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Bevezetés

A Funkcionálanalízis szerves folytatása lesz az els® évben tanult Matematikai Analízis I. és
II. tárgyaknak. Akkor, els® félévben, valós számsorozatokkal kezdtünk, majd egyváltozós
valós függvényekkel folytattuk. Itt értelmeztük a folytonosságot, di�erenciálhatóságot,
integrálszámítást. Második félévben mindezeket a fogalmakat kiterjesztettük a többvál-
tozós, valós függvényekre, majd egy kicsit beletanultunk a vektorérték¶, többváltozós
függvények tudományába.

A Funkcionálanalízis egy olyan alapvet® ága a matematikának, mellyel látszólag egészen
különböz® matematikai problémák egységes módon kezelhet®k. A modern m¶szaki, �zikai
problémák megoldásai elképzelhetetlenek a Funkcionálanalízis módszereinek alkalmazása
nélkül. A Parciális di�erenciálegyenleteknél nélkülözhetetlenek az itt megtanulandó es-
zközök, és szinte nincs olyan mérnöki tudomány, ahol ne fordulnának el® parciális di�er-
enciálegyenletek.

A tárgy lényegét egészen tömören, megközelít®leg így foglalhatjuk össze: a közönséges
vektorok, a véges dimenziós Euklideszi tér fogalmát általánosítjuk. Ennek segítségével e-
gészen absztrakt halmazok � például sorozatok tere, függvény halmazok � vektortérként
kezelhet®k, ezeken sorozatok, függvények értelmezhet®k. Általánosítjuk a határérték,
folytonosság, derivált fogalmát, a jól ismert tételeket kiterjesztjük.

Valóban izgalmas és igen érdekes tudományterületbe kezdünk most.

1. Alap terek

Ebben a fejezetben bevezetjük azokat az alapvet® "terek"-et, ahol dolgozni fogunk.

A Funkcionálanalízisben használt absztrakt terek az általános topológikus tér-t®l indulnak,
egyre gazdagabb struktúrával:

Topológikus tér ¿ Metrikus tér ¿ Normált tér ¿ Skalárszorzat tér

Ebben a felsorolásban balról jobbra haladva az egyszer¶ struktúra felöl az egyre bony-
olultabb struktúrákhoz jutunk.

Másrészt, éppen a struktúra "gazdagsága" miatt, a jobboldalon álló terekben sokkal kön-
nyebb lesz tételeket bizonyítani, itt lesz "könny¶ dolgozni" - de ezek a tételek sajnos nem
feltétlenül lesznek igazak a t®lük balra álló terekben.

A konkrét feladat határozza meg, hogy melyik struktúrát tudjuk használni.
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1.1. Metrikus tér

A Topoógikus tér olyan általános fogalom, amire nem lesz szükségünk ebben a kurzusban.
A Metrikus terekkel kezdünk.

1.1. De�níció. Adott egy M alaphalmaz (alaptér) és egy d : M ×M → IR függvény. Ezt
metrikának nevezzük, ha teljesülnek az alábbi tulajdonságok:

1. d(x, y) ≥ 0 - nem negatív.

2. d(x, y) = 0 ⇐⇒ x = y - nem degenerált.

3. d(x, y) = d(y, x) - szimmetrikus.

4. d(x, y) + d(y, z) ≥ d(x, z) - háromszög egyenl®tlenség teljesül.

Megjegyzés. A fenti de�nícióban az M halmazon nincs semmiféle struktúra. Az elemeket
nem tudjuk sem összeadni sem összeszorozni, nem tudunk sem nyújtani, sem forgatni.
(Legalábbis most érdektelen mindez a metrikus tér szempontjából.)

Példák:

1. IRn az alaptér. A metrika:

d(x, y) =

(
n∑

i=1

(xi − yi)
2

)1/2

,

ha x = (x1, ..., xn) és y = (y1, ..., yn).

2. M = C, a metrika: d(z, w) = |z − w|.

3. Diszkrét metrika.
M bármilyen halmaz. A metrika:

d(x, y) =




1 ha x 6= y

0 ha x = y
, ∀x, yεM.

4. Adott nεN rögzített természetes szám. Legyen M = {n hosszúságú 0−1 sorozatok}.
Tehát M pontjai az n hosszú kódszavak: x = (x1, ..., xn), ahol xiε{0, 1}.
A metrika azt méri, mennyiben különbözik két kódszó.

d(x, y) = ]{i | xi 6= yi}.
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Pl. n = 5 és x = (0, 0, 0, 1, 1), y = (1, 0, 0, 1, 0). Ekkor a távolság d(x, y) = 2.

(Kódelméletb®l ismer®s lehet a példa.)

1. Gyakorlat. Gondoljuk meg, hogy valóban metrika.

1.2. De�níció. (M,d) egy metrikus tér. (xn) ⊂ M sorozat a térben. Azt mondjuk, hogy
(xn) konvergens és (xn) határértéke x0, ha ∀ε > 0-hoz ∃N melyre

d(xn, x0) < ε ha n ≥ N.

1. Feladat. Gondoljuk meg, hogy a (IR, d), diszkrét metrikus térben melyek a konvergens
sorozatok.

1.3. De�níció. M és N metrikus terek, hozzá tartozó metrikákkal: (M,dM) és (N, dN).
Adott egy függvény f : M → N . Legyen x0εM tetsz®leges pont. Az f függvény folytonos
x0-ban, ha ∀ε > 0-hoz ∃δ > 0 melyre

dM(x, x0) < δ ⇒ dN(f(x), f(x0)) < ε

2. Feladat. Gondoljuk meg, hogy ha a képtérben a diszkrét metrika van, akkor csak a
konstans függvény folytonos.

3. Feladat. Ha az alaptérben a diszkrét metrika van, mikor lesz a függvény folytonos?



1. ALAP TEREK 4

1.2. Normált tér

A most következ® struktúrákban az alaptérr®l feltesszük, hogy vektortér. Ez a fogalom jól
ismert Lineáris algebrából. Nagyon röviden, egy V halmaz vektortér - más szóval lineáris
tér - a K test felett, ha az elemek között értelmezve van egy összeadás (+) m¶velet, és a
skalárral-való-szorzás m¶velete:

v1, v2εV ⇒ v1 + v2εV

v1εV, λεK ⇒ λv1εV

és ezekre a m¶veletekre bizonyos (ismert) tulajdonságok teljesülnek. A K testr®l egyel®re
feltesszük, hogy K = IR, a valós számtest.

1.4. De�níció. V egy vektortér. A norma egy olyan ‖ · ‖ : V → IR függvény, melyre
teljesülnek az alábbi tulajdonságok:

1. ‖v‖ ≥ 0 - nem negatív.

2. ‖v‖ = 0 ⇐⇒ v = 0 - nem degenerált.

3. ‖λ · v‖ = |λ| · ‖v‖ - multiplikatív.

4. ‖v + w‖ ≤ ‖v‖+ ‖w‖ - háromszög egyenl®tlenség teljesül.

Ekkor (V, ‖ · ‖) normált tér.

Példák.

1. V = IR, ‖x‖ = |x|.

2. V = IRn,

‖x‖2 =
√√√√

n∑
i=1

x2
i .

Ez az Euklideszi norma, vagy négyzetes norma.

3. IRn-ben további normák:

‖x‖1 =
n∑

i=1

|xi|, ‖x‖∞ = max
i=1,...,n

|xi|

1.1. Állítás. A (V, ‖ · ‖) normált tér egyben metrikus tér is az alábbi metrikával:

d(x, y) := ‖x− y‖, x, yεV.
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2. Gyakorlat. Gondoljuk meg, hogy ez valóban metrika.

Példa folytatatása: IR2-ben a frissen de�niált normákhoz tartozó metrikák, ha x =

(x1, x2) és y = (y1, y2):

d1(x, y) = |x1 − y1|+ |x2 − y2|,

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

d∞(x, y) = max(|x1 − y1|, |x2 − y2|)
(Rajzoljuk fel.)

1.2. Állítás. (IR, d) legyen a valós számok halmaza a d diszkrét metrikával. Ekkor nem
létezik olyan norma, melyre a metrika d(x, y) = ‖x− y‖ alakban felírható lenne.

4. Feladat. Igazoljuk ezt az Állítást.

1.3. Skalárszorzat tér

1.5. De�níció. Legyen V egy vektortér. Adott egy 〈·, ·〉 : V × V → IR m¶velet az alábbi
tulajdonságokkal:

1. 〈v, v〉 ≥ 0 - nemnegatív.

2. 〈v, v〉 = 0 ⇐⇒ v = 0 - nem degenerált.

3. 〈λv, w〉 = λ〈v, w〉, λεIR - multiplikatív.

4. 〈v, w〉 = 〈w, v〉 - szimmetrikus.

5. 〈v, w + u〉 = 〈v, w〉+ 〈v, u〉 - disztributív.

Ekkor (V, 〈·, ·〉) valós skalárszorzat tér.

Komplex skalárszorzat tér esetén a skalárszorzat m¶veletre 〈·, ·〉 : V × V → C, tehát 〈v, w〉
nem feltétlenül valós szám. A szimmetria tulajdonság ebben az esetben így módosul:

〈v, w〉 = 〈w, v〉.



1. ALAP TEREK 6

Példák:

1. V = IRn, 〈x, y〉 = ∑n
i=1 xiyi

2. V = Cn, 〈v, w〉 = ∑n
i=1 viwi

(Itt már jóval kevesebb példát sorolunk fel...)

1.3. Állítás. Egy (V, 〈·, ·〉) skalárszorzat térben norma értelmezhet®:

‖v‖ = 〈v, v〉1/2.

Megjegyzés. A Gyakorlatokon belátják, hogy a fenti állítás nem megfordítható. Van olyan
norma, amihez nincs skalárszorzat. Például IRn-ben csak ‖x‖2 esetén van skalárszorzat, a
‖x‖1 és ‖x‖∞ normák mellett nincs!

1.4. Állítás. (Ismétlés DM-b®l.) Cauchy-Schwartz-Bunyakovszkij (CBS) egyenl®tlenség.

|〈v, w〉| ≤ ‖v‖ · ‖w‖

1.4. Lényeges alap terek I. Sorozat terek

Legyen V a számsorozatok tere. Ez lineáris tér, melynek pontjai számsorozatok:

x = (xn) = (x1, x2, ..., xn, ...).

Ebben alterek:

1. c ⊂ V : konvergens sorozatok. Lehetséges norma c-ben:

‖x‖∞ := sup{|xi|, i = 1, 2, . . . }.

2. c0 ⊂ c: nullsorozatok.

3. c0-ban altér `1 (�kis el-egy�) tér.

`1 = {(xn) :
∞∑
n=1

|xn| < ∞}.

A norma:
‖x‖1 =

∞∑
i=1

|xi|.
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4. Másik fontos sorozattér (�kis el-kett®�):

`2 = {(xn) :
∞∑
n=1

x2
n < ∞}.

Itt a norma
‖x‖2 = (

∞∑
n=1

x2
n)

1/2.

1.6. De�níció. p ≥ 1 esetén az `p teret (�kis el-p�) így értelmezzük:

`p = {(xn) :
∞∑
n=1

|xn|p < ∞}.

A norma ebben a térben:
‖x‖p = (

∞∑
n=1

|xn|p)1/p.

Ha p = +∞, akkor a `∞ tér (�kis el-végtelen�):

`∞ = {(xn) : korlátos}, ‖x‖∞ = sup
n

|xn|.

Kérdés. A fenti `p normált tér mikor skalárszorzat tér?

Válasz. p = 2 esetén `p-ben VAN skalárszorzat:

〈x, y〉 =
∞∑
n=1

xnyn.

Ha p 6= 2, akkor nem skalárszorzat tér.

Megjegyzés. Pontosabban azt írhatjuk, hogy `p = `p(N). Ez az általános Lebesgue-tér egy
speciális esete. Kés®bb fogunk err®l tanulni.

1.5. Lényeges alap terek II. Függvényterek

Adott halmazon értelmezett valós vagy komplex érték¶ függvények összegét és
skalárszorosát értelmezni tudjuk (pontonként). Legyen [a, b] ⊂ IR rögzített intervallum.
Az itt értelmezett korlátos függvények halmaza vektortér:

V = {f : [a, b] → IR, ∃B : |f(x)| ≤ B, ∀x}.

A térben norma de�niálható:

‖f‖ = sup{|f(x)| : xε[a, b]}. (1)
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3. Gyakorlat. Gondoljuk meg, hogy valóban norma.

Ebben a térben alteret alkotnak a folytonos függvények, melyet C[a, b] jelöl:

C[a, b] = {f : [a, b] → IR, folytonos}.

C[a, b]-ben skalárszorzat is de�niálható:

〈f, g〉 =
∫ b

a

f(x)g(x)dx.

4. Gyakorlat. Gondoljuk meg, hogy valóban skalárszorzat.

A skalárszorzat a megszokott módon egy normát indukál:

‖f‖ =

(∫ b

a

f 2(x)dx

)1/2

Látható, hogy az így kapott norma különbözik attól, amit (1)-ben de�niáltunk. Ez utóbbit
másképp is fogjuk jelölni, és elnevezése négyzetes norma:

‖f‖2 =
(∫ b

a

f 2(x)dx

)1/2

(2)

Az (1)-ben de�niált norma elnevezése sup-norma, jele ‖ · ‖∞. Általában ‖f‖∞ 6= ‖f‖2.
Jelölés. C2[a, b]: az [a, b]-n értelmezett folytonos függvények tere a négyzetes normával.

Kérdés : C[a, b]-n a sup-norma skalárszorzatból származik-e?

5. Feladat. A Válasz NEM. Igazoljuk.

Dimenzió

Normált térben és skalárszorzat térben az alap valamilyen V vektortér. A tér dimenziója
n, ha van n elem¶ v1, ..., vn lineárisan független vektorokból álló generátor rendszer.

1.7. De�níció. A V vektortér dimenziója +∞, ha minden n-re van n db független vektor.

1.1. Következmény. Az eddig megismert alap példák általában végtelen dimenziósak, pl.

dim(`p) = +∞, dim(C[a, b]) = +∞

6. Feladat. Adjunk meg tetsz®leges n-re n elem¶ lineárisan független elemet `∞-ben és
C[a, b]-ben.
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2. Metrikus tér topológiája

Ebben a fejezetben olyan alapfogalmakat vezetünk be, melyeket majd a bonyolultabb
struktúrákban is használni tudunk. Célszer¶ tehát a legegyszer¶bb struktúrát tekinteni
most. Legyen (M,d) egy metrikus tér.

2.1. Nyílt és zárt halmazok

2.1. De�níció. xεM középpontú, r > 0 sugarú nyílt gömb

Br(x) = {y : d(x, y) < r}.

2.2. De�níció. Adott E ⊂ M . xεE bels® pontja E-nek, ha van olyan r > 0, melyre
Br(x) ⊂ E. E ⊂ M nyílt halmaz, ha minden pontja bels® pont.

2.3. De�níció. tεM torlódási pontja E-nek, ha ∀ε > 0-ra

Bε(t) ∩ E 6= ∅.

E ⊂ M zárt halmaz, ha minden t torlódási pontját tartalmazza.

Példák:

1. M = IR, Euklideszi távolsággal. Ekkor [a, b] zárt, (a, b) nyílt.

2. M = C[a, b]. k > 0 �x valós szám.

E = {f : |f(x)| < k, ∀x} ⇒ E ⊂ C[a, b] nyílt

E0 = {f : |f(x)| ≤ k, ∀x} ⇒ E0 ⊂ C[a, b] zárt

2.1. Állítás. Egy E halmaz pontosan akkor nyílt, ha M \ E zárt.

7. Feladat. Lássuk be a fenti állítást.

2.2. Kompakt halmazok

2.4. De�níció. E ⊂ M korlátos, ha ∀xεE-hez ∃r > 0, melyre E ⊂ Br(x).
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2.5. De�níció. E ⊂ M egy részhalmaz a térben.
Lefedése: olyan részhalmazok halmaza, melyek uniója tartalmazza E-t.
� nyílt lefedés, ha a lefed® halmazok nyíltak,
� véges lefedés, ha a lefed® halmazok száma véges.

2.6. De�níció. E ⊂ M kompakt halmaz, ha minden nyílt lefedésb®l kiválasztható véges
lefedés.

Példa. IR-ben E1 = [0, 1] kompakt és E2 = (0, 1] NEM kompakt.

Belátjuk, hogy E2 NEM kompakt. Valóban, legyen

rn =

(
1

n
− 1

n+ 1

)
, Gn = Brn

(
1

n

)
.

Ekkor (0, 1] ⊂ ⋃
Gn, és nem választható ki véges sok, ami lefedné.

8. Feladat. Fejezzük be a fenti bizonyítást. Miért nem vásztható ki véges lefedés a fenti
példában?

1. ábra. A fenti Példabeli E2 = (0, 1] halmaz nyílt fedése.

A fenti 2.6 De�níció alapján nem könny¶ belátni egy konkrét halmazról, hogy valóban
kompakt. Ezért egy másik kritériumot mondunk ki.

2.7. De�níció. Az E ⊂ M halmaz sorozat kompakt halmaz, ha minden (xn) ⊂ E sorozat-
ból kiválasztható konvergens (xnk

) sorozat, melynek határértéke E-beli:

lim
nk→∞

xnk
= x0εE.

2.1. Tétel. Tetsz®leges metrikus térben egy E halmaz pontosan akkor kompakt, ha sorozat
kompakt.
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Bizonyítás vázlat : Indirekt. Tegyük fel, hogy M kompakt halmaz, és mégis van benne
olyan sorozat, melynek nincs konvergens részsorozata. Jelölje ennek különböz® pontjait yk,
kεIN. Ezek lefedhet®k páronként diszjunkt nyílt gömbökkel, amihez hozzávéve a M \∪{yk}
halmazt egy nylt lefedést kapunk - és nem választható ki bel®le véges lefedés.

2.2. Állítás. Minden E ⊂ M kompakt halmaz korlátos.

9. Feladat. Lássuk be a fenti állítást.

2.3. Állítás. Minden E ⊂ M kompakt halmaz zárt.

10. Feladat. Lássuk be a fenti állítást.

Vajon megfordítható-e a fenti két állítás? Bizonyos esetben igen.

2.2. Tétel. (Heine-Borel tétel) IRn-ben egy E ⊂ IRn részhalmaz pontosan akkor kompakt,
ha korlátos és zárt.

Bizonyítás. A Bolzano-Weierstrass tételt Analízis I-ben beláttuk. Eszerint minden korlá-
tos számsorozatból kiválasztható konvergens részsorozat. Ezért egy n-dimenziós korlátos
pontsorozatból is kiválasztható konvergens részsorozat. Ennek határértéke a halmaz tor-
lódási pontja, a zártság miatt halmazbeli.

Végtelen dimenzióban a Heine-Borel tétel nem igaz. Erre mutatunk egy példát.

Példa. C[0, 1]-ben tekintsük a zárt egységkört:

B1(0) = {f : [0, 1] → IR, folytonos, max |f(x)| ≤ 1}.

Ez korlátos és zárt is. Mégis, belátjuk, hogy nem kompakt. Megadunk egy olyan (fn) ⊂
C[0, 1] sorozatot, melyre ‖fn‖ = 1 minden n-re.

fn(x) =





1 ha x =
1

n

0 ha x ≤ 1

n+ 1
vagy x ≥ 1

n− 1

lineáris ha xε

(
1

n+ 1
,
1

n

)

lineáris ha xε

(
1

n
,

1

n− 1

)

Könnyen látható, hogy a fenti sorozatnak nincs konvergens részsorozata. Tehát a zárt
egységkör nem kompakt.
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5. Gyakorlat. Lássuk be, ami "könnyen látható" a fenti példában.

Megjegyzés: Végtelen dimenzióban a kompakt halmaz szerepe az lesz, mint IRn-ben egy
korlátos, zárt halmaznak.

2.3. Szeparábilis metrikus tér

2.8. De�níció. (M,d) egy metrikus tér. A ⊂ B ⊂ M tetsz®leges halmazok. Az A halmaz
s¶r¶n van B-ben, ha

∀xεB ∀ε > 0 : ∃aεA d(x, a) < ε.

Ha A ⊂ M s¶r¶ M-ben, akkor mindenütt s¶r¶.

Példa. IR-ben racionális számok halmaza Q ⊂ IR s¶r¶.

2.9. De�níció. Az (M,d) metrikus tér szeparábilis, ha létezik benne megszámlálható el-
emszámú mindenütt s¶r¶ halmaz.

Példák:

1. (IR, d) diszkrét metrikával nem szeparábilis.

2. C[0, 1] szeparábilis.

3. C2[0, 1] is szeparábilis.

Az utóbbiak az alábbi tétel alapján láthatók:

2.3. Tétel. (Weierstrass féle approximációs tétel). A polinomok tere

P [0, 1] = {p : [0, 1] → IR polinom}

s¶r¶ C[0, 1]-ben.

Más szóval, ha f : [0, 1] → IR folytonos függvény és ε > 0 tetsz®leges, akkor van olyan p

polinom, melyre supxε[0,1] |f(x)− p(x)| < ε.

(Ötlet a bizonyításhoz : Adott f függvényhez megkonstruálhatjuk az alábbi ú.n. Bernstein-
polinomot:

pn(x) =
n∑

k=1

(
n

k

)
f(k/n)xk(1− x)n−k,
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ahol nεIN tetsz®leges. Megmutatható, hogy ∀ε > 0-hoz létezik elegend®en nagy n, melyre
‖f − pn‖∞ < ε. Tehát P [0, 1] s¶r¶ C[0, 1]-ben.)

Legyen Q[0, 1] a racionális együtthatós polinomok tere, ez megszámlálható számosságú.
Q[0, 1] ⊂ P [0, 1] s¶r¶, ezért Q[0, 1] s¶r¶ C[0, 1]-ben is.

2.4. Teljes metrikus tér

2.10. De�níció. (xn) ⊂ M Cauchy sorozat, ha ∀ε > 0-hoz van olyan N küszöbindex,
melyre

d(xn, xm) < ε ∀n,m ≥ N.

2.4. Állítás. Ha (xn) konvergens, akkor Cauchy sorozat.

Bizonyítás. Tegyük fel, hogy (xn) konvergens és lim
n→∞

xn = x0. Legyen ε > 0 tetsz®leges.
Ekkor van olyan N , melyre

d(xn, x0) < ε/2, ∀n ≥ N.

Ezért ha n,m ≥ N , akkor a háromszögegyenl®tlens�get használva:

d(xn, xm) < d(xn, x0) + d(x0, xm) < ε/2 + ε/2 = ε.

2.11. De�níció. Az M metrikus tér teljes, ha minden Cauchy sorozat konvergens.

2.12. De�níció. (V, ‖ · ‖) teljes normált tér Banach-tér. (V, 〈·, ·〉) teljes skalárszorzat tér
Hilbert-tér.

Példák.

1. IRn teljes az ismert normákkal.

2. (IR, d) diszkrét metrikával teljes, hiszen minden Cauchy sorozat egy index után
konstans, ezért konvergens.

3. C[a, b] vajon teljes-e?
Igen. Legyen (fn) ⊂ C[a, b] Cauchy sorozat.
Ekkor ∀ε > 0-hoz ∃N , melyre ‖fn − fm‖ < ε. Ezért

‖fn − fm‖ = max
xε[a,b]

|fn(x)− fm(x)| < ε,
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és emiatt MINDEN x-re
|fn(x)− fm(x)| < ε.

Tehát rögzített xε[a, b]-re az (fn(x)) számsorozat Cauchy sorozat, ezért létezik
határértéke:

f0(x) = lim
n→∞

fn(x).

Így f0 : [a, b] → IR jól de�niált függvény. Ráadásul f0εC[a, b], hiszen a supremum-
norma-beli konvergencia ugyanaz, mint az egyenletes konvergencia.

11. Feladat. Lássuk be, hogy C[a, b]-ben a normabeli konvergencia egybeesik a
függvények egyenletes konvergenciájával.

4. C2[a, b] nem teljes. Itt a norma:

‖f − g‖2 =
√∫ b

a

(f(x)− g(x))2dx

Példa. Belátjuk be, hogy C2[0, 1] nem teljes. Legyenek

fn(x) =





0 ha x <
1

2
− 1

n

1 ha x >
1

2

lineáris ha 1

2
− 1

n
≤ x ≤ 1

2

Ekkor könny¶ számolással igazolható, hogy

∫ 1

0

(fn(x)− fm(x))
2 dx → 0, azaz ‖fn − fm‖2 → 0,
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tehát ez a sorozat Cauchy sorozat. A határérték függvény, pontonként:

lim
n→∞

fn(x) = f(x) =




1 ha x ≥ 1/2

0 ha x < 1/2

Mivel f nem folytonos, ezért f 6 εC2[0, 1]!! Ennek a Cauchy sorozatnak nem létezik határ-
értéke C2[0, 1]-ben.

12. Feladat. Tekintsük C2[−1, 1]-ben az alábbi függvényeket:

fn(x) = sgn(x) · n
√

|x|, n = 1, 2, . . .

Igazoljuk, hogy ez Cauchy sorozat, és nem konvergens.

13. Feladat. Lássuk be, hogy ennél több is igaz: a [0, 1]-n értelmezett négyzetesen
integrálható függvények tere SEM teljes.
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3. Lebesgue mérték és Lebesgue integrál

Az el®z® fejezet végén láttuk, hogy a [0, 1]-n értelmezett Riemann-integrálható füg-
gvények tere nem teljes. Ezért új integrálfogalom kellett. 1900 körül alkotta meg Henri
LEBESGUE a mértékelméleten alapuló új integrálfogalmát. Ebben a fejezetben röviden
összefoglaljuk a Lebesgue integrál bevezetésének legfontosabb lép±eit.

3.1. Mérhet® tér, mértéktér

Adott X egy tetsz®leges halmaz. Az összes részhalmazok halmazát jelölje 2X . Legyen
R ⊂ 2X , X bizonyos részhalmazainak halmaza.

3.1. De�níció. R algebra, ha teljesülnek az alábbi tulajdonságok:

1. XεR,

2. A,BεR esetén A ∪BεR,

3. A,BεR esetén A \BεR.

3.2. De�níció. Az R algebra σ-algebra, ha zárt a megszámlálható unióra is:

2.+ AkεR, k = 1, 2, ... esetén
⋃∞

k=1AkεR

3.3. De�níció. Ha R ⊂ 2X σ-algebra, akkor az (X,R) páros egy mérhet® tér. R elemei
a mérhet® halmazok.

Példák.

1. X tetsz®leges halmaz, és R = 2X , összes részhalmazok halmaza.

2. X tetsz®leges halmaz, és R = {∅, X}.

3. X = IR. A legsz¶kebb σ-algebra, ami tartalmazza a nyílt halmazokat BOREL σ-
algebra, ennek jele B. A B-beli halmazok Borel-halmazok.

3.4. De�níció. A mérték egy olyan halmaz-függvény, µ : R → IR+∪{+∞} (azaz minden
AεR esetén µ(A) ≥ 0, esetleg µ(A) = +∞), mely σ-additív. Ez azt jelenti, hogy ha

A1, ..., An, ...εR, Ai ∩ Aj = ∅, i 6= j
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páronként diszjunkt halmazok, akkor

µ

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak).

3.5. De�níció. (X,R, µ) mérték tér, ha R σ-algebra és µ egy mérték.

Példák.

1. (folyt.) X tetsz®leges, R = 2X , AεR esetén legyen

µ(A) =





|A| ha véges elemszámú

+∞ ha nem véges elemszámú
.

6. Gyakorlat. Lássuk be, hogy ez valóban mérték.

2. X véges vagy megszámlálható elemszámú, X = {x1, x2, . . . , xn, . . . }. A σ-
algebra legyen R = 2X , az összes lehetséges részhalmazok halmaza. Adottak
p1, p2, ..., pn, ... ≥ 0 számok, melyekre

∑∞
k=1 pk = 1. A mérték:

A ⊂ X : µ(A) =
∑
xiεA

pi.

A következ® példa már a Lebesgue mérték bevezetéséhez fog vezetni.

3.2. Lebesgue mérték IR-n

Legyen X = IR. A mértéket és a mérhet® halmazokat fokozatosan fogjuk de�niálni.

1. lépés. Legyen I a véges intervallumok halmaza. Ennek elemei:

I = {x : a ≤ x ≤ b}, a, bεIR,

ahol a ≤ reláció helyett < is lehet. I-n mérték ("=hosszúság"): m(I) = b− a.

2. lépés. Kiterjesztjük a mértéket az E egyszer¶ halmazokra, ezeket így értelmezzük:

E = {A ⊂ IR | A = ∪n
k=1Ik, IkεI diszjunktak}

Ha AεE , akkor ennek mértéke legyen

m(A) =
n∑

k=1

m(Ik).
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14. Feladat. Igazoljuk, hogy m valóban σ-additív E-n. 7. Gyakorlat. Igazoljuk, hogy

E nem σ-algebra..

Mivel E nem σ-algebra, ezért (IR, E ,m) nem mérték tér

3. lépés. 2IR-n fogunk de�niálni egy ú.n. küls® mértéket. Ha A ⊂ IR tetsz®leges halmaz,
akkor legyen küls® mértéke m∗(A), amit így de�niálunk:

m∗(A) = inf

{ ∞∑

k=1

m(Ik) : A ⊂
∞⋃

k=1

Ik

}
. (3)

m∗ : 2IR → IR+ ∪ {+∞}.

8. Gyakorlat. Mutassuk meg, hogy m∗(A) = +∞ is lehet.

3.1. Következmény. Ha AεE egyszer¶ halmaz, akkor m∗(A) = m(A).

9. Gyakorlat. Igazoljuk a fenti következményt.

DE - sajnos - m∗ nem σ-additív. Szükség van még egy lépésre.

4. lépés. Amit eddig látunk:

E-n értelmezve van az m σ-additív halmazfüggvény. Viszont E nem σ-algebra

2IR σ-algebra, viszont az m kiterjesztése már nem σ additív.

E ⊂ ? ⊂ 2IR

nem σ-algebra σ-algebra
m σ-additív m∗ nem σ-additív

A két véglet között VAN középút. ∃M σ-algebra, mely az egyszer¶ halmazokat tartal-
mazza:

E ⊂ M ⊂ 2IR,

és m∗|M : σ-additív, azaz m∗ megszorítása M-re mérték, melyet Lebesgue mértéknek
nevezünk. Ezt a konstrukciót nem mutatjuk be. A tankönyvben megtalálható, nem
triviális.

3.6. De�níció. M elemei az IR-beli Lebesgue-mérhet® halmazok. Az m∗ küls® mérték
megszorítása M-re a Lebesgue mérték. Ezt m fogja jelölni.
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Kérdés. Mik tartoznak M-be? Milyenek a mérhet® halmazok?

Válasz. Pontos választ nehéz adni. Egészen furcsa halmazok is mérhet®ek.

Egyrészt, minden nyílt és minden zárt halmaz mérhet®. Továbbá azok a halmazok, melyek
nyílt és zárt halmazok megszámlálható uniója és metszeteként el®állnak. (Ez azt jelenti,
hogy B ⊂ M, bár B 6= M. Tehát a Borel halmazok mind mérhet®k, de nem minden
mérhet® halmaz Borel halmaz.)

Másrészt, VAN nem mérhet® halmaz, bár nem könnyen konstruálható. (Egy ilyen példa
a könyv Appendix részében található.)

3.7. De�níció. Null-mérték¶ halmaz, melyre m(A) = 0. Jelölés: N .

N zárt a megszámlálható metszetre és unióra. σ-gy¶r¶, de nem σ-algebra, hiszen az
alaphalmaz (IR) nem null-halmaz. A mérték de�níciója alapján m(A) = 0 azt jelenti,

inf

{ ∞∑

k=1

m(Ik), A ⊂
∞⋃

k=1

Ik

}
= 0.

3.2. Következmény. Ha AεM és m(A) = 0, akkor tetsz®leges ε > 0-ra megadható
legfeljebb megszámlálható sok intervallum: Ik, k = 1, 2, ... melyre:

A ⊂
∞⋃

k=1

Ik,

∞∑

k=1

m(Ik) < ε.

3.3. Következmény. Ha A = {x}εM egy-elem¶ halmaz, akkor m(A) = 0. Ha A =

{x1, ..., xn, ...} ⊂ IR megszámlálható elemszámú, akkor m(A) = 0.

Van azonban olyan null-mérték¶ halmaz is, melynek számossága nem megszámlálható.

Példa. CANTOR halmaz. Több lépésben konstruáljuk meg.

0. lépés. Legyen C0 = [0, 1].

1. lépés. Legyen C1 = C0 \ (13 , 23).
2. lépés. Legyen C2 = C1 \ (19 , 29) \ (79 , 89).
És így tovább... ami marad ...

3.8. De�níció. C =
⋂∞

k=0Ck a Cantor halmaz.

Mi marad? Egyrészt, minden lépésben a kihagyott intervallumok végnontjai:

0, 1,
1

3
,
2

3
,
1

9
,
2

9
,
7

9
,
8

9
, ...εC.
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2. ábra. A Cantor halmaz konstrukciójának els® három lépése

De van más is.

15. Feladat. Igazoljuk, hogy pl. 1/4εC.

3.1. Állítás. A Cantor halmaz alaptulajdonságai:

1. C zárt.

2. C számossága kontinuum.

3. C mérhet® és m(C) = 0.

Bizonyítás. A zártság: minden k esetén Ck zárt. Zárt halmazok metszete zárt.

16. Feladat. Igazoljuk az állítás harmadik részét. (Ötlet : mennyi a kihagyott interval-
lumok össz-hossza?)

3.3. Lebesgue mérték IRn-ben

Általános eset, amikor X = IRn. A mérték "jelentése"

n = 1: hossz.

n = 2: terület.

n = 3: térfogat.

n = 4: ...?

A konstrukció lépései teljesen hasonlók az el®z® fejezetben elmondottakhoz. Egy I =

[a1, b1]× [a2, b2]× ...× [an, bn] n-dimenziós intervallum mértéke legyen

m(I) =
n∏

k=1

(bk − ak).
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E az egyszer¶ halmazok halmaza, amik véges sok diszjunkt intervallum uniójaként állnak
el®. Ezekre a mérték kiterjesztése egyértelm¶. A ⊂ IRn esetén az m∗(A) küls® mérték
de�níciója hasonló a (3) képlethez. A Lebesgue-mérték IRn-ben is értelmezhet® tehát,
természetes módon.

3.4. Mérhet® függvények

3.9. De�níció. f : IRn → IR ∪ {+∞} függvény mérhet®, ha minden aεIR esetén az
{x : f(x) < a} ⊂ IRn halmaz Lebesgue mérhet®.

A fenti de�nícióban a (−∞, a) nyílt halmaz ®sképét tekintjük.

3.2. Állítás. Az f függvény mérhet®sége ekvivalens az alábbi állítások bármelyikével:

� ∀aεIR eseén {x : f(x) > a}εM

� ∀aεIR eseén {x : f(x) ≥ a}εM

� ∀aεIR eseén {x : f(x) ≤ a}εM

3.4. Következmény. Mérhet® függvény esetén ∀aεIR-ra {x : f(x) = a}εM

3.3. Állítás. Ha f, g mérhet® függvények, akkor

� f + g is mérhet®.

� f · g is mérhet®.

� min(f, g) is mérhet®.

Ha (fn) mérhet® függvények sorozata, akkor (inf fn) és lim(fn) is mérhet®.

Bizonyítás. (Vázlat) Belátjuk például, hogy f + g mérhet®. Legyen aεIR. Ekkor

{x : f(x) + g(x) < a} = ∪rεQ ({x : f(x) < r} ∩ {x : g(x) < a− r}) . (4)

Ugyanis, ha f(x) + g(x) < a akkor f(x) < a− g(x). Ezért ∃r racionális szám

f(x) < r és r < a− g(x) ⇒ g(x) < a− r.

Ebb®l a (4) összefüggés következik. {x : f(x) + g(x) < a} el®állítható megszámlálható
sok mérthet® halmaz uniójaként, tehát maga is mérhet®.
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Példa. E ⊂ IRn mérhet®. Legyen χE az alábbi függvény:

χE(x) =




1 xεE

0 x 6 εE

A χE függvény mérhet®. Ez az E karakterisztikus függvénye.

3.10. De�níció. Az f függvény egyszer¶, ha Rf értékkészlete véges elemszámú. Ez azt
jelenti, hogy Rf = {y1, ..., yn}. Ekkor Ek = {x : f(x) = yk} jelöléssel az f egyszer¶
függvény az alábbi alakban írható:

f =
n∑

k=1

yk · χEk
, Ek ∩ Ej = ∅, ykεIR.

3.4. Állítás. f egyszer¶ függvény pontosan akkor mérhet®, ha EkεM.

Megjegyzés. Egyszer¶ függvény másik elnevezése lépcs®s függvény.

3.5. Állítás. Ha f mérhet®, akkor ∃(sn) egyszer¶ függvények sorozata, melyre
limn→∞ sn = f egyenletesen. Továbbá, ha f nemnegatív, akkor monoton növ® lépcs®s
függvényekb®l álló sorozat is létezik, melynek határértéke f .

3.5. Következmény. Az egyszer¶ függvények s¶r¶n vannak a mérhet® függvények közt.

Példa. Ha f folytonos, akkor mérhet®. Ez abból következik, hogy ∀aεIR esetén E = {x :

f(x) < a} nyílt halmaz, ezért mérhet® is.

17. Feladat. Lássuk be az el®z® állítást. Igazoljuk, hogy ha f folytonos függvény, akkor
E = {x : f(x) < a} nyílt halmaz minden aεIR esetén.

3.11. De�níció. f, g mérhet® függvények. Azt mondjuk, hogy f ∼ g (ekvivalensek), vagy
másképp f = g majdnem mindenütt (m.m.) ha

m ({x : f(x) 6= g(x)}) = 0.

f = g m.m. nyilván ekvivalencia reláció.

10. Gyakorlat. Gondoljuk meg, hogy, ha f = g m.m. és g = h m.m., akkor f = h m.m.

3.6. Állítás. Ha f és g folytonosak és f = g m.m., akkor f(x) = g(x) minden x-re.



3. LEBESGUE MÉRTÉK ÉS LEBESGUE INTEGRÁL 23

18. Feladat. Igazoljuk a fenti állítást.

Folytonosság nélkül nem igaz: ha f ∼ g, akkor egyáltalán nem biztos, hogy f(x) = g(x)

∀x !!!

Megjegyzés. A mérhet® függvények "majdnem" folytonos függvények.

3.1. Tétel. (Luzin) f : [a, b] → IR mérhet® függvény. Ekkor ∀ε > 0-hoz ∃s : [a, b] → IR

folytonos függvény, melyre
m(x : f(x) 6= g(x)) < ε.

Tehát a mérhet® függvényeken belül a folytonos függvények s¶r¶n vannak.

3.5. Lebesgue-integrál. Bevezet® gondolatok

Az alaptér legyen X = [a, b] ⊂ IR, M pedig az [a, b]-beli mérhet® halmazok összessége.

Alapvet® gond a Riemann-integrálnál a határátmenet és integrál sorrendjének felcserél-
het®sége � illetve nem-felcserélhet®sége. Nézzük a következ® példát.

fn(x) =





1 ha x = r1, r2, ..., rn

0 egyébként,

ahol az [a, b] intervallumba es® racionális számok felsorolása Q∩ [a, b] = {r1, r2, ...}. Ekkor
fnεR[a, b], Riemann integrálható. Mégis, a határérték függvény f 6 εR[a, b]:

lim
n→∞

fn(x) = f(x) =





1 ha x racionális

0 ha x irracionális

3.6. Lebesgue-integrál értelmezése

Fokozatosan fogjuk de�niálni az integrált. Most is a szemléletes jelentés a függvény gráf
alatti el®jeles terület.

1. lépés. Tegyük fel, hogy f egyszer¶, azaz

f(x) =
n∑

k=1

ckχEk
, EkεM, Ek ∩ Ej = ∅, ckεIR
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3. ábra. Az f = c1χE1 + c2χE2 lépcs®s függvény integrálja az E halmazon. Az integrál
megegyezik a két téglalap összterületével: T1 = c1 ·m(E ∩ E1) és T2 = c2 ·m(E ∩ E2)

3.12. De�níció. EεM. Az f függvény integrálja az E halmazon az m mérték szerint:
∫

E

fdm :=
n∑

k=1

ckm(E ∩ Ek).

2. lépés. Tegyük fel, hogy f : [a, b] → IR+ nemnegatív, mérhet® függvény. Ekkor az
integrált így értelmezzük:

∫

E

fdm := sup{
∫

E

s dm : s egyszer¶, s(x) ≤ f(x) m.m.}

Megjegyzés. A fenti integrál értéke +∞ is lehet.

3. lépés. f : [a, b] → IR tetsz®leges mérhet® függvény. Elöször el®állítjuk két nemnegatív
függvény különbségeként:

f = f+ − f−

ahol

f+(x) =





f(x) ha f(x) ≥ 0

0 egyébként
f−(x) =





−f(x) ha f(x) < 0

0 egyébként
.

Ezek integrálja már jól de�niált:
∫

E

f+ dm,

∫

E

f− dm.
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3.13. De�níció. f Lebesgue-integrálható, ha a mind a két fenti integrál véges. Ebben az
esetben f integrálja az E halmazon a Lebesgue mérték szerint:

∫

E

f dm :=

∫

E

f+ dm−
∫

E

f− dm.

L(R) jelöli az R halmazon értelmezett Lebesgue-integrálható függvények terét.

11. Gyakorlat. Gondoljuk meg, hogy L(R) vektortér.

3.6. Következmény. Ha f : [a, b] → IR korlátos, mérhet® függvény, akkor Lebesgue-
integrálható.

Tulajdonságok:

1. f, gεL, akkor
∫

E

(f + g) dm =

∫

E

f dm+

∫

E

g dm,

∫

E

c · f dm = c ·
∫

E

f dm

2. Ha m(E) < ∞ és a ≤ f(x) ≤ b, akkor

a ·m(E) ≤
∫

E

f dm ≤ b ·m(E).

3. Ha f, gεL és f(x) ≤ g(x), akkor
∫

E

f dm ≤
∫

E

g dm.

4. Ha fεL, akkor |f |εL és
|
∫

E

f dm| ≤
∫

E

|f | dm.

A Lebesgue integrál esetén ez fordítva is igaz: Ha |f |εL, akkor fεL is teljesül.

5. Ha m(E) = 0, akkor minden mérhet® függvényre
∫

E

f dm = 0.

6. Ha E = E1 ∪ E2, ahol E1 és E2 diszjunktak, akkor
∫

E1∪E2

f dm =

∫

E1

f dm+

∫

E2

f dm.

5)+6) tulajdonságokból következik, hogy ha f = g m.m., akkor
∫

E

f dm =

∫

E

g dm

2) és 3) tulajdonságok akkor is igazak, ha a megfelel® feltételek m.m. teljesülnek csak.
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3.7. Lebesgue- és Riemann integrál összehasonlítása

3.2. Tétel. Ha fεR[a, b], akkor fεL[a, b] is, és
∫ b

a

f(x) dx =

∫

[a,b]

f dm.

A bal oldalon a függvény Riemann integrálja van, a jobb oldalon pedig a Lebesgue integrál.

Bizonyítás. Könyvb®l átnézni.

Megjegyzés. El®ny, hogy több függvény Lebesgue integrálható, mint Riemann integrál-
ható. Például a Dirichlet függvény nem Riemann integrálható:

f(x) =





1 ha xε[0, 1], racionális

0 ha xε[0, 1], irracionális
Mégis, mivel f = 0 m.m. ezért Lebesgue integrálható, és∫

[0,1]

f dm =

∫

[0,1]

0 dm = 0

Megjegyzés. Másik el®ny, hogy a határátmenet könnyen átlátható.

3.3. Tétel. (Lebesgue féle monoton konvergencia tétel) Adott nemnegatív, mérhet®, mono-
ton növ® függvények sorozata

0 ≤ f1(x) ≤ f2(x) ≤ f3(x) ≤ ...

melyre a pontonkénti határérték függvény:

lim
n→∞

fn(x) = f(x).

Ekkor ∫

E

f dm = lim
n→∞

∫

E

fn dm.

Tehát nem szükséges a függvénysorozat egyenletes konvergenciája. Az integrál és a
határátmenet a fenti feltétellel "automatikusan" felcserélhet®k.

3.4. Tétel. (Lebesgue féle dominált konvergencia tétel) Adottak az (fn), mérhet® füg-
gvények, a pontonkénti határérték limn→∞ fn(x) = f(x). Tegyük fel, hogy létezik gεL(IR)
közös fels® korlát, melyre

fn(x) ≤ g(x), ∀x , ∀n.
Ekkor ∫

E

f dm = lim
n→∞

∫

E

fn dm
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3.8. Lp terek (Lebesgue terek)

Legyen p ≥ 1. R = [a, b].

3.14. De�níció. A Lp(R) függvény-halmazt a következ®képpen értelmezzük:

Lp(R) = {f : [a, b] → IR,

∫

R

|f |pdm < ∞}

Megjegyzés. Ezek a "nagy el p" terek.

3.7. Állítás. Lp vektortér.

Bizonyítás. Be kell látni, hogy Lp(R) zárt a skalárral való szorzásra és az összegre. Ha
fεLp, akkor valóban c ·fεLp. Ha f, gεLp, akkor vajon f +gεLp? Más szóval, következik-e,
hogy

∫
R
|f + g|pdm < ∞?

Használjuk fel az alábbi becslést:

∀a, bεIR ⇒ |a+ b| ≤ |a|+ |b|.

Ebb®l következik, hogy

|a+ b|p ≤ (|a|+ |b|)p ≤ 2p
(
max{|a|p, |b|p}) ≤ 2p

(|a|p + |b|p).

Ezt alkalmazva a = f(x) és b = g(x) választással azt kapjuk, hogy

|f(x) + g(x)|p ≤ 2p(|f(x)|p + |g(x)|p), ∀xεR,

és ezt kiintegrálva:
∫

R

|f + g|pdm < 2p
(∫

|f |pdm+

∫
|g|pdm

)
< +∞

< ∞ < ∞

Lp-ben azonosnak tekintjük a m.m. egyenl® függvényeket. Más szóval, a fenti függvényteret
faktorizáljuk ∼ szerint. Az így faktorizált Lp térben normát de�niálunk. Ha fεLp:

‖f‖p =
(∫

R

|f |pdm
)1/p

(5)

3.8. Állítás. A (5) képlet valóban normát de�niál.
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Bizonyítás.

� Nem negatív. Valóban.

� Nem degenerált. Ez azt jelenti, hogy ‖f‖p = 0 pontosan akkor, ha f = 0 m.m.

� Háromszög egyenl®tlenség. Ez nem triviális. S®t, külön tétel formájában fogjuk
kimondani.

12. Gyakorlat. Igazoljuk, hogy ha
∫
R
|f |dm = 0, akkor f = 0 m.m.

3.5. Tétel. (Minkovszkij-egyenl®tlenség) Ha 1 ≤ p < +∞, akkor

‖f + g‖p ≤ ‖f‖p + ‖g‖p

A bizonyítás nehéz, ha p > 1.

p = 1 esetben ez a tulajdonság "háromszög egyenl®tlenség" néven jól ismert: minden x-re
|f(x) + g(x)| ≤ |f(x)|+ |g(x)|, ezért

‖f + g‖1 =
∫

R

|f + g|dm ≤
∫

R

|f |dm+

∫

R

|g|dm = ‖f‖1 + ‖g‖1

3.15. De�níció. Az f : R → C komplex érék¶ függvény mérhet®, ha az

f(x) = Ref(x) + iImf(x)

kanonikus alakban szerepl® valós érték¶ Ref, Imf : R → IR függvények mérhet®k. Továbbá
∫

R

f dm =

∫

R

(Ref) dm+ i

∫

R

(Imf) dm

Legyen most p = +∞. Értelmezni fogjuk az L∞(X) függvényteret.

3.16. De�níció. f : X → C lényegében korlátos, ha van olyan MεIR konstans és van
olyan EεM null-mérték¶ halmaz, melyre:

|f(x)| ≤ M, ha x 6 εE.

3.17. De�níció. Ha f lényegében korlátos, akkor lényeges supremum-a

ess sup f := inf{M | ∃E, m(E) = 0 : |f(x)| ≤ M, ∀xε|E}
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Példa. Legyen X = [−1, 1]. Két függvényt adunk meg.

f(x) = x2, g(x) =





x2 ha x 6= 0, x 6= ±1

2
2 ha x = 0

4 ha x = ±1

2

A két függvény supremuma különböz®: sup f = 1, sup g = 4.. Lényeges supremum

4. ábra. Az f és g függvények gráfja.

azonban ugyanaz, mert f = g m.m.:

ess sup f = 1, ess sup g = 1.

3.18. De�níció. Az L∞(X) függvénytér az X-n értelmezett, lényegében korlátos füg-
gv«yek összessége. A m.m. egyenl® függvényeket most is azonosaknak tekintjük.

L∞(X) = {f : X → C, lényegében korlátos}.

L∞(X) nyilván vektortér. Normált tér lesz bel®le az alábbi normával:

‖f‖∞ := ess sup f.

13. Gyakorlat. Gondoljuk meg, hogy ez valóban norma.

3.6. Tétel. (Riesz tétel) 1 ≤ p ≤ +∞ esetén az Lp(X) tér teljes. Más szóval ez azt je-
lenti, hogy minden (fn) ⊂ Lp(X) Cauchy sorozatnak van határértéke, ∃ lim fn = fεLp(X).
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A Riesz tétel alapján Lp(X) BANACH tér.

Bizonyítás. Nem könny¶. Az ajánlott irodalomban el lehet olvasni.

Kérdés. Vajon ha p < q, akkor Lp(X) és Lq(X) között mi a kapcsolat?

Válasz (részben):

19. Feladat. Igazoljuk, hogy L2[a, b] ⊂ L1[a, b].

14. Gyakorlat. Igazoljuk, hogy L∞[a, b] ⊂ L1[a, b].

Megjegyzés. Beláttuk egy korábbi el®adásban, hogy C2[a, b] nem teljes. Ennek a normált
térnek a teljessé tétele L2[a, b]. Tehát C2[a, b]-t "kiegészítettük" azokkal a függvényekkel,
melyek Cauchy sorozatok határértékei.

3.9. Általános Lp terek

Kiindulásképp tekintsünk egy mértékteret, legyen ez (X,R, µ). R egy σ-algebra, µ ezen
értelmezett mérték. A µ mérték szerinti integrált de�niálhatjuk, teljesen hasonlóan a
Lebesgue integrál bevezetéséhez. Ha p ≥ 1, akkor

Lp(X) := {f : X → C,
∫

X

|f |p dµ < ∞}

Általában is igaz a Riesz tétel.

3.7. Tétel. Lp(X) teljes normált tér, tehát Banach tér.

Speciális eset. X = N. A σ-algebra R = 2N, az összes részhalmazok halmaza. µ a
számláló-mérték, azaz ha A ⊂ N, akkor µ(A) = "A elemeinek száma".

Ekkor p ≥ 1 esetén

Lp = Lp(N) = {f : N→ C,
∫

N
|f |p dµ < ∞}.

Mit is jelent ez? Az f függvény minden n-hez hozzárendel egy f(n)εC számot: ez egy
számsorozat.

A tér elemei sorozatok, szokásos jelöleéssel: (xn).

Integrál a számláló mérték szerint egyszer¶ összeg:
∫

N
|xn|pdµ =

∞∑
n=1

|xn|p.
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Összefoglalva azt kaptuk, hogy

Lp(N) = {(xn) :
∞∑
n=1

|xn|p < ∞} = lp (!)

15. Gyakorlat. Lássuk be, hogy ez p = +∞-re is igaz.

Megjegyzés. A legfontosabb esetek, amikkel foglakozni fogunk:

� X = [a, b],

� X = IR,

� X ⊂ IRn mérhet®.

3.9. Állítás. Lp tér akkor és csak akkor skalárszorzat tér, ha p = 2.

Mostantól a p=2 esetet tekintjük. Az L2 = L2(X,R, µ) térben van skalárszorzat:

〈f, g〉 =
∫

X

f · ḡ dµ

3.7. Következmény. L2 tér teljes, tehát HILBERT-tér

Megjegyzés. Látni fogjuk, hogy bizonyos értelemben L2 az "egyetlen" Hilbert-tér.
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4. FOURIER analízis L2-ben

4.1. Klasszikus Fourier sorfejtés. Ismétlés

Tegyük fel, hogy f : [−π, π] → IR kielégíti az alábbi feltételeket (Dirichlet feltételek):

� szakaszonként folytonosan di�erenciálható függvény,

� csak els®fajú szakadásai vannak,

� a szakadási helyeken a függvényérték a jobb- és baloldali határérték számtani átlaga.

Akkor minden xε[0, 2π] esetén

f(x) =
a0
2

+
∞∑

k=1

(ak cos(kx) + bk sin(kx)) ,

ahol
ak =

1

π

∫ π

−π

f(x) cos(kx) dx, bk =
1

π

∫ π

−π

f(x) sin(kx) dx.

4.2. Ortonormált függvények

Tekintsük az L2(X,R, µ) teret. (Rövidített jelölés L2(X)).

L2(X) = {f : X → C,
∫

X

|f |2dµ < ∞},

ahol a m.m. egyenl® függvényeket azonosnak tekintjük. A norma ‖f‖2 =
(∫

X
|f |2dµ)1/2,

mely skalárszorzatból származtatható. Ezzel L2(X) Hilbert tér.

4.1. De�níció. Az f és g függvények ortogonálisak, ha 〈f, g〉 = 0, azaz

〈f, g〉 =
∫

X

fḡ dµ = 0

4.2. De�níció. Az f1, ..., fnεL2(X) függvények lineárisan függetlenek, ha az X halmazon

α1f1 + α2f2 + ...+ αnfn = 0 m.m.

csak akkor teljesülhet, ha α1 = ... = αn = 0.

4.3. De�níció. (fn), nεN lineárisan függetlenek, ha minden n-re (fk, k = 1, ..., n)

lineárisan független.
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4.4. De�níció. fεL2(X) függvény normalizált, ha ‖f‖2 = 1.

4.5. De�níció. (fk, k = 1, ..., n) ortogonális függvényrendszer, ha k 6= j esetén 〈fk, fj〉 =
0. A (ϕk, kεN) függvényrendszer ortonormált (ON), ha

〈ϕk, ϕj〉 = δk,j =

{
1 ha k = j

0 ha k 6= j

A De�nicióban szerepl® δk,j elnevezése Kronecker delta.

Példa. L2[−π, π]-ben ortonormált függvényrendszer:
(

1√
2π

,
cos(kx)√

π
,
sin(kx)√

π
, k = 1, 2, ...

)

Valóban, elöször a normalitást lássuk be. ϕ0 =
1√
2π

, így

‖ϕ0‖2 =
(∫ π

−π

(
1√
2π

)2dx

)1/2

=

(∫ π

−π

1

2π

)1/2

= 1.

Hasonlóképp például egy cos-s függvényre:

‖ϕk‖2 =
(∫ π

−π

(
cos(kx)√

π

)2

dx

)1/2

=

(
1

π

∫ π

−π

cos2(kx)dx

)1/2

= 1.

Ortogonalitás igazolása, pl.
∫ π

−π

cos(kx) sin(lx) dx = 0,

ezt az els®éves Analízis el®adásban már láttuk.

4.6. De�níció. (fk) lineárisan független rendszer teljes, ha minden fεL2 el®állítható
ilyen alakban:

f =
∞∑

k=1

ckfk, ckεIR.

A fenti egyenletben a konvergencia normabeli, azaz

lim
n→∞

‖f −
n∑

k=1

ckfk‖2 = 0.
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Megjegyzés. Két fajta teljesség fogalom szerepelt eddig.
� Metrikus tér teljessége azt jelentette, hogy a Cauchy sorozatok konvergensek.
� Lineárisan független függvényrendszer teljessége azt jelenti, hogy a függvényrendszer
elemeinek véges lineáris kombinációi mindenütt s¶r¶n vannak a térben.

Példa. (folytatás) A "Fourier sorok alaptétele" kimondja, hogy a Dirichlet feltételt
teljesít® függvények terében a trigonometrikus rendszer teljes. Ennél több is igaz lesz.

4.1. Állítás. L2[−π, π]-ben a trigonometrikus rendszer teljes.

A fenti állításban a teljesség normabeli konvergenciát jelen.

Példa. L2[0, π]-ben teljes függvényrendszert alkotnak:
(

1√
2π

,
cos(kx)√

π

)
, k = 1, 2, . . . .

Egy másik teljes függvényrendszer
(

1√
2π

,
sin(kx)√

π

)
, k = 1, 2, . . . .

20. Feladat. Igazoljuk, hogy az
(

1√
2π

,
cos(kx)√

π

)
függvényrendszer teljes L2[0, π]-ben.

Példa. Tekintsük az {1, x, x2, ...xn, ...} függvényrendszert. Ennek tulajdonságai:

� {1, x, x2, ...xn, ...} ⊂ L2[−1, 1], mert
∫ 1

−1

(xk)2dx < ∞.

� Lineárisan függetlenek. Tegyük fel ugyanis, hogy
n∑

k=0

αkx
k = 0, m.m. xε[−1, 1].

Ez csak úgy lehet � a baloldalon egy polinom van! � ha αk = 0 minden k-ra.

� Teljes függvényrendszer. Ezt a Weierstrass féle approximációs tételb®l tudjuk.

4.1. Tétel. (Weierstrass tétel) Minden fεL2 és minden ε > 0 esetén van olyan p polinom,
melyre ‖f − p‖2 < ε.

Kérdés: Ha (fn) teljes függvényrendszer L2-ben, és fεL2, akkor f =
∑

αkfk el®állításban
meg tudjuk-e határozni az αk együtthatókat?

- 1. példa: Trigonometrikus rendszer esetén: képletekkel tudjuk.

- 2. példa: Polinomok esetén egzisztencia tétel van csak.
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Különbség:

- 1. példa: A függvényrendszer ON is.

- 2. példa: A függvények nem otrtogonálisak, pl

〈x4, x2〉 =
∫ 1

−1

x4x2dx =

[
x7

7

]1

−1

=
2

7
6= 0

Következ® lépés: megpróbáljuk ortogonalizálni a polinomokat!

Megjegyzés. Függvényrendszer teljességét lineárisan független függvényrendszer esetén
szokás de�niálni. Az ortogonalitás több, mint függetlenség.

16. Gyakorlat. Igazoljuk, hogy ha (f1, . . . , fn) páronként ortogonálisak, akkor lineárisan
függetlenek is.

4.3. Ortogonalizáció, ON bázis konstrukciója

Az egyszer¶ség kedvéért az X = [a, b] ⊂ IR alaptéren dolgozunk.

4.2. Tétel. Adott az (fn) ⊂ L2 lineárisan független függvényrendszer. Ekkor létezik olyan
(ϕn) ⊂ L2 függvényrendszer, melyre teljesülnek az alábbi tulajdonságok:

1. (ϕn) ON.

2. ∀n-re fn =
n∑

k=1

αknϕk, ahol αnn 6= 0.

3. ∀n-re ϕn =
n∑

k=1

βknfk, ahol βnn 6= 0.

4. El®jelt®l eltekintve (ϕn) egyértelm¶.

Megjegyzés. A 2. és 3. tulajdonságokból következik, hogy {ϕ1, ..., ϕn} halmaz lezártja
megegyezik a {f1, ..., fn} halmaz lezártjával. Ez azt jelenti, hogy a {ϕ1, ..., ϕn} által
kifeszített altér megegyezik azzal az altérrel, amit {f1, ..., fn} feszítenek ki.

Bizonyítás. A Lineáris algebrában megismert Gram-Smidt (G-S) ortogonalizációt
használjuk itt is. Megadjuk a Tételben szerepl® ϕn függvényeket. A konstrukció több
lépésben történik.
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1. lépés: ϕ1 :=
f1

‖f1‖ .

2. lépés: Cél, hogy {ϕ1, ϕ2} ON rendszer legyen, miközben f2 = α12ϕ1 + α22ϕ2. Ehhez
úgy jutunk el, ha

� meghatározzuk f2 vetületét ϕ1-re,

� f2-b®l kivonjuk vetületét,

� a kapott függvényt lenormáljuk.

Könnyen látható, hogy ha ‖ϕ‖ = 1, akkor f vetülete ϕ-re f |ϕ = 〈f, ϕ〉·ϕ. Azt kell ugyanis
látni, hogy (f − f |ϕ) ⊥ ϕ. Valóban:

〈f − f |ϕ, ϕ〉 = 〈f − 〈f, ϕ〉 · ϕ, ϕ〉 = 〈f, ϕ〉 − 〈f, ϕ〉〈ϕ, ϕ〉 = 0.

Tehát a 2. lépés eredménye:

ϕ2 =
f2 − 〈f2, ϕ1〉ϕ1

‖f2 − 〈f2, ϕ1〉ϕ1‖ .

n-dik (indukciós) lépés: Tegyük fel, hogy ϕ1, ..., ϕn−1 már a kívánt tulajdonságú. Most is
az el®z®ben végigjárt utat követjük.

� Meghatározzuk fn vetületét a {ϕ1, ..., ϕn−1} által kifeszített altérre,

� fn-b®l kivonjuk vetületét,

� a kapott függvényt lenormáljuk.

fn vetületét úgy kaphatjuk meg, hogy meghatározzuk az altér legközelebbi elemét:

min
c1,...,cn−1

‖fn −
n−1∑

k=1

ckϕk‖ =?

21. Feladat. Lássuk be, hogy a fenti minimum a ck = 〈fn, ϕk〉 választással érhet® el.

Ez alapján az ON rendszer n-dik eleme:

ϕn =

fn −
n−1∑

k=1

〈fn, ϕk〉ϕk

‖fn −
n−1∑

k=1

〈fn, ϕk〉ϕk‖
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4.1. Következmény. Ha a kiinduló (fn) függvényrendszer teljes, akkor az ortogonal-
izálással kapott (ϕn) is teljes.

4.7. De�níció. (ϕn) teljes ON rendszert szokás ON bázis-nak hívni.

Példa. Az L2([−1, 1]) teret tekintjük. Ennek elemei az f : [−1, 1] → R négyzete-
sen integrálható függvények. Ebben a térben egy lineárisan független teljes rendszer
{1, x, x2, ..., xn, ...}. ON bázist kaphatunk a G-S ortogonalizálással: (Pn), n = 0, 1, 2, ...

olyan függvények melyek:

� ortogonálisak, azaz
∫ 1

−1

Pn(x) · Pm(x) dx = 0, ha n 6= m.

� minden n-re Pn(x) =
∑n

k=0 βknx
k, ahol βnn 6= 0, tehát pontosan n-ed fokú polinom.

Ezek a Legendre polinomok.

4.2. Következmény. Legendre polinom rendszer teljes ON függvényrendszer.

4.2. Állítás.
Pn(x) = cn

dn

dxn
(x2 − 1)n= cn

(
(x2 − 1)n

)(n)
, (6)

ahol a normalizáló konstans
cn =

√
2n+ 1

2
· 1

2n · n!

Bizonyítás. Csak az ortogonalitást kell belátni, a többi (szinte) triviális. Legyen m < n.
Ekkor ∫ 1

−1

dn

dxn
(x2 − 1)n · dm

dxm
(x2 − 1)mdx =?

Parciális integrálással folytatva:

=

[
dn

dxn
(x2 − 1)n · dm−1

dxm−1
(x2 − 1)m

]1

−1

−
∫ 1

−1

dn+1

dxn+1
(x2 − 1)n · dm−1

dxm−1
(x2 − 1)mdx,

ahol az els® tag 0. További parciális integrál±sal az ortogonalitást kapjuk.

22. Feladat. Lássuk be, hogy a fenti (6) képlettel megadott Pn(x) függvény valóban
n-ed fokú polinom.

Megjegyzés. "Legendre polinom rendszer" címszó alatt esetleg más cn f®együtthatós pn

polinomokat találnak. Ennek oka, hogy a normalizálás nem mindig az L2 norma szerint
történik. A két legfontosabb alaptulajdonság, hogy pn egy n-ed fokú polinom, és orto-
gonálisak, azaz 〈pn, pm〉 = 0.
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4.4. Fourier sorfejtés L2-ben

Legyen (ϕn) ON rendszer L2(R)-ben. Ez azt jelenti, hogy
∫

R

ϕn(x)ϕk(x) dm = 0, n 6= k,

∫

R

ϕ2
n(x) dm = 1.

Feltesszük továbbá, hogy a {ϕ1, ϕ2, . . . } rendszer teljes, tehát lezárása az egész L2. Ekkor
minden fεL2 el®áll ilyen alakban:

f =
∞∑

k=1

ckϕk, (7)

ahol ck = 〈f, ϕk〉. A fenti sor konvergenciája az L2 tér normájában értend®.

23. Feladat. Igazoljuk közvetlenül, hogy a (7) el®állításban szerepl® együtthatók
kielégítik a ck = 〈f, ϕk〉 összefüggést.

4.8. De�níció. Ez az el®állítás az f függvény Fourier sorfejtése a {ϕk}∞k=1 rendszer
szerint.

4.3. Tétel. (Parseval egyenl®ség) Legyen (ϕn) teljes ON rendszer L2(R)-ben. Az fεL2

Fourier sorfejtése (7) egyenlettel van megadva. Ekkor

‖f‖2 =
∞∑

k=1

c2k.

Bizonyítás. A Fourier sorfejtésben a végtelen összeg konvergenciája L2(R) normájában
értend®, ezért

lim
n→∞

‖
n∑

k=1

ckϕk‖ = ‖f‖.

Az ortogonalitást felhasználva a baloldalon szerepl® összeg négyzete:

‖
n∑

k=1

ckϕk‖2 =
n∑

k=1

‖ckϕk‖2 =
n∑

k=1

c2k,

és ezzel az állítást beláttuk.

A Parseval egyenl®ségb®l az következik, hogy minden fεL2(R) függvényhez hozzá tudunk
rendelni egy `2-beli sorozatot, éspedig a (ϕn) teljes ON rendszer segítségével. Ennek
megfordítása a következ® híres tétel:
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4.4. Tétel. (Riesz-Fisher tétel) Adott tetsz®leges (dk)ε`2, azaz
∞∑

k=1

d2k < ∞. Ekkor létezik

fεL2(R), melyre ‖f‖2 =
∞∑

k=1

d2k, és melynek Fourier együtthatói a dk számok.

Bizonyítás. (Alapötlet) Konkrétan beláthatjuk, hogy f =
∞∑

k=1

dkϕk megfelel.

24. Feladat. Fejezzük be a bizonyítást.

4.5. Tétel. (Általánosított Parseval egyenl®ség) Legyen (ϕn) teljes ON rendszer L2(R)-
ben, és f, gεL2 tetsz®legesek. Ekkor

〈f, g〉 =
∞∑

k=1

ckdk,

ahol c = (ck) illetve d = (dk) a megadott f és g függvények Fourier együtthatói. A fenti
összefüggés így is írható:

〈f, g〉L2 = 〈c, d〉`2 .

4.3. Következmény. L2(R) és `2 izometrikusan izomorfak. Az izometriát tetsz®leges
teljes ON rendszer alapján a Fourier együtthatókkal meg lehet adni:

f ←→ (cn).

Megjegyzés. Ha az ON rendszer esetleg nem teljes, akkor is de�niálhatjuk a (7) jobboldalán
szerepl® végtelen sort, ez az f függvény Fourier sorfejtése az adott ON rendszer szerint.
Ekkor azonban a sor összege nem feltétlenül egyezik meg a kiinduló f függvénnyel és a
Parseval egyenl®ség helyett csak Parseval-egyenl®tlenség mondható ki.

4.5. Ortogonális polinom rendszerek

Példa. Legyen R = [−1, 1]. Ekkor egy független függvényrendszer:

{1, x, x2, . . . } ⊂ L2[−1, 1]

Ennek ortogonalizálásával kapjuk a Pn Legendre polinomokat:

� Pn n-ed fokú polinom,
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�
∫ 1

−1

Pn(x)Pm(x)dx = 0, ha n < m.

Általánosabb teret fogunk tekinteni. R ⊂ R, és nem a klasszikus Lebesgue mértéket
használjuk. A mértéket egy súlyfüggvénnyel adjuk meg:

µ(A) =

∫

A

% dm,

ahol % : R → R+ adott Lebesgue integrálható függvény. Formálisan azt írhatjuk, hogy

"dµ = % dm". A µ mérték szerinti integál egy E mérhet® halmazon így számolható:
∫

E

f dµ =

∫

E

f · % dm.

4.9. De�níció. Az általános L2
%(R) teret így értelmezzük:

L2
%(R) = {f : R → IR :

∫

R

f 2 dµ =

∫

R

f 2 % dm < ∞}

Ebben a térben is azonosaknak tekintj uk azokat a függvényeket, amelyek m.m. mege-
gyeznek.

L2
%(R)-ben a skalárszorzatot kicsit másképp deiniáljuk, mint eddig:

〈f, g〉% :=
∫

R

f g % dm,

ezért a norma:
‖f‖%,2 =

(∫

R

|f |2 % dm
)1/2

.
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Így ebben a térben az ortogonalitás azt jelenti, hogy

f⊥ g ≡
∫

R

f g % dm = 0.

Ortogonális polinom rendszer konstruálkásakor továbbra is az

{1, x, x2, . . . } ⊂ L2
%(R)

független rendszerb®l indulunk ki � feltéve, hogy ez valóban része L2
%(R)-nek.

0. példa. Legendre polinomok.

R = [−1, 1]. A súlyfüggvény %(x) = 1, a klasszikus Lebesgue integrál esete. Ezeket a
polinomokat már ismerjük.

1. példa. Csebisev polinomok.

R = [−1, 1].

Els®fajú illetve másodfajú Csebisev polinomokat fogunk de�niálni. A megfelel® súlyfüg-
gvények ezek lesznek:

%1(x) =
1√

1− x2
, %2(x) =

√
1− x2.

4.3. Állítás. Az els®fajú Csebisev polinomok (még nincsenek normálva):

Tn(x) = cos (n arccos(x)) .

Az másodfajú Csebisev polinomok (még nincsenek normálva):

Un(x) =
sin ((n+ 1) arccos(x))

sin (arccos(x))
.

A fenti polinomok más formában is írhatók, ha bevezetjük az x = cos(θ) jelölést:

Tn(x) = cos (nθ) ,

Un(x) =
sin ((n+ 1)θ)

sin (θ)

25. Feladat. Igazoljuk, hogy a fenti képletekben szerepl® függvények valóban n-ed fokú

polinomok. (Útmutató: cos(nθ) és sin((n + 1)θ)/ sin(θ) pontosan n-ed fokú polinomja
cos(θ)-nak.)
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26. Feladat. Igazoljuk az ortogonalitást, azaz
∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
dx = 0 ha m 6= n,

és ∫ 1

−1

Un(x)Um(x)
√
1− x2 dx = 0 ha m 6= n.

2. példa. Hermite polinomok. R = R.

A súlyfüggvény: %(x) = e−x2 . Így
∫

R

(xk)2dµ =

∫ ∞

−∞
(xk)2e−x2

dx < ∞ ⇒ xkεL2
%(IR).

Ortogonalizáció eredménye:

Hn(x) = (−1)nex
2 · dn

dxn

(
e−x2

)
.

27. Feladat. Igazoljuk, hogy a fent de�niált függvény valóban polinom.

A fenti képlet deriválásával az alábbi rekurzív el®állítást kapjuk:

H ′
n(x) = 2xHn(x)−Hn+1(x)

28. Feladat. Igazoljuk a polinomrendszer ortogonalítását. (Útmutató: Sok-sok parciális
integrálásból adódik a következ®, ahol v(x) tetsz®leges polinom:

∫ ∞

−∞
e−x2

Hn(x)v(x)dµ =

∫ ∞

−∞
e−x2 dn

dxn
v(x)dµ

Ha a fenti képletben v(x) fokszáma kisebb, mint < n, akkor dn

dxn
v(x) = 0, ezért Hn(x) ⊥

v(x)!!)

Megjegyzés. A Hermite-polinomok a kvantummechanikában a harmonikus oszcillátor
energia-operátorának sajátfüggvényei, azaz a (Hf)(x) = −f ′′(x) + ω2x2f(x) egyenlet
sajátfüggvény megoldásai:

ϕn(x) = cnHn(
√
ωx)e−ωx2/2.
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3. példa. Laguerre-polinomok

Az alaptér R = R+. A súlyfüggvény %(x) = e−x. Így
∫

R

(xk)2dµ =

∫ ∞

0

(xk)2e−x dx < ∞ ⇒ xkεL2
%(IR

+).

Az n-dik Laguerre polinom:

Ln(x) =
en

n!

dn

dxn

(
xne−x

)
.

+1 példa. Haar függvények

Még egy példát említek L2[0, 1]-ben. ON függvényrendszert alkotnak a Haar-függvények.
Ezek nem polinomok, hanem a legegyszer¶bb wavelet-ek. Részletes leírásuk a könyvben
megtalálható. Röviden elmondom itt is. Megadásuk blokkokban történik. Az n-dik blokk
függényei Hn,k ahol k = 1, ..., 2n. Minden esetben Hn,k : [0, 1] → IR.

Ha n = 0, akkor két függvény van. (Kivételesen H0,0 is van) és H0,1.

H0,0(x) = 1 ∀xε[0, 1], H0,1(x) =




1 ha 0 ≤ x < 1/2

0 ha 1/2 ≤ x ≤ 1

17. Gyakorlat. Gondoljuk meg, hogy ‖H0,0‖2 = ‖H0,1‖2 = 1 és 〈H0,0, H0,1〉 = 0.

Ha n = 1, akkor [0, 1]-t 21 darab egyenl® hosszú részre osztjuk. H1,1 az 1. részen nem
nulla, H1,2 pedig a 2. részen nem nulla.

H1,1(x) =





√
2 ha 0 ≤ x < 1

22

−√
2 ha 1

22
≤ x < 1

2

0 ha x ≥ 1
2

, H1,2(x) =





√
2 ha 1

2
≤ x < 3

22

−√
2 ha 3

22
≤ x ≤ 1

0 ha x ≤ 1
2

18. Gyakorlat. Gondoljuk meg most is a ortogonalitást, illetve az új függvények
normalitását.

(És így tovább...) Az n-dik blokkban a [0, 1] intervallumot 2n részre osztjuk, és k =

1, 2, ..., 2n esetén Hn,k a k-dik blokkban nem 0, azon kívül 0. Például H3,5 így néz ki:

H3,5(x) =





23/2 ha 1

2
≤ x <

1

2
+

1

24

−23/2 ha 1

2
+

1

24
≤ x <

5

23
,
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egyébként pedig 0.

19. Gyakorlat. Mennyi lesz ‖H3,5‖?
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5. Absztrakt lineáris operátorok

5.1. Bevezetés

Legyen X és Y két lineáris tér (más szóval vektortér) a K számtest felett. A számtest
most IR vagy C.

5.1. De�níció. Egy T : X → Y leképzést operátor-nak nevezünk. Azt mondjuk, hogy T

lineáris operátor, ha

- értelmezési tartománya DT ⊂ X lineáris altér,

- T (αx+ βy) = αT (x) + βT (y) minden x, yεX és α, βεK konstans esetén.

Az x-hez rendelt értéket T (x) helyett egyszer¶en egymás-mellé-írással fogjuk jelölni: Tx.

Példa. (1. éves Lineáris algebra.) X és Y legyenek véges dimenziós vektorterek. Például
X = IRn, Y = IRm. Egy T : X → Y operátor pontosan akkor lineáris, ha létezik olyan
AεIRm×n mátrix, melyre Tx = A · x. Röviden emlékeztetek a szorzási szabályra.

A =




a11 a12 ... a1n

a21 a22 ... a2n

. . . .

. . . .

. . . .

am1 am2 ... amn




, x =




x1

x2

...
xn




esetén
(Ax)j =

n∑

k=1

ajkxk

Példa. (Sorozattér) X = Y = `2 = {(xn) :
∑

x2
n < ∞} a négyzetesen összegezhet®

számsorozatok tere. Az alábbi T : `2 → `2 operátor SHIFT operátor, (hátratolás / bal
shift)

T (x1, x2, . . . xn, . . . ) = (x2, x3, . . . xn, . . . )

20. Gyakorlat. A fenti `2-beli shift operátor felírható végtelen mátrix-vektor-szorzat
alakban is. Írjuk fel.

Példa. (Függvény terek) Legyen C[a, b] az [a, b]-n értelmezett, valós érték¶, folytonos
függvények tere. Az integrál-operátor jól ismert: fεC[a, b] esetén.

Tf :=

∫ b

a

f(x)dx.
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Ebben a példában X = C[a, b] és Y = IR.

5.2. De�níció. Ha a képtér IR vagy C számtest, akkor a T : X → K operátor elnevezése
funkcionál.

Példa. Legyen C1[a, b] = {f : [a, b] → IR folytonosan di�erenciálható}. Ezen a téren
értelmezhet® a di�erenciál operátor: T : C1[a, b] → C[a, b], melyre

Tf := f ′.

Példa. A Fredholm operátor T : C[a, b] → C[a, b], mely a következ® alakú:

f 7→ Tf, Tf : [a, b] → IR, T f(s) =

∫ b

a

k(s, t)f(t)dt,

ahol: k : [a, b]× [a, b] → IR adott, szakaszonként folytonos, kétváltozós függvény.

Megjegyzés. Figyeljük meg a hasonlóságot a Fredholm operátor de�níciója és a mátrix-
vektor szorzás köztött.

5.2. Folytonosság, korlátosság

Tegyük fel, hogy az X és Y vektortereken norma is adott. X, Y normált terek. Ekkor
értelmeztük egy leképezés folytonosságát.

5.3. De�níció. T : X → Y lineáris operátor folytonos az x0εX pontban, ha minden ε > 0

számhoz létezik olyan δ > 0, melyre

‖x− x0‖X < δ ⇒ ‖Tx− Tx0‖Y < ε.

5.1. Állítás. T folytonossága x0-ban ekvivalens a sorozatfolytonossággal. Ez azt jelenti,
hogy ha tetsz®leges X-beli sorozat esetén lim

n→∞
xn = x0, akkor a megfelel® Y -beli sorozatra

lim
n→∞

Txn = Tx0 teljesül.

5.1. Tétel. A T : X → Y lineáris operátor pontosan akkor folytonos minden pontban,
ha egyetlen pontban folytonos.
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Bizonyítás. Tegyük fel, hogy T folytonos valamely x0εX pontban. Legyen xεX egy
(másik) tetsz®leges pont. A sorozatfolytonosságot ellen®rizzük le. Legyen (xn) ⊂ X egy
olyan sorozat, melyre limn→∞ xn = x. De�niálunk egy másik sorozatot: yn := xn−x+x0.
Ennek határértéke:

lim
n→∞

yn = lim
n→∞

(xn − x+ x0) = x− x+ x0 = x0.

Ezért limn→∞ Tyn = Tx0 az x0-beli folytonosság miatt. Másrészt T linearitását fel-
használva

Tx0 = lim
n→∞

Tyn = lim
n→∞

Txn − Tx+ Tx0.

Ezért valóban limn→∞ Txn = Tx, ami az x-beli folytonosságot igazolja.

Emlékeztetek arra, hogy egy f : X → IR valós függvény korlátossága azt jelentette, hogy
van olyan k szám, melyre |f(x)| ≤ k teljesül minden xεX-re. Lineáris operátorok esetén
azonban például T (2x) = 2 · Tx, ezért ‖Tx‖ ≤ k minden x-re nem lehet!

5.4. De�níció. T : X → Y lineáris operátor korlátos, ha van olyan M > 0, melyre

‖Tx‖Y < M · ‖x‖X , ∀x. (8)

Példa. Shift operátor T : `2 → `2 korlátos-e? Legyen x = (x1, x2, ...xn, ...)ε`
2, ennek

normája ‖x‖ = (
∑∞

i=1 x
2
i )

1/2. Megbecsüljük Tx normáját:

Tx = (x2, x3, ...xn, ...), ‖Tx‖ = (
∞∑
i=2

x2
i )

1/2 ≤ 1 · (
∞∑
i=1

x2
i )

1/2 = ‖x‖.

Ezért minden M ≥ 1 számra a (8) feltétel teljesül. Tehát T korlátos.

Példa. T : C[a, b] → IR az integrál operátor, Tf =

∫ b

a

f(x)dx. Vajon korlátos-e?

‖Tf‖ =

∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣ ≤
∫ b

a

|f(x)|dx ≤
∫ b

a

‖f‖dx = (b− a) · ‖f‖.

Felhasználtuk, hogy C[a, b]-ben a norma ‖f‖ = max
xε[0,1]

|f(x)|. Ezért az operátor korlátos,
tetsz®leges M ≥ b− a jó lesz, a (8) feltétel teljesül.

5.5. De�níció. Egy T korlátos lineáris operátor normája a legkisebb M ≥ 0, melyre a (8)
tulajdonság teljesül.

‖T‖ := min{M : ‖Tx‖ ≤ M · ‖x‖, ∀x− re}.
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29. Feladat. Lássuk be, hogy ez valóban norma.

Példa. (folytatás) A shift operátor esetén minden M ≥ 1 fels® korlát. Másrészt ha
x = (0, 1, 0, ...), akkor ‖x‖ = 1. Mivel Tx = (1, 0, 0, ...), ezért ‖Tx‖ = 1. Ez azt jelenti,
hogy M = 1 elérhet®. Ezért a shift operátor normája ‖T‖ = 1.

Példa. (folytatás) Az integrál operátor normáját keressük. Egyrészt a korlátosság miatt
minden f -re

‖Tf‖ ≤ (b− a)‖f‖.
Másrészt, ha f = c konstans, akkor

|Tf | =
∫ b

a

|c|dx = |c| · (b− a) = ‖f‖ · (b− a),

ezért az integrál operátor normája ‖T‖ = b− a..

Kérdés: Hogyan tudjuk egy operátor normáját kiszámítani?

Az el®z® példákban úgy jártunk el, hogy elöször valamely M -re beláttuk, hogy ‖Tx‖ ≤
M · ‖x‖ minden x-re. Azután találtunk olyan x0-t, melyre ‖Tx0‖ = M · ‖x0‖ egyenl®ség
volt igaz. Ekkor ‖T‖ = M.

Másképp is számolhatunk. Ha x = 0, akkor nyilván Tx = 0. Ezért az x = 0 pontban
minden M -re igaz, hogy ‖Tx‖ ≤ M‖x‖. Ha x 6= 0, akkor a korlátosság azt jelenti, hogy
van olyan M , melyre ‖Tx‖ ≤ M‖x‖, azaz

‖Tx‖
‖x‖ ≤ M, ∀x 6= 0.

Ez alapján a norma másik kiszámítási módja:

‖T‖ = inf{M :
‖Tx‖
‖x‖ ≤ M, x 6= 0} =

= sup{‖Tx‖‖x‖ : x 6= 0} = sup{‖Tx‖ : ‖x‖ = 1}

30. Feladat. Igazoljuk, hogy véges dimenziós X esetén a fenti képletben sup helyett
max is írható.

5.2. Tétel. Egy T : X → Y lineáris operátor pontosan akkor korlátos, ha folytonos.

Bizonyítás. 1. Tegyük fel, hogy T korlátos. Belátjuk, hogy x0=0-ban folytonos. Nyilván
T (0) = 0. A korlátosság miatt van olyan M , melyre

‖Tx‖ ≤ M‖x‖, ∀x.
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Ezért ha az (xn) sorozatra xn → 0, akkor Txn → 0. Tehát T az x0 = 0-ban folytonos.

2. Tegyük fel, hogy T folytonos x0 = 0-ban. Ekkor ε = 1-hez van olyan δ, melyre

‖x− 0‖ ≤ δ ⇒ ‖Tx− 0‖ ≤ 1.

Legyen xεX tetsz®leges, x 6= 0. Ekkor az y = δ · x

‖x‖ vektor normája ‖y‖ =
δ

‖x‖ ·‖x‖ = δ.

A folytonosság miatt ezért ‖Ty‖ ≤ 1. Átrendezve

Ty = T (
δ

‖x‖ · x) = δ

‖x‖ · Tx ⇒ ‖Ty‖ =
δ

‖x‖ · ‖Tx‖ ≤ 1.

Ebb®l azt kapjuk, hogy
‖Tx‖ ≤ 1

δ
‖x‖ ∀x.

Tehát M =
1

δ
választással a korlátosság de�níciója teljesül.

5.6. De�níció. Az X és Y közötti korlátos lineáris operátorok halmaza B(X,Y ).

B(X, Y ) = {T : X → Y, korlátos, lineáris}.

Ez normált tér a korábban de�niált operátor normával. Speciálisan, ha X = Y , akkor
B(X,X) helyett B(X)-t írunk.

B(X) = {T : X → X, korlátos, lineáris}.

(A B bet¶ arra utal, hogy "Bounded".)

5.2. Állítás. Ha Y Banach tér, akkor B(X, Y ) is Banach tér.

Bizonyítás. (Vázlat). Legyen (Tn) ⊂ B(X, Y ) korlátos lineáris operátorokból álló Cauchy
sorozat. Ez azt jelenti, hogy minden ε > 0-hoz létezik N küszöbindex, melyre

‖Tn − Tm‖ < ε, ∀n,m ≥ N.

Az operátor norma de�níciója szerint ebb®l következik, hogy minden x-re

‖(Tn − Tm)(x)‖ ≤ ‖Tn − Tm‖ · ‖x‖ ⇒ ‖Tnx− Tmx‖ ≤ ε · ‖x‖

Emiatt (Tnx) ⊂ Y Cauchy sorozat minden x-re, tehát Y teljessége miatt a sorozat kon-
vergens. Ezért limn→∞ Tnx jól de�niált, legyen Tx := limn→∞ Tnx, TxεY .

Az így kapott T : X → Y operátor lineáris és korlátos. Korlátossága abból következik,
hogy ha a (Tn) operátor-sorozat Cauchy, akkor korlátos. Ezért van olyan M , melyre
‖Tn‖ ≤ M minden n-re teljesül, és a határtérték monotonítása miatt T -re is.
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5.1. Következmény. Ha Y = IR akkor B(X, IR) Banach tér. Tehát az X téren
értelmezett funkcionálok Banach teret alkotnak.

Példa. X = H Hilbert tér. Legyen x0εH �x, x0 6= 0. A T : H → IR lineáris funkcionált
így értelmezzük:

Tx = 〈x, x0〉.
A skalárszorzat linearitása miatt T lineáris funkcionál. A C-S-B egyenl®tlenséget fel-
használva

|Tx| = |〈x, x0〉| ≤ 〈x, x〉1/2〈x0, x0〉1/2,
azaz

‖Tx‖ ≤ ‖x0‖ · ‖x‖ ⇒ ‖T‖ ≤ ‖x0‖,
tehát T korlátos. Másrész x = x0 választással ‖Tx0‖ = ‖x0‖ · ‖x0‖, ezért a funkcionál
normája ‖T‖ = ‖x0‖.

5.3. Banach algebra. Invertálhatóság

B(X)-n gazdag struktúra van. Láttuk, hogy vektortér a megfelel® m¶veletekkel, és
értelmezve van rajta norma ("távolság" is). Ezen felül szorzás is de�niálható rajta: ha
T, SεB(X), akkor szorzatuk TS := T ◦ SεB(X). Ez a struktúra a megfelel® m¶veleti
tulajdonságokkal együtt algebra.

5.7. De�níció. Tegyük fel, hogy X teljes normált tér, azaz Banach tér. Ekkor B(X) is
Banach tér, melyen szorzást értelmeztünk. Ez egy Banach algebra.

Ebben a Banach-algebrában a szorzásra nézve van egységelem. I : X → X, melyre
x 7→ Ix := x. Ekkor nyilván

TI = IT = T, ∀TεB(X).

5.8. De�níció. A TεB(X) operátor invertálható, ha van olyan SεB(X) operátor, melyre
TS = ST = I.

Megjegyzés. Fontos, hogy az inverz de�níciójában mindekét irányú szorzatról fel kell tenni,
hogy egységet ad.
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Példa. X = `2. Tekintsük a T (x1, x2, ...) = (x2, x3, ...) bal-shift operátort, és az
S(x1, x2, ...) = (0, x1, x2, ...) jobb-shift operátort. Ekkor

TS = I de ST 6= I!!!

S®t, T nem is invertálható, hiszen nem injektív. S sem invertálható, hiszen nem szürjektív.

Kérdés: Hogyan dönthet® el, hogy egy konkrét operátor invertálható-e? Erre a kérdésre
egy részleges választ ad a következ® tétel.

5.3. Tétel. X egy Banach tér. Tegyük fel, hogy valamely TεB(X) lineáris operátorral
teljesül, hogy ‖T‖ < 1. Ekkor I − T invertálható, és

(I − T )−1 =
∞∑

k=0

T k.

Megjegyzés. A fenti tétel analógja valós számokra: ha |q| < 1, akkor

1

1− q
=

∞∑

k=0

qk.

Bizonyítás. (A könyvben másképp van.)

Az I−T : X → X hozzárendelés azt jelenti, hogy ha (I−T )x = y, akkor x−Tx = y. Ha
invertálható az operátor, akkor bármely rögzített y-hoz megkereshetjük a megfelel® x-t.
Átrendezve az x− Tx = y összefüggést azzal lesz ekvivalens, hogy

x = y + Tx. (9)

Tetsz®leges yεX esetén a (9) egyenlet megoldását iterációval keressük meg.

Legyen x0εX tetsz®leges, ez a kiinduló pont. Az iteráció további lépései:

x1 = y + Tx0, x2 = y + Tx1, ... xn = y + Txn−1, ...

Így kapunk egy (xn) ⊂ X sorozatot. Ekkor

xn+1−xn = (y+Txn)− (y+Txn−1) = Txn−Txn−1 = T (xn−xn−1) = ... = T n(x1−x0).

Ezért a norma korlátossága miatt

‖xn+1 − xn‖ ≤ ‖T n‖ · ‖x1 − x0‖.

A bizonyítást közben egy lemmára lesz szükségünk.
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5.1. Lemma. Az operátor szorzás szub-multiplikatív, ami azt jelenti, hogy

‖TS‖ ≤ ‖T‖ · ‖S‖.

31. Feladat. Igazoljuk a fenti lemmát.

21. Gyakorlat. A lemma alapján lássuk be, hogy minden T korlátos lineáris operátorra
és minden kεN természetes számra

‖T k‖ ≤ ‖T‖k. (10)

Most visszatérunk a 5.3 Tétel bizonyítására. A (10) összefüggést felhasználva, az el®z®
egyenl®tlenséget folytatjuk:

‖xn+1 − xn‖ ≤ ‖T n‖ · ‖x1 − x0‖ ≤ ‖T‖n · ‖x1 − x0‖.

Felhasználva, hogy ‖T‖ < 1 ebb®l látható, hogy ‖xn+1 − xn‖ → 0 exponenciális
sebességgel. Ezért (xn) Cauchy sorozat X-ben, tehát konvergens. A határértéke x∗ =

lim
n→∞

xn.

A sorozatot de�niáló egyenlet ez volt:

xn+1 = y + Txn.

A folytonosságot felhasználva határátmenettel azt kapjuk, hogy

x∗ = y + Tx∗.

Ezt az összefüggést átrendezve azt kapjuk, hogy

x∗ = (I − T )−1y,

tehát y-nak valóban létezik ®sképe. Belátjuk még azt is, hogy az inverz a megadott
alakban írható. x0 = 0 választással a fenti sorozat tagjai:

xn = y + Txn−1 = y + T (y + Txn−1) = y + Ty + T 2xn−1 = ... =
n−1∑

k=0

T ky,

ezért

x∗ = lim
n→∞

xn = lim
n→∞

n−1∑

k=0

T ky =

( ∞∑

k=0

T k

)
y

5.2. Következmény. Legyen TεB(X) invertálható operátor. Tegyük fel, hogy valamely
SεB(X)-re

‖S‖ <
1

‖T−1‖ .

Ekkor T + S is invertálható marad.
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Bizonyítás. T + S szorzat alakban írható:

T + S = T · (I + T−1S) =: T · (I + A).

A jobboldal els® tényez®je invertálható. A második tényez®jében szerpl® A mátrix nor-
máját becsüljük.

‖A‖ = ‖T−1S‖ ≤ ‖T−1‖ · ‖S‖ < 1,

ezért I + A invertálható.

5.3. Következmény. B(X)-ben az invertálható operátorok halmaza egy G ⊂ B(X) nyílt
halmaz.

Bizonyítás. Ha TεB(X) invertálható, akkor ε = 1

‖T−1‖ választással a T operátor ε sugarú
környezetében lev® operátorok is invertálhatók lesznek. Tehát T bels® pontja G-nek.

5.4. Operátor spektruma

Emlékeztetek arra, hogy egy AεCn×n n × n dimenziós négyzetes mátrix sajátértékét-
sajátvektorát hogyan de�niáltuk. λεC sajátértéke az A mátrixnak, ha van olyan nem 0

vεCn vektor, melyre
Av = λv.

Ez kicsit másképp fogalmazva:

∃v 6= 0 : (A− λI)v = 0.

Ebb®l az következik, hogy A−λI nem invertálható. A "sajátérték" fogalmat terjesztük ki
az absztrakt operátorok esetére.

5.9. De�níció. Egy TεB(X) operátor spektruma azokból a λεC értékekb®l áll, melyekre
T − λI nem invertálható. A spektrumot σ(T ) jelöli.

σ(T ) = {λ : T − λI nem invertálható}

Példa. Ha X véges dimenziós, akkor B(X) elemei a négyzetes mátrixok. Ebben az
esetben a spektrum a sajátértékek halmaza.

Példa. Ha X végtelen dimenziós, akkor egy operátor spektruma sajátértékeken kívül
folytonos spektrum-ot is tartalmazhat. Végtelen dimenziós Banach térben egy operátor
spektruma b®vebb is lehet, mint a sajátértékek halmaza. Erre hamarosan látunk példát.
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32. Feladat. Háttérként ajánlom a 6.7 fejezet elolvasását. Ami a kvantum�zikában
meg�gyelhet®, az a matematika nyelvén egy operátor. A meg�gyelhet® értékek azonosak
lesznek a spektrum elemeivel.

Kérdés. Hogyan lehet egy operátor spektrumát meghatározni?

Példa. Legyen az A mátrix

A =




1 0 0

0 2 0

0 0 5− i


 .

Ekkor leolvashatók a sajátértékek, ami a mátrix spektruma: σ(A) = {1, 2, 5− i}.
Legyen B és C másik két, kicsit bonyolultabb mátrix

B =




1 1 1

0 i 1

0 0 −i


 , C =




5 0 0

1 1 −2

1 1 −1


 .

Ekkor is, a spektrumok leolvashatók, σ(B) = {1, i,−i}, és σ(C) = {5, i,−i}.
Fordítva is elmondhatjuk, hogy ha adott egy σ(A) ⊂ C véges elemszámú halmaz, akkor
meg tudunk adni egy A mátrixot ezzel a spektrummal.

Példa. X végtelen dimenziós, például legyen X = `2 sorozattér. Láttuk, hogy itt minden
lineáris operátorhoz egyértelm¶en hozzárendelhet® egy D végtelen mátrix. Ha T a bal
shift operátor, akkor

D =




0 1 0 . . . 0 .

0 0 1 0 . . 0 .

0 . 0 1 0 . 0 .

0 . . . . . 0 .

0 . . . . . 0 .

0 . . . . 0 1 .

0 . . . . 0 0 .




Legyen most D=diag(λn : nεN) egy végtelen dimenziós diagonális mátrix. A megfelel®
hozzárendelés: D : x 7→ Dx lineáris. (Az operátor és mátrix jelölése ugyanaz.) Kérdés,
hogy vajon mikor lesz a kép Dxε`2?

22. Gyakorlat. Igazoljuk, hogy ha a (λn) sorozat korlátos, azaz |λn| ≤ K minden n-re,
akkor xε`2 -b®l következik, hogy Dxε`2.

Ha (λn) nem korlátos sorozat, akkor bizonyos xε`2 esetén Dxε|`2 is lehet. Legyen például
λn ≥ n. Ekkor x = (1, 1/2, ..., 1/n, . . . ) választással xε`2, és mégis Dxε|`2.
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5.3. Állítás. A fenti jelölésekkel DεB(`2) pontosan akkor teljesül, ha a (λn) sorozat kor-
látos.

33. Feladat. Igazoljuk a fenti állítást. (Útmutató: Az egyik irányt már szerepelt. Azt
kell csak belátni, hogy ha (λn) nem korlátos, akkor van olyan xε`2, melynek képe nem
`2-beli lesz. Mivel (λn) nem korlátos, ezért minden k-hoz van olyan nk index, melyre
|λnk

| > k. Így az xnk
= 1/k sorozat megfelel a célnak.)

Példa. `2-ben tekintsük azt a folytonos, lineáris operátort, melyet a D végtelen dimenziós
diagonális mátrix határoz meg. Határozzuk meg D spektrumát! Ha λ = λn, akkor
(D − λnI)-ben van egy 0 sor, ezért nem invertálható. S®t, λ = λn egyben sajátérték is.
Emiatt

{λn : nεN} ⊂ σ(D).

Vajon van-e más eleme a spektrumnak? Ha λεC, akkor (D − λI) = diag {λn − λ, nεN}.
Ennek az operátornak "inverz-jelölt"-je (más nem is lehet...)

S = diag { 1

λn − λ
, nεN}.

Ez a mátrix B(`2)-beli-e? Az el®z® állítást felhasználva

SεB(`2) ⇐⇒
(

1

λ− λn

)
korlátos.

Ha λ torlódási pontja a (λn) sorozatnak, akkor
(

1

λ− λn

)
nem korlátos. Tehát (D− λI)

nem invertálható. Ezért λεσ(D). Tehát a sajátértékek sorozatának torlód±ai pontjai is
benne vannak a spektrumban.

5.4. Tétel. σ(T ) mindig zárt halmaz C-ben.

Bizonyítás. "Fordítva", belátjuk hogy σ(T ) komplementere nyílt halmaz. Tegyük fel,
hogy λ nem tartozik a spektrumba. Ekkor T − λI invertálható. T − λI eleme a nyílt G
halmaznak. (G jelölte az invertálható operátorok halmazát B(`2)-ben.) Ezért van olyan
ε > 0, hogy T − (λ+ ε′)IεG ha |ε′| < ε, és emiatt λ körüli ε sugarú gömb is benne van a
spektrum komplementerében.

5.5. Tétel. σ(T ) korlátos halmaz.
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Bizonyítás. Legyen |λ| > ‖T‖. Belátjuk, hogy ekkor λ biztosan nem tartozik a spekt-
rumba. Valóban, azt írhatjuk, hogy T − λI = −λ(I − λ−1T ), ahol a jobboldalon az I

mellett szerepl® mátrix normája ‖λ−1T‖ = |λ|−1‖T‖ < 1. Ezért I − λ−1T invertálható,
azaz T −λI is invertálható. Ez azt jelenti, hogy λε|σ(T ). Tehát σ(T )-ben csak olyan érték
lehet, melyre |λ| ≤ ‖T‖.

5.6. Tétel. X Banach tér, TεB(X) korlátos lineáris operátor. Ekkor a spektrum ren-
delkezik az alábbi tulajdonságokkal:
- zárt,
- korlátos,
- nem üres.

Bizonyítás. Az els® két tulajdonságot beláttuk. A harmadik tulajdonság bizonyítása
nehéz, nem tananyag.

5.10. De�níció. TεB(X) operátor spektrál sugara

r(T ) = sup{|λ| : λεσ(T )}.

5.4. Következmény. A spektrálsugár fels® becslése: r(T ) ≤ ‖T‖.

Bizonyítás nélkül közoljük az alábbi állítást.

5.4. Állítás. r(T ) = lim
n→∞

‖T n‖1/n.

Példa. T legyen a bal shift operátor, T : `2 → `2, T (x1, x2, ..., xn, ...) = (x2, x3, ...). Vajon
mi lesz a spektruma, σ(T ) =?

Azt már tudjuk, hogy r(T ) ≤ ‖T‖ = 1. Legyen |λ| < 1 tetsz®leges komplex szám.
Sajátérték-e? Ha igen, akkor van nem-triviális megoldása az alábbi egyenletnek:

T (x1, x2, ..., xn, ...) = (x2, x3, x4, ...) = (λx1, λx2, ..., λxn, ...).

Ebb®l azt kapjuk, hogy
λx1 = x2

λx2 = x3

λx3 = x4

...

λxn−1 = xn

...
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Ezért a sajátvektor nem lehet más, mint xλ = (1, λ, λ2, ...), (és ennek skalárszorosa). xλε`
2

pontosan akkor tejesül, ha
∞∑
n=0

|λn|2 < ∞.

Másrészt
∑ |λn|2 < ∞ azzal ekvivalens, hogy |λ| < 1. Ekkor tehát λ sajátérték.

Ezért a C-beli nyílt egységgömb része σ(T )-nek. Mivel a spektrum zárt, ezért a zárt
egységgömb része is σ(T )-nek. Azt viszont már láttuk, hogy a spektrálsugár r(T ) = 1,
így σ(T ) ⊂ zárt egységgömb. Összefoglalva:

σ(T ) = {λεC : |λ| ≤ 1}.

34. Feladat. Az el®z® példában láttuk, hogy a shift operátor esetén λ0 = 1 ε σ(T ).

Igazoljuk, hogy λ0 nem sajátérték. (Tehát a folytonos spektrumba tartozik.)

5.5. Duális tér

(X, ‖ · ‖) legyen egy tetsz®leges normált tér.

5.11. De�níció. Az f : X → IR korlátos lineáris operátort lineáris funkcionál-nak nevez-
zük.

A funkcionálok jelölésére kis bet¶ket használunk: f , g, stb. Az xεX-hez rendelt értéket
újra a valós függvényeknél megszokott módon f(x) fogja jelölni.

5.12. De�níció. Az (X, ‖ · ‖) tér duálisa az X-en értelmezett korlátos lineáris
funkcionálok halmaza. Jele X∗.

A korábbi jelöléseinket használva X∗ = B(X, IR). X∗ elemei korlátos, lineáris operátorok,
tehát X∗-ban norma értelmezhet® az ismert módon:

‖f‖ = sup{|f(x)| : ‖x‖ = 1}.

Korábban már láttuk, hogy X∗ Banach tér. (Olyan operátorokról van szó, melyek
értékkészlete IR, ami Banach tér.)
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1. Példa. X = IRn.

Belátjuk, hogy ha f : IRn → IR lineáris leképezés, akkor van olyan aεIRn, melyre f(x) =

aTx. Legyen ugyanis ejεIRn a j-dik egységvektor, melynek j-dik eleme 1 és a többi 0.

Jelölje aj = f(ej). Ekkor x = (x1, . . . xn) =
n∑

j=1

xje
j miatt, a linearitást felhasználva:

f(x) =
n∑

j=1

xjf(e
j) =

n∑
j=1

ajxj = aTx.

Ezért (IRn)∗ = IRn. Az (IRn)∗-n indukált norma függ attól, hogy IRn-ben milyen normát
tekintünk.

Elöször az Euklideszi normát nézzük. Ekkor a C-S-B egyenl®tlenség felhasználásával

|f(x)| = |
n∑
1

ajxj| ≤
(

n∑
j=1

a2j

)1/2( n∑
j=1

x2
j

)1/2

= ‖a‖ · ‖x‖.

Mivel
f(a) = ‖a‖ · ‖a‖,

azt kapjuk, hogy ‖f‖ = ‖a‖2.
Mi történik, ha IRn-ben egy másik normát veszünk? Legyen például a ‖x‖∞ = max |xj|
norma. Ekkor

|f(x)| = |
n∑
1

ajxj| ≤
n∑
1

|ajxj| ≤ max |xj|
n∑
1

|aj| = ‖x‖∞‖a‖1.

A fenti sorban xj = sign (aj) választással egyenl®séget kapunk. Így ‖f‖ = ‖a‖1. A duális
tér függ az alaptér normájától! Azt kaptuk, hogy

(IRn, ‖ · ‖2)∗ = (IRn, ‖ · ‖2) , (IRn, ‖ · ‖∞)∗ = (IRn, ‖ · ‖1) .

Általában is igaz, hogy

(IRn, ‖ · ‖p)∗ = (IRn, ‖ · ‖q) , ahol
1

p
+

1

q
= 1.

Példa. Hasonló argumentumokkal belátható, hogy (`2)∗ = `2, és (`p)∗ = `q ha p és q

Hölder konjugáltak.
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2. Példa. X = C[a, b].

X elemei folytonos függvények, melyet x = x(t), tε[a, b] fog jelölni. A norma a megszokott
maximum-norma. Néhány példa korlátos, lineáris funkcionálokra:

a)

f1(x) :=

∫ b

a

x(t)dt, ‖f1‖ = b− a.

b) Rögzített yεC[a, b] mellett

f2(x) :=

∫ b

a

x(t)y(t)dt, ‖f2‖ =

∫ b

a

|y(t)| dt.

c) Rögzített t0ε[a, b] mellett
f3(x) = x(t0).

Más jelöléssel ez a funkcionál
δt0(x) = x(t0).

(Kvantum �zikában ezt az el®z® példához hasonló alakban, így szokás felírni:

δt0(x) :=

∫ b

a

x(t)δ(t− t0)dt,

ahol δ a Dirac delta függvény.)

C[a, b] duális tere már nem tananyag. Ezek a korlátos változású függvények, és minden
korlátos lineáris funkkcionál egy Lebesgue-Stieltjes integrálként írható fel.

Láttuk, hogy X∗ Banach tér. Most az X∗-n értelmezett funkcionálokat tekintjük.

5.13. De�níció. Az X normált tér második duális tere X∗ duális tere. Jele X∗∗.

Példa. Legyen x0εX rögzített elem. Ennek megfeleltethet® egy ϕx0 : X
∗ → IR leképezés:

fεX∗ 7→ ϕx0(f) := f(x0).

ϕx0 lineáris, természetesen. Korlátos is, hiszen

|ϕx0(f)| = |f(x0)| ≤ ‖f‖ ‖x0‖.

Tehát ϕx0εX
∗∗. S®t, igazolható az is, hogy

‖ϕx0‖X∗∗ = ‖x0‖X .

Használjuk a következ® jelölést: (f, x). Ez két egészen különböz® dolgot is jelenthet,
feladattól függ®en:
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� Rögzített f esetén (f, x) = f(x) egy X-n értelmezett funkcionál.

� Rögzített x esetén (f, x) = ϕx(f) egy X∗-n értelmezett funkcionál.

5.5. Következmény. X j X∗∗, természetes módon beágyazható.

5.14. De�níció. Ha X = X∗∗, akkor a tér re�exív. Ha X $ X∗∗, akkor a tér irre�exív.

35. Feladat. Igazoljuk, hogy X = IRn re�exív tér, bármilyen normát is tekintünk.

36. Feladat. Igazoljuk, hogy X = `p re�exív tér.

Példa. X = c0, a nullsorozatok tere, irre�exív. Könnyen látható ugyanis, hogy c∗0 = `∞,
azaz minden c0-n értelmezett folytonos lineáris funkcionálhoz egyértelm¶en tartozik egy
a = (an)ε`

∞ korlátos sorozat, és fordítva. Másrészt korábban már láttuk, hogy (`∞)∗ = `1,
ami b®vebb mint c0.

Példa. X = C[a, b] is irre�exív.

5.6. Gyenge konvergencia

X normált tér, ebben (xn) egy sorozat. A második fejezetben (Topológiai alapfogalmak)
azt mondtuk, hogy az (xn) sorozat konvergens és határértéke x0, ha

lim
n→∞

‖xn − x0‖ = 0.

Ez a normabeli konvergencia.

5.15. De�níció. Az (xn) sorozat gyengén konvergál az x0 ponthoz, ha

lim
n→∞

f(xn) = f(x0) ∀fεX∗.

Más szóval az X-beli sorozat helyett sok-sok valós számsorozatot tekintünk. A gyenge
konvergencia jele xn−→w x0.

Ennek megfelel®en a normabeli konvergenciát er®s konvergenciának is nevezzük.

5.5. Állítás. Ha az (xn) ⊂ X sorozat er®sen konvergens, akkor gyengén is konvergens.
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Bizonyítás. Tegyük fel, hogy az (xn) sorozat normában konvergens. Legyen fεX∗ egy
funkcionál. Ekkor a linearitás miatt f(xn)− f(x0) = f(xn − x0). Ezért

|f(xn)− f(x0)| = |f(xn − x0)| ≤ ‖f‖ ‖xn − x0‖ → 0,

tehát gyengén is konvergens a sorozat.

A fenti állítás megfordítása nem igaz. Erre mutatunk egy példát.

Példa. Legyen X = `∞. Tekinsük itt az (en) sorozatot, ahol az en számsorozat egyetlen
nem 0 eleme az n-dik helyen álló 1. Ekkor ‖en‖∞ = 1, és a sorozat normában nem
konvergens.

Vizsgáljuk meg a gyenge konvergenciát. Legyen fεX∗ egy funkcionál. Mivel (`∞)∗ = `1,
ezért az f funkcionálhoz létezik egy a = (ak)ε`

1 sorozat, melyre

f(x) =
∞∑

k=1

akxk, x = (xk).

Az (en) sorozat mentén a funkcionál értéke:

f(en) = an ⇒ lim
n→∞

f(en) = 0,

hiszen aε`1 esetén
∑ |ak| < ∞, ezért (an) nullsorozat. Az (en) sorozat gyengén konvergens.

5.7. Funkcionálok és operátorok Hilbert térben

Speciális normált tereket tekintünk ebben a fejezetben. H Hilbert tér.

Példa. Legyen yεH rögzített. Az fy : H → IR funkcionált így de�niáljuk:

fy(x) := 〈x, y〉.

Ekkor a C-S-B egyenl®tlenség miatt

|〈x, y〉| ≤ ‖x‖ ‖y‖,

és x = y esetén egyenl®ség van. Ezért ‖fy‖ = ‖y‖.

Belátható, hogy nincs is más funkcionál:

5.7. Tétel. (Riesz reprezentációs tétel.) Minden fεH∗ funkcionálhoz létezik olyan yεH,
melyre

f(x) = 〈x, y〉.
és ‖f‖ = ‖y‖.
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5.6. Következmény. H és H∗ izomorfak. Minden Hilbert tér re�exív.

37. Feladat. Igazoljuk, hogy egy (xn) sorozat gyenge konvergenciája x0-hoz azzal
ekvivalens, hogy minden yεH esetén

lim
n→∞

〈xn, y〉 = 〈x0, y〉.

5.16. De�níció. Az AεB(H) lineáris operátor adjungáltja az az A∗εB(H) lineáris operátor,
melyre

〈Ax, y〉 = 〈x,A∗y〉 ∀x, yεH.

Belátjuk, hogy az adjungált operátor jól de�niált. Legyen yεH. Hogyan határozható meg
A∗y? Ehhez tekintsük az alábbi lineáris funkcionált:

f(x) := 〈Ax, y〉.

(Vegyük észre, hogy a fenti funkcionál de�niciójában jelen van mind az A operátor, mind
az y pont.) A Riesz reprezentációs tétel szerint van egy y∗εH elem, melyre

f(x) = 〈x, y∗〉.

Tehát van egy y 7→ y∗ hozzárendelés. Ez az A∗ operátor, hiszen

f(x) := 〈Ax, y〉 = 〈x, y∗〉.

5.8. Tétel. Az adjungált operátor tulajdonságai:

1. I∗ = I.

2. (A+B)∗ = A∗ +B∗.

3. (αA)∗ = αA∗.

4. (AB)∗ = B∗A∗.

5. ‖A∗‖ = ‖A‖.

Megjegyzés. A De�níció könnyen kiterjeszthet® arra az esetre, amikor az operátor külön-
böz® Hilbert terek között hat. Az A : H1 → H2 korlátos lineáris operátor adjungáltja az
az A∗ : H2 → H1 operátor, melyre

〈Ax, y〉 = 〈x,A∗y〉 ∀xεH1, ∀yεH2.
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A fenti egyenl®ség két oldalán két különboz® térben de�niált skalárszorzat szerepel.

Példa. H = IRn, Euklideszi normával. Lineáris operátor megadása egy n× n dimenziós
A mátrix-ot jelent. Ekkor A∗ = AT , az adjungált operátorhoz tartozó maátrix az eredeti
mátrix traszponáltja, hiszen

〈Ax, y〉 = (Ax)T y = xTATy = 〈x,ATy〉.

Példa. H = L2[0, 1], ahol a skalárszorzat

〈u, v〉 =
∫ 1

0

u(t)v(t)dt.

Tekintsük H-ban azt a H0 alteret, ahol azok a végtelen sokszor di�erenciálható u(t) füg-
gvények vannak, melyekre u(0) = u(1) = 0. H0-ban értelmezzük a di�erenciáloperátort:

Au = u′.

Ennek adjungáltja mi lesz?

〈Au, v〉 =
∫ 1

0

u′(t)v(t)dt = u(t)v(t)

∣∣∣∣
1

0

−
∫ 1

0

u(t)v′(t)dt = (∗),

miközben parciálisan integráltunk. Folytatjuk:

(∗) = 0−
∫ 1

0

u(t)v′(t)dt = 〈u,−v′〉 = 〈u,A∗v〉.

Tehát a di�erenciáloperátor adjungáltja H0-ban

A∗v = −v′.

Példa. Zárt altérre ortogonális vetítés. Legyen E ⊂ H egy zárt altér. Ekkor minden xεH

elem el®áll összegként x = xE + x0 alakban, ahol xEεE és x0⊥E. Ez utóbbi tulajdonság
azt jelenti, hogy 〈x0, y〉 = 0 minden yεE mellett.

Az ortogonális vetítés operátora P : H → H, Px := xE. Ennek adjungáltját így szá-
moljuk:

〈Px, y〉 = 〈Px, Py + y0〉 = 〈Px, Py〉+ 〈Px, y0〉 = (∗∗),
itt a második tag 0, hiszen PxεE és y0⊥E. Folytatjuk, hasonló argumentumot használva:

(∗∗) = 〈Px, Py〉+ 〈x0, Py〉 = 〈x, Py〉.

Azt kaptuk tehát, hogy
P = P ∗.
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5.17. De�níció. Az A operátor önadjungált, ha A = A∗.

5.18. De�níció. Az A önadjungált operátor pozitív, ha

〈Ax, x〉 ≥ 0 ∀xεH.

Példa. Ha A = N∗N alakban áll el®, akkor pozitív. Valóban,

〈Ax, x〉 = 〈N∗Nx, x〉 = 〈Nx,Nx〉 = ‖Nx‖2.

5.9. Tétel. Ha A önadjungált operátor, akkor

1. ‖An‖ = ‖A‖n.

2. Spektrál sugara r(A) = ‖A‖.

3. Spektruma valós: σ(A) ⊂ IR.

38. Feladat. Igazoljuk, hogy önadjungált operátor esetén ‖A2‖ = ‖A‖2.

Megjegyzés. Az önadjungált operátorok a valós szimmetrikus mátrixok végtelen dimenziós
megfelel®i.



A. APPENDIX 65

A. Appendix

A.1. Kontrakció � �xpont tételek

A kontrakció egy speciális operátor. Érdemes a legáltalánosabb keretben de�niálni, hiszen
itt is igazolható a méltán-híres Banach-féle �xpont-tétel. Legyen X egy metrikus tér, és
T : X → X leképezés, azaz operátor.

A.1. De�níció. A T : X → X operátor kontrakció, ha megadható egy 0 ≤ M < 1 szám
azzal a tulajdonsággal, hogy

d(Tx, Ty) ≤ M d(x, y) ∀x, yεX.

Más szóval a kontrakció bármely két pont távolságát "összehúzza". Fontos, hogy legyen
egy közös, 1-nél kisebb M arányossági tényez®.

A.1. Állítás. Ha T kontakció akkor folytonos is.

Bizonyítás. A de�nícióból könnyen következik. Be kell látni ugyanis, hogy tetsz®leges
ε > 0-hoz megadható δ > 0, melyre

ha d(x, y) < δ akkor d(Tx, Ty) < ε.

23. Gyakorlat. Lássuk be, hogy δ = ε/M jó választás.

A.1. Tétel. (Banach-féle �xpont-tétel) Tegyük fel, hogy X teljes metrikus tér. Legyen
T : X → X kontrakció. Ekkor egyértelm¶en létezik x∗εX pont, melyre

x∗ = Tx∗.

Tehát van egy egyértelm¶en meghatározott elem, amit T önmagába képez le. Ez a �xpont.

Bizonyítás. A �xpont létezésének igazolása a szukcesszív approximáció módszerével
történhet. De�niálunk egy sorozatot, melynek határértéke a �xpont lesz. Legyen x0εX

tetsz®leges kezd®pont, és xn+1 = Txn. Másképp jelölve xn = T nx0. Ekkor:

d(xn+1, xn) = d(Txn, Txn−1) ≤ M d(xn, xn−1),

és ezt folytatva
d(xn+1, xn) ≤ Mnd(x1, x0).
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Eszerint (xn) Cauchy-sorozat (ld. a Gyakorlatot a Bizonyítás után), tehát konvergens.

lim
n→∞

xn = x∗.

Mivel xn = Txn−1, ezért

T ( lim
n→∞

xn) = T (x∗) = lim
n→∞

Txn = x∗,

felhasználva a folytonosságot.

Az egyértelm¶séget indirekt módon igazoljuk. Tegyük fel, hogy van két �xpont, ezeket
jelölje x∗ és x∗∗. Ekkor

d(x∗, x∗∗) = d(Tx∗, Tx∗∗) ≤ Md(x∗, x∗∗),

ami csak úgy lenne lehetséges M < 1 miatt, hogy

d(x∗, x∗∗) = 0.

Ez ellentmond annak, hogy x∗ 6= x∗∗.

24. Gyakorlat. Igazoljuk, hogy ha egy sorozatra d(xn+1, xn) ≤ Mnd(x1, x0) teljesül
valamely M < 1 számmal, akkor a sorozat Cauchy.

Példa. Legyen X = [a, b] ⊂ R. Keressük egy f : X → X függvény �xpontját. Van-e
olyan x∗ε[a, b], melyre x∗ = f(x∗)?

Az X alaptér teljes. A leképezés akkor lesz kontrakció, ha van olyan M < 1 szám, melyre

|f(x)− f(y)| ≤ M |x− y| , x, yε[a, b].

Ez akkor teljesül, ha f Lipschitz-folytonos és a Lipschitz-konstans M = L < 1. Ekkor
létezik �xpont. Ehhez elégséges feltétel di�erenciálható függvény esetén, hogy |f ′(x)| ≤
M < 1 minden x-re valamilyen alkalmas M konstanssal.

A.2. Els®rend¶ DE megoldása a �xpont-tétel segítségével

Tekintsük az alábbi els®rend¶ di�erenciálegyenlethez kapcsolódó kezdetiérték-feladatot:

y′ = Φ(x, y) (11)
y(x0) = y0. (12)

A megoldással kapcsolatban felmerül® kérdések az egzisztencia és az unicitás. Vajon
létezik-e megoldás és az egyértelm¶-e?

Erre ad egy lehetséges választ a Picard tétel, melyet már az els® éves Analízis el®adáson
szerepelt, bizonyítás nélkül.
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A.2. Tétel. (Picard-tétel) Tegyük fel, hogy az (11) egyenletben szerepl® Φ(x, y) füg-
gvény második változójában Lipschitz-folytonos, azaz van olyan K > 0:

|Φ(x, y)− Φ(x, z)| ≤ K |y − z| , ∀y, z,

x-t®l függetlenül. Ekkor létezik az (11)-(12) kezdetiérték-feladatnak egyértelm¶ megoldása
az x0 pont valamely környezetében.

Bizonyítás. Tegyük fel, hogy valóban létezik megoldás, az y : [a, b] → IR függvény kielégíti
a di�erenciálegyenletet. [a, b]-ról csak annyit tudunk, hogy x0ε(a, b). Az (11) egyenletet
minden argumentumával kiírva azt kapjuk, hogy

y′(t) = Φ(t, y(t)), tε[a, b].

Integráljuk ezt az egyenletet x0 és x között.

y(x)− y0 =

∫ x

x0

Φ(t, y(t))dt, xε[a, b]. (13)

Keressük a fenti egyenlet megoldásait a (C[a, b], ‖.‖∞) teljes metrikus (normált) térben.
Egyel®re [a, b]-t nem ismerjük.

Legyen a T : C[a, b] → C[a, b] operátor a következ®:

T : f 7→ Tf, (Tf)(x) = y0 +

∫ x

x0

Φ(t, f(t))dt.

A (13) egyenlet azzal ekvivalens, hogy y = Ty. Tehát a T operátor �xpontját keressük.

Megvizsgáljuk, hogy T kontrakció-e? Ha f, gεC[a, b], becsüljük meg Tf és Tg különb-
ségének normáját:

‖Tx− Tg‖ = max {|Tf(x)− Tg(x)| : xε[a, b]} .

Legyen most xε[a, b] tetsz®leges. Ekkor

|Tf(x)− Tg(x)|=
∣∣∣∣
∫ x

x0

Φ(t, f(t))dt−
∫ x

x0

Φ(t, g(t))dt

∣∣∣∣ ≤

≤
∫ x

x0

|Φ(t, f(t))− Φ(t, g(t))| dt.

Mivel a Φ függvény y-ban Lipschitz-folytonos, ezért így folytatjuk:

|Tf(x)− Tg(x)| ≤ · · · ≤ K

∫ x

x0

|f(t)− g(t)| dt ≤ (b− a)K︸ ︷︷ ︸
ha <1, T kontr.

‖f − g‖
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Ezek szerint ha az [a, b] intervallumot úgy választjuk meg (amellett, hogy a < x0 < b),
hogy K(b − a) < 1 teljesüljön, akkor a fenti T operátor kontrakció lesz. A Banach-féle
�xpont-tétel alapján van �xpontja, ami az (11)-(12) kezdetiérték-feladat megoldása lesz.

Példa. Tekintsünk egy konkrét Cauchy feladatot:

y′ = x+ y

y(0) = 0.

A di�erenciálegyenlet jobboldalán lév® függvény Φ(x, y) = x + y valóban Lipschitz
folytonos, K = 1 konstanssal. Ezért a Cauchy feladat megoldása egyértelm¶en létezik.

A bizonyításban szerepl® T operátor most így írható:

(Tf)(x) =

∫ x

0

(t+ f(t)) dt.

A feladat megoldása szukcesszív approximációval:

f0(x) = 0

f1(x) = (Tf0)(x) =

∫ x

0

(t+ f0(t)) dt =

∫ x

0

t dt =
x2

2

f2(x) = (Tf1)(x) =

∫ x

0

(t+
t2

2
) dt =

x2

2
+

x3

6
. . .

f(x) =
∞∑
n=2

xn

n!
= ex − x− 1.

Behelyettesítéssel könnyen ellen®rizhet®, hogy valóban megkaptuk a megoldást.



B. ÁLTALÁNOSÍTOTT FÜGGVÉNYEK. (DISZTRIBÚCIÓK) 69

B. Általánosított függvények. (Disztribúciók)

B.1. Lineáris funkcionálok a C∞
0 (IR) téren

B.1. De�níció. C∞
0 (IR) az függvénytér, amely a végtelen sokszor di�erenciálható, kom-

pakt tartójú függvényeket tartalmazza. Egy ϕ : IR → IR függvény tartója:

suppϕ = {x : ϕ(x) 6= 0}.

Ez azt jelenti, hogy ϕεC∞
0 (IR), ha ϕ : IR → IR végtelen sokszor di�erenciálható, és van

olyan I ⊂ IR véges intervallum, melyre ϕ(x) = 0, ha xε|I. A továbbiakban rövid jelölést
használunk D := C∞

0 (IR).

C∞
0 (IR) nyilván vektortér. Ezen a téren nem de�niálunk sem metrikát, sem normát.

Sorozat folytonosságot és korlátosságot értelmezünk.

B.2. De�níció. A (ϕn) ⊂ D sorozat konvergens, és határértéke ϕ, ha:

1) van olyan véges I ⊂ IR intervallum, melyre suppϕn ⊂ I minden n-re,

2) minden k-ra ϕ
(k)
n → ϕ(k) egyenletesen, azaz minden derivált egyenletesen konvergál

a határérték deriváltjaihoz az I intervallumban.

Ezt így jelöljük: ϕn → ϕ.

B.3. De�níció. A D0 ⊂ D halmaz korlátos, ha:

1) van olyan véges I ⊂ IR intervallum, melyre suppϕ ⊂ I minden ϕεD0 esetén,

2) minden k-ra van olyan Mk konstans, melyre |ϕ(k)(x)| ≤ Mk ha ϕεD0 és xεI.

B.4. De�níció. A T : D → IR funkcionál általánosított függvény, ha:

1) lineáris: T (αϕ+ βψ) = αT (ϕ) + βT (ψ), ha ϕ, ψεD és α, βεIR.

2) folytonos a fenti konvergeniára nézve: minden ϕn → ϕ konvergens függvénysorozat
esetén Tϕn → Tϕ.

Az általánosított függvény elnevezés mellett használjuk a disztribúció elnevezést is. A dis-
ztribuciók halmazát D jelöli.
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Tehát az általánosított függvény egy speciális lineáris funkcionál.

Példa. f : IR → IR tetsz®leges folytonos függvény. A Tf hozzárendelést így adjuk meg:

ϕ 7→ Tf (ϕ) :=

∫

IR

fϕ dx.

25. Gyakorlat. Gondoljuk meg, hogy a fenti Tf : D → IR valóban disztribúció.

39. Feladat. Igazoljuk, hogy különböz® folytonos függvényekhez tartozó disztribúciók
különböz®ek.

Példa. Következ® példánk, T (ϕ) := ϕ(0) nevezetes disztribúció. Ehhez kapcsolódó
jelölések:

δ(ϕ) := ϕ(0), δa(ϕ) := ϕ(a)

Megjegyzés. Gyakran szokás, különosen �zika könyvekben, ezt a disztribúciót az el®z®

példához hasonlóan jelölni (mintha olyan lenne...): δ(ϕ) =
∫

ϕ(x)δ(x) dx.

Jelölje L1
loc(IR) az IR-n értelmezett, lokálisan integrálható függvények halmazát. Minden

fεL1
loc(IR) "közönséges" függvény egyben általánosított függvény is. Ha f : IR → IR

tetsz®leges lokálisan integrálható függvény, akkor a megfelel® disztribúció:

Tf : D → IR, Tf (ϕ) :=

∫

IR

fϕ dx

Ebben az esetben a "közönséges" függvényt és az általánosított függvényt (azaz a
megfelel® lineáris funkcionált) azonosnak vesszük.

B.5. De�níció. Ha a TεD disztribúcióhoz van fεL1
loc(IR) függvény, melyre T = Tf , akkor

T reguláris disztribúció.

40. Feladat. Igazoljuk, hogy a Dirac-δ disztribúció, melyre T (ϕ) = ϕ(0), nem reguláris.
Tehát nincs neki megfelel® közönséges függvény.

B.6. De�níció. A (Tn) sorozat tart a T általánosított függvényhez, ha minden korlátos
D0 ⊂ D halmaz esetén Tn(ϕ) egyenletesen konvergens.

41. Feladat. Igazoljuk, hogy a Dirac delta disztribúció el®áll reguláris disztribúciók
határértékeként.

Megjegyzés. Ennél több is igaz. Igazolható, hogy minden disztribúció el®állítható reguláris
disztribúciók határértékeként.
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B.2. Disztribúciók deriválása

A de�níció el®tt nézzük meg, mit remélhetünk. Deriválásnál elvárjuk, hogy ha f di�er-
enciálható "közönséges" függvény, akkor (Tf )

′ = Tf ′ .

Eszerint:
Tf ′(ϕ) =

∫

IR

f ′ϕdx = fϕ

∣∣∣∣
∞

−∞︸ ︷︷ ︸
=0

−
∫

IR

fϕ′ dx = −Tf (ϕ
′)

B.7. De�níció. A TεD általánosított függvény deriváltja ∂TεD, melyet így értelmezünk:

∂T (ϕ) := −T (ϕ′).

Tehát a ∂T derivált egy olyan disztribúció, mely tetsz®leges ϕεD-hez a fenti módon rendel
értéket.

B.1. Következmény. Minden TεD akárhányszor deriválható, és k-dik deriváltja

∂kT (ϕ) = (−1)kT (ϕ(k)).

Példa. A Dirac delta deriváltja ∂δ(ϕ) = δ′(ϕ) = −ϕ′(0).

Példa. A Heaviside-függvény (egység-ugrás):

H(x) =





0, x < 0

1, x ≥ 0

A hozzá tartozó disztribúció:
TH(ϕ) =

∫ ∞

0

ϕ(x) dx.

Ennek deriváltja:

(TH)
′(ϕ) = −TH(ϕ

′) = −
∫ ∞

0

ϕ′(x) dx =

[
− ϕ(x)

]∞

0

= −0 + ϕ(0) = δ(ϕ)

Tehát az egység-ugrás függvény deriváltja a Dirac delta általánosított függvény.

Ha az f függvény szakaszonként folytonosan di�erenciálható de egy ugrás van benne, akkor
általánosított értelemben vett deriváltjában megjelenik a Dirac delta függvény. Ezen az
ábrán az f függvényben az x0 pontban egym nagyságú ugrás van. Formálisan azt írhatjuk,
hogy f = f0 +mH(x− x0), ahol f0 folytonosan di�erenciálható, H pedig az egység-ugrás
függvény. Ekkor a disztribúció értelemben vett derivált:

∂f = f ′
0 +mδx0 .
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Az általánosított függvények deriváltja alapot ad arra, hogy lokálisan integrálható, esetleg
nem is folytonos(!) függvény esetén gyenge deriváltat értelmezzünk.

B.8. De�níció. Az fεL1
loc függvény gyenge deriváltja gεL1

loc, ha:

∀ϕεD : −
∫

IR

fϕ′ dx =

∫

IR

gϕ dx

Megjegyzés. A fenti de�nícióban "parciális integrálást" végzünk. Természetesen az integ-
rál Lebesgue integrált jelent.

B.1. Állítás. A gyenge derivált alaptulajdonságai:

1. Ha létezik az f függvény gyenge deriváltja, akkor az m.m. egyértelm¶.

2. Ha f di�erenciálható, akkor gyenge deriváltja g = f ′.

3. Ha f = f0 m.m. és f0 di�erenciálható, akkor f gyenge deriváltjaja g = f ′
0.

4. Ha az f függvényhez tartozó Tf disztribúció deriváltja reguláris, éspedig ∂Tf = Tg,
akkor f gyenge deriváltja g.

Példa. Mi lesz az f(x) = |x| függvény gyenge deriváltja?

A de�nícióban megfogalmazott tulajdonság szerint az - egyel®re ismeretlen - g függvényre
az teljesül, hogy

−
∫ ∞

−∞
|x|ϕ′(x) dx =

∫ ∞

−∞
g(x)ϕ(x) dx ∀ϕεD.
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5. ábra. Az abszolút érték függvény klasszikus értelemben nem deriválható.

A baloldalt átalakítva, majd két parciális integrálást elvégezve:

−
∫ ∞

−∞
|x|ϕ′(x) dx = −

∫ 0

−∞
(−x)ϕ′(x) dx−

∫ ∞

0

xϕ′(x) dx =

=
[− xϕ(x)

]0
−∞ +

∫ 0

−∞
(−1) · ϕ(x) dx+

[
xϕ(x)

]∞
0
+

∫ ∞

0

1 · ϕ(x) dx.

A függvény megváltozások elt¶nnek, csak a két integrál marad végül:

−
∫ ∞

−∞
|x|ϕ′(x) dx =

∫

IR

g(x)ϕ(x) dx, g(x) =





−1 ha x < 0

+1 ha x > 0

Tehát az abszolútérték függvény gyenge deriváltja g(x) = sign (x) m.m.

6. ábra. Az abszolút érték függvény gyenge deriváltja.

Példa. Legyen f a racionális számok karakterisztikus függvénye:

f(x) = χQ(x) =





1, xεQ

0, egyébként

Ennek gyenge deriváljta g(x) = 0 (hiszen f = 0 m.m).
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Példa. Az

f(x) =





1, x < 0

1 + x, x ≥ 0

függvény gyenge deriváltja g(x) = H(x).

26. Gyakorlat. Lássuk be a fenti példa állítását.

B.3. Általánosított függvények konvolúciója

Adott f, gεL1
loc függvények konvolúcióját így de�niáltuk:

f ∗ g (x) =

∫ ∞

−∞
f(y)g(x− y) dy.

Hasonlóképp, adott T, SεD esetén de�niálni szeretnénk a T ∗ S disztribúciót.

Példa. Határozzuk meg, hogy az f ∗ gεL1
loc közönséges függvénynek milyen disztribúció

felel meg.

Tf∗g(ϕ) =
∫ ∞

−∞
(f ∗ g)(x)ϕ(x) dx =

∫ ∞

−∞

(∫ ∞

−∞
f(y)g(x− y) dy

)
ϕ(x) dx =

=

∫ ∞

−∞
f(y)

(∫ ∞

−∞
g(x− y)ϕ(x) dx

)
dy.

A bels® integrált kiszámolva
∫ ∞

−∞
g(x− y)ϕ(x) dx =

∫ ∞

−∞
g(z)ϕ(z + y) dy = Tg(ϕ(·+ y)),

ahol yεIR paraméter. Ezt visszahelyettesítve azt kapjuk, hogy

Tf∗g(ϕ) =
∫ ∞

−∞
f(y) Tg(ϕ(·+ y)) dy = (Tf )y ((Tg)z(ϕ(z + y))) .

B.9. De�níció. A T, SεD általánosított függvények T ∗ S disztribúcióját így de�niáljuk:

T ∗ S (ϕ) := Tx(Sy(ϕ(x+ y))).

Példa. Legyen az egyik disztribúció δ. Számoljuk ki, mit ad a fenti de�nició T ∗ δ esetén.

T ∗ δ (ϕ) = Tx(δy(ϕ(x+ y))) = Tx(ϕ(x+ 0)) = T (ϕ).

Tehát azt kaptuk, hogy minden TεD esetén

T ∗ δ = T,

tehát Dirac delta a konvolúció egysége.
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B.2. Állítás. A konvolúció alaptulajdonságai:

1. T ∗ S = S ∗ T .

2. T ∗ (S ∗R) = (T ∗ S) ∗R.

3. ∂(T ∗ S) = (∂T ) ∗ S = T ∗ (∂S).

42. Feladat. Igazoljuk a fenti állítást.
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C. Absztrakt operátorok alkalmazása egy QM példán

Ebben a fejezetben példát mutatunk arra, hogy a kvantum mechanika egyik leegysz-
er¶sített feladatában hogyan tudjuk alkalmazni a kurzus során megtanult fogalmakat,
tételeket.

C.1. Fizikai példa

Tegyük fel, hogy egyetlen részecske (pl. elektron) mozgását vizsgáljuk. Feltesszük, hogy a
részecske egy végtelen hosszú egyenes mentén mozog, helyzetét egy komplex érték¶ f(x, t)

függvény írja le. A t változó az id®t jelenti, az x pedig a helyzetet írja le a következ®
módon: annak valószín¶sége, hogy a részecske az [a, b] intervallumban tartózkodik a t

id®pontban egy integrállal adható meg:
∫ b

a

|f(x, t)|2 dx.

A fenti f(x, t)εC az állapotfüggvény. Elvárjuk, hogy
∫ ∞

−∞
|f(x, t)|2 dx = 1.

Jelenleg csak az állapotfüggvény abszolútértékének négyzete ad számunkra információt.

Tekintsünk most egy �x t id®pontot, és ez az egyetlen id®pont érdekel csak bennünket.
Ezért az aállapotfüggvény második argumentumát elhagyjuk.

C.2. Matematikai modell és egy tétel

Absztrakt matematikai nyelven fogalmazva az állapotfüggvény fεL2(IR), melyre ‖f‖ = 1.

A részecske helyzete x, ami egy "meg�gyelhet®" (="observable") a QM terminológiáját
használva. Más megközelítésben azt mondhatjuk, hogy egy valószín¶ségi változó.

Egy másik �zikai jellemz® a momentum, melyet az f függvény Fourier transzformáltja ad
meg:

f̂(w) =
1√
2π

∫ ∞

−∞
e−ixwf(x) dx.

A Parseval egyenl®ség miatt
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(w)|2 dw,
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és ezért f̂ εL2(IR), továbbá ‖f̂‖ = 1.

Annak valószín¶sége, hogy a momentum az [a, b] intervallumba esik a
∫ b

a

|f̂(w)|2 dw.

Jelölje x és w a hely és momentum átlagát a megadott valószín¶ségek szerint.

x =

∫ ∞

−∞
x · |f(x)|2 dx, w =

∫ ∞

−∞
w · |f̂(w)|2 dw.

(Ezek úgy is tekinthet®k, mint a valószín¶ségi változók várható értékei.) A megfelel®
varianciák (= szórásnégyzetek) pedig:

σ2
x =

∫ ∞

−∞
(x− x)2 · |f(x)|2 dx, σ2

w =

∫ ∞

−∞
(w − w)2 · |f̂(w)|2 dw.

A szórásnégyzet azt mutatja, mennyire szóródik x és w konkrét értéke x illetve w körül.
Minél kisebb σ2, annál pontosabban tudjuk lokalizálni a véletlen mennyiség értékét.

7. ábra. Az |f(x)|2 függvény alakja nagy illetve kicsi σ2
x esetén.

A Heisenberg-féle határozatlansági elv azt mondja ki, hogy σx és σw nem lehet
mindkett® egyszerre kicsi. Nevezetesen

σ2
x · σ2

w ≥ 1

4
.

(Itt az egyszer¶ség kedvéért a Planck konstanst 1-nek vesszük.)

43. Feladat. Magyarázzuk el, mit jelent a fenti határozatlansági elv.
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C.3. Bizonyítás Hilbert térben (vázlat)

Tegyük fel, hogy x = 0 és w = 0. Ezt eltolással elérhetjük, nem veszítünk az általánosság-
ból. Az L2(IR) Hilbert térben két operátort fogunk tekinteni.

Mf(x) := x · f(x) (14)
Df(x) := f ′(x). (15)

Mindkét operátor a fenti Hilbert tér egy-egy alterében van csak értelmezve, de ezzel nem
foglalkozunk. A mi függvényeink "jó helyen" vannak.

A kiinduló összefüggéseink szerint f, f̂ εL2(IR), egységnyi normával.

C.1. Lemma.
‖Mf‖2 = σ2

x, és ‖Df‖2 = σ2
x.

Bizonyítás. Az els® rész könny¶:

‖Mf‖2 =
∫ ∞

−∞
|x · f(x)|2 dx =

∫ ∞

−∞
x2 · |f(x)|2 dx = σ2

x.

A második rész több lépésb®l fog állni. A Parseval egyenl®ség miatt

‖Df‖2 = ‖D̂f‖2.

A norma de�níciója szerint

‖D̂f‖2 =
∫ ∞

−∞
|D̂f(w)|2 dw.

A Fourier transzformáció egyik alaptulajdonsága a deriváltfüggvény Fourier transzfor-
máltjáról szól:

D̂f(w) = iw f̂(w),

ezért
‖Df‖2 = ... =

∫ ∞

−∞
w2 |f̂(w)|2 dw = σ2

w.

Ezután egy sajátos (meglep®) tulajdonságát látjuk be az operátoraimknak.

C.2. Lemma. A (14) és (15) operátorok kielégítik az alábbi operátor-egyenletet:

DM −MD = I. (16)
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Bizonyítás. Egyszer¶en szorzat-deriválási szabályt alkalmazunk.
(
x · f(x))′ = f(x) + xf ′(x),

ami operátor alakban
D ◦M(f) = I(f) +M ◦D(f).

Ez épp a lemma állítása.

Megjegyzés. A (16) egyenlet nem az egész L2(IR)-ben igaz, hanem csak abban az altérben,
ahol értelmezhet® mindkét oldal.

A következ® lemma az operátorok adjungáltjait adja meg.

C.3. Lemma. Az M operátor önadjungált, azaz

〈Mf, g〉 = 〈f,Mg〉.

A D operátor adjungáltja −D, azaz

〈Df, g〉 = −〈f,Dg〉.

(Az operátorok adjungáltja egy megfelel®en kiválasztott altérben van értelmezve, nem az
egész L2(IR) téren.)

Bizonyítás.

〈Mf, g〉 =
∫ ∞

−∞
xf(x) · g(x) dx =

∫ ∞

−∞
f(x) · xg(x) dx = 〈f,Mg〉.

A második részhez parciálisan integrálunk.

〈Df, g〉 =
∫ ∞

−∞
f ′g = fg

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
fg′ = −〈f,Dg〉.

Kózben felhasználtuk, hogy gεL2(IR) esetén lim
x→±∞

g(x) = 0.

Végül
‖f‖2 = 〈f, f〉 = 〈f, (DM −MD)f〉 = 〈f,DMf〉 − 〈f,MDf〉 =

= −〈Df,Mf〉 − 〈Mf,Df〉 = −2〈Df,Mf〉.
Mivel ‖f‖2 = 1, ezért a C-S-B egyenl®tlenség alapján

1 = −2〈Df,Mf〉, |〈Df,Mf〉| ≤ ‖Mf‖ · ‖Df‖,

ahonnan átrendezéssel épp a Heisenberg-féle határozatlansági elvet kapjuk.
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