =
(ks 30 = Og {0 ha k4

A Definicioban szereplé 6y ; elnevezése Kronecker delta.

Példa. L£?|—,7]-ben ortonormélt fiiggvényrendszer:

(e ) =2 )

L
, 1
o gy

oot = ([ iras) = ([ 5) =1

Hasonloképp példaul egy cos-s fliggvényre:

lioxll2 = (/_7; (Coiﬁ?))de> " (% /_: cos2<k:c)d:c> L

Ortogonalitas igazolasa, pl.

Valoban, eloszor a normalitast lassuk be. g =

/ cos(kx)sin(lx) dz = 0,

—T

ezt az els6éves Analizis el6adasban mar lattuk.

4.6. Definicib. (fy) linedrisan figgetlen rendszer teljes, ha minden feL? elddllithato

ilyen alakban.:

= chfk, crelR.
k=1

A fenti egyenletben a konvergencia normabeli, azaz

Tim [|f = > arfilla=0.
k=1
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Megjegyzés. Két fajta teljesség fogalom szerepelt eddig.
— Metrikus tér teljessége azt jelentette, hogy a Cauchy sorozatok konvergensek.
— Linearisan fiiggetlen fiiggvényrendszer teljessége azt jelenti, hogy a fiiggvényrendszer

elemeinek véges linearis kombinaciéi mindeniitt sdrtin vannak a térben.

Példa. (folytatas) A "Fourier sorok alaptétele" kimondja, hogy a Dirichlet feltételt

teljesitd fiiggvények terében a trigonometrikus rendszer teljes. Ennél tobb is igaz lesz.
4.1. Allitas. L%[—m,w]-ben a trigonometrikus rendszer teljes.

A fenti allitasban a teljesség normabeli konvergenciat jelen.

o 1 cos(kx))
Példa. L£2%[0,7]-ben teljes fiiggvényrendszert alkotnak: | ——, L k=1,2,....
[0, 7] jes fiiggvény ( N
1 s
s1n(k:c)) k=12 .

Egy maésik teljes fiiggvényrendszer (—

Vor' VT

1 k
20. Feladat. Igazoljuk, hogy az (— cos(kz)

Vor' VT

> fiiggvényrendszer teljes £2[0, 7r]-ben.

Példa. Tekintsiik az {1, x, 22, ...2", ...} fiiggvényrendszert. Ennek tulajdonsagai:

1
— {1, z,2? ..a" ...} C L?[-1,1], mert / (z")2dx < .

-1

— Linearisan fiiggetlenek. Tegyiik fel ugyanis, hogy
Z apz® =0, m.m. we[—1,1].
k=0

Ez csak ugy lehet — a baloldalon egy polinom van! — ha o = 0 minden k-ra.

— Teljes fiiggvényrendszer. Ezt a Weierstrass féle approximécios tételbdl tudjuk.

4.1. Tétel. (Weierstrass tétel) Minden feL? és minden e > 0 esetén van olyan p polinom,

melyre ||f — pll2 < €.

Kérdés: Ha (f,) teljes fiiggvényrendszer £2-ben, és feL?, akkor f = > ay fi eldéllitasban
meg tudjuk-e hatarozni az oy egyiitthatokat?

- 1. példa: Trigonometrikus rendszer esetén: képletekkel tudjuk.

- 2. példa: Polinomok esetén egzisztencia tétel van csak.
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Kiilénbség:

- 1. példa: A fiiggvényrendszer ON is.

- 2. példa: A fiiggvények nem otrtogonalisak, pl

1 771
2
(x*, %) = / eia?de = {x—} =—#0
- -1

1
Kovetkezd lépés: megprobaljuk ortogonalizalni a polinomokat!
Megjegyzés. Fiiggvényrendszer teljességét linedrisan figgetlen fliggvényrendszer esetén

szokés definialni. Az ortogonalitas tobb, mint fiiggetlenség.

16. Gyakorlat. Igazoljuk, hogy ha (fi,..., f,) paronként ortogonalisak, akkor linearisan
fiiggetlenek is.

4.3. Ortogonalizacié, ON bazis konstrukcidja

Az egyszeriség kedvéért az X = [a,b] C IR alaptéren dolgozunk.

4.2. Tétel. Adott az (f,) C L? linedrisan fiiggetlen fiigguényrendszer. Ekkor létezik olyan
(pn) C L% fiiggvényrendszer, melyre teljesiilnek az aldbbi tulajdonsdgok:

1. (¢n) ON.

2. Yn-re f, = Zaknapk, ahol o, # 0.
k=1

3. ¥nre ou =D Binfr, ahol fu # 0.

k=1

4. Eldjeltdl eltekintve (@) egyértelm.

Megjegyzés. A 2. és 3. tulajdonsagokbol kovetkezik, hogy {¢1, ..., ¢} halmaz lezartja
megegyezik a {fi,..., fn} halmaz lezartjaval. Ez azt jelenti, hogy a {¢1,...,,} altal

kifeszitett altér megegyezik azzal az altérrel, amit {fi, ..., f, } feszitenek ki.

Bizonyitds. A Lineéris algebraban megismert Gram-Smidt (G-S) ortogonalizaciot
hasznaljuk itt is. Megadjuk a Tételben szerepls ¢, fliggvényeket. A konstrukcié tobb

lépésben torténik.
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S

1l
2. léepés: Cél, hogy {¢1,p2} ON rendszer legyen, mikozben fo = a1 + oope. Ehhez

1. lépés: o1 :=

ugy jutunk el, ha

— meghatarozzuk fs vetiiletét o;-re,
— fo-bdl kivonjuk vetiiletét,

— a kapott fiiggvényt lenorméaljuk.

Kénnyen lathato, hogy ha ||| = 1, akkor f vetiilete p-re f|, = (f,¢)-p. Azt kell ugyanis
latni, hogy (f — f|,) L ¢. Valoban:

(f = floso) = (f = (fr0) - 0.0) = (f, ) = (f, o) (@, ) = 0.
Tehét a 2. 1épés eredménye:

0y = fa— <f27901>s01
1fo = (f2, 1)l

n-dik (indukciés) lépés: Tegyiik fel, hogy ¢1, ..., pn—1 mar a kivant tulajdonsagi. Most is

az el6zGben végigjart utat kovetjiik.

— Meghatéarozzuk f, vetiiletét a {1, ..., pn_1} altal kifeszitett altérre,
— fn-bdl kivonjuk vetiiletét,

— a kapott fiiggvényt lenorméljuk.

fn vetiiletét ugy kaphatjuk meg, hogy meghatarozzuk az altér legkozelebbi elemét:

n—1
min [~ > el =2
k=1

Clyeeey Cn—1

21. Feladat. Lassuk be, hogy a fenti minimum a ¢ = (f,,, px) valasztassal érhetd el.
Ez alapjan az ON rendszer n-dik eleme:

n—1

fn - Z(fm@kxok

k=1
n—1

1o =D {frs pr)onl

k=1

Pn =
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4.1. Kovetkezmény. Ha a kiindulo (f,) figguényrendszer teljes, akkor az ortogonal-

izdldssal kapott (v,) is teljes.

4.7. Definici6. (¢,) teljes ON rendszert szokds ON bazis-nak hivni.

Példa. Az L£2([—1,1]) teret tekintjiik. Ennek elemei az f : [—1,1] — R négyzete-
sen integralhato fiiggvények. Ebben a térben egy linearisan fiiggetlen teljes rendszer
{1,z,22,...,2", ..}. ON bazist kaphatunk a G-S ortogonalizalassal: (P,), n = 0,1,2,...
olyan fiiggvények melyek:

1
— ortogonalisak, azaz / P,(z)- Py (z)dx =0, ha n # m.
-1

~ minden n-re P,(z) = >"}_ Bna”, ahol B, # 0, tehdt pontosan n-ed foka polinom.
Ezek a Legendre polinomok.
4.2. Kovetkezmény. Legendre polinom rendszer teljes ON fiigguényrendszer.

4.2. Allitas.

mn

Po(z) = cn%(ﬁ N (C e (6)

2n+1 1
Cn =1/ .
2 2n . pl

Bizonyitds. Csak az ortogonalitast kell belatni, a tobbi (szinte) trividlis. Legyen m < n.
Ekkor

ahol a normalizdld konstans

1
a ar
L @) (2 — 1)™dx =?
/_1 o (x ) o (x )" dx

Parciélis integralassal folytatva:

dm dm—l 1 1 dn—i—l dm—l
= |—(z* - 1)" (2% — 1)m} - / r©—1 (2% — 1)™dx,
1 _

. 2 —_— n .
o dxm™ dxm—l 1 dxn—l-l( ) dxm—l

ahol az elsG tag 0. Tovabbi parcialis integralssal az ortogonalitast kapjuk.

22.  Feladat. Lassuk be, hogy a fenti (6) képlettel megadott P,(z) fiiggvény valoban

n-ed foka polinom.

Megjegyzés. " Legendre polinom rendszer" cimszé alatt esetleg més ¢, f6egyiitthatos p,
polinomokat talalnak. Ennek oka, hogy a normalizalds nem mindig az £2 norma szerint
torténik. A két legfontosabb alaptulajdonsag, hogy p, egy n-ed foka polinom, és orto-
gonalisak, azaz (p,, pm) = 0.
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4.4. Fourier sorfejtés L*-ben

Legyen (¢,) ON rendszer £?(R)-ben. Ez azt jelenti, hogy

/an(x)@k(x) dm =0, n#k, /R@i(fc) dm = 1.

Feltessziik tovabb4, hogy a {©1, @9, ... } rendszer teljes, tehat lezarésa az egész L. Ekkor

minden feL? elgall ilyen alakban:
f= Z CkPhs (7)
k=1

ahol ¢, = (f, pr). A fenti sor konvergencidja az £? tér normajaban értendd.

23.  Feladat.  Igazoljuk kozvetleniil, hogy a (7) elgallitasban szerepld egyiitthatok
kielégitik a ¢ = (f, pr) Osszefiiggést.

4.8. Definicié. Ez az elddllitis az f figgvény Fourier sorfejtése a {pr}3>, rendszer

szerint.

4.3. Tétel. (Parseval egyenléség) Legyen (¢n) teljes ON rendszer L?(R)-ben. Az feLl?
Fourier sorfejtése (7) egyenlettel van megadva. Ekkor

[e.9]

IFIP =) e

k=1

Bizonyitds. A Fourier sorfejtésben a végtelen sszeg konvergencidja £2(R) norméjaban

értendd, ezért
n
lim (| crprll = |1 £]]
n—oo
k=1

Az ortogonalitast felhasznalva a baloldalon szerepld Gsszeg négyzete:
n n n
1Y el =D lewpull =D et
k=1 k=1 k=1
és ezzel az allitast belattuk.

A Parseval egyenldségh6l az kovetkezik, hogy minden feL?(R) fiiggvényhez hozza tudunk
rendelni egy (*-beli sorozatot, éspedig a (,) teljes ON rendszer segitségével. Ennek

megforditasa a kovetkez6 hires tétel:
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4.4. Tétel. (Riesz-Fisher tétel) Adott tetszdleges (di)el?, azaz Z d? < co. Ekkor létezik
k=1

feL%(R), melyre || f||? = Zdi, és melynek Fourier egyiitthatdi a dj, szamok.
k=1

Bizonyitds. (Alapotlet) Konkrétan belathatjuk, hogy f = dewk megfelel.
k=1

24. Feladat. Fejezziik be a bizonyitast.

4.5. Tétel. (Altaldnositott Parseval egyenldség) Legyen (p,) teljes ON rendszer L*(R)-
ben, és f,gel? tetszdlegesek. Ekkor

<f7 g> = Z deka
k=1

ahol ¢ = (c) illetve d = (dy) a megadott f és g figguények Fourier egyiitthatoi. A fenti
osszefiiggés gy s irhato:
<f7 g>£2 = <C7 d>€2-

4.3. K6vetkezmény. L%(R) és (? izometrikusan izomorfak. Az izometridt tetsz6leges

teljes ON rendszer alapjan a Fourier egyiitthatokkal meg lehet adni:

foooe—= (e)

Megjegyzés. Ha az ON rendszer esetleg nem teljes, akkor is definidlhatjuk a (7) jobboldalan
szerepl6 végtelen sort, ez az f fiiggvény Fourier sorfejtése az adott ON rendszer szerint.
Ekkor azonban a sor 0sszege nem feltétleniil egyezik meg a kiinduld f fliggvénnyel és a

Parseval egyenl@ség helyett csak Parseval-egyenlGtlenség mondhaté ki.

4.5. Ortogonalis polinom rendszerek

Példa. Legyen R = [—1,1]. Ekkor egy fiiggetlen fiiggvényrendszer:
{1,2,2%,...} C L?[-1,1]
Ennek ortogonalizaldsaval kapjuk a P, Legendre polinomokat:

— P, n-ed foku polinom,
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1
- / P,(x)P,,(x)dx =0, ha n < m.

1

Altalanosabb teret fogunk tekinteni. R C R, és nem a klasszikus Lebesgue mértéket

hasznaljuk. A mértéket egy sulyfiiggvénnyel adjuk meg:

n(A) = /A odm,

ahol o : R — R* adott Lebesgue integralhato fiiggvény. Formalisan azt irhatjuk, hogy

A

"dy = odm". A p mérték szerinti integél egy £ mérhets halmazon igy szamolhato:

[Efduszf-gdm.

4.9. Definici6. Az dgltaldnos L2(R) teret igy értelmezziik:

LR)={f:R—R : /Rf2du:/Rf2gdm<oo}

Ebben a térben is azonosaknak tekintjuk azokat a fligguényeket, amelyek m.m. mege-

gyeznek.

EZ(R)—ben a skalarszorzatot kicsit masképp deinialjuk, mint eddig:

(f:9)e = /ngedm,

1/2
T ( / rf|2gdm) .

ezért a norma:
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Igy ebben a térben az ortogonalitas azt jelenti, hogy

/fggdm:().
R

Ortogonalis polinom rendszer konstrualkasakor tovabbra is az

flg

{1,z,2%, ...} C LA(R)

fiiggetlen rendszerbdl indulunk ki — feltéve, hogy ez valoban része EZ(R)—nek.

0. példa. Legendre polinomok.

R = [-1,1]. A sulyfiiggvény o(z) = 1, a klasszikus Lebesgue integral esete. Ezeket a

polinomokat mar ismerjiik.

1. példa. Csebisev polinomok.

R=[-1,1].

Elséfaja illetve masodfaja Csebisev polinomokat fogunk definialni. A megfelels sulyfiig-

gvények ezek lesznek:

1
- - — /1 _ 2
Ql(x) - mv QQ(x) - 1 .
4.3. Allitas. Az elsdfajii Csebisev polinomok (még nincsenek normdlva):

T, (z) = cos (narccos(z)) .

Az mdsodfaji Csebisev polinomok (még nincsenek normdlva):

sin ((n + 1) arccos(z))
sin (arccos(z))

Un(x) =

A fenti polinomok més forméban is irhatok, ha bevezetjiik az x = cos(6) jelolést:

T.(z) = cos(nd),

U () = sin(s(iz(:))l)ﬁ)

25. Feladat. Igazoljuk, hogy a fenti képletekben szerepls fiiggvények valoban n-ed fokua

polinomok. (Utmutaté: cos(nd) és sin((n + 1)0)/sin(f) pontosan n-ed foku polinomja
cos(f)-nak.)



4. FOURIER ANALIZIS L?*-BEN 42

26. Feladat. Igazoljuk az ortogonalitast, azaz
! 1
/1 Tn(x)ﬂn(:zc)\/l?x2 de =0 ha m#n,
és .
/ Up(2)Up(2)V1 —22dz =0 ha m #n.

1

2. példa. Hermite polinomok. R =R.

2

A sulyfiiggvény: o(x) = e . Igy

kN2 7, _ = k2 —a? k_p2
/R(:U)du—/_ (%)% ™ dxr < o0 = reL,(R).
Ortogonalizacié eredménye:

Hy(z) = (—1)"e* - % (e—ﬁ) .

27. Feladat. Igazoljuk, hogy a fent definialt fiiggvény valéban polinom.

A fenti képlet derivalasaval az aldbbi rekurziv elGallitast kapjuk:

H! (z) =2zH,(x) — Hyy1(2)

28. Feladat. Igazoljuk a polinomrendszer ortogonalitasat. (Utmutatd: Sok-sok parcidlis

integralasbol adodik a kovetkezd, ahol v(z) tetszGleges polinom:
& g2 & 2 dar
e " Hy(x)v(x)dp = e d—v(:n)du
—00 —00 "

mn

d

Ha a fenti képletben v(x) fokszdma kisebb, mint < n, akkor d—v(m) =0, ezért H,(z) L
xn

v(x)!)

Megjegyzés. A Hermite-polinomok a kvantummechanikiban a harmonikus oszcillator
energia-operatoranak sajatfiiggvényei, azaz a (Hf)(x) = —f"(z) + w?2?f(x) egyenlet

sajatfiiggvény megoldasai:

on(z) = ann(\/c_ux)e’“”‘”Q/Q.
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3. példa. Laguerre-polinomok
Az alaptér R = R*. A silyfiiggvény o(x) = e~®. Igy
/(ﬂfk)Qd[L = / (2%)2e™ dx < o0 = xkEEZ(IRJF).
R 0

Az n-dik Laguerre polinom:

e” d"
Ln(.ilj) = EM (.%n@ix) .

+1 példa. Haar fiiggvények

Még egy példat emlitek £2[0,1]-ben. ON fiiggvényrendszert alkotnak a Haar-fiiggvények.
Ezek nem polinomok, hanem a legegyszertibb wavelet-ek. Részletes leirasuk a konyvben
megtalalhato. Roviden elmondom itt is. Megadasuk blokkokban torténik. Az n-dik blokk
fiiggényei H, ; ahol k =1,...,2". Minden esetben H,y : [0,1] — IR.

Ha n = 0, akkor két fiiggvény van. (Kivételesen Hy is van) és Ho .

1 ha 0<z<1/2

H()’[)(ZL') =1 \V/J/’E[O, ]_], H071<l’> =
0 ha 1/2<z<1
17. Gyakorlat. Gondoljuk meg, hOgy ||H070||2 = ||H071||2 =1 és <H070,H071> = 0.

Ha n = 1, akkor [0, 1]-t 2! darab egyenl hosszu részre osztjuk. Hi; az 1. részen nem

nulla, H,» pedig a 2. részen nem nulla.

V2  ha O§x<2i2 V2  ha %gx 5
Hii(z) =< —v/2 ha 2% <z< % , His(z) =< —v/2 ha 2% <zr<l1
0 ha z>1 0 ha z<3
18. Gyakorlat. Gondoljuk meg most is a ortogonalitast, illetve az 10j fiiggvények
normalitésat.

(Es gy tovabb...) Az n-dik blokkban a [0,1] intervallumot 2" részre osztjuk, és k =
1,2,...,2" esetén H, j a k-dik blokkban nem 0, azon kiviil 0. Példaul H; s igy néz ki:

22 ha s<r<=+o
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egyébként pedig 0.

19. Gyakorlat. Mennyi lesz || Hs 57

44
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5. Absztrakt linearis operatorok

5.1. Bevezetés

Legyen X és Y két linedris tér (mas szoval vektortér) a K szamtest felett. A szamtest

most IR vagy C.

5.1. Definicié. Egy T : X — Y leképzést operator-nak neveziink. Azt mondjuk, hogy T

linearis operator, ha
- értelmezést tartomdnya Dy C X linedris altér,
- T(ax + By) = oT(z) + BT (y) minden x,yeX és a, BeK konstans esetén.
Az z-hez rendelt értéket T'(x) helyett egyszertien egymés-mellé-irassal fogjuk jelolni: Tx.

Példa. (1. éves Linearis algebra.) X és Y legyenek véges dimenzios vektorterek. Példaul
X =IR"Y =R" EgyT:X — Y operator pontosan akkor linearis, ha létezik olyan

AelR™ "™ matrix, melyre Tx = A - . Roviden emlékeztetek a szorzasi szabalyra.

a1 a1 ... Q1p
921 A29 ... QA2p a1
)
A= , T =
T
Am1 Am2 ... Omn

esetén

(Ax); = Z ajkTr
k=1

Példa. (Sorozattér) X =Y = 2 = {(z,) : Y. 22 < oo} a négyzetesen Osszegezhets
szamsorozatok tere. Az alabbi T : (%> — (% operator SHIFT operator, (hatratolas / bal
shift)

T(x1, T2, Tpy...) = (T2, T3,... Tpy...)

20. Gyakorlat. A fenti /2-beli shift operator felirhaté végtelen matrix-vektor-szorzat

alakban is. Irjuk fel.

Példa. (Fiiggvény terek) Legyen Cla,b] az [a,b]-n értelmezett, valos értéki, folytonos
fiiggvények tere. Az integral-operator jol ismert: feCla,b] esetén.

Tf - /abf(x)dm.
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Ebben a példaban X = C[a,b] és Y = IR.

5.2. Definicié. Ha a képtér IR vagy C szamtest, akkor a T : X — operdtor elnevezése
funkcional.

Példa. Legyen C'la,b] = {f : [a,b] — R folytonosan differencidlhat6}. Ezen a téren
értelmezhetd a differencial operator: T : C'[a,b] — Cla, b], melyre

Példa. A Fredholm operator T : Cla,b] — Cla,b], mely a kovetkezs alaku:

b
e Th Ti bR TH6) = [ ke0f@d,
ahol: k : [a,b] X [a,b] — IR adott, szakaszonként folytonos, kétvaltozos fiiggvény.

Megjegyzés. Figyeljiik meg a hasonlésdgot a Fredholm operédtor definicidja és a métrix-

vektor szorzas koztott.

5.2. Folytonossag, korlatossag

Tegyiik fel, hogy az X és Y vektortereken norma is adott. X, Y normalt terek. Ekkor

értelmeztiik egy leképezés folytonossagat.

5.3. Definicio. T : X — Y linedris operdtor folytonos az xoe X pontban, ha minden e > 0

szamhoz létezik olyan 6 > 0, melyre

|z —xollx <0 = ||Tx—Txly <e.

5.1. Allitas. T folytonossiga xo-ban ekvivalens a sorozatfolytonossdiggal. Ez azt jelenti,
hogy ha tetszdleges X -beli sorozat esetén lim x, = xg, akkor a megfeleld Y -beli sorozatra

n—oo

lim Tx, = Tz, teljesiil.
n—oo

5.1. Tétel. AT : X — Y linedris operdtor pontosan akkor folytonos minden pontban,
ha egyetlen pontban folytonos.
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Bizonyitds. Tegyiik fel, hogy T folytonos valamely zoeX pontban. Legyen zeX egy
(masik) tetszdleges pont. A sorozatfolytonossagot ellendrizziik le. Legyen (z,) C X egy
olyan sorozat, melyre lim,, .., x,, = x. Definidlunk egy maésik sorozatot: vy, := x, —x + x,.
Ennek hatarértéke:

lim y, = lim (2, — z + x9) = — . + x¢ = Xo.

Ezért lim, oo Ty, = Txg az xg-beli folytonossdg miatt. Masrészt T linearitasat fel-
hasznalva
Txg = hm Ty, = lim Tz, — Tx + Tx.

n—o0

Ezért valoban lim,,_, Tz, = Tz, ami az x-beli folytonossagot igazolja.

Emlékeztetek arra, hogy egy f : X — IR valos fiiggvény korlatossaga azt jelentette, hogy
van olyan k szam, melyre |f(z)| < k teljesiil minden xeX-re. Linedris operatorok esetén
azonban példaul T'(2x) = 2 - Tz, ezért || Tx|| < k minden z-re nem lehet!

5.4. Definicié. T : X — Y linedris operdtor korlatos, ha van olyan M > 0, melyre

[Tzlly < M- |z]lx, V. (8)

Példa. Shift operator T : ¢ — (2 korlatos-e? Legyen x = (z1,23,...7,, ...)él?, ennek

norméja ||z|| = (Y52, 22)1/2. Megbecsiiljiik Tz norméjat:
Tw = (03,03, @, ), Tl = Qo)) <1-(Q_a)? = |z
i=2 i=1

Ezért minden M > 1 szamra a (8) feltétel teljesiil. Tehat 7" korlatos.

Példa. T : Cla,b] — R az integral operator, T'f = / f(z)dz. Vajon korlatos-e?

/fda:

Felhasznaltuk, hogy Cfa,b]-ben a norma || f| = m[énli] |f(z)|. Ezért az operator korlatos,

tetszdleges M > b — a jo lesz, a (8) feltétel teljesiil.

1751 =

/ f(@)lde < / 1flldz = (6~ a) - [I£]I.

5.5. Definicié. Egy T korldtos linedris operdtor normdja a legkisebb M > 0, melyre a (8)

tulajdonsdg teljestil.

|7 := min{M : ||Tx| < M - ||z||, V& —re}.
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29. Feladat. Lassuk be, hogy ez valoban norma.

Példa. (folytatas) A shift operator esetén minden M > 1 fels§ korlat. Masrészt ha
z = (0,1,0,...), akkor ||z|| = 1. Mivel Tx = (1,0,0,...), ezért | Tz|| = 1. Ez azt jelenti,
hogy M =1 elérhets. Ezért a shift operator norméaja ||7'|| = 1.

Példa. (folytatas) Az integral operator normajat keressiik. Egyrészt a korlatossag miatt
minden f-re

1T < (b= a)llfII

Masrészt, ha f = ¢ konstans, akkor

Tf| = / elde = || - (b—a) = ]| - (b — a),

ezért az integral operator normaja ||T|| = b — a..

Kérdés: Hogyan tudjuk egy operdtor normajat kiszamitani?

Az el6z6 példakban tgy jartunk el, hogy eloszor valamely M-re belattuk, hogy ||[Tz| <
M - ||z|| minden z-re. Azutan talaltunk olyan x¢-t, melyre ||T'zo|| = M - ||xo|| egyenlGség
volt igaz. Ekkor ||T|| = M.

Masképp is szamolhatunk. Ha x = 0, akkor nyilvan T'r = 0. Ezért az x = 0 pontban
minden M-re igaz, hogy ||Tx| < M||z||. Ha = # 0, akkor a korlatossag azt jelenti, hogy
van olyan M, melyre ||Tx| < M|z, azaz
M < M, Va # 0.
]l
Ez alapjan a norma maésik kiszamitasi modja:

T

i) = ntar s T < g g 20y

]

L N o R Y

ST

30. Feladat. Tgazoljuk, hogy véges dimenzios X esetén a fenti képletben sup helyett

maz 1s irhato.

5.2. Tétel. Egy T : X — Y linedris operdtor pontosan akkor korldtos, ha folytonos.

Bizonyitds. 1. Tegyiik fel, hogy T korlatos. Belatjuk, hogy xy=0-ban folytonos. Nyilvan
T(0) = 0. A korlatossag miatt van olyan M, melyre

1Tz < Mljzl|, V.
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Ezért ha az (z,) sorozatra =, — 0, akkor Tz, — 0. Tehat T" az xo = 0-ban folytonos.

2. Tegyiik fel, hogy T folytonos xy = 0-ban. Ekkor ¢ = 1-hez van olyan d, melyre

|z — 0] <o = |Tx— 0| < 1.
J
Legyen xeX tetszéleges, x # 0. Ekkor az y = 6-Hx—H vektor norméja ||y|| = WHxH = 0.
x x
A folytonossag miatt ezért | Ty| < 1. Atrendezve
) ) 3
Ty=T(— )= Te = |Tyll=—- Tz < 1.
] ] ]l
Ebbdl azt kapjuk, hogy
1
7ol < Sl e

1
Tehat M = 5 véalasztéassal a korlatossag definicioja teljesiil.

5.6. Definicié. Az X ésY kozotti korldtos linedris operdtorok halmaza B(X,Y).
B(X,Y)={T:X —Y, korldtos, linearis}.

Ez normdlt tér a kordbban definidlt operdtor normdval. Specidlisan, ha X =Y, akkor

B(X, X) helyett B(X)-t irunk.

B(X)={T:X — X, korldtos, linedris}.
(A B bett arra utal, hogy "Bounded".)

5.2. Allitas. HaY Banach tér, akkor B(X,Y) is Banach tér.

Bizonyitds. (Véazlat). Legyen (T,,) C B(X,Y") korlatos lineéris operatorokbol allo Cauchy

sorozat. Ez azt jelenti, hogy minden € > 0-hoz létezik N kiiszobindex, melyre
T, — Tl <e, Vn,m > N.
Az operator norma definicidja szerint ebbdl kovetkezik, hogy minden x-re
(T = T) (@) < |70 = Toall - 2l = ([ Tow — Tzl < e - [|]

Emiatt (7,z) C Y Cauchy sorozat minden z-re, tehat Y teljessége miatt a sorozat kon-

vergens. Ezért lim,, . T,z jol definidlt, legyen Tz := lim,, o, Tz, TxeY .

Az igy kapott T': X — Y operator linearis és korlatos. Korlatossaga abbol kovetkezik,
hogy ha a (7)) operator-sorozat Cauchy, akkor korlatos. Ezért van olyan M, melyre

II7]| < M minden n-re teljesiil, és a hatartérték monotonitésa miatt 7-re is.
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5.1. Kévetkezmény. Ha Y = IR akkor B(X,R) Banach tér. Tehdt az X téren

értelmezett funkciondlok Banach teret alkotnak.

Példa. X = H Hilbert tér. Legyen zoeH fix, 29 # 0. A T : H — R lineéris funkcionalt

igy értelmezziik:

Tx = (x,x0).
A skalarszorzat linearitasa miatt 7' linearis funkcional. A C-S-B egyenlGtlenséget fel-
hasznalva
|TZE| = |<$ax0>| < <$,ZL‘>1/2<$0,$0>1/2,
azaz
[Tl < llwoll - Nzl = [T < [lzoll;
tehat T korlatos. Masrész @ = xy valasztassal |Txol| = ||zo|| - ||zol|, ezért a funkcional
norméja ||T]| = ||zo]|-

5.3. Banach algebra. Invertalhatésag

B(X)-n gazdag struktira van. Lattuk, hogy vektortér a megfelel6 miiveletekkel, és
értelmezve van rajta norma ("tavolsag" is). Ezen feliil szorzds is definidlhato rajta: ha
T, SeB(X), akkor szorzatuk T'S := T o SeB(X). Ez a struktira a megfelel6 miveleti
tulajdonsagokkal egyiitt algebra.

5.7. Definicid. Tegyiik fel, hogy X teljes normdlt tér, azaz Banach tér. Ekkor B(X) is

Banach tér, melyen szorzdst értelmeztink. Ez eqy Banach algebra.

Ebben a Banach-algebraban a szorzasra nézve van egységelem. [ : X — X, melyre

x +— Ix := x. Ekkor nyilvian

TI=IT =T, VTeB(X).

5.8. Definici6. A TeB(X) operdtor invertalhats, ha van olyan SeB(X) operdtor, melyre
TS =ST=1.

c stz

hogy egységet ad.
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Példa. X = (2. Tekintsiik a T(xy,79,...) = (x9,73,...) bal-shift operatort, és az
S(xy1,xa,...) = (0,21, x9, ...) jobb-shift operatort. Ekkor

TS =1 de ST # 1

S6t, T nem is invertalhato, hiszen nem injektiv. S sem invertalhato, hiszen nem sziirjektiv.

Keérdés: Hogyan donthetd el, hogy egy konkrét operator invertalhato-e? Erre a kérdésre

egy részleges valaszt ad a kovetkezd tétel.

5.3. Tétel. X egy Banach tér. Tegyiik fel, hogy valamely TeB(X) linedris operdtorral
teljesiil, hogy ||T|| < 1. Ekkor I — T invertdlhatd, és

(I-T)"'= iT’“.
k=0

Megjegyzés. A fenti tétel analogja valos szamokra: ha |g| < 1, akkor
1 =,
B

k=0

Bizonyitds. (A kényvben masképp van.)

Az I —T : X — X hozzarendelés azt jelenti, hogy ha (I — Tz = y, akkor t — Tz = y. Ha
invertalhatd az operator, akkor barmely rogzitett y-hoz megkereshetjiik a megfelels z-t.

Atrendezve az x — T'x = y Gsszefiiggést azzal lesz ekvivalens, hogy
r=y+Tx. (9)

Tetszoleges yeX esetén a (9) egyenlet megoldasat iteracioval keressiik meg.

Legyen xoeX tetszbleges, ez a kiinduld pont. Az iteracié tovabbi lépései:
r1 =1y + Txy, To =y + Ty, Tp=y+Txr, 1,
Igy kapunk egy (z,) C X sorozatot. Ekkor
Tpi1—Tpn = (y+Ta,) — (y+Txy 1) =Tr,—Tx, 1 =T(vy,—2p1) =...=T"(x1 — x0).
Ezért a norma korlatossdga miatt
[ens1 = zall < T - [l = ol

A bizonyitast kdzben egy lemmaéra lesz sziikségiink.
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5.1. Lemma. Az operdtor szorzds szub-multiplikativ, ami azt jelenti, hogy

TSI < T - 1151]-

31. Feladat. Igazoljuk a fenti lemmat.

21. Gyakorlat. A lemma alapjan lassuk be, hogy minden T korlatos linearis operatorra

és minden keN természetes szamra
[T < [|T°||". (10)

Most visszatérunk a 5.3 Tétel bizonyitdsdra. A (10) sszefiiggeést felhasznalva, az el6z6

egyenlGtlenséget folytatjuk:
[2ns1 = zall ST - [l = oll < TN - flz1 — o]

Felhasznéalva, hogy ||T|| < 1 ebbdl lathato, hogy |x,+1 — x,|| — O exponencialis
sebességgel. Ezért (z,,) Cauchy sorozat X-ben, tehat konvergens. A hatéarértéke x* =

lim z,,.
n—oo

A sorozatot definidlo egyenlet ez volt:

Tpi1 =Y+ Tx,.
A folytonossagot felhasznalva hataratmenettel azt kapjuk, hogy

r=y+Tx"

Ezt az Osszefiiggést atrendezve azt kapjuk, hogy

vt =(I-T)""y,
tehat y-nak valoban létezik Gsképe. Belatjuk még azt is, hogy az inverz a megadott
alakban irhato. xy = 0 valasztassal a fenti sorozat tagjai:

Tp =Y+ T.Tn,1 =y + T(y + T*/Enfl) =y + Ty + Tanfl = ... = Tky>

ezért

n—1 0
* 18 I k. k
’ —JH&%—JL‘&;”—<ZT>Z/

k=0

5.2. Kovetkezmény. Legyen TeB(X) invertdlhatd operdtor. Tegyiik fel, hogy valamely

SeB(X)-re
1
S| < —=—7-
151< 7y

Ekkor T 4 S 1s invertdlhaté marad.
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Bizonyitds. T + S szorzat alakban irhato:
T+S=T-(I+T7'S)=T-(I+A).

A jobboldal elsé tényezGje invertdalhato. A masodik tényezGjében szerplé A métrix nor-
majat becsiiljiik.
IAN =75 S| < 1T~ - lISIF < 1,

ezért I + A invertalhato.

5.3. Kovetkezmény. B(X)-ben az invertalhaté operatorok halmaza eqy G C B(X) nyilt

halmaz.

Bizonyitds. Ha T'eB(X) invertalhato, akkor ¢ = valasztassal a T operator € sugart

1
. . 7] |
kornyezetében levé operatorok is invertalhatok lesznek. Tehat T' bels6 pontja G-nek.

5.4. Operator spektruma

Emlékeztetek arra, hogy egy AeC™ ™ n x n dimenzidés négyzetes matrix sajatértékeét-
sajatvektordt hogyan definidltuk. AeC sajatértéke az A matrixnak, ha van olyan nem 0

veC™ vektor, melyre
Av = .

Ez kicsit méasképp fogalmazva:
J#£0: (A= A)v=0.
Ebbdl az kovetkezik, hogy A — Al nem invertalhat6. A "sajatérték" fogalmat terjesztiik ki

az absztrakt operatorok esetére.

5.9. Definicié. Eqgy TeB(X) operdtor spektruma azokbol a \eC értékekbol dall, melyekre
T — M\ nem invertdlhatd. A spektrumot o(T) jeldli.

o(T) ={X: T — A\ nem invertdlhaté}

Példa. Ha X véges dimenzios, akkor B(X) elemei a négyzetes matrixok. Ebben az

esetben a spektrum a sajdtértékek halmaza.

Példa. Ha X végtelen dimenzids, akkor egy operator spektruma sajatértékeken kiviil
folytonos spektrum-ot is tartalmazhat. Végtelen dimenzi6s Banach térben egy operator

spektruma bévebb is lehet, mint a sajatértékek halmaza. Erre hamarosan latunk példat.
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32. Feladat. Hattérként ajanlom a 6.7 fejezet elolvasasat. Ami a kvantumfizikiban
megfigyelhetd, az a matematika nyelvén egy operdtor. A megfigyelhets értékek azonosak

lesznek a spektrum elemeivel.
Kérdés. Hogyan lehet egy operator spektrumat meghatarozni?

Példa. Legyen az A matrix

10 0
A=102 0
00 5—¢

Ekkor leolvashatok a sajatértékek, ami a matrix spektruma: o(A) = {1,2,5 —i}.

Legyen B és C masik két, kicsit bonyolultabb méatrix

Ekkor is, a spektrumok leolvashatok, o(B) = {1,i, —i}, és o(C) = {5, i, —i}.

Forditva is elmondhatjuk, hogy ha adott egy o(A) C C véges elemszamu halmaz, akkor

meg tudunk adni egy A matrixot ezzel a spektrummal.

Példa. X végtelen dimenzios, példaul legyen X = ¢2 sorozattér. Lattuk, hogy itt minden
lineéris operatorhoz egyértelmiien hozzarendelhets egy D végtelen matrix. Ha 7" a bal

shift operator, akkor

o =
o~ o
—_ o -

I
o o0 o o oo
o - o o0 o oo

0
0
Legyen most D=diag(\, : neN) egy végtelen dimenzios diagonalis matrix. A megfelels

hozzarendelés: D : x — Dz linearis. (Az operéator és matrix jelolése ugyanaz.) Kérdeés,

hogy vajon mikor lesz a kép Dxel??

22.  Gyakorlat. Igazoljuk, hogy ha a (\,) sorozat korlatos, azaz |\,| < K minden n-re,
akkor xel? -b6l kovetkezik, hogy Dxel?.

Ha ()\,) nem korlatos sorozat, akkor bizonyos xef? esetén Dxzéf? is lehet. Legyen példaul
An > n. Ekkor = (1,1/2,...,1/n,...) vilasztassal zel?, és mégis Dzél?.
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5.3. Allitas. A fenti jelolésekkel DeB(0?) pontosan akkor teljesil, ha a (M) sorozat kor-

ldtos.

33. Feladat. Igazoljuk a fenti allitast. (Utmutaté: Az egyik iranyt mar szerepelt. Azt
kell csak beldtni, hogy ha (\,) nem korlatos, akkor van olyan zef?, melynek képe nem
(%-beli lesz. Mivel (A\,) nem korlatos, ezért minden k-hoz van olyan n; index, melyre

|An| > k. Igy az z,,, = 1/k sorozat megfelel a célnak.)

Példa. (*-ben tekintsiik azt a folytonos, linearis operatort, melyet a D végtelen dimenzios
diagondlis matrix hataroz meg. Hatarozzuk meg D spektrumat! Ha A = )\,, akkor
(D — A\,1)-ben van egy 0 sor, ezért nem invertalhatd. S6t, A = A, egyben sajatérték is.
Emiatt

{A\n : neN} C o(D).

Vajon van-e mas eleme a spektrumnak? Ha AeC, akkor (D — AI) = diag {\, — A\, neN}.

Ennek az operatornak "inverz-jel6lt"-je (mas nem is lehet...)

1
S = diag {——, neN}.

An — A

Ez a métrix B((?)-beli-e? Az el6z6 allitast felhasznélva

SeB(1?)  +—= ( )korlétos.

A=A,

1
— ) nem korlatos. Tehat (D — A1)

nem invertalhato. Ezért Aeo(D). Tehat a sajatértékek sorozatanak torlodsai pontjai is

Ha A torlodési pontja a (\,) sorozatnak, akkor

benne vannak a spektrumban.

5.4. Tétel. o(T) mindig zart halmaz C-ben.

Bizonyitds. "Forditva", belatjuk hogy o(T") komplementere nyilt halmaz. Tegyiik fel,
hogy A nem tartozik a spektrumba. Ekkor T — AI invertalhatd. T — Al eleme a nyilt G
halmaznak. (G jeldlte az invertalhat6 operatorok halmazat B(¢?)-ben.) Ezért van olyan
>0, hogy T'— (A +¢€')IeG ha |¢'| < e, és emiatt X koriili € sugara gdmb is benne van a

spektrum komplementerében.

5.5. Tétel. o(T) korldtos halmaz.
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Bizonyitds. Legyen |A| > ||T'||. Belatjuk, hogy ekkor A biztosan nem tartozik a spekt-
rumba. Valoban, azt irhatjuk, hogy T'— A\ = —A(I — AT, ahol a jobboldalon az I
mellett szereplé matrix normaja [A7'T| = [A|7Y|T|| < 1. Ezért I — A7'T invertalhato,
azaz T — M is invertalhato. Ez azt jelenti, hogy Ao (T). Tehat o(T)-ben csak olyan érték
lehet, melyre |A| < ||T7]].

5.6. Tétel. X Banach tér, TeB(X) korldtos linedris operdtor. FEkkor a spektrum ren-
delkezik az aldbbi tulajdonsdgokkal:

- zdrt,

- korldtos,

- nem ures.

Bizonyitds. Az els6 két tulajdonsagot belattuk. A harmadik tulajdonsag bizonyitasa

nehéz, nem tananyag.

5.10. Definici6o. TeB(X) operdtor spektral sugara

r(T) = sup{|A| : Aea(T)}.
5.4. Kovetkezmény. A spektrdlsugdr felsd becslése: r(T) < ||T|.

Bizonyitéas nélkiil kozoljiik az alabbi allitast.

5.4. Allitas. r(T) = lim ||77]|"/".

n—oo

Példa. T legyen a bal shift operator, T : (2 — (2, T(x1, T2, ..., Tp, ...) = (T2, T3, ...). Vajon

mi lesz a spektruma, o(7") =7

Azt mar tudjuk, hogy 7(7) < ||T|| = 1. Legyen |\ < 1 tetsz6leges komplex szam.

Sajatérték-e? Ha igen, akkor van nem-trividlis megoldasa az alabbi egyenletnek:
T(x1, T2y ey Tpy o) = (T2, 3, Ty, ) = (AT1, ATy ooy AT, .0).

Ebbdl azt kapjuk, hogy

AL] = T
/\l’g = T3
AT3 = Ty

)\xn—l = Tn
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Ezért a sajatvektor nem lehet mas, mint z) = (1, A\, A%, ...), (és ennek skalarszorosa). xel?

o9]
>IN < 0.
n=0

Masrészt Y [A\"|? < oo azzal ekvivalens, hogy || < 1. Ekkor tehét \ sajitérték.

pontosan akkor tejesiil, ha

Ezért a C-beli nyilt egységgomb része o(T)-nek. Mivel a spektrum zart, ezért a zart
egységgémb része is o(T)-nek. Azt viszont mér lattuk, hogy a spektralsugar r(T) = 1,
igy o(T) C zart egységgomb. Osszefoglalva:

o(T) ={AeC : || < 1}.

34. Feladat. Az el6z6 példaban lattuk, hogy a shift operator esetén \g = leo(T).
Igazoljuk, hogy Ao nem sajatérték. (Tehat a folytonos spektrumba tartozik.)

5.5. Dudlis tér

(X, ]| - ||) legyen egy tetszéleges normaélt tér.

5.11. Definicio. Az f : X — R korldtos linedris operdtort linedris funkcional-nak nevez-

A funkcionélok jelolésére kis bettiket hasznalunk: f, g, stb. Az xeX-hez rendelt értéket

tjra a valos fiiggvényeknél megszokott modon f(x) fogja jeldlni.

5.12. Definicio. Az (X,|| - ||) tér dudlisa az X-en értelmezett korldtos linedris

funkciondlok halmaza. Jele X*.

A koréabbi jeloléseinket hasznalva X* = B(X,IR). X* elemei korlatos, linearis operatorok,

tehat X *-ban norma értelmezhetd az ismert modon:

[} = sup{|f (=) : [|lz] = 1}.

Kordbban mar lattuk, hogy X* Banach tér. (Olyan operatorokrdl van szo, melyek

értékkészlete R, ami Banach tér.)
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1. Példa. X = R".
Belatjuk, hogy ha f : IR" — IR linearis leképezés, akkor van olyan aelR", melyre f(x) =
a’z. Legyen ugyanis e¢/clR™ a j-dik egységvektor, melynek j-dik eleme 1 és a tobbi O.

Jelolje a; = f(e?). Ekkor = (21,...2,) = ijej miatt, a linearitast felhasznalva:
j=1

flz) = Zn:xjf(ej) = Zn:aj:cj =a'x.

Ezért (R™)" = R™. Az (IR")*-n indukélt norma fiigg attol, hogy IR"-ben milyen normat
tekintiink.

Eloszér az Euklideszi norméat nézziik. Ekkor a C-S-B egyenl6tlenség felhasznélasaval

n n 2 ;o 1/2
f@)] =D ajr;] < (Zaf) (Zl‘?) = [la| - [|]-
1 j=1

Jj=1

Mivel
f(a) = |all - [all,

azt kapjuk, hogy |[f[| = [lall».

Mi torténik, ha IR"-ben egy masik norméat vesziink? Legyen példaul a ||z]/. = max |z;]

norma. Ekkor
n n n
f@)] =1 agr;] <Y laja;| < max|ay] > laj] = [|2]o]lal-
1 1 1

A fenti sorban x; = sign (a;) valasztéssal egyenldséget kapunk. Igy ||f|| = [lall;. A duélis
tér fiigg az alaptér normajatol! Azt kaptuk, hogy

RO o) = (R, (R |- o) = (R[]~ ).
Altalaban is igaz, hogy
R, = R [ -|l,), ahol ~+2=1
Al = Al lg), ahol —+4+-=1.
P q p q

Példa. Hasonlé argumentumokkal belathato, hogy (£2)* = (2, és (¢P)* = (% ha p és q
Holder konjugaltak.
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2. Példa. X = C|a,b).

X elemei folytonos fiiggvények, melyet © = x(t), te[a, b] fog jelolni. A norma a megszokott

mazimum-norma. Néhany példa korlatos, linearis funkcionéalokra:
a)
b
filz) = / x(t)dt, | fill = b — a.

b) Rogritett yeCla, b] mellett
b b
fw) = [t 18] = [ luold

c) Rogzitett toe[a, b] mellett
fs(z) = z(to).
Mas jeloléssel ez a funkcionél
O () = x(to).
(Kvantum fizikdban ezt az el6z6 példahoz hasonlo alakban, igy szokas felirni:
b
Oy () := / x(t)o(t — to)dt,
ahol § a Dirac delta fiiggvény.)

Cla,b] dudlis tere mar nem tananyag. Ezek a korlatos valtozasu fiiggvények, és minden

korlatos linearis funkkcional egy Lebesgue-Stieltjes integralként irhato fel.

Lattuk, hogy X* Banach tér. Most az X*-n értelmezett funkcionalokat tekintjiik.

5.13. Definicio. Az X normdlt tér masodik duédlis tere X* dudlis tere. Jele X**.

Példa. Legyen xoeX rogzitett elem. Ennek megfeleltethets egy ¢,, : X* — IR leképezés:
feX® = pa(f) = fl@o)
¥, linearis, természetesen. Korlatos is, hiszen
020 ()] = | f (o)l < I [lzoll-
Tehat @,,eX™. S6t, igazolhato az is, hogy
[[@w0llx== = llzollx-

Hasznéljuk a kovetkezs jelolést: (f,z). Ez két egészen kiilonboz6 dolgot is jelenthet,
feladattol fiiggGen:
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— Rogzitett f esetén (f,z) = f(x) egy X-n értelmezett funkcional.

— Rogzitett = esetén (f,x) = p.(f) egy X*-n értelmezett funkcional.
5.5. Kovetkezmény. X C X**, természetes mddon bedgyazhato.

5.14. Definicioé. Ha X = X**, akkor a tér reflexiv. Hao X G X**, akkor a tér irreflexiv.

35. Feladat. Igazoljuk, hogy X = R" reflexiv tér, barmilyen normaét is tekintiink.
36. Feladat. Igazoljuk, hogy X = (P reflexiv tér.

Példa. X = ¢y, a nullsorozatok tere, irreflexiv. Kénnyen lathato ugyanis, hogy cf = £°°,
azaz minden co-n értelmezett folytonos linearis funkcionalhoz egyértelmiien tartozik egy
a = (a,)el™ korlatos sorozat, és forditva. Méasrészt korabban mar lattuk, hogy (£>°)* = (%,

ami b6évebb mint cg.

Példa. X = Cla,b] is irreflexiv.

5.6. Gyenge konvergencia

X normaélt tér, ebben (z,) egy sorozat. A masodik fejezetben (Topologiai alapfogalmak)

azt mondtuk, hogy az (z,) sorozat konvergens és hatarértéke z, ha

lim ||z, — 20| = 0.
n—oo

Ez a normabeli konvergencia.

5.15. Definici6. Az (x,) sorozat gyengén konvergal az xy ponthoz, ha

lim f(z,) = f(z0)  VfeX".

n—oo

Mas szoval az X-beli sorozat helyett sok-sok wvalds szamsorozatot tekintink. A gyenge

. w
konvergencia jele x,—>xg.
Ennek megfelelGen a normabeli konvergenciat ers konvergencianak is nevezziik.

5.5. Allitas. Ha az (z,) C X sorozat erdsen konvergens, akkor gyengén is konvergens.



5. ABSZTRAKT LINEARIS OPERATOROK 61

Bizonyitds. Tegyiik fel, hogy az (x,) sorozat normaban konvergens. Legyen feX™* egy

funkcional. Ekkor a linearitas miatt f(z,) — f(zo) = f(x, — x0). Ezért

|[f(xn) = f(zo)| = [f (&n — zo)| < Il llxn — 20l — O,
tehat gyengén is konvergens a sorozat.
A fenti allitds megforditasa nem igaz. Erre mutatunk egy példat.
Példa. Legyen X = (. Tekinsiik itt az (e™) sorozatot, ahol az " szamsorozat egyetlen

nem 0 eleme az n-dik helyen allo 1. Ekkor |e€"||oc = 1, és a sorozat norméban nem

konvergens.

Vizsgaljuk meg a gyenge konvergenciat. Legyen feX* egy funkcional. Mivel (£>°)* = (1,
ezért az [ funkcionalhoz létezik egy a = (ax)el! sorozat, melyre

o0

flz) = Z kT, T = (xg).

k=1

Az (e") sorozat mentén a funkcional értéke:

f(e") =ay, = lim f(e") =0,

n—00

hiszen ael! esetén Y |ax| < 0o, ezért (a,) nullsorozat. Az (e") sorozat gyengén konvergens.

5.7. Funkcionalok és operatorok Hilbert térben

Specialis normélt tereket tekintiink ebben a fejezetben. H Hilbert tér.
Példa. Legyen yeH rogzitett. Az f, : H — IR funkcionalt igy definialjuk:
fy(x) = (z,1).
Ekkor a C-S-B egyenl6tlenség miatt
[z, 9) ] < =]l [lyll,
és x = y esetén egyenlGség van. Ezért || f, || = [|y]|-

Belathato, hogy nincs is més funkcional:

5.7. Tétel. (Riesz reprezentdcids tétel.) Minden feH* funkciondlhoz létezik olyan yeH,

melyre
flz) = (2,y).
és |LfI=1Tyll-
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5.6. Kovetkezmény. H és H* izomorfak. Minden Hilbert tér reflexiv.

37.  Feladat.  Igazoljuk, hogy egy (z,) sorozat gyenge konvergencidja xo-hoz azzal

ekvivalens, hogy minden yeH esetén

lim (2, y) = (20, ).

n—o0

5.16. Definici6. Az AeB(H) linearis operator adjungaltja az az A*eB(H) linedris operdtor,
melyre

(Az,y) = (v,A%y)  Va,yel.

Belatjuk, hogy az adjungalt operator jol definidlt. Legyen ye H. Hogyan hatdrozhatd meg
A*y? Ehhez tekintsiik az alabbi lineéaris funkcionalt:

f(z) = (Az,y).

Tz 2z

(Vegyiik észre, hogy a fenti funkcional definiciojaban jelen van mind az A operator, mind

az y pont.) A Riesz reprezentacios tétel szerint van egy y*eH elem, melyre

f(x) = (z,y%).

Tehat van egy y — y* hozzarendelés. Ez az A* operator, hiszen
f(z) = (Az,y) = (z,y").
5.8. Tétel. Az adjungdlt operdtor tulajdonsdgai:

1. I*=1.
2. (A+ B)"* = A"+ B*.
3. (aA)* =a@A*.
4. (AB)* = B*A*.
5. (1A = [IA]l.
Megjegyzés. A Definicié konnyen kiterjeszthet arra az esetre, amikor az operator kiilon-

bo6z6 Hilbert terek kozott hat. Az A : Hy — Hs korlatos linearis operator adjungaltja az
az A* : Hy, — H, operator, melyre

(Az,y) = (z, A™y) VeeH, YyeH,.



5. ABSZTRAKT LINEARIS OPERATOROK 63

A fenti egyenléség két oldalan két kiilonboz6 térben definialt skalarszorzat szerepel.

Példa. H = R", Euklideszi normaval. Linearis operator megadésa egy n X n dimenzios
A matrix-ot jelent. Ekkor A* = AT, az adjungalt operatorhoz tartozé maatrix az eredeti

matrix traszponaltja, hiszen

(Az,y) = (Az)" y = 2" ATy = (x, ATy).

Példa. H = £%(0, 1], ahol a skalarszorzat

Tekintsiik H-ban azt a Hy alteret, ahol azok a végtelen sokszor differencidlhato u(t) fiig-

gvények vannak, melyekre u(0) = u(1) = 0. Hp-ban értelmezziik a differencialoperatort:
/!

Au=u'.

Ennek adjungéltja mi lesz?

(Au, v) — /0 o (E)o()dt = u(t)o(t)

mikozben parcidlisan integraltunk. Folytatjuk:

1
(x) =0 —/ w(t)v' (t)dt = (u, —v") = (u, A*v).
0
Tehat a differencidloperator adjungéltja Hy-ban

Afv = —v'.

Példa. Zart altérre ortogondlis vetités. Legyen £ C H egy zart altér. Ekkor minden xe
elem elGall osszegként x = xp + ¢ alakban, ahol zgel és xg L E. Ez utobbi tulajdonsag
azt jelenti, hogy (x¢,y) = 0 minden yeE mellett.

Az ortogonalis vetités operatora P : H — H, Px := xp. Ennek adjungaltjat igy sza-
moljuk:

<P$,y> = <P'T7Py+y0> = <PSL’,Py>+<P!I?,yO> = (**)7

itt a masodik tag 0, hiszen Pzek és yo L E. Folytatjuk, hasonl6 argumentumot hasznélva:
(xx) = (P, Py) + (zo, Py) = (z, Py).

Azt kaptuk tehat, hogy
P =P
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5.17. Definicié. Az A operdtor énadjungalt, ha A = A*.

5.18. Definicié. Az A onadjungdlt operdtor pozitiv, ha

(Az,x) >0 VxeH.

Példa. Ha A = N*N alakban &ll el6, akkor pozitiv. Valoban,
(Az,x) = (N*Nz,2) = (Nx, Nz) = ||Nz||.
5.9. Tétel. Ha A dnadjungdlt operdator, akkor
1 [|A™M] = [lAf™.

2. Spektrdl sugara r(A) = || A]|.

3. Spektruma valds: o(A) C IR.

38. Feladat. Igazoljuk, hogy énadjungalt operator esetén || A2|| = || A||>.

Megjegyzés. Az onadjungalt operatorok a valds szimmetrikus métrixok végtelen dimenzios

megfeleldi.
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A. Appendix

A.1. Kontrakcié — fixpont tételek

A kontrakci6 egy specialis operator. Erdemes a legaltalanosabb keretben definialni, hiszen
itt is igazolhatd a méltan-hires Banach-féle fizpont-tétel. Legyen X egy metrikus tér, és

T : X — X leképezés, azaz operator.

A.1. Definicié. A T : X — X operdtor kontrakcié, ha megadhato eqy 0 < M < 1 szam
azzal a tulajdonsaggal, hogy

d(Tz,Ty) < M d(z,y) YV, yeX.

Mas szoval a kontrakcio barmely két pont tavolsagat "Gsszehizza". Fontos, hogy legyen

egy kozos, 1-nél kisebb M aranyosséagi tényezo.

A.1. Allitas. Ha T kontakcid akkor folytonos is.
Bizonyitds. A definiciobol konnyen kovetkezik. Be kell latni ugyanis, hogy tetszéleges
¢ > 0-hoz megadhat6 6 > 0, melyre
ha d(z,y) <o akkor d(Tz, Ty) < e.

23. Gyakorlat. Lassuk be, hogy § = /M jo véalasztas.
A.1. Tétel. (Banach-féle fixpont-tétel) Tegyiik fel, hogy X teljes metrikus tér. Legyen
T: X — X kontrakcio. Ekkor egyértelmiien létezik x*eX pont, melyre

x=Tx".
Tehdt van eqy egyértelmien meghatdrozott elem, amit T onmagdba képez le. Ez a fixpont.
Bizonyitds. A fixpont létezésének igazolasa a szukcessziv approrimdcio modszerével

torténhet. Definidlunk egy sorozatot, melynek hatarértéke a fixpont lesz. Legyen xgeX

tetszbleges kezdGpont, és x, 11 = Tx,. Masképp jelélve z, = T"zy. Ekkor:
d(xps1, ) = d(Tay, Trp 1) < M d(Ty, Tn_1),

és ezt folytatva
d(xpi1, ) < M™d(z4, x0).
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Eszerint (z,) Cauchy-sorozat (1d. a Gyakorlatot a Bizonyitds utan), tehat konvergens.

lim z,, = z*.

n—oo
Mivel x,, = Tx,_1, ezért

T(lim z,)=T(z") = lim Tz, =27,
n—00 n—0o0
felhasznalva a folytonossagot.
Az egyértelmiiséget indirekt modon igazoljuk. Tegyiik fel, hogy van két fixpont, ezeket
jelolje z* és x**. Ekkor
d(z*, ™) =d(Tz", Tx™) < Md(z*, z™"),

ami csak ugy lenne lehetséges M < 1 miatt, hogy

d(z*, z**) = 0.
Ez ellentmond annak, hogy z* # x**.

24.  Gyakorlat.  Igazoljuk, hogy ha egy sorozatra d(x,i1,z,) < M"d(x1,x0) teljesiil

valamely M < 1 szammal, akkor a sorozat Cauchy.

Példa. Legyen X = [a,b] C R. Keressiik egy f : X — X fiiggvény fixpontjat. Van-e

olyan x*¢[a, b], melyre z* = f(x*)?

Az X alaptér teljes. A leképezés akkor lesz kontrakcié, ha van olyan M < 1 szam, melyre

|f(x) = fW) < Mlx—yl,  x,yea,b.

Ez akkor teljesiil, ha f Lipschitz-folytonos és a Lipschitz-konstans M = L < 1. Ekkor
létezik fixpont. Ehhez elégséges feltétel differencialhato fiiggvény esetén, hogy |f'(z)] <

M < 1 minden z-re valamilyen alkalmas M konstanssal.

A.2. Els6rendii DE megoldasa a fixpont-tétel segitségével

Tekintsiik az alabbi elsérendi differencidlegyenlethez kapcsolodd kezdetiérték-feladatot:
y = o(z,y) (11)
y(xo) = o (12)

A megoldéssal kapcsolatban felmeriils kérdések az egzisztencia és az unicitds. Vajon

létezik-e megoldas és az egyértelmi-e?

Erre ad egy lehetséges valaszt a Picard tétel, melyet mar az els6 éves Analizis el6adason

szerepelt, bizonyitas nélkiil.
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A.2. Tétel. (PICARD-tétel) Tegyiik fel, hogy az (11) egyenletben szerepld ®(x,y) fig-

guény mdsodik vdltozojaban Lipschitz-folytonos, azaz van olyan K > 0:
|¢($ay)_¢($,z)|§K|y—Z|a Vy,z,

x-tdl figgetlenil. Ekkor létezik az (11)-(12) kezdetiérték-feladatnak egyértelmd megolddsa

az xo pont valamely kérnyezetében.

Bizonyitds. Tegyiik fel, hogy valoban létezik megoldéas, az y : [a, b] — IR fiiggvény kielégiti
a differencidlegyenletet. [a,b]-rol csak annyit tudunk, hogy zoe(a,b). Az (11) egyenletet

minden argumentumaéaval kiirva azt kapjuk, hogy

y(t) =2t yt),  tefa,b].

Integraljuk ezt az egyenletet zy és x kozott.
vw) == [ Oltyl)d  aela.b (13)
o

Keressiik a fenti egyenlet megoldasait a (Cla,b], ||.||) teljes metrikus (normélt) térben.

Egyel6re [a, b]-t nem ismerjiik.

Legyen a T : Cla,b] — C|a,b] operator a kivetkezo:

Tife T (TH@ =+ [ “a(t, (1))

Z0
A (13) egyenlet azzal ekvivalens, hogy y = T'y. Tehat a T operator fixpontjat keressiik.
Megvizsgaljuk, hogy T kontrakcio-e? Ha f, geCla,b], becsiiljiik meg T'f és Tg kiilonb-

ségének normajat:
[Tx — Tg| = max{|Tf(x) — Tg(x)| : zela,b]}.

Legyen most xe[a, b] tetszoleges. Ekkor

Tf(x) = Tg(x)| =

/xcp(t,f(t))dt - /xcb(t,g(t))dt' <

T o

< / C(, £(1)) — (. g(1))] dt.

Mivel a ® fiiggvény y-ban Lipschitz-folytonos, ezért igy folytatjuk:

T () - Ty(a)| < - < K/xlf(t) —gldt< (b—a)K ||f gl

ha <1, T kontr.
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Ezek szerint ha az [a,b] intervallumot ugy valasztjuk meg (amellett, hogy a < g < b),
hogy K (b — a) < 1 teljesiiljon, akkor a fenti 7" operator kontrakcio lesz. A Banach-féle
fixpont-tétel alapjan van fixpontja, ami az (11)-(12) kezdetiérték-feladat megoldasa lesz.

Példa. Tekintsiink egy konkrét Cauchy feladatot:

y = x4y
y(0) = 0.

A differencidlegyenlet jobboldalan 1évs fiiggvény ®(x,y) = z + y valéban Lipschitz

folytonos, K = 1 konstanssal. Ezért a Cauchy feladat megoldasa egyértelmien létezik.

A bizonyitasban szerepl6é T operator most igy irhato:

(Tf)(x) = /Ox(t+f(t))dt.

A feladat megoldésa szukcessziv approximécidval:

fo(x) = 0

A = Th@ = [ ¢+ nma= [ ra-3
A = TR@ = [e+Ha-F+5

fo) = Y=o

Behelyettesitéssel konnyen ellenérizhets, hogy valoban megkaptuk a megoldast.
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B. Altalanositott fiiggvények. (Disztribiiciok)

B.1. Linearis funkcionalok a C{°(IR) téren

B.1. Definicio. C§°(R) az figgvénytér, amely a végtelen sokszor differencidlhato, kom-
pakt tartdju figguényeket tartalmazza. Eqy ¢ : R — R fiigguény tartdja:

suppy = {z : p(x) # 0}.

Ez azt jelenti, hogy peC§°(IR), ha ¢ : R — IR végtelen sokszor differencialhato, és van
olyan I C IR véges intervallum, melyre o(z) = 0, ha x¢I. A tovabbiakban révid jelélést
hasznalunk D := C§°(IR).

C°(IR) nyilvan vektortér. Ezen a téren nem definidlunk sem metrikat, sem normat.

Sorozat folytonossagot és korlatossagot értelmeziink.

B.2. Definici6. A (p,) C D sorozat konvergens, és hatérértéke ¢, ha:

1) wan olyan véges I C R intervallum, melyre supp ¢, C I minden n-re,

2) minden k-ra gp%k) — ") egyenletesen, azaz minden derivdlt egyenletesen konvergdl

a hatdrérték derivdltjaihoz az I intervallumban.
Ext igy jelolyik: ¢, — ©.
B.3. Definicié. A Dy C D halmaz korlatos, ha:

1) wan olyan véges I C R intervallum, melyre supp ¢ C I minden peDy esetén,

2) minden k-ra van olyan My konstans, melyre | (z)| < My ha weDy és xel.

B.4. Definicié. A T : D — R funkciondl altalédnositott fliggvény, ha:

1) linedris: T(op + BY) = oT (@) + BT(1), ha p,veD és a, BeR.

2) folytonos a fenti konvergenidra nézve: minden p, — ¢ konvergens fiigguénysorozat

esetén T'p, — Tp.

Az altalanositott fliggvény elnevezés mellett haszndljuk a disztribucié elnevezést is. A dis-

ztribuciok halmazdt D jeloli.
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Tehat az altalanositott fiiggvény egy specialis linearis funkcional.

Példa. f: R — IR tetszdleges folytonos fiiggvény. A Ty hozzarendelést igy adjuk meg:

oo T [ e

25. Gyakorlat. Gondoljuk meg, hogy a fenti 7y : D — IR valoban disztribucio.

39. Feladat. Igazoljuk, hogy kiilénb6z6 folytonos fiiggvényekhez tartozo disztribuciok

kiilénbozéek.

Példa. Kovetkezs példank, T(p) := (0) nevezetes disztribucio. Ehhez kapcsolodd
jelolések:
() = ¢(0), da(p) == ¢(a)

Megjegyzés. Gyakran szokas, kiilonosen fizika kdnyvekben, ezt a disztribiciot az el6z6

példéahoz hasonloan jelolni (mintha olyan lenne...): 6(¢) = /go(ac)é(x) dx.

Jelolje L1

loc

(R) az IR-n értelmezett, lokalisan integralhaté fliggvények halmazat. Minden
fell (R) "kozonséges" fiiggvény egyben altalanositott fiiggvény is. Ha f : R — IR

loc

tetszdleges lokalisan integralhato fiiggvény, akkor a megfelel§ disztribucio:
Ty : D — R, Tt () ::/fgod:v
R
Ebben az esetben a "kozonséges" fiiggvényt és az &ltalanositott fliggvényt (azaz a
megfeleld linearis funkcionalt) azonosnak vessziik.

B.5. Definici6. Ha a TeD disztribicichoz van feL),.(R) figguény, melyre T = T, akkor

loc

T reguléris disztribicid.

40. Feladat. Igazoljuk, hogy a Dirac-0 disztribucio, melyre T'(p) = ¢(0), nem reguléris.
Tehat nincs neki megfelel6 kozonséges fliggvény.

B.6. Definicio. A (T,) sorozat tart a T dltaldnositott figgvényhez, ha minden korldtos
Do C D halmaz esetén T, (p) egyenletesen konvergens.

41. Feladat. Igazoljuk, hogy a Dirac delta disztribucio elGall regularis disztribuciok

hatarértékeként.

Megjegyzés. Ennél tobb is igaz. Igazolhato, hogy minden disztribicio elgallithato reguléris

disztribuciok hatarértékeként.
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B.2. Disztribtciok derivalasa
A definici6 el6tt nézziik meg, mit remélhetiink. Derivalasnal elvarjuk, hogy ha f differ-
encialhato "kozonséges" fiiggvény, akkor (1) = Ty
Eszerint: -
Trie) = [ Fodo=po| - [ 5t =-1y(¢)
R — JR
=0

B.7. Definici6é. A TeD dltaldnositott fiigguény deriviltjia 0T €D, melyet igy értelmeziink:

T (p) == —=T(¢).

Tehdt a 0T derivdlt eqy olyan disztribicio, mely tetszdleges weD-hez a fenti modon rendel

értéket.

B.1. Kévetkezmény. Minden TeD akdrhdnyszor derivdlhato, és k-dik derivdltja

T (p) = (—1)* (™).

Példa. A Dirac delta derivaltja 06(¢) = §'(p) = —¢'(0).
Példa. A Heaviside-fiiggvény (egység-ugras):

0, <0

A hozza tartozo6 disztribacio: -
Tu(p) = / p(z) dz.
0

Ennek derivaltja:

o0

(T)() = ~Tule) = - [ ) [— @(x)} — 0+ (0) = 6(¢)

0

Tehat az egység-ugras fiiggvény derivaltja a Dirac delta altalanositott fiiggvény.

Ha az f fliggvény szakaszonként folytonosan differencialhaté de egy ugras van benne, akkor
altalanositott értelemben vett derivaltjaban megjelenik a Dirac delta fliggvény. Ezen az
abran az f fiiggvényben az xo pontban egy m nagysagi ugras van. Formaélisan azt irhatjuk,
hogy f = fo+mH (x — xg), ahol f; folytonosan differencidlhatd, H pedig az egység-ugras
fiiggvény. Ekkor a disztribiicio értelemben vett derivalt:

Of = fo + mdy,.
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Az altalanositott fiiggvények derivaltja alapot ad arra, hogy lokalisan integralhato, esetleg
nem is folytonos(!) fiiggvény esetén gyenge derivdltat értelmezziink.

B.8. Definicio. Az fel] . fiigguény gyenge derivéltja gLl ., ha:

1
loc»

YVeD : —/f(p/dx:/ggodx
R R

Megjegyzés. A fenti definicioban "parcialis integralast" végziink. Természetesen az integ-
ral Lebesgue integralt jelent.

B.1. Allitas. A gyenge derivdlt alaptulajdonsdgai:

1. Ha létezik az f fligguény gyenge derivdltja, akkor az m.m. eqyértelmd.
2. Ha f differencidlhatd, akkor gyenge derivdltja g = f'.
3. Ha f = fo m.m. és fy differencidlhatd, akkor f gyenge derivdltjaja g = f}.

4. Ha az f figguényhez tartozo Ty disztribucio derivdltja regquldris, éspedig 0Ty = T,

akkor f gyenge derivdltja g.

Példa. Mi lesz az f(x) = |z| fliggvény gyenge derivaltja?

A definicioban megfogalmazott tulajdonsig szerint az - egyel6re ismeretlen - g fiiggvényre
az teljesiil, hogy

_ /_oo 2|’ (z) da = /OO g(x)p(z)de  VyeD.

o0 —0o0
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N/

5. abra. Az abszolut érték fiiggvény klasszikus értelemben nem derivalhato.

A baloldalt atalakitva, majd két parcidlis integralast elvégezve:

_/w 2l (z) do = —/0 (—2)¢/(z) d — /Ooo 2 () de =

—00 —00

0

— -]’ + [

—00

(=1) - p(z)de + [mga(x)}go +/ 1-p(x)de.
0
A fiiggvény megvaltozasok eltiinnek, csak a két integral marad végiil:

—1 ha zz<0

_/Oo |zl¢/ (x) do = / g(@)p(a)dr,  g(r) =

- k 41 ha >0

Tehat az abszolutérték fliggvény gyenge derivaltja g(x) = sign (z) m.m.

6. abra. Az abszolut érték fiiggvény gyenge derivaltja.

Példa. Legyen [ a racionélis szamok karakterisztikus fiiggvénye:

1, zeQ
f(@) = xol(z) =
0, egyébként

Ennek gyenge derivaljta g(x) =0 (hiszen f =0 m.m).

73
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Példa. Az

fiiggvény gyenge derivaltja g(z) = H(x).

26. Gyakorlat. Léassuk be a fenti példa allitasat.

B.3. Altalanositott fiiggvények konvoliciéja

Adott f, geLl . fiiggvények konvoliciojat igy definialtuk:

loc
frg (o / g — y) dy

Hasonloképp, adott T', SeD esetén definidlni szeretnénk a 1" x .S disztribiciot.

Példa. Hatarozzuk meg, hogy az f * geLi . kozonséges fiiggvénynek milyen disztribicié

loc

felel meg.

1) = [ (ot e = [~ (/ F g — >dy) o) dz =
/ fly (/ g(x—y)so(fﬂ)dx) dy.

A belsé integralt kiszamolva

/Oo g(r —y) p(r)dr = /Oo 9(2) oz +y)dy = Ty(p(- +y)),

—00 —00

ahol yelR paraméter. Ezt visszahelyettesitve azt kapjuk, hogy
Troo) = | ) Tl + ) dy = (T7), ()Ll + ).

B.9. Definicié. A T, SeD dltalanositott fiigguények T x S disztribicidjdat igy definidljuk:

T+ 5 (¢) = Te(Sy(p(z +))).

Példa. Legyen az egyik disztribtci6 . Szamoljuk ki, mit ad a fenti definicio T esetén.

Tx6 () = T (0y(p(x +y))) = Tu(p(x +0)) = T(p).

Tehét azt kaptuk, hogy minden T'eD esetén
Txo=T

tehat Dirac delta a konvolucié egysége.
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B.2. Allitas. A konvolicid alaptulajdonsdgai:

1. T+S=5x%T.
2. T« (S+«R)=(T*S)*R.

3. 0(TxS)=(0T)%S =T (0S9).

42. Feladat. Igazoljuk a fenti allitéast.

75
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C. Absztrakt operatorok alkalmazasa egy QM példan

Ebben a fejezetben példat mutatunk arra, hogy a kvantum mechanika egyik leegysz-
erisitett feladatdban hogyan tudjuk alkalmazni a kurzus soran megtanult fogalmakat,
tételeket.

C.1. Fizikai példa

Tegyiik fel, hogy egyetlen részecske (pl. elektron) mozgasat vizsgaljuk. Feltessziik, hogy a
részecske egy végtelen hosszii egyenes mentén mozog, helyzetét egy komplex értéki f(x,t)
fiiggvény irja le. A t valtozo az id6t jelenti, az x pedig a helyzetet irja le a kovetkezd
modon: annak valosziniisége, hogy a részecske az [a, b] intervallumban tartozkodik a ¢

id6pontban egy integrallal adhatd meg:

b
/ ()P d.

A fenti f(x,t)eC az dllapotfigguény. Elvarjuk, hogy

/Oo |z, )| dw = 1.

o0

Jelenleg csak az allapotfiiggvény abszolutértékének négyzete ad szamunkra informéaciot.

Tekintsiink most egy fix ¢ id6pontot, és ez az egyetlen idépont érdekel csak benniinket.

Ezért az adllapotfiiggvény méasodik argumentuméat elhagyjuk.

C.2. Matematikai modell és egy tétel

Absztrakt matematikai nyelven fogalmazva az allapotfiiggvény feL?(IR), melyre || f|| = 1.
A részecske helyzete x, ami egy "megfigyelhets" (="observable") a QM terminologidjat

hasznélva. Mas megkozelitésben azt mondhatjuk, hogy egy valoszintiségi valtozo.

Egy masik fizikai jellemz6 a momentum, melyet az f fiiggvény Fourier transzformaltja ad

meg:

/\

A Parseval egyenlGség miatt

| lt@pde= [ 1fwpde,
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és ezért feL2(IR), tovabba || f| = 1.
b ~
Annak valészintisége, hogy a momentum az [a, b] intervallumba esik a / | f(w)|* dw.

Jelolje T és w a hely és momentum &atlagat a megadott valoszintiségek szerint.
[e.e] [ee] e
v [ al@Pdn w= [ wlfw)pd.
—0o0 —00

(Ezek tugy is tekinthetdk, mint a valoszintiségi valtozok varhato értékei.) A megfelels
variancidk (= szorasnégyzetek) pedig:
= [ Ce-ap @l o= [ w2 )

A szorasnégyzet azt mutatja, mennyire szorodik = és w konkrét értéke T illetve w koriil.

Minél kisebb o2, annal pontosabban tudjuk lokalizalni a véletlen mennyiség értékét.

o large

X

o2 small

|
X
7. abra. Az |f(x)|* fiiggvény alakja nagy illetve kicsi o2 esetén.

A Heisenberg-féle hatarozatlansagi elv azt mondja ki, hogy o, és o, nem lehet

mindkettd egyszerre kicsi. Nevezetesen

A

2 2
Oy Oy =

(Itt az egyszertiség kedvéért a Planck konstanst 1-nek vessziik.)

43. Feladat. Magyarazzuk el, mit jelent a fenti hatarozatlansagi elv.
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C.3. Bizonyitas Hilbert térben (vazlat)

Tegyiik fel, hogy * = 0 és w = 0. Ezt eltolassal elérhetjiik, nem veszitiink az altaldnossag-
bol. Az £2(IR) Hilbert térben két operatort fogunk tekinteni.

Mf(@) = a-f(a) (14)
Df@) = fl(a). (15)

Mindkét operator a fenti Hilbert tér egy-egy alterében van csak értelmezve, de ezzel nem

foglalkozunk. A mi fiiggvényeink "jé helyen" vannak.

A kiindulo osszefiiggéseink szerint f, feﬁZ(IR), egységnyi norméaval.

C.1. Lemma.
M f||* = o3, és | DfI]> =02

Bizonyitds. Az els6 rész konnyii:
sl = [ e spae= [ @R = o

A masodik rész tobb 1épésbdl fog allni. A Parseval egyenl@ség miatt
IDfI* = IDfI*

A norma definicidja szerint
1571 = [ IDF(w)P du.
A Fourier transzformécié egyik alaptulajdonsaga a derivaltfiiggvény Fourier transzfor-
maltjarol szol:
Df(w) = iw f(w),
ezért

1D = = [ P Fw)P dw = o3

—00

Ezutan egy sajatos (meglepd) tulajdonsagat latjuk be az operatoraimknak.

C.2. Lemma. A (14) és (15) operdtorok kielégitik az aldbbi operdtor-egyenletet:

DM — MD = 1. (16)
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Bizonyitds. Egyszertien szorzat-derivalasi szabalyt alkalmazunk.

(z- f(2)) = f(x) + 2 f (x),

ami operator alakban
Do M(f)=1I(f)+ M o D(f).

Ez épp a lemma allitasa.

Megjegyzés. A (16) egyenlet nem az egész £?(IR)-ben igaz, hanem csak abban az altérben,

ahol értelmezheté mindkét oldal.

A kovetkezd lemma az operatorok adjungaltjait adja meg.

C.3. Lemma. Az M operdtor onadjungdlt, azaz

(Mf,g) = (f, Mg).
A D operdtor adjungdltja —D, azaz

(Df,g) = =(f, Dg).
(Az operatorok adjungaltja egy megfelelGen kivalasztott altérben van értelmezve, nem az
egész L?(IR) téren.)

Bizonyitas.

ot = [ " 2 (@) - gla) da = / " f(2) - xg(x) dr = (f. Mg).

A masodik részhez parcialisan integralunk.

(Df,g) = /Z Iy = fg‘: - /Z 14 = —{f, D).

Kozben felhasznaltuk, hogy geL?*(IR) esetén lim g(z) = 0.

2500
Végiil
IfII* = (f, f) = {f,(DM — MD)f) = (f, DM f) — (f, MDf) =
=—(Df,Mf)—(Mf,Df) =—-2(Df,Mf).
Mivel ||f]|> = 1, ezért a C-S-B egyenltlenség alapjan
1==2(Df,Mf),  [Df. M <[Mf]- DS,

ahonnan atrendezéssel épp a Heisenberg-féle hatarozatlansagi elvet kapjuk.
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