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Tételjegyzék

Metrikus tér. Normalt tér. Norma ¢és metrika kapcsolata. Diszkrét metrika. Skalar-
szorzat tér. Skalarszorzat és norma kapcsolata. Példak: sorozat-terek, ezek kapcsolata
egymassal. Fiiggvény-terek, lehetséges normak.

Szeparabilis metrikus tér. Példa szeparabilis és nem szeparabilis térre. Teljes metrikus
tér. C([a, b]) teljessége, ill. nem teljessége kiilonb6z6 normak mellett. Dimenzié nor-
malt térben. Példa véges €s végtelen dimenzidra.

Metrikus terek topologidja. Nyilt és zart halmaz. Metrikus térben sorozat konvergen-
ciagja. Metrikus terek kozott értelmezett fiiggvény folytonossaga. Kompakt halmaz.
Kompakt halmaz jellemzése véges dimenzioban (Heine—Borel-tétel) és végtelen di-
menzidban. Példak.

Meérték, mértéktér. Szamlalomérték. Lebesgue mérték bevezetése R-ben. Lebesgue-
mérhetd halmazok jellemzése. Nullmértékii halmazok, ezek struktraja. Cantor hal-
maz [0,1]-ben, tulajdonsagai.

Meérheto fliggvények. Egyszerii fiiggvények. (Lépcsos fliggvények.) Lebesgue-integral
bevezetése. Integralhatosag feltétele. Lebesgue- ¢s Riemann-integral kapcsolata.

LP(R) terek 1 < p < o esetén. LP(R) és L1(R) kapcsolata, ha p < g, véges ill. vég-
telen mértékli R mellett. Lényegében korlatos fliggvények, L (R) tér. Riesz-tétel.

Linearisan fiiggetlen fiiggvényrendszer £L2(R)-ben. Ortonormalt ill. teljes fiiggvény-
rendszer. Linearisan fliggetlen rendszer ortogonalizacidja. Altalanos Fourier-analizis.

Ortonormalt polinomrendszer: Legendre-polinomok. Parseval-egyenldség és altalanosi-
tasa. Riesz—Fisher-tétel. L2(R) és £? izometriaja. Altalanos Fourier-egyiitthatok.

Altalénos L(R) terek adott p sulyfiiggvénnyel. ON polinomrendszerek tulajdonsa-
gai. Példak: Csebisev-, Hermite-, Laguerre-polinomok. Egy ON fiiggvényrendszer:
Haar-rendszer.

Absztrakt linearis operatorok. Folytonossag. Korlatossag. Operator normaja. Példak:
£2-ben, C([a, b])-ban, R™-ben. B(X,Y) mint normalt tér.

Linearis funkcional mint absztrakt linearis operator. Példak fiiggvényterekben. Funk-
cional normaja. Dualis tér. Példa: R™. Gyenge ¢és erds konvergencia. Masodik dudlis
tér. Reflexiv terek.

Folytonos linearis operatorok Banach térben: B(X). Operatorok szorzata. Banach-
algebra. Inverz operator létezésének feltétele. Inverz operatorok tulajdonsagai.
Spektrum. Kapcsolat a sajatértékkel. Operator spektrumanak alaptulajdonsagai. Pél-
dak.

Funkcionalok Hilbert-térben. Riesz reprezentacios tétel. Hilbert-tér dualis tere. Line-
aris operator adjungaltja Hilbert-térben. Pelda véges ¢s végtelen dimenzidban.
Onadjungalt operatorok. Példak. Ortogonalis vetités.

Disztribiiciok mint specialis linearis operatorok. Kapcsolat a kozonséges fliggvények-
kel. Példak. Regularis disztribucio. Dirac delta. Disztribtcié derivaltja. Lokalisan in-
tegralhat6 fliggvény gyenge derivaltja.

Egy példa. Operatorok alkalmazasa kvantummechanikaban: egyetlen részecske moz-
gasanak és momentumanak egyiittes hatarozatlansagaira vonatkozd Heisenberg-féle
becslés bizonyitasa.
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Kidolgozott tételek

1. tétel:  Metrikus tér. Normalt tér. Norma és metrika kapcsolata.
Diszkrét metrika. Skalarszorzat tér. Skalarszorzat és nor-
ma kapcsolata. Példak: sorozat-terek, ezek kapcsolata
egymassal. Fiiggvény-terek, lehetséges normak.

Metrikus tér

Definicié  Adott egy M alaphalmaz (alaptér) és egy d : M X M — R fiiggvény. Azt mond-
Juk, hogy a d fiiggvény metrika, ha teljesiti az alabbi tulajdonsagokat:

1) nemnegativ: d(x,y) =0

2) nem degeneralt: d(x,y) =0 & x =y

3) szimmetrikus: d(x,y) = d(y, x)

4) haromszog-egyenldtlenség: d(x,y) + d(y,z) = d(x, z)
ahol x,y,z € M.

Definici6 Az (M, d) teret, mely az M alaphalmazbdl és a rajta értelmezett d metrikabdl all,
metrikus térnek nevezziik.

Példak
1) M=R,d(y)=|x—y|
2) M=C,d(z,w) =|z—w|
3) M = {nhosszt kédszavak: x = x;x, ...x,, x; € N}, d(x,y) = |{i : x; # y;}|
4)  Diszkrét metrika: M tetsz6leges halmaz,
_ (0, xX=y

d(x,y)—{l’ X+y

Normalt tér

Definicié  Adott egy V vektortér és egy ||-|| : V = R fiiggvény. Azt mondjuk hogy a |||
fliggvény norma, ha teljesiti az alabbi tulajdonsagokat:

1) nemnegativ: ||[v]| =0

2) nem degeneralt: [|[v]| =0 v=0

3) multiplikativ: ||A-v|| = |A] - |lv]l, A€R

4) haromszog-egyenldtlenség: ||[v + wl| < ||lv|| + ||w||
aholv,w € V.

Definicio A (V,]| - ||) teret, mely a V vektortérbdl és a rajta értelmezett || - || normabol all,
normalt térnek nevezziik.

Példak

1) V=R,|vl=|v|

2) V=R"|vl|=Xilvl

3) V=R"|vlle = max;{|v;|}
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Norma és metrika kapcsolata

Allitas

Bizonyitas

Minden normalt téerben értelmezheto metrika a kovetkezo modon:
d(x,y) = lx =yl
Azt kell belatni, hogy az ||x — y|| kifejezésre teljesiilnek a metrika tulajdonsagai,
hiszen ekkor metrikat definial:
1) nemnegativ, hiszen || - || = 0
2) nem degeneralt, hiszen |[x —y||=0 = x—-y=0x=y
3) szimmetrikus, mert |lx — y|| = (=) (y — )l = [-1llly — x|l = [y — x|l
4) haromszog-egyenl6tlenség:

A
Ix=yll+lly—zllzllx=y)+ -2l =llx—2z| =

Skalarszorzat tér

Definicio

Definicio

Példak

Legyen V egy vektortér. Adott egy (-,-) : V X V — R miivelet az alabbi tulajdon-
sagokkal:

1) nemnegativ: (v,v) =0

2) nem degeneralt: (v,v) =0 = v =0

3) multiplikativ: (Av,v) = A{v,v), L€ R

4) szimmetrikus: (v, w) = (w, v)

5) disztributiv: (v,w + u) = (v,w) + (v, u)

ahol v,w,u € V. Ekkor (V, {-,-)) valds skaldrszorzat tér.

Legyen V egy vektortér. Adott egy (:,-) : V XV — C miivelet a fenti tulajdon-
saggal, kivéve a 4. tulajdonsagot, mely igy modosul:

4) konjugaltan szimmetrikus: (v, w) = W

ahol v,w,u € V. Ekkor (V, (-,-)) komplex skaldarszorzat tér.

1) V=R*%(xy)=x1y1 + %,
2)  V=C%(z,w)=z;W; + 2,W,

Skalarszorzat és norma kapcsolata

Allitas

Bizonyitas

Eqy (V,(:,)) skaldrszorzat térben a norma értelmezhetd:
vl = (v, v)2

Azt kell belatni, hogy a fenti médon megadott kifejezés valoban norma:
1) nemnegativ, hiszen (v, v) > 0 és négyzetgyoke szintén nemnegativ
2) nem degeneralt, hiszen (v,v)% =0e=e(v)=0=v=0
3) multiplikativ: |Av]l = (Av, v}z = (A2(w, v))z = 14w, v)z = |A|l|v]]
4) haromszog-egyenlbtlenség: ||[v + wl| < [|lv|| + ||w||

1o+ wll = (v +w, v+ W)z = (v, v) + 20, W) + (w, w))2
Ezt négyzetre emelve:

lv +wll? = vl + [wll* + 2¢v,w)

Most mar csak azt kell belatni, hogy (v, w) < ||v||||lw]|. Ez pedig igaz, hiszen ez
a Cauchy—Bunyakovszkij—Schwartz-egyenl6tlenség. m
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Allitas Ha (V,(:,-)) skaldarszorzat tér, akkor teljesiil benne a paralelogramma-szabdly:
2(lvll + iwl) = llv + wll? + llv — wl|?

Sorozat-terek, ezek kapcsolata egymassal
Legyen V a szdmsorozatok tere. Ez linearis tér, melynek pontjai szdmsorozatok:
x = (x) = (X1, X2, 0o, Xy or)

Ez vektortér, az 6sszeadas és skalarral valo szorzas definialva van. Mint vektortér, tekintsiik
ennek (bizonyos) altereit:

1) ¢ cVv €% = {(x,) : 3B |x,| < B Vn} llxlleo = Sigr\?{lxil}
2) ccée® c= {(xn) = 7lll_r)rc}o xn} x|l = Si1€1£{|xi|}
3) ¢cc Co = {(xn) : rlll_r)rc}oxn = O} llxlleo = Iiggﬂxi”
4) P c o™ P = {(xn) : ilxilp < 00} llxll, =

i=1

Megjegyzés A P terek kozt fennall a £1 ¢ £2 c -+ c £ tartalmazas.

Fiiggvény-terek, lehetséges normak.

Legyen [a, b] c R rogzitett intervallum. Az ezen értelmezett fliggvények Osszegét és skalar-

szorosat értelmezni tudjuk. Legyen a V vektortér az [a, b] - R fliggvények tere:
V={f:[a,b] > R}

Ennek (bizonyos) lehetséges alterei:

1) VocV Vo ={f:[a,b] > R:3B|f(x)] < Bvx} Ifllo= sup ]{If(x)l}

x€la,b

2) C(la,b])) €V, C(la,b]) ={f:[a, b] - R, folytonos} Iflle = xren[%]ﬂf(xﬂ}

Ez utobbiban definidlhat6 skalarszorzat mint

b
(f.g) = j F()g(0) dx

Ebbdl a skalarszorzatbol a mar megszokott modon definialhaté norma:
1

b A
Ifll, = ( [ e dx)z

Azt a C([a, b]) teret, melyen az imént definialt négyzetes normat tekintjiik, C2([a, b])-Vvel
jeloljiik.
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2. tétel:  Szeparabilis metrikus tér. Példa szepardbilis €s nem
szeparabilis térre. Teljes metrikus tér. C([a, b]) teljessége,
ill. nem teljessége kiilonbozd normdk mellett. Dimenzio
normalt térben. Példa véges €s végtelen dimenziora.

Szeparabilis metrikus tér

Definicio  Legyen (M, d) egy metrikus tér és legyenek A € B € M tetsz6leges halmazok.
Az A halmaz siriin van B-ben, ha Vx € B,Ve > 0 esetén Ja € A, melyre
d(x,a) < e.

Ha A c M slriin van M-ben, akkor mindeniitt siiri.

Definici6 Az (M, d) metrikus tér szepardbilis, ha 1étezik benne megszamlalhato elemsza-
mu mindentitt siirii halmaz.

Tétel (Weierstrass-féle approximacios tétel) A polinomok tere
P([0,1]) = {p:[0,1] - R polinom}
stirtin van C([0,1])-ben.

Bizonyitas Megkonstrualva az ilyen polinomokat. Egy adott f fiiggvényhez hozzarendelhet-
jik az alabbi Gn. Bernstein-polinomot:

n

pn(x) = z (Z)f (%) xk(1 = x)nk

k=1

ahol n € N tetszéleges. Megmutathatd, hogy Ve > 0-hoz 3IN, melyre ||f —
pnll < &, han > N. Tehat P(]0,1]) strtin van C([0,1])-ben.

Példa szeparabilis és nem szeparabilis térre

1.) Az (R, d) metrikus tér a diszkrét metrikaval nem szeparabilis
2.) Az (R, |-|) metrikus tér szeparabilis (mert Q < R siirlin van és megszamlalhato)

Teljes metrikus tér
Definicio  (x,,) € M Cauchy-sorozat, ha Ve > 0-hoz van olyan N kiiszobindex, melyre

d(xp,, xm) <&, vn,m >N
Allitas Ha (x,,) konvergens, akkor Cauchy-sorozat.
Bizonyitas Tegyiik fel, hogy (x,) konvergens és lim,,_, X, = xo. Legyen € > 0 tetszdle-
ges. Ekkor van olyan N, melyre

€
d(xp, xo) <§' vn>N

Ezért han,m > N, akkor a haromszog-egyenldtlenséget hasznalva:

& &
d(xn' xm) < d(xn; x()) + d(xo, xm) < E + E = £

Definici6 Az M metrikus tér teljes, ha minden Cauchy-sorozat konvergens.

Definicio A (V, ||-]]) teljes normalt tér Banach-zér.
A (V,(:,)) teljes skalarszorzat-tér Hilbert-zér.
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C([a, b]) teljessége, ill. nem teljessége kiilonb6z6 normak mellett

C([a, b)) teljessége
Tekintsiik a (C([a, b]), ||-||l) teret. Legyen (f,,) © C([a, b]) Cauchy-sorozat. Ekkor
Ve > 0-hoz AN, melyre ||f, — fmll < €. Ezért

1y = fonll = max (1/2() = GO} < &

és emiatt Vx-re |f,(x) — f,(x)| < €. Tehat rogzitett x € [a, b] esetén az (fn(x)) szam-
sorozat Cauchy-sorozat, és ezért 1étezik hatarértéke:

lim £,(0) = fo)
fgy fo : [a, b] = R jol definialt fiiggvény, raadasul f, € C([a, b]).

C([a, b]) nem teljessége
Tekintsiik a (C([0,1]), ||-]|,) teret. Legyen

( 0 <1 1
’ x 2 n
1
fn(X)=< 1, X>§
linedri 1 1< <1
klnearls, > n_x_z

Mivel ebben a térben a négyzetes norma van, igy az

1= full = | () = @)’
0

integralt kell vizsgalni. Errél konnyen belathatd, hogy nulldhoz tart, vagyis az (f;,) so-
rozat Cauchy-sorozat. A hatarértékfiiggvény azonban

1, x =
lim f,(x) = f(x) =

0, x <=

N[RLR DN -

mely nem folytonos és ezért f ¢ C([0,1]). Vagyis ennek a Cauchy-sorozatnak nincs ha-
tarértéke ebben a térben, és igy nem is lehet konvergens.

Dimenzi6é normalt térben
Az N normalt tér alapjat vektortér képzi. Az x4, ..., x, € N elemek linedrisan fliggetlenek, ha
n
Zaixl- = O@C{i =0Vi
i=1

Definicio A V vektortér dimenzidja n, ha létezik n darab linearisan fliggetlen elem és
n + 1 darab mar 6sszefliggd rendszert alkot.

Definicié AV vektortér dimenzidja +oo, ha minden n-re 1étezik n darab fiiggetlen vektor.

Pé¢lda véges és végtelen dimenzidra
Az eddig megismert véges dimenzids vektorterek, példaul dim(R?) = 2.

Végtelen dimenzidsak példaul a sorozat-terek és fiiggvény-terek: dim(C([a, b])) = o.
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3.teétel:  Metrikus terek topologiaja. Nyilt és zart halmaz. Metrikus
térben sorozat konvergencidja. Metrikus terek kozott értel-
mezett fiiggvény folytonossaga. Kompakt halmaz. Kom-
pakt halmaz jellemzése véges dimenzidoban (Heine—Borel-
tétel) és végtelen dimenzioban. Példak.

Metrikus terek topologiaja

Definicié  Legyen (M, d) egy metrikus tér. Azt mondjuk, hogy B,(x) halmaz x € M ko-
zéppontu, v > 0 sugaru nyilt gémb, ha

B,(x)={yeM:d(x,y) <r}

Definicio  Legyen (M, d) egy metrikus tér és legyen adott E < M. Azt mondjuk, hogy az
x € E belsd pontja E-nek, ha van olyan r > 0, melyre B,(x) Cc E.

Definicié  Legyen (M, d) egy metrikus tér és legyen adott E ¢ M. Azt mondjuk, hogy az
x € E kiilsé pontja E-nek, ha van olyan r > 0, melyre B.(x) N E = @.

Definicié6  Legyen (M, d) egy metrikus tér és legyen adott E < M. Azt mondjuk, hogy a
t € M torlédasi pontja E-nek, ha Ve > 0-ra B.(t) N E # Q.

Nyilt és zart halmaz

Definicio  Legyen (M, d) egy metrikus tér. Az E ¢ M halmaz nyilt, ha minden pontja belsé
pont.

Definicio  Legyen (M, d) egy metrikus tér. Az E ¢ M halmaz zdrt, ha minden torlodasi
pontjat tartalmazza.

Definicié  Legyen (M, d) egy metrikus tér. Az E ¢ M halmaz lezdrasa
E = E U {torl6dasi pontok}
Allitas Egy E € M halmaz pontosan akkor nyilt, ha M \ E zart.

Bizonyitas Jeldljik M \ E halmazt E¢-vel (komplementer). Jeldlje az E halmaz torloddsi
pontjainak halmazat Ty. Ekkor:

Ezart & Vx €Ty, VX EE ©SVy€EE y¢ Ty &
SVYyeE‘aIr>0:B.(y)NE=0=VyeE‘ar>0:B.(y) CE‘
& E€ nyilt & M \ E nyilt.

Példak
1) Legyen M =R, d(x,y) = |x — y|. EKkor [a, b] zart, (a, b) nyilt.

2.) Legyen M = C([a, b]) és k > 0 fix valds szam. Ekkor E = {f : |f(x)| < k, Vk} nyilt,
Eg ={f : If()| <k, Vk} zart.

Metrikus térben sorozat konvergenciaja

Definicio  Legyen (M, d) egy metrikus tér és legyen egy (x,) € M sorozat a térben. Azt
mondjuk, hogy az (x,,) sorozat konvergens és hatarértéke x,, ha Ve > 0-hoz IN
melyre d(x,, x,) < €han = N.
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Metrikus terek kozott értelmezett fiiggvény folytonossaga

Definicio

Legyen (M,d,) és (N,dy) metrikus terek. Adott egy f : M —» N fiiggvény.
Legyen x, € M tetszbleges pont. Az f fliggvény folytonos x,-ban, ha Ve > 0-
hoz 38 > 0, melyre dy (x, xo) < 8§ = dy(f (%), f(x)) < &.

Kompakt halmaz

Definicio

Definicio

Definicio

Definicio

Tétel

Bizonyitas

Allitas

Bizonyitas

Példak

Legyen (M,d,) metrikus tér. Az E ¢ M halmaz korlditos, ha Vx € E-hez
Ir > 0, melyre E c B,.(x).

Legyen (M, d),) metrikus tér, és E € M egy részhalmaz ebben a térben. Legyen
az (U,) € M halmazrendszer, ahol a € I indexhalmaz. Azt mondjuk, hogy az
(U,) halmazrendszer E halmaz lefedése, ha

UU“DE
a

Nyilt lefedésrol beszEliink, ha VU, nyilt.
Véges lefedésrdl beszélunk, ha |I| véges.

Az E c M halmaz kompakt, ha minden nyilt lefedésébdl kivalaszthato véges
lefedés.

Az E ¢ M halmaz sorozatkompakt, ha V(x,,) € E sorozatbol kivalaszthaté kon-
vergens (xnk) sorozat, melynek hatarértéke E-beli:

lim x, =x) €E
TLk—)CX)

Tetszdleges metrikus térben egy E halmaz pontosan akkor kompakt, ha sorozat-
kompakt.

(vazlat) Indirekt modon tegylik fel, hogy M kompakt halmaz, de mégis van ben-
ne olyan sorozat, melynek nincs konvergens részsorozata. Jelolje ennek kiilon-
bo6z6 pontjait y, k € N. Ezek lefedheték paronként diszjunkt nyilt gdmbokkel,
amihez hozzavéve az M \U {y,} halmazt egy nyilt lefedést kapunk, melybdl
nem valaszthato ki véges lefedés. m

Minden E ¢ M kompakt halmaz korlatos.

Indirekt modon tegytik fel, hogy E kompakt, de nem korlatos, vagyis Vx-re és
Vr-re B,.(x) 2 E. Tekintsiik (Brn(x)) y lefedését E-nek. A véges unio:

ne

N
B B
i=1

,,befér” egy R sugari gdmbbe. Az indirekt feltevés miatt viszont Bg(x) 2 E, te-
hat nem létezik véges, nyilt lefedés. Ez ellentmondés. m

1) Legyen M = R. Ekkor E; = [0,1] halmaz kompakt.
2.) Legyen M = R. Ekkor E, = (0,1) halmaz nem kompakt, mert 1étezik olyan U, lefedé-
se, melybdl nem valaszthato ki véges lefedés. Ez a nyilt lefedés a kovetkezo:

1 o0
U, = (0,1 - ;), n=23 .., U U, = (0,1)
n=2
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Kompakt halmaz jellemzése véges dimenzidoban (Heine—Borel-tétel) és végtelen
dimenzidban

Tétel

Bizonyitas

(Heine—Borel-tétel) Az R™-ben egy E ¢ R" részhalmaz pontosan akkor kom-
pakt, ha korlatos és zart.

Nézziik az n = 1 esetet. EKkor az E c R halmaz korlatos, vagyis a Bolzano—
Weierstass-tétel miatt 1étezik konvergens (xnk) részsorozata, és mivel E zart,
ezért limy, o Xn, € E.

n > 1 esetén a bizonyitas az x®) = (x{‘, . x,’l‘) vektor elemeinek folsorolasaval

torténik. m

Altalanositas végtelen dimenzidra

Példa

Tétel

Tekintsiik C([0,1])-ben a zart egységkort:
B;(0) = {f: [0,1] - R, folytonos, max |f(x)| < 1}
x€[0,1]

Be tudjuk latni, hogy ez annak ellenére, hogy korlatos és zart is, nem kompakt,
mivel végtelen dimenzids térben van ¢€s igy e két feltétel nem elég ahhoz, hogy a
kompaktsag teljesiiljon. Adjunk meg egy olyan (f,) < €([0,1]) sorozatot, mely-
re || f,Il = 1 minden n-re:

( 1 S 1
’ x n—1
1
fn(x)=< 0, x < -
n
lineari 1< <
linearis, - X —

A fliggvény hatarértéke nem folytonos és igy nem is eleme C([0,1])-nek, vagyis
a halmaz nem kompakt.

(Heine—Borel-tétel altalanositasa végtelen dimenzidra) Az R™-ben egy E < R"
részhalmaz pontosan akkor kompakt, ha korlatos és zart és ekvifolytonos.
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4. tétel:  Mertek, mértéktér. Szamlalomeérték. Lebesgue-mértek be-
vezetése R-ben. Lebesgue-mérhetd halmazok jellemzése.
Nullmértékii halmazok, ezek strukturaja. Cantor halmaz
[0,1]-ben, tulajdonsagai.

Meérték, mértéktér

Legyen X egy tetszOleges halmaz. Az Osszes részhalmazok halmazat jelolie 2%. Legyen

Mc2¥ X bizonyos részhalmazainak halmaza.

Definici6 Az M halmaz gyiirii, ha rendelkezik az alabbi tulajdonsagokkal:

1) AB€EMesetétnAUB €M
2) ABeMesettnA\BEM
Definicio Az M halmaz algebra, ha a fenti 1.) és 2.) tulajdonsag mellett:
3) Xem
Definici6 Az M halmaz o-gyiiri, ha a gytirti definicioban az 1.) tulajdonsag helyett:
1*) AkeM, k=12, ..esetén Uy Ak EM
Definici6 Az M halmaz o-algebra, ha a o-gytirii tulajdonsagai mellett:
3) XeMm

Definicio Ha az M halmaz g-algebra, akkor az (X, M) paros egy mérhetd tér, M elemei
pedig a mérheté halmazok.

Definicié  Adott u : M - R, U {+} azaz VA € M-hez u(A) = 0 illetve u(A) = +oo is
lehet.

Azt mondjuk, hogy a u fliggvény additiv, ha A,B € M, AN B = @ esetén

u(A U B) = u(A) + u(B)
Azt mondjuk, hogy a u fiiggvény o-additiv, ha Ay € M, k €N, A, NA; = @,

k + j esetén
o(U) = Yo cao
k k=1

=1
Definicio  Adott u : M - R, U {+o0}. Azt mondjuk, hogy a u mérték, ha M og-algebra és
u o-additiv.

Definicio Az (X, M, u) mértéktér, ha M o-algebra és u mérték.

Szamlalomérték

Legyen X tetszéleges alaphalmaz. Legyen M = 2% ennek Osszes részhalmaza. Tetszdleges
A € M esetén legyen

|A], ha A véges elemszamu

+ o0, ha A nem véges elemszamu

n(A) = {

Ekkor az (X, M, u) mértéktér, a 4 mértéket pedig szamlaléomértéknek hivjuk.
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Lebesgue-mérték bevezetése R-ben
Legyen X = R. A mértéket €s a mérhetd halmazokat 1épésenként definialjuk:

1. 1épés

Legyen 7 a véges intervallumok halmaza: 7 = {[a, b], a < b}. Ennek elemei:
I={x:a<x<bh} a,b € R

Az 7 halmazon a mérték az intervallum ,,hossza”: m(I) = b — a

2. lépés

Kiterjesztjiik a mértéket az € egyszerii halmazokra, melyek

n
k=1

Ha A € &, akkor ennek mértéke legyen m(A4) = Y-, m(l;). Most két allitast fogalmazha-
tunk meg:

Allitas Az € halmaz nem o-algebra és nem is o-gytirii.
Allitas Azm : € - R, g-additiv.

3. 1épés
Definialunk egy kiilsé mértéknek nevezett mértéket 2®-en. Legyen A c R tetszoleges rész-
halmaz. Ekkor ennek kiilsé mértéke az m* : 2R - R, U {+oo} fiiggvény:

m*(A) = inf{z m(l,): Ac U Ik}
k=1

k=1
Allitas m* nem o-additiv.
Allitas Ha A € &, akkor m*(4) = m(A).

4. 1épés

Eddig mar lattuk, hogy £-n van m o-additiv halmazfiiggvény, de € nem o-algebra; valamint
azt is lattuk, hogy 2R o-algebra, de a rajta értelmezett m* halmazfiiggvény nem o-additiv.
Szerencsére van boldog befejezés, IM o-algebra, € ¢ M < 2R, melyen az m* megszorita-
sa, m*|,, o-additiv. Ezt a mértéket Lebesgue-mértéknek nevezziik.

5. 1épés
Mindezt eddig csak X = R esetén vezettiik be. R™-ben altalaban az 7 halmaz a kdvetkez6:
I={=L xXILx..xI,: I, = [ab)] ,a, < by}

m(l) = l_[(ak — by)
k=1

vagyis a mérték ,,hossz”, , teriilet”, ,,térfogat” és a tobbi.

Definici6 A fenti 1épéssorozat eredményeképp kapott M halmaz elemei az R-beli
Lebesgue-mérheté halmazok. Az m* kiils6 mérték megszoritasa M-re a
Lebesgue-mérték. Ezt a késébbiekben m jeloli.
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Lebesgue-mérhet6 halmazok jellemzése

A kérdés adja magat: Mik azok a halmazok, melyek beletartoznak M -be? Milyenek a mérhe-
t6 halmazok? Erre pontos valaszt nem lehet adni, mivel egészen ,,fura” halmazok is mérhetok.

Egyrészt minden nyilt és minden zart halmaz mérhetd. Tovabba azok a halmazok, melyek
nyilt és zart halmazok megszdmlalhat6 unidja és metszete révén allnak eld.

Masrészt lehet nem mérheté halmazt is konstrualni, de ez nem trivialis.

Nullmértékii halmazok, ezek strukturaja

Definicio Azt mondjuk, hogy az A halmaz nullmértékii, ha m(A) = 0. A nullmértékii hal-
mazok terét V" jeldli.

A nullmértékii halmazok halmaza, V' zart a megszamlalhaté metszetre €és uniora. o-gytrd, de
nem o-algebra, hiszen az alaphalmaz (R) nem nullmértékii. A mérték definicidja alapjan

m(A) = 0 azt jelenti, hogy
lnf[z m(Ik),A C Ulk} =0
k=1

k=1

Ennek kovetkezménye, hogy ha A € M és m(A) = 0, akkor tetszéleges € > 0-ra megadhatd
legfeljebb megszamlalhato sok I, k = 1,2, ... intervallum, melyre

AcUIk, Zm(lk)<e
k=1 k=1

Tehat ha A = {x} € M egyelemii halmaz, akkor m(A) = 0. Ha A = {x1, x5, ..., Xp, ...} ER
megszamlalhato elemszamu, akkor (mivel eléall egyelemli halmazok véges uniojaként) az
m(A4) = 0.

Cantor-halmaz [0,1]-ben, tulajdonséagai

A Cantor-halmaz a kovetkezd konstrukci6 eredményeképp all el6:
Legyen C, = [0,1]

Legyen C; = Cy \ G%) o ﬁc
Legyen ¢, = i\ ((5.5) v (3.5)) s
Es igy tovabb.

Lathatjuk, hogy a [0,1]-bdl kivagott részek mértéke:

1 1 1 1 2 /2\? 1 1
— 42 - —4+4—F e == 1+—+(_> + | ==—=1

3 9 27 3 3 \3 31_ %
Felvetddik a kérdés, hogy mi marad meg? Példaul az osztopontok, de még sok mas pont is...
Allitas A Cantor-halmaz tulajdonsagai:
1) C zart

2.) C kontinuum szamossagu, sét, 1étezik izomorfia C és [0,1] kozt.
3.) C mérhetd és mértéke m(C) = 0.

Bizonyitas A zartsag teljesiil, hiszen Vk esetén Cj, zért. Zart halmazok metszete pedig zart.
C mértéke pedig m([0,1]) — m(K), ahol K a kivagott rész mértéke, ami 1. m
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5.teétel:  Mérhetd fiiggvenyek. Egyszeru fiiggvények. (LépcsOs
fliggvények.) Lebesgue-integral bevezetése. Integralhato-
sag feltétele. Lebesgue- ¢s Riemann-integral kapcsolata.

Mérhetd fiiggvények

Definici6 Az f: R"™ - RU {4+} fliggvény mérhets, ha {x: f(x) < a} ¢ R" halmaz
mérheté minden a € R esetén.

A fenti definicidéban a (—oo, a) nyilt halmaz 6sképét tekintjiik.
Allitas Ha az f fiiggvény folytonos, akkor mérheto is.
Allitas Az f fiiggvény mérhetisége ekvivalens az alabbi dllitasok barmelyikével.:
Va € R, fx:f(x)>aleMm
Va € R, {x:f(x)=alem
Va € R, fx:fx)<aleMm
Kovetkezmény, hogy mérhetd fiiggvény esetén Va € R-re {x : f(x) = a} € M.
Allitas Ha f, g mérhetd fiiggvények, akkor
1) f + g is mérheto
2) f-gismérhetd
3)  min(f, g) is mérhetd.

4)  Ha (f,) mérhetd fiiggvények sorozata, akkor inf f,,,sup f,,,limy,_ fr, iS
mérheto.

Bizonyitas Az 1) tulajdonsag teljesiilését latjuk be: Legyen a € R. Ekkor

i f@+g<a=| o r@ <t gw <a-rp
TEQ

Ugyanis, ha f(x) + g(x) < a, akkor f(x) < a — g(x). Ezért Ir € Q, melyre
f)<résr<a—-gx)=gkx)<a-r

Ezért tehat az {x : f(x) + g(x) < a} eldallithato megszamlalhatéan sok mérhe-
t6 halmaz unidjaként, vagyis maga is mérheto. m

Definici6  Legyenek f és g mérhet6 fiiggvények. Azt mondjuk, hogy f = g majdnem min-
deniitt (m. m.) ham({x : f(x) # g(x)}) = 0.

Allitas Ha f és g folytonosak és f = g majdnem mindeniitt, akkor f(x) = g(x) Vx.

Tétel (Luzin-tétel) Ha f : X —» R mérhetd fiiggvény, akkor Ye > 0-hoz 3g : X - R
folytonos fiiggvény, ahol m({x : f(x) # g(x)}) < e.

Tehat a mérhetd fliggvényeken beliil a folytonos fiiggvények stirtin vannak.
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Egyszerii fiiggvények, (I1épcsos fiiggvények)

Definicio

Definicio

Allitas
Allitas

Bizonyitas

Legyen E c R™ mérhetd. Legyen y az alabbi fiiggvény:

1, EFE

)

Ezt a mérhetd yy fiiggvényt az E halmaz karakterisztikus fiiggvényének hivjuk.

Azt mondjuk, hogy az f fiiggvény egyszerii (vagy masik elnevezéssel lépcsds),
ha értékkészlete, Ry véges elemszamu. Ez azt jelenti, hogy Rr = {y1, ..., ¥n}.
Ekkor E,, = {x : f(x) = y,} jeloléssel az f egyszer(i fliggvény ugy irhatd mint

n
f=ZJ’k'XEk, ExNE =0 Vy, €R
k=1

Az f egyszerii fiiggvény pontosan akkor mérhetd, ha E,, € M.

Ha f : [a,b] = R fiiggvény mérhetd, akkor 3(s,) egyszerii (Iépcsds) fiiggve-
nyekbdl allo fiiggvénysorozat, melyre lim,,_,o s, (x) = f(x) Vx. Tovabbd, ha f
nemnegativ, akkor 3(s,) monoton nové egyszeri fiiggvényekbdl dllo sorozat
melynek szintén f a hatarértéke.

(vazlatosan) Csak a monotonitast bizonyitjuk: Ha f > 0, akkor az E} halmazok
mellett, melyek alakja E, = {x : k < f(x) < k + 1} € M, felirhat6 egy masik
halmaz: E;f = {x : f(x) > n}. Ezzel a fiiggvény:

n
) ke kg + (D gy
k=1

Kovetkezmeny Az egyszeri fiiggvények slirlin vannak a mérhetd fliggvények kozt.

Lebesgue-integral bevezetése

Az integralnak szemléletesen ebben az esetben is a fliggvény alatti teriilet a jelentése. A
Lebesgue-integralt négy 1épésben fogjuk bevezetni:

1. 1épés

Tekintiink egy egyszerl fliggvényt:

s@=xw={; X¢;

)

Az A € M mérhet6 halmazon

2. lépés

jS dm =m(ANE)
A

Most legyen az S fiiggvény a kovetkezo 1épcsés fliggvény:
n

S = 6 e,

k=1

Az E € M mérhetd halmazon

n

jESdm=ch-m(EnEk)

k=1
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3. 1épés
Most tegyiik fel, hogy f = 0 nemnegativ, mérhetd fliggvény. Ekkor ennek integralja a kovet-
kez6t jeloli:

ff dmzsup{fs dm:OSsSf(m.m.)}
E E
4. 1épés
Most mar megengedjiik, hogy f tetszéleges mérhetd fliggvény legyen. Ekkor f felbonthato
két fiiggvényre, melyeket f, és f_ jelol, mégpedig

_ _(fG,  f(x)=0 _{ 0, f(®)=0
f=fitfr i) = { 0. foo<o FOTUfw, fe<o

Tehat f, > 0 és f_ > 0. Ezek integralja mar jol definialt:

.[Ef+dm, Lf_dm

Definicié Azt mondjuk, hogy az f fiiggvény Lebesgue-integrdlhato, ha mind a két fenti
integral véges. Ebben az esetben f integralja az E halmazon a Lebesgue-mérték

szerint:
JEf dm=Lf+dm+Lf_dm

Az R halmazon Lebesgue-integralhato fliggvények terét L(R) jeldli.

Integralhatosag feltétele
Allitas Ha f : [a, b] — R fiiggvény korldtos és mérhetd, akkor Lebesgue-integralhato.

Lebesgue- és Riemann-integral kapcsolata

Tétel Ha f € R([a, b]), akkor f € L([a, b]) is és
b
j f(x)dx = f dm
a [a,b]
Bizonyitas Csupan csak szemléletesen: Ha az f Riemann-integralhat6, akkor a végtelen
stirti felosztasnak megfeleltetve egy 1épcsds fiiggvényt, az Lebesgue-integral-
hat6, az integral pedig éppen a Riemann-integrallal fog megegyezni.

Megjegyzés Elony, hogy tobb fliggvény Lebesgue-integralhatd, mint Riemann-integralhato,
vagyis R([a, b]) & L([a, b]).

Tétel (Lebesgue-féle monoton konvergencia tétel) Adott nemnegativ, mérhets, mono-
ton novaé fiiggvények (f,,) sorozata: 0 < f; < f, < -+, melyre a pontonkénti ha-
tarérték-fiiggvény limy, ., f,,(x) = f(x). Ekkor

ffdmz lim | f, dm

E n=«©Jg

Tétel (Lebesgue-féle dominalt konvergencia tétel) Adottak az (f,,) mérhets fiiggvé-
nyek, a pontonkénti hatdarérték lim,_ f,,(x) = f(x). Tegyiik fel, hogy létezik
g € L(R) kozos felsé korlat, melyre f,,(x) < g(x) Vx, Vn. Ekkor

ffdmzlim fndm
E E

n-—-oo
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6.tétel:  LP(R) terek 1 < p < o esetén. LP(R) és LI(R) kapcso-
lata, ha p < g, véges ill. végtelen mértékli R mellett. Lé-
nyegében korlatos fliggvények, L= (R) tér. Riesz-tétel.

LP(R) terek 1 < p < o esetén
Legyenp = 1ésR = [a,b].
Definicio A LP(R) fiiggvényhalmazt a kovetkez6képpen értelmezziik:

Lp(R)z{f:R—HR, flflpdm<00}

Allitas LP vektortér.

Bizonyitas Be kell latni, hogy LP a skalarral valo szorzasra és az Gsszeadasra nézve zart.
e Haf e LP akkorc-f € LP,ahol c € R.
e Haf,g € LP, akkor kovetkezik-e, hogy (f + g) € LP?

Vegyiik azt a becslést, hogy |a + b|P < (|a| + |b|)P. Ez feliilbecsiilhetd:
la + bIP < (lal + [b])? < (2 - max{|al, |b|})P = 2P - max{|a|?, |b|?}
2P - max{|al?, |b|P} < 2P(|al|? + |b[P)
Ebbdl a = f(x) és b = g(x) valasztassal azt kapjuk, hogy

J|f+g|pde2p jlflpdm+j|g|pdm <oonm
R R R

<oo < oo

A LP térben a majdnem mindeniitt valo egyenldség ekvivalencia-relacio, igy a majdnem min-
deniitt egyenl6 fliggvényeket azonosnak tekintjiik. Az igy faktorizalt LP térben normat defini-

alunk:
1

Ifll, = ( e dm>5

Tétel (Minkovszkij-egyenlétlenség) Ha 1 < p < oo, akkor [[f + gll, < Ifll, + llgll,.
Bizonyitas Az p =1 estre a mar ismert haromszog-egyenlétlenséget kapjuk. p > 1-re a
bizonyitas bonyolult.

LP(R) és L1(R) kapcsolata, ha p < g, véges ill. végtelen mértékii R mellett

Allitas Tegyiik fel, hogy az alaptér mértéke m(R) < oo. Legyenek 1 < p < q < oo. Ek-
kor L1(R) c LP(R). (Specialisan L*(R) < LP(R).)

Allitas Ha az alaptér mértéke nem véges, vagyis m(R) = oo, akkor LP(R) & LI(R),
sem L9(R) ¢ LP(R).

Definicié  Legyen p > 1. Azt mondjuk, hogy a g a p Holder-konjugaltja, ha % +% =1¢és
Vp > 1-hez 3!q.
Tétel Ha p és q Holder-konjugdaltak, akkor Vf € LP, Vg € L9 esetén fg € L és
Nf-glls < MIF1p - llgllg
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Lényegében korlatos fliggvények
Definici6 Az f:R — R fliggvény lényegében korlatos, ha IA € M halmaz, melyre
m(A) = 0 és IK € R konstans, melyre |f(x)| < K hax ¢ A.

Definicio Az f Iényegében korlatos fliggvény 1ényeges szuprémuma
esssup f :==inf{K : 3A e M,m(4) =0,|f(x)| <K Vx & A}
LZ(R) tér

Definicio A L£*(X) fiiggvénytér az X-en értelmezett 1ényegében korlatos fiiggvények 65z-
szessége, a majdnem mindeniitt egyenld fiiggvényeket azonosnak tekintjiik:

LP(X) ={f : X - R, lényegében korlatos}
Allitas A L=(X) fiiggvénytér vektortér.

Definicié6 A, végtelen norma” a kovetkezo: ||f || = ess sup|f].

Riesz-tétel

Tétel (Riesz-tétel) Az 1 < p < o esetén a LP(X) tér teljes. Mds széval ez azt jelenti,
hogy V(f,,) c LP(X) Cauchy-sorozatnak van hatarértéke:

3lim f, = f € LP(X)
n—->oo
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7.tétel:  Linearisan  fiiggetlen fiiggvényrendszer  L2(R)-ben.
Ortonormalt ill. teljes fiiggvényrendszer. Linearisan flig-
getlen rendszer ortogonalizacidja. Altalanos Fourier-
analizis.

Vegyiik a L2(R) teret, ahol a majdnem mindeniitt egyenl fiiggvényeket azonosnak tekintjiik:

LZ(R)z{f:R—>(C, flflzdm<00}
R

A norma ebben a térben skalarszorzatbol szarmaztathato:
1

Il = (F, )7 = (f I£12 dm>2
R

Linedrisan fiiggetlen fiiggvényrendszer £L2(R)-ben
Definicio Az fy, ..., f, € L2(R) fiiggvények linedrisan fiiggetlenek, ha

n

Zakfk =0

k=1
valamely a4, ..., a, esetén akkor és csak akkor teljesiil, ha a; = 0 Vk.

Definicio Az (f,)neny Végtelen flggvényrendszer linedrisan fiiggetlen, ha VN € N esetén
(fi) k=1, v fuggvényrendszer linearisan fiiggetlen.

Ortonormalt ill. teljes fiiggvényrendszer

Definicio Az f,g € L? fiiggvények ortogondlisak, ha (f,g) = 0.

Definicié Az f € L2 fiiggvény normdlt, ha ||f||, = 1.

Definicio Az (fy)r=1,.n fliggvényrendszer ortogonalis, ha k # j esetén (fy, f;) = 0.

Definicié6 Az (f;,) ey fliggvényrendszer ortonormdalt, ha

1, k=j
<f"’ff')=5""'={o kij'

Definicio Az (f;)nen fliggvényrendszer teljes, ha Vf € L2 elballithaté a kovetkezOképpen

f= 2 il ck €ER
k=1
vagyis
n
T{iggollf - Z crfllz =0
k=1
Kovetkezmény Az (f;,) teljes, ha Vf, € L2, Ve > 0-ra 3 véges Yh_; ckfi = F, melyre
f If —F]?dm < ¢
X

Kovetkezmény’L?-ben az A = {¥7_, ckfie : 1 € N, ¢, € R} halmaz siirtin van.

Definicio Az (f,)nen fuggvényrendszer teljes ortonormdlt rendszer (TONR), ha teljes és
ortonormalt is.
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Linearisan fliggetlen rendszer ortogonalizacidja

Tétel

Bizonyitas

(Gram-Schmidt-ortogonalizacié) Adott az (f;,,) < L? linedrisan fiiggetlen fiiggQ-
vényrendszer. Ekkor létezik olyan (¢,) € L? fiiggvényrendszer, melyre teljesiil-
nek az alabbi tulajdonsagok:

e (@y) ortonormalt

n

o fn €{@q, .., pn} dltal kifeszitett altér: fa = z AknPrk A # 0
k_

=1
n
o @, €{fi, ., fn} dltal kifeszitett altér: Pn = Z BienSx Bran # 0
k=1

e  El6bbi két tulajdonsagbdl kovetkezik, hogy {@4, ..., @n} = {f1, ..., fn}
o () eldjelétdl eltekintve egyértelmil.
Konstruktivan bizonyitunk, megadjuk a ¢, fiiggvényeket.

1. 1épés
-
LA

2. 1épés
Célunk, hogy {¢4,®,} ON rendszer legyen, mikézben f, = @, + az205.

Ehhez ugy jutunk, hogy meghatarozzuk f, vetiiletét ¢,-re, majd ezt kivonjuk f,-
bdl és a kapott fliggvényt lenormaljuk.

Ha |l |l = 1, akkor f; vetiilete @q-re f5],, = (f2, 91) - 1. Tehata 2. 1épés utan

_ f2 _<f2'§01)§01
?2 =0 = (Fo o001l

n. lépés
Tegyiik fel, hogy ¢4, ..., ¢,,_1 mar a kivant tulajdonsagu. Most is az el6z6 utat
kovetjiik. Ennek alapjan az ortonormalt rendszer n-edik eleme:
o = 0" Xiz1{fn k) Ok
" ”fn —Z’ﬁ;ﬂfn,@k) q’k”

Kovetkezmény Ha a kiindulo (f,) teljes, akkor az ortogonalizalassal kapott (¢,,) is teljes.

Altalanos Fourier-analizis

A Klasszikus Fourier-sorfejtés

Tétel

Ha f : [—m, ] » R véges sok szakaddsi hely kivételével folytonosan differenci-
dlhato és a szakadasi helyeken a kétoldali hatarérték atlagat veszi fel, akkor
f(x) eléadll a kovetkezd alakban:

flx) = % + z a - cos(kx) + by - sin(kx) Vx
k=1

ahol ay, és by, a kordbbi tanulmdanyaink soran megismert integralok.
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Az imént szerepld tételben a cos(kx) és sin(kx) az alapfiiggvények. Most azonban, hogy
megismertlik, miként lehet ortonormalt fliggvényrendszerekkel foglalkozni, megadhatunk mas
alapfiiggvényeket, melyekre az ortonormalt tulajdonsag ugyancsak teljesiil.

Altalanos Fourier-sorfejtés

Legyen az alaptér, amelyben dolgozunk, £2. Vegyiik a klasszikus Fourier-sorfejtés tételében
szerepld a;, - cos(kx) kifejezést, és alakitsuk at a kovetkezore:
cos(kx)

T

ay - cos(kx) = ap\m -

Ck
Ekkor c; a kovetkez6képp szamolhato:

1 f m T cos(kx) cos(kx)
Cp = — (x) cos(kx) dx = f (x) dx = (f,——)
i ERE N '
Tétel Ha (¢,,) teljes ortonormalt rendszer L2-ben, akkor Vf € L2 fiiggvény elball az

f= z CrPr
k=1

konvergens sor dsszegeként, ahol az ebben szerepld c, egyiitthatok ugy szamol-
hatok mint Cr = (f, (pk>

Definicio  Ez az eldallitas az f fuggvény Fourier-sorfejtése a (oy)x=1,.. rendszer szerint.

Lemma A H Hilbert-térben (x,,) € H és lim,,_,o, x, = x, mellett Vy € H esetén

711i—1>1c}o<xn' y) = (xO' y)
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8. tétel:  Ortonormalt polinomrendszer: Legendre-polinomok. Parse-
val-egyenl0ség ¢és altalanositasa. Riesz—Fisher-tétel.
L%(R) és £? izometriaja. Altalanos Fourier-egyiitthatok.

Ortonormalt polinomrendszer: Legendre-polinomok

Tekintsiik a £L2([—1,1]) teret. Ennek elemei az f:[—1,1] —» R négyzetesen integralhato fiigg-
vények. Ebben a térben egy linedrisan fiiggetlen teljes rendszert hataroz meg az {1,x,x? ...}
fiiggvényrendszer. Ebbdl a Gram—Schmidt-ortogonalizacioval ortonormalt bazist kaphatunk:
(P)n=1,2,., melyek ortogoalisak, azaz

1

f P,(x)-B,(x)dx =0, han #m
-1

és Vn-re a B,(x) pontosan n-edfokt polinom:

n
Pn(x) :ZBknxk' Pran #0
k=0

Definicié Az imént bemutatott tulajdonsag polinomrendszer neve Legendre-polinomok.

Allitas A Legendre-polinomrendszer teljes ortonormalt fiiggvényrendszer.

n

Pu®) = Cnms (62 = 17 = (22 — DM
dx™

e+t 1
‘= T Tonq

Bizonyitas Csak az ortogonalitast latjuk be, a normaltsag (majdnem) trivialis.

ahol a normalizalo konstans

Legyen n < m. Ekkor

[ 6= - pmm ax =
-1

1
= [((xz _ 1)n)(n) . ((xz _ 1)m)(m—1)]i1 _f ((xz _ 1)n)(n+1) . ((xz _ 1)m)(m_1) dx
-1

Itt az els6 tag nulla. A megmarado integralt parcidlisan integralva szintén hason-
16 eredményre jutunk: az elsé tag itt is nulla. A parcialis integralast addig foly-
tatva, mig az (x? — 1)" tag derivéaltja nem nulla, az elsé tagok kiesnek. Mikor
pedig a derivalt nulla, akkor az egész integral nulla. m

Megjegyzés ,,Legrende-polinomrendszer” cimszo alatt mas ¢, féegyiitthatos p,, polinomokat
is talalhatunk. Ennek oka, hogy a normalizalds nem mindig a £2 norma szerint
torténik. A két legfontosabb tulajdonsag ebben az esetben is, hogy p,, n-edfoku
polinom, és ortogonalisak, azaz (p,, pm) = 0
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Parseval-egyenldség és altalanositasa

Tétel (Parseval-egyenldség) Legyen (¢,,) teljes ortonormdlt rendszer L*(R)-ben. Az
f € L? Fourier-sorfejtése legyen
f= z CrPk
k=1

[}

112 =" e

k=1
Bizonyitas A Fourier-sorfejtésben a végtelen dsszeg konvergencidja L£2(R) normadjaban
értendo, azaz

Ekkor

n

2 CrPx

k=1

lim

n—-oo

= If1l

Az ortogonalitast felhasznalva a baloldalon szerepld 0sszeg négyzete:

2 n n
= Z”%‘Pk”z = Z CI%
k=1 k

=1

n

Z CrPk

k=1

és ezzel az allitast belattuk. m

Tétel (Altalanositott Parseval-egyenléség) Legyen (¢,,) teljes ortonormdlt rendszer
L%(R)-ben és f,g € L? tetszblegesek. Ekkor

o)

(f,9)= Z Crdk

k=1

ahol ¢ = (c;) és d = (d;) a megadott f és g fiiggvények Fourier-egyiitthatoi. A
fenti Osszefiiggés igy is irhato:

(f,9)2 = (c,d)

Riesz—Fisher-tétel
Tétel (Riesz—Fisher-tétel) Adott tetszéleges (d,,) € €2, azaz

(e}
i<
k=1

Ekkor létezik f € L?(R), melyre

1P =) d
k=1

és melynek Fourier-egyiitthato a d;, szamok.

Bizonyitas Legyen (¢,,) teljes ortonormalt rendszer. Definialjuk a kovetkezé mennyiséget:

n
Sp = z di @y
k=1
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Barmilyen m > n esetén

||Sn—5m||2= i i djdk<fj’fk>= i dl%

j=n+1k=n+1 k=n+1

Tehat az (s,) sorozat Cauchy-sorozat. Mivel Hilbert-térben vagyunk, ezért 1éte-
zik olyan f, melyre alim,,_,, ||, — f|| = 0, igy a tétel allitasa igaz. m

L2(R) és £? izometriaja

A Parseval-egyenléségbdl az kovetkezik, hogy Vf € L2(R) fiiggvényhez hozza tudunk ren-
delni egy #2-beli sorozatot, éspedig a (¢,,) teljes ortonormalt rendszer segitségével. Az 4lta-
lanositott Parseval-egyenléség kovetkezménye, hogy a L2(R) és £2 terek izometrikusan izo-
morfak. Az izometriat tetszéleges teljes ortonormalt rendszer alapjan a Fourier-egytitthatokkal
meg lehet adni:

f e (en)
Ha az ortonormalt rendszer nem teljes, akkor is definialhatjuk a Fourier sorfejtését az adott

ortonormalt rendszer szerint. Ekkor azonban a sor sszege nem feltétleniil egyezik meg a ki-
indulo fiiggvénnyel.

[00]

Z ko =S Hf=S
k=1
Altalanos Fourier-egyiitthatok

Legyen az alaptér, amelyben dolgozunk, £2. Vegyiik a klasszikus Fourier-sorfejtés tételében
szerepld a;, - cos(kx) kifejezést, és alakitsuk at a kovetkezore:

k
ay - cos(kx) = ap\m - cos(kx)
Ck \/E
Ekkor c; a kovetkez6képp szamolhato:
1 j m m cos(kx) cos(kx)
Cp = — (x) cos(kx) dx = J () dx = (f,——)
=L IR I

Tétel Ha (¢,,) teljes ortonormalt rendszer L?-ben, akkor Vf € L? fiiggvény elbdll az

f= Z CrPk
k=1

konvergens sor dsszegeként, ahol az ebben szerepld cy, egyiitthatok gy szamol-
hatok mint ¢, = (f, Px).

Definicié  Ez az el6allitas az f fliggvény Fourier-sorfejtése a (@) y=1,.. rendszer szerint.
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9.tétel:  Altalanos LZ(R) terek adott p sulyfliggvénnyel. ON

polinomrendszerek tulajdonsagai. P¢ldak: Csebisev-,
Hermite-, Laguerre-polinomok. Egy ON fiiggvényrendszer:
Haar-rendszer.

Altaldnos L3(R) terek adott p stlyfiiggvénnyel

Legyen R c R. A klasszikus Lebesgue-mérték helyett egy sulyfiiggvénnyel megadott mérté-
ket hasznalunk. Ez a kdvetkezo:

m,(A) = Lp dm

ahol p : R — R, adott Lebesgue-integralhato fliggvény. Formalisan tehat azt irhatjuk, hogy
dm, = pdm

Az m, mérték szerinti integral egy E mérhetd halmazon igy szamolhato:

jfdmp=ff-pdm
E E
Definicio Az altalanos LZ(R) teret igy értelmezziik:
L,%(R)z{f:R—HR{: fszdmp:fsz-pdm<00}

Ebben a térben is azonosnak tekintjiik azokat a fliggvényeket, melyek majdnem
mindeniitt egyenlok.

Definicié A L5 (R) térben a skaldrszorzatot gy definialjuk mint

(f,g>p=fRf-g- p dm

és ezért a beldle szarmaztathatdé norma
1

£l = ( f IFI7 - p dm>2

ON polinomrendszerek tulajdonsagai
Ebben a ,,sulyozott” térben a polinomrendszer ortogonalitasa azt jelenti, hogy

anPm-pdm=0, n+m
R

Ugyanigy a normaltsagot a stlyfliggvénnyel ellatott norma szerint kell érteni:
1

2
(f|Pn|2-pdm> =1
R
1, k=]

(Pk,Pj)=fRPkPj'Pdm=5k,j={0’ k#

Tehat az ortonormaltsag feltétele:
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Példak: Csebisev-, Hermite-, Laguerre-polinomok

Polinomrendszerek megadasanal mindig az {1, x, x?, ...} bazisbol indulunk ki, melyre az

f(x")2 p dm

integralt szamoljuk ki. Ennek eredményeképp allnak el6 az alabbi polinom-rendszerek.

Csebisev-polinomok
Legyen R = [—1,1].

Allitas Az elsdfaju (még normdlatlan) Csebisev-polinomok:

T,,(x) = cos(narccos(x))

és a sulyfiiggvény
_ 1
p1 = N
Allitas A masodfaju (még normalatlan) Csebisev-polinomok:
sin((n + 1) arccos(x))
Un(x) = sin(arccos(x))
és a sulyfiiggvény

p2 =v1—x?

Bevezetve az x = cos(8) jel6lést a polinomok a kdvetkezd alakban is irhatok:

T,,(x) = cos(nb)
sin((n + 1)6)

U =
n(%) sin(0)

Hermite-polinomok

Legyen R = R.

Allitas A Herimte-polinomok:

2 dr .2
Hy(x) = (-Dme* o= (e7)
és a sulyfiiggvény
p=e*

A fenti képlet derivalasaval az alabbi rekurziv eléallitast kapjuk:

Hp(x) = 2xHy(x) — Hp1q (%)

Laguerre-polinomok

Legyen R = R*,
Allitas A Laguerre-polinomok:
n n
Ln(x) = — == (e ™)
és a sulyfiiggvény
p=e™
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Egy ON fiiggvényrendszer: Haar-rendszer

Legyen az alaptér L2([0,1]). Ebben a térben a Haar-fiiggvények ortonormalt rendszert alkot-
nak. Ezek nem polinomok, hanem ,,wavelet’-ek. Megadasuk blokkokban torténik: az n-edik
blokk fiiggvényei Hy,x, ahol k = 1, ..., 2™. Minden esetben H,, ;:[0,1] = R.

Ha n = 0, akkor két fiiggvény van. A (kivételesen létezo) Hy o és Hy 1. Ezek a kdvetkezok:
1 0<x< !
) =X )

HO,O(x) =1Vxe [071]1 HO,l(x) =
0, -<x<1

Ha n = 1, akkor 21, azaz két fiiggvény van. A [0,1] intervallumot ugyanennyi darabra oszt-
Juk. A Hy 1 az els6, a H; ; a masodik részen vesz f6l nullatol kiilonbozo értéket:

( 1 ( 1 3
\/E, 0SX<§ \/i, 2_X<?
1 1 3
H1,1(x)=<—\/§, §Sx<§; H1,2(x)=<—\/§, ?Sxﬁl
1 1
L 0, xZE L 0, x<§

Ha n > 0 tetszéleges szam, akkor a [0,1] intervallumot 2™ részre osztjuk és a H,, j fliggvény
a k-adik blokkban veszi fel a nullatol kiilonbozé értékeit. Altalanosan H,, ; megadasa:

( —_— k—1 k — 1/2
| 211, Zn S X 2n
{ k-1 k

2
| V2 on <x< Z_n
k 0, maskilonben
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10. tétel:

Absztrakt linearis operatorok. Folytonossag. Korlatossag.
Operator normaja. Példak: #%-ben, C([a, b])-ban, R™-
ben. B(X,Y) mint normalt tér.

Absztrakt linearis operatorok
Legyen X és Y két vektortér a K szamtest felet. (A szamtest most R vagy C.)

Definici6 EQy T : X — Y leképezést operatornak neveziink.

Definici6 A T:X — Y operator linearis, ha értelmezési tartomanya Dy € X linedris altér és
ha T{ax + By} = aT{x} + BT{y} Vx,y € X ésa,B € K.

Definici6 Ha Ry = R vagy C szamtest, akkor a T: X — K operatort funkciondlnak hivjuk.

Folytonossag

Definici6 Azt mondjuk, hogy a T: X — Y linearis operator folytonos az x, € X pontban, ha
Ve > 0-hoz 36 > 0, melyre ha ||x — x,||x < &, akkor ||[Tx — Tx,lly < e.

Allitas A T operdator folytonossaga az xq-ban ekvivalens a sorozatfolytonossagggal. Ez
azt jelenti, hogy ha tetszéleges X-beli sorozat esetén lim,_,, X, = X, akkor a
megfelel6 Y-beli sorozatra lim,,_,,, Tx,, = Tx, teljesiil.

Tétel A T:X - Y linedris operator pontosan akkor folytonos minden pontban, ha
egyetlen pontban folytonos.

Bizonyitas Tegyiik fel, hogy T folytonos valamely x, € X pontban. Legyen x € X egy ma-
sik tetszOleges pont. A sorozatfolytonossagot latjuk be. Legyen (x,) € X egy
olyan sorozat, melyre lim,,_,, x, = x. Definialunk egy masik (y,) sorozatot:

Yn=Xp— X+ X
Ennek hatarértéke:
rlli_r)gloyn =rlli_r>£10(xn—x+x0) =X —Xx+ Xy = X
Ezért lim,,_,, Ty, = Tx, az x,-beli folytonossag miatt. Masrészt T linearis:
Tx, =Tlli_r>roloTyn = %i_{{}oTxn —Tx + Tx,
Ezért valoban lim,,_,., Tx,, = Tx, ami az x-beli folytonossagot igazolja. m
Korlatossag
Definici6 A T:X — Y linearis operator korldatos, ha IM > 0, melyre
ITx|ly <M - llxllx Vx
Tétel Egy T: X = Y linearis operator pontosan akkor korlatos, ha folytonos.
Bizonyitas ,, Odafele” Tegyiik fel, hogy T korlatos. Nyilvan T(0) = 0. A korlatossag miatt

van olyan M, amelyre ||Tx|| < M||x||, Vx. Ezért ha az (x,) sorozatra x,, - 0,
akkor Tx,, = 0. Tehat T az x,-ban folytonos.

,, Visszafele” Tegyiik fel, hogy T folytonos x, = 0-ban. Ekkor ¢ = 1-hez van
olyan &, melyre ||lx —0|| <6 = ||[Tx —0]| < 1. Legyen x € X tetszbleges,

x # 0. Ekkor az y = 8 = vektor normaja ||y|| = h x|l = 6. A folytonossag

x|

miatt ezért ||Ty|| < 1. Atrendezve

5 5 5
Ty = T{mx} = % Tk o 1Tyl = I Txll < 1

x|l |||
Ebbdl azt kapjuk, hogy ||Tx|| < % ||x|| Vx. Tehat M = % valasztassal a korlatos-

sag definicidja teljesiil. m
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Operator normaja

Definici6 Egy T korlatos és linearis operator normdja a legkisebb M >0, melyre a
ITx|ly <M - ||x||x Vx tulajdonsag teljesiil:

ITIl = min{M : ||Tx|| < Mllx|,  Vvx}
Példak: £2-ben, C([a, b])-ben, R™-ben

Példa R™-ben

Legyen X és Y véges dimenzids vektortér, példaul X = R"™ és Y € R™. Egy T: X — Y opera-
tor pontosan akkor linearis, ha 3A € R™ ™ matrix, melyre Tx = A - x, vagyis

i1 Az ot Qan X1 n
a1 Qpz - Qpp X2
A=] : : | X=1:1 (Ax)j = Ajx Xk
k=1
Anm1 Am2  *° Gmn Xn

Példa £2-ben
Legyen X =Y = £2. A bal shift (balra tolas) operatort gy definialjuk mint T: 2 — £2, ahol

T{[x1, %5, o) Xppy o |} = [X2, X3, eee) Xy e ]
Vizsgaljuk meg a korlatossagot! Legyen x = [xq, X5, ..., Xy, ... | € 2. Ennek norméja
1

Ixll = (i x?)z

k=1
Megbecsiiljiik Tx normajat:
1 1

© 2 © 2
Tx = [y X5, s Xy ], |ITx]l = (sz) < 1<Zx2> = lIxll

i=2 i=1
Ezért minden M > 1 szamra teljesiil a korlatossag feltétele, vagyis T korlatos. E fels6 korlat
mellet ha x = [0,1,0,0, ... ], akkor ||x|| = 1 és ||[Tx]|| = |[[1,0,0,...]|]| = 1, tehat ||T|| = 1.

Példa C([a, b])-ben
Legyen X = C([a, b]) és Y = R. Az integral operator mar jol ismert: f € C([a, b]) esetén

b
rf = 1 ax
a
Vizsgaljuk meg a korlatossagot!

b b
ITfIl = sf |f(x)|dxsf IFll dx = (b — DI

be(x) dx

Ezért minden M > b — a szédmra teljesiil a korlatossag feltétele, vagyis T korlatos. A norma
meghatarozasahoz nézziik azt, ha f = c¢ konstanssal, akkor

b
ITf| = f el dx = lel(b — @) = IF 1l (b — )

ezért az integral operator normaja ||T|| = b — a.
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B(X,Y) mint normalt tér

Definicio

Allitas

Bizonyitas

Az X és Y kozotti korlatos linearis operatorok halmaza B(X,Y):
B(X,Y) ={T : X - Y, korlatos, linearis}

Ez az operatornormaval normalt-teret alkot.

Ha Y Banach-tér, akkor B(X,Y) is Banach-zr.

(Vazlat) Legyen (T;,) € B(X,Y) korlatos lineéaris operatorokbol allo6 Cauchy-
sorozat. Ez azt jelenti, hogy Ve > 0-hoz 3N kiiszobindex, melyre

|T,, — T ll < &, vn,m > N
Az operatornorma definicidja szerint ebbdl kdvetkezik, hogy Vx-re
(T = To) O3 < (1T = Tllllx || = 1T — Tl < ellxl

Emiatt (T,,x) c Y Cauchy-sorozat minden x-re, tehat Y teljessége miatt a soro-
zat konvergens. Ezért lim,,_,,, T,x jOl definialt. Legyen Tx = lim,,_,, T, x, ahol
Tx €Y. Az igy kapott T: X — Y operator linearis és korlatos. Korlatossaga abbol
kovetkezik, hogy ha (T,) operator-sorozat Cauchy-sorozat, akkor korlatos. Ezért
van olyan M, melyre ||T,,|| < M minden n-re teljesiil, és a hatarérték monotoni-
tasa miatt T-re is. m

Kovetkezmény Ha Y = R, akkor B(X, R) Banach-tér. Tehat az X téren értelmezett funkcionalok

Banach-teret alkotnak.
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11. tétel: Linearis funkcional mint absztrakt linearis operator. Példak
fliggvényterekben. Funkcional normaja. Dualis tér. P¢l-
da: R™. Gyenge és erds konvergencia. Masodik dualis tér.
Reflexiv terek.

Linedris funkcional mint absztrakt linedris operator
Definicio Az f : X — R korlatos linearis operatort linearis funkciondlnak nevezzik.

A funkcionalok jelolésére kisbetliket hasznalunk: f, g stb. Az x € X-hez rendelt értéket Gijra a
valos fliggvényeknél megszokott modon f(x) fogja jeldlni.

Példak fiiggveényterekben

1 Példa
Legyen C([a, b]) az [a, b]-n értelmezett valos értékii folytonos fiiggvények tere. Az integral-
operator jol ismert, x(t) € C([a, b]) esetén

b
f(x) =f x(t) dt

a

2. Példa
Rogzitett y € C([a, b]) mellett

b
900 = [ xy© ar

2. Példa
Rogzitett t, € [a, b] mellett

b
8¢, (x) = x(tp) = j x(t)5(t — ty) dt

Funkcional normaja
Definicio  EQy f korlatos ¢és linearis funkcional normdja a kovetkezéképpen kaphatdé meg:

IfII = sup{lfCOl : llxll = 1}

Dualis tér
Definicio Az (X, ||||) tér dudlisa az X-en értelmezett korlatos linearis funkcionalok hal-
maza. Jele X*.

A korabbi jeloléssel X* = B(X, R). Az X* elemei korlatos és linearis operatorok, tehat X *-ban
norma értelmezhet a mar ismert modon:

If Il = sup{lf () = [lx]l = 1}

Példa: R™

Belatjuk, hogy ha f:R™ — R linearis leképezés, akkor 3a € R™, melyre f(x) = a’x. Legyen
ugyanis e/ € R™ a j-edik egységvektor, melynek csupan a j-edik eleme 1, a t&bbi 0. Jeldlje
a; = f(ef). Ekkor x = [x1, %5, ..., Xp] = Z?zlxjef miatt a linearitast felhasznalva:

szobeli vizsga 1511 33/48 2015. junius 11.



Funkcionalanalizis — PPKE ITK

n n

flx) = ijf(ej) = z ajx; = a’'x
j=1 j=1

Ezért (R™)* = R™. Az (R™)*-on indukalt norma fiigg attol, hogy R™-ben milyen normat te-

kintiink. Az Euklideszi norméaval

n n n
I = Y ax|< [ at- [ xf =llall-lixl
j=1 j=1 j=1

Mivel f(a) = |lall - l|lall, ezért azt kapjuk, hogy || fIl = llall,
Most ha a normat megvaltoztatjuk és az ||x||, = max{xj} normaval szamolunk, akkor

n n n
Gl = Y | < ) lap| < maxly| > lay| = lixllsllall
=1 =1 =1
A fenti sorban x; = sign(aj) valasztassal egyenléséget kapunk. gy ||f]l = llall;. A dualis tér

fiigg az alaptér normajatol. Azt kapjuk, hogy
R™ 1) = ®RY (1), (RY [[Hle)™ = (R, |I-]l1)
Altalaban is igaz, hogy
. 1 1
(R 1Illp) = (R II-ll4), ahol oo T 1

Hasonloan belathato, hogy (£#2)* = £2 és (¢P)* = ¢4, ahol p, g Holder-konjugaltak.

Gyenge ¢és erds konvergencia
Definicié6 Az (x,) sorozat gyengén konvergal az x, ponthoz, ha

r{ijgof(xn) =f(x,), VfeEX"
Definicié Az (x,,) sorozat erésen konvergal az x, ponthoz, ha
lim |2, — x0ll = 0
n—-oo
Allitas Ha ahz (x,,) © X sorozat erésen konvergens, akkor gyengén is konvergens.

Bizonyitas Tegyiik fel, hogy az (x,,) sorozat er6sen konvergens. Legyen f € X*egy funkci-
onal. Ekkor a linearitas miatt f(x,) — f(xo) = f(x, — xo). Ezért

|f Cen) = F G| = |f Gen = x| < llf NIl — X0l = 0
tehat a sorozat gyengén is konvergens. m

Megjegyzés A fenti allitas megforditdsa nem igaz.
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Masodik dualis tér
Definicio Az X normalt tér masodik dualis tere az X* dualis tere. Jelolése: X™**

Nézziink egy példat! Legyen x, € X rogzitett. Ennek megfeleltethetd egy ¢, : X* - R leke-
pezés: f € X* > @, (f) = f(x0). A @y, linedris és korlatos. Utobbi azért, mert

|9 (D] = 1f )| < NI f 1%l
Tehat ¢,, € X™, s6t, igazolhato, hogy ||q0x0|

o = ol

Mindezekbdl azt kapjuk, hogy X € X™* természetes modon beagyazhato.

Reflexiv terek
Definicio Ha X = X™, akkor a tér reflexiv. Ha X & X™*, akkor a tér irreflexiv.

Példa

Az X = R™ tér barmilyen normaval tekintve reflexiv.
Az X = ¢, ahol ¢, a nullsorozatok tere, irreflexiv.

szobeli vizsga 1511 35/48 2015. janius 11.



Funkcionalanalizis — PPKE ITK

12. tétel: Folytonos linearis operatorok Banach térben: B(X). Opera-
torok szorzata. Banach-algebra. Inverz operator létezésé-
nek feltétele. Inverz operatorok tulajdonsagai. Spektrum.
Kapcsolat a sajatértékkel. Operator spektrumanak alaptu-
lajdonsagai. Peldak.

Folytonos linearis operatorok Banach térben: B(X)

Definicié6 Az X és Y kozotti korlatos linearis operatorok halmaza B(X,Y), ahol specialisan,
haY = X, akkor ezt ugy irjuk, mint B(X):

B(x) ={T:X — X, korlatos, linearis}

A B(X)-en gazdag struktira van. Vektortér, és van rajta norma is értelmezve.

Operatorok szorzata
A B(X) téren definialhat6 két operator, T,S € B szorzata, mégpedig TS :=T o S € B(X).

Banach-algebra

Definicio  Tegyiik fel, hogy X teljes normalt tér, azaz Banach-tér. Ekkor B(x) is Banach-
tér, melyen szorzast értelmeztiink. Ez egy Banach-algebra.

Ebben a térben a szorzasra nézve van egységelem: I: X — X, melyre x = Ix := x. Ekkor
TI=IT=T, VTé€BX)

Inverz operator létezésének feltétele

Definicio A T € B(X) operator invertalhato, ha van olyan S € B(X) operator, melyre
TS =ST =1.

Tétel Legyen X egy Banach-tér. Tegyiik fel, hogy valamely T € B(X) linedris operd-
torra teljesiil, hogy ||T|| < 1. Ekkor I — T invertdlhato, és

(I-T)1'= i Tk
k=0

Bizonyitas Az I —T:X — X hozzarendelés azt jelenti, hogy ha (I —T)x =1y, akkor
x — Tx = y. Ha invertalhaté az operator, akkor barmilyen rogzitett y-hoz meg-
kereshetjiik a megfelelé x-et. Atrendezve az x — Tx = y Osszefiiggés azzal lesz
ekvivalens, hogy x = y + Tx. Tetszbleges y € X esetén ez elébbi egyenlet meg-
oldasat iteracidval keressiik:

Legyen x, € X tetszOleges, ez a kiindulopont. Az iteracid tovabbi lépései
x1 =y + Txy, X, =y +Txy, ) Xn =Y+ Txp_q,
fgy kapunk egy (x,,) c X sorozatot. Ekkor
Xng1 =X = V+Tx,) = (Y + Taxp_1) = Txyg — Txp_q = - = T"(xy — xp)

Ezért a norma korlatossaga miatt ||x,41 — x|l < IT™|| - ||x1 — xo||. Felhasznal-
va a szub-multiplikativ tulajdonsagot:

NT™ - ey = xoll < NTN™ - Nl — ol
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Felhasznalva tovabba, hogy ||T|| < 1, lathato, hogy |[x,,+1 — x|l = 0 exponen-
cialis sebességgel. Ezért (x,,) Cauchy-sorozat X-ben, tehat konvergens, és hatar-
értéke az x*. A sorozatot definialé egyenlet x,,,; = y + Tx,, atrendezése a ha-
taratmenettel: x* = y + Tx*, atrendezve azt kapjuk, hogy x* = (I — T) "1y, te-
hat y-nak valoban létezik 6sképe. x, = 0 valasztdssal pedig a fenti sorozat tagjai

n-1
X =Y+ Ty =y + T +Toxp-1) =y + Ty + T?xpg = - =ZT"y
k=0
ahol n — oo esetben a tétel allitasat kapjuk. m

Inverz operatorok tulajdonsagai
A tételnek két kovetkezménye van:

Allitas Legyen T € B(X) invertdalhato operator. Tegyiik fel, hogy valamely S € B(X)-re

ISl < —
TRl

Ekkor T + S is invertalhaté marad.

Bizonyitas Szorzatként irva: T + S = T(I + T~1S) = T(I + A). A jobboldal els6 tényezdje
invertalhatd. A masodik tényezdben szerepld A matrix normaja

Al = IT72SI < IT7HIISI < 1
ezért [ + A invertalhato. m

Allitas B(X)-ben az invertdlhaté operdtorok halmaza egy G < B(X) nyilt halmaz.
Bizonyitas Ha T € B(X) invertalhatd, akkor € = ”T:” valasztassal a T operator € sugart
kornyezetében 1évo operatorok is invertalhatdak lesznek, tehat T belsé pontja G-

nek. m

Spektrum

Definicio Egy T € B(X) operator spektruma azokbdl a A € C értékekdbl all, melyekre
T — Al nem invertalhatd. A spektrumot o (T) jel6li.

Kapcsolat a sajatértékkel

Ha X véges dimenzids, akkor B(X) elemei a négyzetes matrixok. Ebben az esetben a spekt-
rum a sajatértékek halmaza. Ha X végtelen dimenzios, akkor egy operator spektruma a sajat-
értékeken kiviil folytonos spektrumot is tartalmazhat, vagyis végtelen dimenziés Banach-
térben egy operator spektruma bdvebb is lehet, mint a sajatértékek halmaza.

Operator spektrumanak alaptulajdonsagai
Tétel 0 (T) nemiires halmaz.

Tétel 0 (T) mindig zart halmaz C-ben.

Bizonyitas Belatjuk, hogy o(T) komplementere nyilt. Tegyiik fel, hogy A nem tartozik a
spektrumba. Ekkor T — Al invertalhato. T — Al eleme a nyilt G halmaznak. (G
jeldlte az invertdlhatd operatorok halmazat B(#2)-ben.) Ezért van olyan & > 0,
hogy T — (A + &')I € G ha || < &, és emiatt A koriili € sugart gomb is benne
van a spektrum komplementerében. m
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Tétel o(T) korlatos halmaz.

Bizonyitas Legyen |A| > ||T||. Belatjuk, hogy ekkor A biztosan nem tartozik a spektrumba.
Azt irhatjuk, hogy T — AI = —A(I — A71T), ahol a jobboldalon az I mellett sze-
repld matrix norméaja |[A71T|| = |A|7Y|T|| < 1. Ezért I — 27T inevrtalhato,
azaz T — Al is invertalhatd. Ez azt jelenti, hogy A € o(T). Tehat o(T)-ben csak
olyan értékek lehetnek, melyre [A]| < ||T]|. m

Példak
1. Példa
Legyen az A matrix
1 0 0
A=10 2 0
0 0 5—1i

Ekkor sajatértékei leolvashatok a f64tlobol, és igy a matrix altal megvaldsitott operator spekt-

rumao(4) = {1,2,5 — i}

2. Példa

Tekintsiik £2-ben azt a folytonos linearis operatort, melyet a D végtelen dimenzids diagonalis

matrix hataroz meg. Hatdrozzuk meg D spektrumat!

Ha A = A,, akkor (D — A,I)-ben van egy nulla sor, és ezért nem invertalhato. S6t, A = A,
egyben sajatérték is. Emiatt {A,, : n € N} c a(D).

Vajon van-e mas eleme is a spektrumnak? Ha A € C, akkor (D — AI) = diag{1,, — A, n € N}.
Ennek az operatornak az ,,inverz jeloltje”:

S=diag{ nEN}

1
A=A,
Kérdés, hogy ez a matrix B(£2)-beli-e. Felhasznélva azt az allitast, hogy D € B(#?) pontosan
akkor teljesiil, ha a (4,,) sorozat korlatos, azt kapjuk, hogy ha A torloédasi pontja a (4,,) soro-

zatnak, akkor ( 7 ! ) nem korlatos. Tehat (D — AI) nem invertalhatd. Ezért A € (D), tehat a

sajatértekek sorozatanak torlodasi pontjai is benne vannak a spektrumban.
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13. tétel: Funkcionadlok Hilbert-térben. Riesz reprezentacios tétel.
Hilbert-tér dualis tere. Linearis operator adjungaltja
Hilbert-térben. Példa véges és végtelen dimenzidban.
Onadjungalt operatorok. Példak. Ortogonalis vetités.

Funkcionélok Hilbert-térben
Legyen y € H rogzitett ebben a térben. Az f,: H — R funkcionalt igy definialjuk:

fy(x) = (x,y)

Ekkor a CBS-egyenldtlenség miatt |(x, y)| < [Ix[lll¥ll, ezért ||f; || = llyll. Belathato, hogy
nincs mas funkcional ebben a térben.

Riesz reprezentacios tétel

Tétel (Riesz reprezentacios tétel) Minden f € H* funkciondlhoz létezik olyan y € H,
melyre f(x) = (x,y) és |If Il = llyll.

Hilbert-tér dualis tere
A Riesz reprezentacios tétel kovetkezménye, hogy a H és H* izomorfak, azaz H = H* = H™".

Linearis operator adjungaltja Hilbert-térben
Definicio Az A € B(H) linearis operator adjungaltja az az A* € B(H) linearis operator,
melyre
(Ax,y) = (x,A"y), Vx,y€H
Az adjungalt operator jol definialt, ha tekintjiik az f(x) = (Ax, y) funkcionalt, akkor a Riesz
reprezentacios tétel szerint van egy y* € H elem, melyre f(x) = (x,y*). Tehat létezik
y — y* hozzarendelés, mely az A* operator, hiszen f(x) = (Ax,y) = (x,y*).

Tétel Az adjungalt operator tulajdonsagai

1. I'=1

2. (A+B)* = A"+ B*
3. (ad)* = a4*

4. (AB)* = B*A*

5 4%l = |lAll

Példa véges és végtelen dimenzidban

1. Példa

Legyen H = R"™ az Euklideszi normaval. Itt egy linearis operator megadasa egy n X n-
dimenzids A matrixot jelent. Ekkor A* = AT, hiszen (Ax,y) = (Ax)Ty = xTATy = (x, ATy).

2. Példa

Legyen H = L2([0,1]). Tekintsiik azt az alteret, ahol a végtelen sokszor differencialhaté u(t)
fiiggvények vannak, melyekre u(0) = u(1) = 0. Ebben az altérben értelmezziik a differenci-
al-operatort: Au = u'. Ennek adjungaltja (a skalarszorzatoknak megfeleld integralasok elvég-

!

zése utan) A*v = —v'.
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Onadjungalt operatorok
Definicié Az A operator dnadjungdlt, ha A = A™.
Tétel Ha A onadjungalt operator, akkor

1L [lA™M = llAl™

2. Spektralsugara: r(4) = ||All

3. Spektruma valds: (4) c R

Ortogonalis vetités

Legyen E c H egy zart altér. Ekkor Vx € H elem el6all 6sszegként x = xg + x,, alakban,
ahol xz € E és x, L E. Ez utobbi tulajdonsag azt jelenti, hogy (x,,y) = 0 Vy € E.

Az ortogonalis vetités operatora P : H - H, Px = xg. Ennek adjungaltjat a kovetkezOképpen
szamoljuk:

(Px,y) = (Px,Py + yo) = (Px, Py) + (Px,yo) = (Px, Py) + (xo, Py) = (x, Py)
Ahol felhasznaltuk azt, hogy (Px, yy) = 0 = (x,, Py).
Azt kapjuk tehat, hogy
P =P

vagyis a vetités operatora 6nadjungalt.
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14. tétel: Disztribaciok mint specialis linearis operatorok. Kapcsolat
a kozonséges fiiggvényekkel. Példak. Regularis disztribu-
ci0. Dirac delta. Disztribucio derivaltja. Lokalisan integ-
ralhat6 fliggvény gyenge derivaltja.

Disztribuaciok mint specialis linearis operatorok
Definicio  Legyen C;°(R) az a fliggvénytér, mely a vételen sokszor differencialhatd, kom-

pakt tartoju fiiggvényeket tartalmazza, ahol egy ¢: R — R fiiggvény tartoja alatt
a kovetkezot értjiik:

supp ¢ = {x : @(x) # 0}
Definicio A (¢,) sorozat konvergens és hatarértéke ¢, ha 31 € R véges intervallum,
melyre supp @, € I ¥n valamint Vk ¢ - ¢ egyenletesen.

Definici6 A D, c D halmaz korldtos, ha 31 c R véges intervallum, melyre supp ¢ < [
V¢ € D, esetén, valamint Vk 3M;, melyre |g0(k)(x)| <Myhagp €Dyésx €l

Definici6 A T:D — R funkcional dltaldnositott fiiggvény (vagy mas néven disztribiicio),
ha linearis (azaz T (a@ + ) = aT () + BT(Y), ha @, € D és a, B € R), va-
lamint folytonos a fenti konvergencidra nézve (azaz V¢, — ¢ konvergens fiigg-
vénysorozat esetén T'@,, = T@).

Az éltalanositott fliggvény tehat egy specialis lineéris funkcional.

Kapcsolat a kdzonséges fliggvényekkel

Egy példan keresztiil mutatjuk meg. Legyen f: R — R tetszleges folytonos fliggvény. A T
hozzéarendelést igy adjuk meg:

@ — Tr(p) = ijfp dx

Dirac delta
Legyen T (@) = ¢(0). Ez egy nevezetes disztribucio. Az ehhez kapcsolodo jelolések
6(p) = ¢(0) ¢s 8,(9) = ¢(a)

Jelolje LL.(R) az R-en értelmezett lokalisan integralhaté fliggvények halmazat. Minden
f € LL .(R) ,kdzonséges” fiiggvény egyben altaldnositott fiiggvény is. Ha f: R — R tetszole-
ges lokalisan integralhat6 fliggvény, akkor a megfeleld disztriblcio

Tr:D - R, Tf(p) = ]Rﬂp dx
Ebben az esetben a ,,k0zOnséges” és az altalanositott fiiggvényt azonosnak vesszik.
Reguléris disztribucio

Definici6 Ha a T € D disztribuciohoz van f € Ly, .(R) fliggvény, melyre T = Ty, akkor T
regularis disztribucio.
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Disztribtci6 derivaltja

Azt vérjuk el a derivalastol, hogy ha f differencidlhat6 ,,k6zonséges” fliggvény, akkor
(Tr) =Tp

Definicio AT € D altalanositott fliiggvény derivaltja 0T € D, melyet igy értlemeziink:

0T (¢) = —T(p")
A definiciobol kovetkezik, hogy minden T € D akarhanyszor derivalhato és k-adik derivaltja

o*T(p) = (DT (p®)

Lokalisan integralhat6 fliggvény gyenge derivaltja
Definicio Az f € L} fiiggvény gyenge derivdltia g € L[, ha

V(pED:—jf(p’dxzjg(p dx
R R

Allitas A gyenge derivalt alaptulajdonsagai

1. Ha létezik az f fiiggvény gyenge deriviltja, akkor az Majdnem mindeniitt
egyértelmii.

2. Ha f differencialhato, akkor gyenge deriviltja g = f'.

3. Ha f = f, majdnem mindeniitt és f, differencialhato, akkor f gyenge deri-
vdltia g = f;.

4. Ha az f fiiggvényhez tartozd Ty disztribucio derivdltja reguldris, éspedig
dT; = T, akkor f gyenge derivaltja g.

szobeli vizsga 1511 42 /48 2015. janius 11.



Funkcionalanalizis — PPKE ITK

15. tétel: Egy példa. Operatorok alkalmazasa kvantummechanika-
ban: egyetlen részecske mozgasanak ¢és momentumanak
egyiittes hatarozatlansagaira vonatkozo Heisenberg-féle
becslés bizonyitasa.

Tegyiik fel, hogy egyetlen részecske (pl. elektron) mozgasat vizsgaljuk. Feltessziik, hogy a
részecske egy végtelen hosszli egyenes mentén mozog, helyzetét egy komplex értékii f(x,t)
fliggvény irja le. A t valtoz6 az idot jelenti, az x pedig a helyzetet irja le a kdvetkezé mddon:
annak valoszinlisége, hogy a részecske az [a, b] intervallumban tartézkodik a t idépontban
egy integrallal adhat6 meg:

b
f If G DI dx

A fenti f(x, t) € C az allapotfiiggvény. Elvarjuk, hogy

b
f fGo D2 dx = 1

Jelenleg csak az allapotfiiggvény abszolutértékének négyzete ad szdmunkra informaciot.

Tekintstink most egy fix t idépontot, és ez az egyetlen idopont érdekel csak benniinket. Ezért
az allapotfiiggvény masodik argumentumat elhagyjuk.

Matematikai modell és egy tétel
Absztrakt matematikai nyelven fogalmazva az allapotfiiggvény f € L2(R), melyre ||f]| = 1.

A részecske helyzete x, ami egy valdsziniiségi valtozoként foghato fel. Egy masik fizikai jel-
lemz6 a momentum, melyet az f fiiggvény Fourier-transzformaltja ad meg:

PN

1 °
w) = — e ™ f(x) dx
fwy=—= | e pe
A Parseval-egyenl9ség miatt
[ee) 5 oo R 2
IfOI? dx= | [fw)]" dw

és ezért f € L2(R) tovabba ||f|| = 1. Annak valésziniisége, hogy a momentum az [a, b] in-
tervallumba esik a kdvetkezo:

b
- 2
f [fw)|” dw
a
Jelolje x és w a hely és a momentum atlagat a megadott valdszintiségek szerint:
X = j X fOI? dx, W= J w- |[fw)|” dw
A szorasnégyzetek:
[ee] _ [ee] . R 2
ofzf (x—%)?%|f(x)|? dx, a‘f,zf (W—W)2-|f(w)| dw

A Heisenberg-féle hatarozatlansagi elv azt mondja ki, hogy o, és o0,, nem lehetnek ,,egyszerre
kicsik”, azaz 6202 = 1/4.
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Bizonyitas a Hilbert-térben

Tegyiik fel, hogy x = 0 és w = 0. Ezt eltolassal megtehetjiik és ekdzben nem veszitiink az
altalanossagbol. A L2(R) Hilbert-térben két operatort fogunk definidlni:

Mf(x) = x f(x)
Df(x) = f'(x)

Mindkét operator a fenti Hilbert-tér egy-egy alterében, de bizonyitasunk szempontjabol ,,jo
helyen” vannak.

Lemma  |IMf|? = of ésIDfII* = 03
Bizonyitas

[ee)

IMFI? = f X FOOI? dx = f %2 |f )2 dx = o

A masodik rész tobb 1épésbol all. A Parseval-egyenléség miatt ||Df||? = ||57 ||2 A norma
definicidja szerint
2 ® 2
171 = | |57Go)[* aw

A Fourier-transzformaci6  egyik alaptulajdonsaga a  derivaltfiiggvény  Fourier-
transzformaltjarol szol: Df (w) = iw f(w), ezért

IDFI2 = - = f w2 |fw)[* dw = o2

Ezutan egy sajatos, meglepd tulajdonsagat latjuk be az operatorainknak:
Lemma Az elébb definialt operatorok kielégitik az alabbi operator-egyenletet:
DM —MD =1
Bizonyitas Egyszerlien a szorzat-derivalasi szabalyt alkalmazzuk:
(xf00) = F0O +xf'(®)
ami operator-alakban D o M(f) = I(f) + Mo D(f). m

Lemma Az M operator onadjungalt, azaz (Mf, g) = (f,Mg). A D operator adjungaltja
—D, azaz (Df,g) = —(f,Dg).

Bizonyitas
Mf,9) = [ xfeog@ax= | fG)x g dx = (f,Mg)

A masodik részben parcialisan integralva:

(Df, g) = f:f’g = fglz- | ng' — —(f,Dg)

Kdzben felhasznaltuk, hogy g € L2(R) esetén lim,_ 4, g(x) = 0. m
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A fenti lemmak segitségével végre igazolhatjuk a Heisenberg-féle bizonytalansagi tételt:
I£112 =(f.f) = {f, (DM — MD)f) = (f,DMf) — (f,MDf) = —(Df, Mf) — (Mf,Df) =
= —2(Df, Mf)
Mivel ||f]|? = 1, ezért a Cauchy-Bunyakovszkij—Schwaz-egyenl6tlenség alapjan

1==2(Df,Mf),  KDf,M) < IIMfIl- IDl

ahonnan atrendezéssel épp a Heisenberg-féle hatarozatlansagi elvet kapjuk.
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Jegyzetek
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Evkozi eredmény

maximalis| elért
pontszam | pontszam

1. hézi feladat zarthelyi dolgozat 5
Hazi feladat | 2. hazi feladat zarthelyi dolgozat 5
zarthelyi Osszesen 10
dolgozatok |. Elért pontszam
Pluszpont
1. nagy zarthelyi dolgozat 45
Nagy zarthelyi | 2. nagy zarthelyi dolgozat 45
dolgozatok Osszesen 90
11. Elért pontszam
I. + I1. + pluszpont 100
Az évkozi dolgozatok pontszima
Megajanlott jegy
Erdemjegy | ponthatirok Megajanlott jegy
- 0- 39
alairas 40— 59
2 (elégséges) 60— 79
3 (kozepes) 80— 99
4 (jo) 100 —
Osztalyzas
1 2 3 tételek szama
nincs| 3 | 4 | 5
megajanlott 2 4 >
Jegy 3 5
4 5

Egyetlen tétellel 2 jegy javithato, ha a tételt a vizsgdzo kivaldan tudja, és el tudja mondani az
6ran bemutatott bizonyitdsokat is. Minden tovabbi tétellel tovabbi egy jegy javithatd, ha a
tételt a vizsgazo kivaloan tudja. Ha valaki egyik kihtizott tételét nem tudja, vizsgaja elégtelen.
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