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Fontos tudnivalók 

Tisztelt Vizsgázó! 

Jelen füzet a 2014/15/2. tanulmányi időszak Funkcionál-analízis szóbeli vizsgájához lett kiad-

va. A füzet tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok 

kidolgozott formáját is. 

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányos-

ságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladat-

megoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik. 

Eredményes felkészülést kívánunk! 

A kiadványt összeállította: 

Naszlady Márton Bese – 2015 

 

 

Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 
A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 

Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 
kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  
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Tételjegyzék 

1. tétel: Metrikus tér. Normált tér. Norma és metrika kapcsolata. Diszkrét metrika. Skalár-

szorzat tér. Skalárszorzat és norma kapcsolata. Példák: sorozat-terek, ezek kapcsolata 

egymással. Függvény-terek, lehetséges normák. 

2. tétel: Szeparábilis metrikus tér. Példa szeparábilis és nem szeparábilis térre. Teljes metrikus 

tér. 𝒞([𝑎, 𝑏]) teljessége, ill. nem teljessége különböző normák mellett. Dimenzió nor-

mált térben. Példa véges és végtelen dimenzióra. 

3. tétel: Metrikus terek topológiája. Nyílt és zárt halmaz. Metrikus térben sorozat konvergen-

ciája. Metrikus terek között értelmezett függvény folytonossága. Kompakt halmaz. 

Kompakt halmaz jellemzése véges dimenzióban (Heine–Borel-tétel) és végtelen di-

menzióban. Példák. 

4. tétel: Mérték, mértéktér. Számlálómérték. Lebesgue mérték bevezetése ℝ-ben. Lebesgue-

mérhető halmazok jellemzése. Nullmértékű halmazok, ezek struktúrája. Cantor hal-

maz [0,1]-ben, tulajdonságai. 

5. tétel: Mérhető függvények. Egyszerű függvények. (Lépcsős függvények.) Lebesgue-integrál 

bevezetése. Integrálhatóság feltétele. Lebesgue- és Riemann-integrál kapcsolata. 

6. tétel: ℒ𝑝(𝑅) terek 1 ≤ 𝑝 < ∞ esetén. ℒ𝑝(𝑅) és ℒ𝑞(𝑅) kapcsolata, ha 𝑝 < 𝑞, véges ill. vég-

telen mértékű 𝑅 mellett. Lényegében korlátos függvények, ℒ∞(𝑅) tér. Riesz-tétel. 

7. tétel: Lineárisan független függvényrendszer ℒ2(𝑅)-ben. Ortonormált ill. teljes függvény-

rendszer. Lineárisan független rendszer ortogonalizációja. Általános Fourier-analízis. 

8. tétel: Ortonormált polinomrendszer: Legendre-polinomok. Parseval-egyenlőség és általánosí-

tása. Riesz–Fisher-tétel. ℒ2(𝑅) és ℓ2 izometriája. Általános Fourier-együtthatók. 

9. tétel: Általános ℒ𝜌
2(𝑅) terek adott 𝜌 súlyfüggvénnyel. ON polinomrendszerek tulajdonsá-

gai. Példák: Csebisev-, Hermite-, Laguerre-polinomok. Egy ON függvényrendszer: 

Haar-rendszer. 

10. tétel: Absztrakt lineáris operátorok. Folytonosság. Korlátosság. Operátor normája. Példák: 

ℓ2-ben, 𝒞([𝑎, 𝑏])-ban, ℝ𝑛-ben. ℬ(𝑋, 𝑌) mint normált tér. 

11. tétel: Lineáris funkcionál mint absztrakt lineáris operátor. Példák függvényterekben. Funk-

cionál normája. Duális tér. Példa: ℝ𝑛. Gyenge és erős konvergencia. Második duális 

tér. Reflexív terek. 

12. tétel: Folytonos lineáris operátorok Banach térben: ℬ(𝑋). Operátorok szorzata. Banach-

algebra. Inverz operátor létezésének feltétele. Inverz operátorok tulajdonságai. 

Spektrum. Kapcsolat a sajátértékkel. Operátor spektrumának alaptulajdonságai. Pél-

dák. 

13. tétel: Funkcionálok Hilbert-térben. Riesz reprezentációs tétel. Hilbert-tér duális tere. Line-

áris operátor adjungáltja Hilbert-térben. Példa véges és végtelen dimenzióban. 

Önadjungált operátorok. Példák. Ortogonális vetítés. 

14. tétel: Disztribúciók mint speciális lineáris operátorok. Kapcsolat a közönséges függvények-

kel. Példák. Reguláris disztribúció. Dirac delta. Disztribúció deriváltja. Lokálisan in-

tegrálható függvény gyenge deriváltja. 

15. tétel: Egy példa. Operátorok alkalmazása kvantummechanikában: egyetlen részecske moz-

gásának és momentumának együttes határozatlanságaira vonatkozó Heisenberg-féle 

becslés bizonyítása. 
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Kidolgozott tételek 

1. tétel: Metrikus tér. Normált tér. Norma és metrika kapcsolata. 

Diszkrét metrika. Skalárszorzat tér. Skalárszorzat és nor-

ma kapcsolata. Példák: sorozat-terek, ezek kapcsolata 

egymással. Függvény-terek, lehetséges normák. 

Metrikus tér 

Definíció Adott egy 𝑀 alaphalmaz (alaptér) és egy 𝑑 ∶ 𝑀 ×𝑀 → ℝ függvény. Azt mond-

juk, hogy a 𝑑 függvény metrika, ha teljesíti az alábbi tulajdonságokat: 

1) nemnegatív: 𝑑(𝑥, 𝑦) ≥ 0 

2) nem degenerált: 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 

3) szimmetrikus: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

4) háromszög-egyenlőtlenség: 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) 

ahol 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

Definíció Az (𝑀, 𝑑) teret, mely az 𝑀 alaphalmazból és a rajta értelmezett 𝑑 metrikából áll, 

metrikus térnek nevezzük. 

Példák 

1) 𝑀 = ℝ, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| 
2) 𝑀 = ℂ, 𝑑(𝑧, 𝑤) = |𝑧 − 𝑤| 
3) 𝑀 = {𝑛 hosszú kódszavak: 𝑥 = 𝑥1𝑥2…𝑥𝑛,   𝑥𝑖 ∈ ℕ}, 𝑑(𝑥, 𝑦) = |{𝑖 ∶ 𝑥𝑖 ≠ 𝑦𝑖}| 
4) Diszkrét metrika: 𝑀 tetszőleges halmaz, 

𝑑(𝑥, 𝑦) = {
0, 𝑥 = 𝑦
1, 𝑥 ≠ 𝑦

 

Normált tér 

Definíció Adott egy 𝑉 vektortér és egy ‖⋅‖ ∶ 𝑉 → ℝ függvény. Azt mondjuk hogy a ‖⋅‖ 
függvény norma, ha teljesíti az alábbi tulajdonságokat: 

1) nemnegatív: ‖𝑣‖ ≥ 0 

2) nem degenerált: ‖𝑣‖ = 0 ⟺ v = 0 

3) multiplikatív: ‖λ ⋅ 𝑣‖ = |λ| ⋅ ‖𝑣‖, 𝜆 ∈ ℝ 

4) háromszög-egyenlőtlenség: ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖ 

ahol 𝑣,𝑤 ∈ 𝑉. 

Definíció A (𝑉, ‖ ⋅ ‖) teret, mely a 𝑉 vektortérből és a rajta értelmezett ‖ ⋅ ‖ normából áll, 
normált térnek nevezzük. 

Példák 

1) 𝑉 = ℝ, ‖𝑣‖ = |𝑣| 
2) 𝑉 = ℝ𝑛, ‖𝑣‖1 = ∑ |𝑣𝑖|𝑖  

3) 𝑉 = ℝ𝑛, ‖𝑣‖∞ = max𝑖{|𝑣𝑖|} 
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Norma és metrika kapcsolata 

Állítás Minden normált térben értelmezhető metrika a következő módon:  

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ 

Bizonyítás Azt kell belátni, hogy az ‖𝑥 − 𝑦‖ kifejezésre teljesülnek a metrika tulajdonságai, 

hiszen ekkor metrikát definiál: 

1) nemnegatív, hiszen ‖ ⋅ ‖ ≥ 0 

2) nem degenerált, hiszen ‖𝑥 − 𝑦‖ = 0 ⟺ 𝑥 − 𝑦 = 0 ⟺ 𝑥 = 𝑦 

3) szimmetrikus, mert ‖𝑥 − 𝑦‖ = ‖(−1)(𝑦 − 𝑥)‖ = |−1|‖𝑦 − 𝑥‖ = ‖𝑦 − 𝑥‖ 

4) háromszög-egyenlőtlenség: 

‖𝑥 − 𝑦‖ + ‖𝑦 − 𝑧‖ ≥
△
‖(𝑥 − 𝑦) + (𝑦 − 𝑧)‖ = ‖𝑥 − 𝑧‖  ∎ 

Skalárszorzat tér 

Definíció Legyen 𝑉 egy vektortér. Adott egy 〈⋅,⋅〉 ∶ 𝑉 × 𝑉 → ℝ művelet az alábbi tulajdon-
ságokkal: 

1) nemnegatív: 〈𝑣, 𝑣〉 ≥ 0 

2) nem degenerált: 〈𝑣, 𝑣〉 = 0 ⟺ 𝑣 = 0 

3) multiplikatív: 〈𝜆𝑣, 𝑣〉 = 𝜆〈𝑣, 𝑣〉, 𝜆 ∈ ℝ 

4) szimmetrikus: 〈𝑣, 𝑤〉 = 〈𝑤, 𝑣〉 

5) disztributív: 〈𝑣, 𝑤 + 𝑢〉 = 〈𝑣,𝑤〉 + 〈𝑣, 𝑢〉 

ahol 𝑣,𝑤, 𝑢 ∈ 𝑉. Ekkor (𝑉, 〈⋅,⋅〉) valós skalárszorzat tér. 

Definíció Legyen 𝑉 egy vektortér. Adott egy 〈⋅,⋅〉 ∶ 𝑉 × 𝑉 → ℂ művelet a fenti tulajdon-

sággal, kivéve a 4. tulajdonságot, mely így módosul: 

4) konjugáltan szimmetrikus: 〈𝑣, 𝑤〉 = 〈𝑤, 𝑣〉 

ahol 𝑣,𝑤, 𝑢 ∈ 𝑉. Ekkor (𝑉, 〈⋅,⋅〉) komplex skalárszorzat tér. 

Példák 

1) 𝑉 = ℝ2, 〈𝑥, 𝑦〉 = 𝑥1𝑦1 + 𝑥2𝑦2 
2) 𝑉 = ℂ2, 〈𝑧, 𝑤〉 = 𝑧1𝑤1 + 𝑧2𝑤2 

Skalárszorzat és norma kapcsolata 

Állítás Egy (𝑉, 〈⋅,⋅〉) skalárszorzat térben a norma értelmezhető:  

‖𝑣‖ = 〈𝑣, 𝑣〉
1
2 

Bizonyítás Azt kell belátni, hogy a fenti módon megadott kifejezés valóban norma: 

1) nemnegatív, hiszen 〈𝑣, 𝑣〉 ≥ 0 és négyzetgyöke szintén nemnegatív 

2) nem degenerált, hiszen 〈𝑣, 𝑣〉
1

2 = 0 ⟺ 〈𝑣, 𝑣〉 = 0 ⟺ 𝑣 = 0 

3) multiplikatív: ‖𝜆𝑣‖ = 〈𝜆𝑣, 𝜆𝑣〉
1

2 = (𝜆2〈𝑣, 𝑣〉)
1

2 = |𝜆|〈𝑣, 𝑣〉
1

2 = |𝜆|‖𝑣‖ 

4) háromszög-egyenlőtlenség: ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖ 

‖𝑣 + 𝑤‖ = 〈𝑣 + 𝑤, 𝑣 + 𝑤〉
1
2 = (〈𝑣, 𝑣〉 + 2〈𝑣,𝑤〉 + 〈𝑤,𝑤〉)

1
2 

Ezt négyzetre emelve: 

‖𝑣 + 𝑤‖2 = ‖𝑣‖2 + ‖𝑤‖2 + 2〈𝑣,𝑤〉 

Most már csak azt kell belátni, hogy 〈𝑣, 𝑤〉 ≤ ‖𝑣‖‖𝑤‖. Ez pedig igaz, hiszen ez 

a Cauchy–Bunyakovszkij–Schwartz-egyenlőtlenség. ∎ 
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Állítás Ha (𝑉, 〈⋅,⋅〉) skalárszorzat tér, akkor teljesül benne a paralelogramma-szabály: 

2(‖𝑣‖ + ‖𝑤‖) = ‖𝑣 + 𝑤‖2 + ‖𝑣 − 𝑤‖2 

Sorozat-terek, ezek kapcsolata egymással 

Legyen 𝑉 a számsorozatok tere. Ez lineáris tér, melynek pontjai számsorozatok: 

𝑥 = (𝑥𝑛) = (𝑥1, 𝑥2, … , 𝑥𝑛, … ) 

Ez vektortér, az összeadás és skalárral való szorzás definiálva van. Mint vektortér, tekintsük 

ennek (bizonyos) altereit: 

1.) ℓ∞ ⊂ 𝑉 ℓ∞ = {(𝑥𝑛) ∶ ∃𝐵 |𝑥𝑛| ≤ 𝐵 ∀𝑛} 
‖𝑥‖∞ = sup

𝑖∈ℕ
{|𝑥𝑖|} 

2.) 𝑐 ⊂ ℓ∞ 𝑐 = {(𝑥𝑛) ∶ ∃ lim
𝑛→∞

𝑥𝑛} 
‖𝑥‖∞ = sup

𝑖∈ℕ
{|𝑥𝑖|} 

3.) 𝑐0 ⊂ 𝑐 𝑐0 = {(𝑥𝑛) ∶ lim
𝑛→∞

𝑥𝑛 = 0} ‖𝑥‖∞ = sup
𝑖∈ℕ
{|𝑥𝑖|} 

4.) ℓ𝑝 ⊂ ℓ∞ ℓ𝑝 = {(𝑥𝑛) ∶ ∑|𝑥𝑖|
𝑝

∞

𝑖=1

< ∞} ‖𝑥‖𝑝 = √∑|𝑥𝑖|𝑝
∞

𝑖=1

𝑝

  

Megjegyzés A ℓ𝑝 terek közt fennáll a ℓ1 ⊂ ℓ2 ⊂ ⋯ ⊂ ℓ∞ tartalmazás. 

Függvény-terek, lehetséges normák. 

Legyen [𝑎, 𝑏] ⊂ ℝ rögzített intervallum. Az ezen értelmezett függvények összegét és skalár-

szorosát értelmezni tudjuk. Legyen a 𝑉 vektortér az [𝑎, 𝑏] → ℝ függvények tere: 

𝑉 = {𝑓: [𝑎, 𝑏] → ℝ} 
Ennek (bizonyos) lehetséges alterei: 

1.) 𝑉0 ⊂ 𝑉 𝑉0 = {𝑓: [𝑎, 𝑏] → ℝ ∶ ∃𝐵 |𝑓(𝑥)| ≤ 𝐵 ∀𝑥} ‖𝑓‖∞ = sup
𝑥∈[𝑎,𝑏]

{|𝑓(𝑥)|} 

2.) 𝒞([𝑎, 𝑏]) ⊂ 𝑉0 𝒞([𝑎, 𝑏]) = {𝑓: [𝑎, 𝑏] → ℝ, folytonos} ‖𝑓‖∞ = max
𝑥∈[𝑎,𝑏]

{|𝑓(𝑥)|} 

Ez utóbbiban definiálható skalárszorzat mint 

〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥) d𝑥
𝑏

𝑎

 

Ebből a skalárszorzatból a már megszokott módon definiálható norma: 

‖𝑓‖2 = (∫ 𝑓2(𝑥) d𝑥
𝑏

𝑎

)

1
2

 

Azt a 𝒞([𝑎, 𝑏]) teret, melyen az imént definiált négyzetes normát tekintjük, 𝒞2([𝑎, 𝑏])-vel 

jelöljük. 
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2. tétel: Szeparábilis metrikus tér. Példa szeparábilis és nem 

szeparábilis térre. Teljes metrikus tér. 𝒞([𝑎, 𝑏]) teljessége, 

ill. nem teljessége különböző normák mellett. Dimenzió 

normált térben. Példa véges és végtelen dimenzióra. 

Szeparábilis metrikus tér 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér és legyenek 𝐴 ⊂ 𝐵 ⊂ 𝑀 tetszőleges halmazok. 

Az 𝐴 halmaz sűrűn van 𝐵-ben, ha ∀𝑥 ∈ 𝐵, ∀𝜀 > 0 esetén ∃𝑎 ∈ 𝐴, melyre 

𝑑(𝑥, 𝑎) < 𝜀. 

Ha 𝐴 ⊂ 𝑀 sűrűn van 𝑀-ben, akkor mindenütt sűrű. 

Definíció Az (𝑀, 𝑑) metrikus tér szeparábilis, ha létezik benne megszámlálható elemszá-
mú mindenütt sűrű halmaz. 

Tétel (Weierstrass-féle approximációs tétel) A polinomok tere 

𝒫([0,1]) = {𝑝: [0,1] → ℝ polinom} 

sűrűn van 𝒞([0,1])-ben. 

Bizonyítás Megkonstruálva az ilyen polinomokat. Egy adott 𝑓 függvényhez hozzárendelhet-
jük az alábbi ún. Bernstein-polinomot: 

𝑝𝑛(𝑥) =∑(
𝑛
𝑘
)

𝑛

𝑘=1

𝑓 (
𝑘

𝑛
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 

ahol 𝑛 ∈ ℕ tetszőleges. Megmutatható, hogy ∀𝜀 > 0-hoz ∃𝑁, melyre ‖𝑓 −
𝑝𝑛‖ < 𝜀, ha 𝑛 > 𝑁. Tehát 𝒫([0,1]) sűrűn van 𝒞([0,1])-ben. 

Példa szeparábilis és nem szeparábilis térre 

1.) Az (ℝ, 𝑑) metrikus tér a diszkrét metrikával nem szeparábilis 

2.) Az (ℝ, |⋅|) metrikus tér szeparábilis (mert ℚ ⊂ ℝ sűrűn van és megszámlálható) 

Teljes metrikus tér 

Definíció (𝑥𝑛) ⊂ 𝑀 Cauchy-sorozat, ha ∀𝜀 > 0-hoz van olyan 𝑁 küszöbindex, melyre 

𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀, ∀𝑛,𝑚 ≥ 𝑁 

Állítás Ha (𝑥𝑛) konvergens, akkor Cauchy-sorozat. 

Bizonyítás Tegyük fel, hogy (𝑥𝑛) konvergens és lim𝑛→∞ 𝑥𝑛 = 𝑥0. Legyen 𝜀 > 0 tetszőle-

ges. Ekkor van olyan 𝑁, melyre 

𝑑(𝑥𝑛, 𝑥0) <
𝜀

2
, ∀𝑛 ≥ 𝑁 

Ezért ha 𝑛,𝑚 ≥ 𝑁, akkor a háromszög-egyenlőtlenséget használva: 

𝑑(𝑥𝑛, 𝑥𝑚) < 𝑑(𝑥𝑛, 𝑥0) + 𝑑(𝑥0, 𝑥𝑚) <
𝜀

2
+
𝜀

2
= 𝜀 

∎ 

Definíció Az 𝑀 metrikus tér teljes, ha minden Cauchy-sorozat konvergens. 

Definíció A (𝑉, ‖⋅‖) teljes normált tér Banach-tér.  

A (𝑉, 〈⋅,⋅〉) teljes skalárszorzat-tér Hilbert-tér. 
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𝒞([𝑎, 𝑏]) teljessége, ill. nem teljessége különböző normák mellett 

𝓒([𝒂, 𝒃]) teljessége 

Tekintsük a (𝒞([𝑎, 𝑏]), ‖⋅‖∞) teret. Legyen (𝑓𝑛) ⊂ 𝒞([𝑎, 𝑏]) Cauchy-sorozat. Ekkor 

∀𝜀 > 0-hoz ∃𝑁, melyre ‖𝑓𝑛 − 𝑓𝑚‖ < 𝜀. Ezért 

‖𝑓𝑛 − 𝑓𝑚‖ = max
𝑥∈[𝑎,𝑏]

{|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)|} < 𝜀 

és emiatt ∀𝑥-re |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀. Tehát rögzített 𝑥 ∈ [𝑎, 𝑏] esetén az (𝑓𝑛(𝑥)) szám-

sorozat Cauchy-sorozat, és ezért létezik határértéke: 

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓0(𝑥) 

Így 𝑓0 ∶ [𝑎, 𝑏] → ℝ jól definiált függvény, ráadásul 𝑓0 ∈ 𝒞([𝑎, 𝑏]). 

𝓒([𝒂, 𝒃]) nem teljessége 

Tekintsük a (𝒞([0,1]), ‖⋅‖2) teret. Legyen 

𝑓𝑛(𝑥) =

{
 
 

 
 0, 𝑥 <

1

2
−
1

𝑛

1, 𝑥 >
1

2

lineáris,
1

2
−
1

𝑛
≤ 𝑥 ≤

1

2

 

Mivel ebben a térben a négyzetes norma van, így az 

‖𝑓𝑛 − 𝑓𝑚‖ = ∫ (𝑓𝑛(𝑥) − 𝑓𝑚(𝑥))
2
 d𝑥

1

0

 

integrált kell vizsgálni. Erről könnyen belátható, hogy nullához tart, vagyis az (𝑓𝑛) so-
rozat Cauchy-sorozat. A határértékfüggvény azonban 

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) = {
1, 𝑥 ≥

1

2

0, 𝑥 <
1

2

 

mely nem folytonos és ezért 𝑓 ∉ 𝒞([0,1]). Vagyis ennek a Cauchy-sorozatnak nincs ha-

tárértéke ebben a térben, és így nem is lehet konvergens. 

Dimenzió normált térben 

Az 𝑁 normált tér alapját vektortér képzi. Az 𝑥1, … , 𝑥𝑛 ∈ 𝑁 elemek lineárisan függetlenek, ha 

∑𝛼𝑖𝑥𝑖

𝑛

𝑖=1

= 0⟺ 𝛼𝑖 = 0 ∀𝑖 

Definíció A 𝑉 vektortér dimenziója 𝑛, ha létezik 𝑛 darab lineárisan független elem és 

𝑛 + 1 darab már összefüggő rendszert alkot. 

Definíció A 𝑉 vektortér dimenziója +∞, ha minden 𝑛-re létezik 𝑛 darab független vektor. 

Példa véges és végtelen dimenzióra 

Az eddig megismert véges dimenziós vektorterek, például dim(ℝ2) = 2. 

Végtelen dimenziósak például a sorozat-terek és függvény-terek: dim(𝒞([𝑎, 𝑏])) = ∞. 
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3. tétel: Metrikus terek topológiája. Nyílt és zárt halmaz. Metrikus 

térben sorozat konvergenciája. Metrikus terek között értel-

mezett függvény folytonossága. Kompakt halmaz. Kom-

pakt halmaz jellemzése véges dimenzióban (Heine–Borel-

tétel) és végtelen dimenzióban. Példák. 

Metrikus terek topológiája 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér. Azt mondjuk, hogy 𝐵𝑟(𝑥) halmaz 𝑥 ∈ 𝑀 kö-

zéppontú, 𝑟 > 0 sugarú nyílt gömb, ha 

𝐵𝑟(𝑥) = {𝑦 ∈ 𝑀 ∶ 𝑑(𝑥, 𝑦) < 𝑟} 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér és legyen adott 𝐸 ⊂ 𝑀. Azt mondjuk, hogy az 

𝑥 ∈ 𝐸 belső pontja 𝐸-nek, ha van olyan 𝑟 > 0, melyre 𝐵𝑟(𝑥) ⊂ 𝐸. 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér és legyen adott 𝐸 ⊂ 𝑀. Azt mondjuk, hogy az 

𝑥 ∈ 𝐸 külső pontja 𝐸-nek, ha van olyan 𝑟 > 0, melyre 𝐵𝑟(𝑥) ∩ 𝐸 = ∅. 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér és legyen adott 𝐸 ⊂ 𝑀. Azt mondjuk, hogy a 

𝑡 ∈ 𝑀 torlódási pontja 𝐸-nek, ha ∀𝜀 > 0-ra 𝐵𝜀(𝑡) ∩ 𝐸 ≠ ∅. 

Nyílt és zárt halmaz 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér. Az 𝐸 ⊂ 𝑀 halmaz nyílt, ha minden pontja belső 
pont. 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér. Az 𝐸 ⊂ 𝑀 halmaz zárt, ha minden torlódási 
pontját tartalmazza. 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér. Az 𝐸 ⊂ 𝑀 halmaz lezárása 

𝐸 = 𝐸 ∪ {torlódási pontok} 

Állítás Egy 𝐸 ⊂ 𝑀 halmaz pontosan akkor nyílt, ha 𝑀 ∖ 𝐸 zárt. 

Bizonyítás Jelöljük 𝑀 ∖ 𝐸 halmazt 𝐸𝐶-vel (komplementer). Jelölje az 𝐸 halmaz torlódási 

pontjainak halmazát 𝑇𝐸. Ekkor: 

𝐸 zárt ⟺ ∀𝑥 ∈ 𝑇𝐸, ∀𝑥 ∈ 𝐸 ⟺ ∀𝑦 ∈ 𝐸𝐶   𝑦 ∉ 𝑇𝐸 ⟺ 

⟺∀𝑦 ∈ 𝐸𝐶 ∃𝑟 > 0 ∶ 𝐵𝑟(𝑦) ∩ 𝐸 = ∅ ⟺ ∀𝑦 ∈ 𝐸𝐶  ∃𝑟 > 0 ∶ 𝐵𝑟(𝑦) ⊆ 𝐸
𝐶 ⟺ 

⟺ 𝐸𝐶  nyílt ⟺𝑀 ∖ 𝐸 nyílt. 

∎ 

Példák 

1.) Legyen 𝑀 = ℝ, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. Ekkor [𝑎, 𝑏] zárt, (𝑎, 𝑏) nyílt. 

2.) Legyen 𝑀 = 𝒞([𝑎, 𝑏]) és 𝑘 > 0 fix valós szám. Ekkor 𝐸 = {𝑓 ∶ |𝑓(𝑥)| < 𝑘, ∀𝑘} nyílt, 

𝐸0 = {𝑓 ∶ |𝑓(𝑥)| ≤ 𝑘, ∀𝑘} zárt. 

Metrikus térben sorozat konvergenciája 

Definíció Legyen (𝑀, 𝑑) egy metrikus tér és legyen egy (𝑥𝑛) ⊂ 𝑀 sorozat a térben. Azt 

mondjuk, hogy az (𝑥𝑛) sorozat konvergens és határértéke 𝑥0, ha ∀𝜀 > 0-hoz ∃𝑁 

melyre 𝑑(𝑥𝑛, 𝑥0) < 𝜀 ha 𝑛 ≥ 𝑁. 
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Metrikus terek között értelmezett függvény folytonossága 

Definíció Legyen (𝑀, 𝑑𝑀) és (𝑁, 𝑑𝑁) metrikus terek. Adott egy 𝑓 ∶ 𝑀 → 𝑁 függvény. 

Legyen 𝑥0 ∈ 𝑀 tetszőleges pont. Az 𝑓 függvény folytonos 𝑥0-ban, ha ∀𝜀 > 0-

hoz ∃𝛿 > 0, melyre 𝑑𝑀(𝑥, 𝑥0) < 𝛿 ⟹ 𝑑𝑁(𝑓(𝑥), 𝑓(𝑥0)) < 𝜀. 

Kompakt halmaz 

Definíció Legyen (𝑀, 𝑑𝑀) metrikus tér. Az 𝐸 ⊂ 𝑀 halmaz korlátos, ha ∀𝑥 ∈ 𝐸-hez 

∃𝑟 > 0, melyre 𝐸 ⊂ 𝐵𝑟(𝑥). 

Definíció Legyen (𝑀, 𝑑𝑀) metrikus tér, és 𝐸 ⊂ 𝑀 egy részhalmaz ebben a térben. Legyen 

az (𝑈𝛼) ⊂ 𝑀 halmazrendszer, ahol 𝛼 ∈ 𝐼 indexhalmaz. Azt mondjuk, hogy az 
(𝑈𝛼) halmazrendszer 𝐸 halmaz lefedése, ha 

⋃𝑈𝛼
𝛼

⊃ 𝐸 

Nyílt lefedésről beszélünk, ha ∀𝑈𝛼 nyílt.  

Véges lefedésről beszélünk, ha |𝐼| véges. 

Definíció Az 𝐸 ⊂ 𝑀 halmaz kompakt, ha minden nyílt lefedéséből kiválasztható véges 
lefedés. 

Definíció Az 𝐸 ⊂ 𝑀 halmaz sorozatkompakt, ha ∀(𝑥𝑛) ⊂ 𝐸 sorozatból kiválasztható kon-

vergens (𝑥𝑛𝑘) sorozat, melynek határértéke 𝐸-beli: 

lim
𝑛𝑘→∞

𝑥𝑛𝑘 = 𝑥0 ∈ 𝐸 

Tétel Tetszőleges metrikus térben egy 𝐸 halmaz pontosan akkor kompakt, ha sorozat-
kompakt. 

Bizonyítás (vázlat) Indirekt módon tegyük fel, hogy 𝑀 kompakt halmaz, de mégis van ben-

ne olyan sorozat, melynek nincs konvergens részsorozata. Jelölje ennek külön-

böző pontjait 𝑦𝑘, 𝑘 ∈ ℕ. Ezek lefedhetők páronként diszjunkt nyílt gömbökkel, 

amihez hozzávéve az 𝑀 ∖∪ {𝑦𝑘} halmazt egy nyílt lefedést kapunk, melyből 

nem választható ki véges lefedés. ∎ 

Állítás Minden 𝐸 ⊂ 𝑀 kompakt halmaz korlátos. 

Bizonyítás Indirekt módon tegyük fel, hogy 𝐸 kompakt, de nem korlátos, vagyis ∀𝑥-re és 

∀𝑟-re 𝐵𝑟(𝑥) ⊉ 𝐸. Tekintsük (𝐵𝑟𝑛(𝑥))𝑛∈ℕ
 lefedését 𝐸-nek. A véges unió: 

⋃𝐵𝑟𝑖(𝑥)

𝑁

𝑖=1

⊆ 𝐵𝑅(𝑥) 

„befér” egy 𝑅 sugarú gömbbe. Az indirekt feltevés miatt viszont 𝐵𝑅(𝑥) ⊉ 𝐸, te-

hát nem létezik véges, nyílt lefedés. Ez ellentmondás. ∎ 

Példák 

1.) Legyen 𝑀 = ℝ. Ekkor 𝐸1 = [0,1] halmaz kompakt. 

2.) Legyen 𝑀 = ℝ. Ekkor 𝐸2 = (0,1) halmaz nem kompakt, mert létezik olyan 𝑈𝛼 lefedé-
se, melyből nem választható ki véges lefedés. Ez a nyílt lefedés a következő: 

𝑈𝑛 = (0,1 −
1

𝑛
) , 𝑛 = 2,3,… , ⋃𝑈𝑛

∞

𝑛=2

= (0,1) 
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Kompakt halmaz jellemzése véges dimenzióban (Heine–Borel-tétel) és végtelen 

dimenzióban 

Tétel (Heine–Borel-tétel) Az ℝ𝑛-ben egy 𝐸 ⊂ ℝ𝑛 részhalmaz pontosan akkor kom-

pakt, ha korlátos és zárt. 

Bizonyítás Nézzük az 𝑛 = 1 esetet. Ekkor az 𝐸 ⊂ ℝ halmaz korlátos, vagyis a Bolzano–

Weierstass-tétel miatt létezik konvergens (𝑥𝑛𝑘) részsorozata, és mivel 𝐸 zárt, 

ezért lim𝑛𝑘→∞ 𝑥𝑛𝑘 ∈ 𝐸. 

𝑛 > 1 esetén a bizonyítás az 𝑥(𝑘) = (𝑥1
𝑘 , … , 𝑥𝑛

𝑘) vektor elemeinek fölsorolásával 

történik. ∎ 

Általánosítás végtelen dimenzióra 

Példa Tekintsük 𝒞([0,1])-ben a zárt egységkört: 

𝐵1(0) = {𝑓: [0,1] → ℝ, folytonos, max
𝑥∈[0,1]

|𝑓(𝑥)| ≤ 1} 

Be tudjuk látni, hogy ez annak ellenére, hogy korlátos és zárt is, nem kompakt, 

mivel végtelen dimenziós térben van és így e két feltétel nem elég ahhoz, hogy a 

kompaktság teljesüljön. Adjunk meg egy olyan (𝑓𝑛) ⊂ 𝒞([0,1]) sorozatot, mely-

re ‖𝑓𝑛‖ = 1 minden 𝑛-re: 

𝑓𝑛(𝑥) =

{
 
 

 
 1, 𝑥 >

1

𝑛 − 1

0, 𝑥 <
1

𝑛

lineáris,
1

𝑛
< 𝑥 <

1

𝑛 − 1

 

A függvény határértéke nem folytonos és így nem is eleme 𝒞([0,1])-nek, vagyis 
a halmaz nem kompakt. 

Tétel (Heine–Borel-tétel általánosítása végtelen dimenzióra) Az ℝ𝑛-ben egy 𝐸 ⊂ ℝ𝑛 

részhalmaz pontosan akkor kompakt, ha korlátos és zárt és ekvifolytonos. 
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4. tétel: Mérték, mértéktér. Számlálómérték. Lebesgue-mérték be-

vezetése ℝ-ben. Lebesgue-mérhető halmazok jellemzése. 

Nullmértékű halmazok, ezek struktúrája. Cantor halmaz 

[0,1]-ben, tulajdonságai. 

Mérték, mértéktér 

Legyen 𝑋 egy tetszőleges halmaz. Az összes részhalmazok halmazát jelölje 2𝑋. Legyen 

ℳ ⊂ 2𝑋, 𝑋 bizonyos részhalmazainak halmaza. 

Definíció Az ℳ halmaz gyűrű, ha rendelkezik az alábbi tulajdonságokkal: 

1.) 𝐴, 𝐵 ∈ ℳ esetén 𝐴 ∪ 𝐵 ∈ ℳ 

2.) 𝐴, 𝐵 ∈ ℳ esetén 𝐴 ∖ 𝐵 ∈ ℳ 

Definíció Az ℳ halmaz algebra, ha a fenti 1.) és 2.) tulajdonság mellett: 

3.) 𝑋 ∈ ℳ 

Definíció Az ℳ halmaz 𝜎-gyűrű, ha a gyűrű definícióban az 1.) tulajdonság helyett: 

1.*) Ak ∈ ℳ, k = 1,2,… esetén ⋃ Ak
∞
k=1 ∈ ℳ 

Definíció Az ℳ halmaz 𝜎-algebra, ha a 𝜎-gyűrű tulajdonságai mellett: 

3.) 𝑋 ∈ ℳ 

Definíció Ha az ℳ halmaz 𝜎-algebra, akkor az (𝑋,ℳ) páros egy mérhető tér, ℳ elemei 
pedig a mérhető halmazok. 

Definíció Adott 𝜇 ∶ ℳ → ℝ+ ∪ {+∞} azaz ∀𝐴 ∈ ℳ-hez 𝜇(𝐴) ≥ 0 illetve 𝜇(𝐴) = +∞ is 

lehet. 

Azt mondjuk, hogy a 𝜇 függvény additív, ha 𝐴, 𝐵 ∈ ℳ, 𝐴 ∩ 𝐵 = ∅ esetén  

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) 

Azt mondjuk, hogy a 𝜇 függvény 𝜎-additív, ha 𝐴𝑘 ∈ ℳ, 𝑘 ∈ ℕ, 𝐴𝑘 ∩ 𝐴𝑗 = ∅,

𝑘 ≠ 𝑗 esetén  

𝜇 (⋃𝐴𝑘

∞

𝑘=1

) = ∑𝜇(𝐴𝑘)

∞

𝑘=1

 

Definíció Adott 𝜇 ∶ ℳ → ℝ+ ∪ {+∞}. Azt mondjuk, hogy a 𝜇 mérték, ha ℳ 𝜎-algebra és 

𝜇 𝜎-additív. 

Definíció Az (𝑋,ℳ, 𝜇) mértéktér, ha ℳ 𝜎-algebra és 𝜇 mérték. 

Számlálómérték 

Legyen 𝑋 tetszőleges alaphalmaz. Legyen ℳ = 2𝑋 ennek összes részhalmaza. Tetszőleges 

𝐴 ∈ ℳ esetén legyen 

𝜇(𝐴) = {
|𝐴|, ha 𝐴 véges elemszámú
+∞, ha 𝐴 nem véges elemszámú

 

Ekkor az (𝑋,ℳ, 𝜇) mértéktér, a 𝜇 mértéket pedig számlálómértéknek hívjuk. 
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Lebesgue-mérték bevezetése ℝ-ben 

Legyen 𝑋 = ℝ. A mértéket és a mérhető halmazokat lépésenként definiáljuk: 

1. lépés 

Legyen ℐ a véges intervallumok halmaza: ℐ = {[𝑎, 𝑏], 𝑎 < 𝑏}. Ennek elemei: 

𝐼 = {𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏}, 𝑎, 𝑏 ∈ ℝ 

Az ℐ halmazon a mérték az intervallum „hossza”: 𝑚(𝐼) = 𝑏 − 𝑎 

2. lépés 

Kiterjesztjük a mértéket az ℰ egyszerű halmazokra, melyek 

ℰ = {𝐴 =⋃𝐼𝑘

𝑛

𝑘=1

∶ 𝐼𝑘 ∈ ℐ, 𝐼𝑘 ∩ 𝐼𝑗 = ∅ 𝑗 ≠ 𝑘} 

Ha 𝐴 ∈ ℰ, akkor ennek mértéke legyen 𝑚(𝐴) = ∑ 𝑚(𝐼𝑘)
𝑛
𝑘=1 . Most két állítást fogalmazha-

tunk meg: 

Állítás Az ℰ halmaz nem 𝜎-algebra és nem is 𝜎-gyűrű. 

Állítás Az 𝑚 ∶ ℰ → ℝ+ 𝜎-additív. 

3. lépés 

Definiálunk egy külső mértéknek nevezett mértéket 2ℝ-en. Legyen 𝐴 ⊂ ℝ tetszőleges rész-

halmaz. Ekkor ennek külső mértéke az 𝑚∗ ∶ 2ℝ → ℝ+ ∪ {+∞} függvény: 

𝑚∗(𝐴) ≔ inf {∑𝑚(𝐼𝑘)

∞

𝑘=1

∶ 𝐴 ⊂⋃𝐼𝑘

∞

𝑘=1

} 

Állítás 𝑚∗ nem 𝜎-additív. 

Állítás Ha 𝐴 ∈ ℰ, akkor 𝑚∗(𝐴) = 𝑚(𝐴). 

4. lépés 

Eddig már láttuk, hogy ℰ-n van 𝑚 𝜎-additív halmazfüggvény, de ℰ nem 𝜎-algebra; valamint 

azt is láttuk, hogy 2ℝ 𝜎-algebra, de a rajta értelmezett 𝑚∗ halmazfüggvény nem 𝜎-additív. 

Szerencsére van boldog befejezés, ∃ℳ 𝜎-algebra, ℰ ⊂ ℳ ⊂ 2ℝ, melyen az 𝑚∗ megszorítá-

sa, 𝑚∗|ℳ 𝜎-additív. Ezt a mértéket Lebesgue-mértéknek nevezzük. 

5. lépés 

Mindezt eddig csak 𝑋 = ℝ esetén vezettük be. ℝ𝑛-ben általában az ℐ halmaz a következő: 

ℐ = {𝐼 = 𝐼1 × 𝐼2 × …× 𝐼𝑛 ∶ 𝐼𝑘 =〖𝑎, 𝑏〗, 𝑎𝑘 ≤ 𝑏𝑘} 

𝑚(𝐼) =∏(𝑎𝑘 − 𝑏𝑘)

𝑛

𝑘=1

 

vagyis a mérték „hossz”, „terület”, „térfogat” és a többi. 

Definíció A fenti lépéssorozat eredményeképp kapott ℳ halmaz elemei az ℝ-beli 

Lebesgue-mérhető halmazok. Az 𝑚∗ külső mérték megszorítása ℳ-re a 

Lebesgue-mérték. Ezt a későbbiekben 𝑚 jelöli. 
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Lebesgue-mérhető halmazok jellemzése 

A kérdés adja magát: Mik azok a halmazok, melyek beletartoznak ℳ-be? Milyenek a mérhe-
tő halmazok? Erre pontos választ nem lehet adni, mivel egészen „fura” halmazok is mérhetők. 

Egyrészt minden nyílt és minden zárt halmaz mérhető. Továbbá azok a halmazok, melyek 

nyílt és zárt halmazok megszámlálható uniója és metszete révén állnak elő.  

Másrészt lehet nem mérhető halmazt is konstruálni, de ez nem triviális. 

Nullmértékű halmazok, ezek struktúrája 

Definíció Azt mondjuk, hogy az 𝐴 halmaz nullmértékű, ha 𝑚(𝐴) = 0. A nullmértékű hal-

mazok terét 𝒩 jelöli. 

A nullmértékű halmazok halmaza, 𝒩 zárt a megszámlálható metszetre és unióra. 𝜎-gyűrű, de 

nem 𝜎-algebra, hiszen az alaphalmaz (ℝ) nem nullmértékű. A mérték definíciója alapján 

𝑚(𝐴) = 0 azt jelenti, hogy 

inf {∑𝑚(𝐼𝑘)

∞

𝑘=1

, 𝐴 ⊂⋃𝐼𝑘

∞

𝑘=1

} = 0 

Ennek következménye, hogy ha 𝐴 ∈ ℳ és 𝑚(𝐴) = 0, akkor tetszőleges 𝜀 > 0-ra megadható 

legfeljebb megszámlálható sok 𝐼𝑘, 𝑘 = 1,2,… intervallum, melyre 

𝐴 ⊂⋃𝐼𝑘

∞

𝑘=1

, ∑𝑚(𝐼𝑘)

∞

𝑘=1

< 𝜀 

Tehát ha 𝐴 = {𝑥} ∈ ℳ egyelemű halmaz, akkor 𝑚(𝐴) = 0. Ha 𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑛, … } ∈ ℝ 
megszámlálható elemszámú, akkor (mivel előáll egyelemű halmazok véges uniójaként) az 

𝑚(𝐴) = 0. 

Cantor-halmaz [0,1]-ben, tulajdonságai 

A Cantor-halmaz a következő konstrukció eredményeképp áll elő: 

Legyen 𝐶0 = [0,1] 

Legyen 𝐶1 = 𝐶0 ∖ (
1

3
,
2

3
) 

Legyen 𝐶2 = 𝐶1 ∖ ((
1

9
,
2

9
) ∪ (

7

9
,
8

9
)) 

És így tovább. 

𝐶 =⋂𝐶𝑘

∞

𝑘=0

 

 

Láthatjuk, hogy a [0,1]-ből kivágott részek mértéke: 

1

3
+ 2 ⋅

1

9
+ 4 ⋅

1

27
+⋯ =

1

3
(1 +

2

3
+ (

2

3
)
2

+⋯) =
1

3

1

1 −
2
3

= 1 

Felvetődik a kérdés, hogy mi marad meg? Például az osztópontok, de még sok más pont is… 

Állítás A Cantor-halmaz tulajdonságai: 

1.) 𝐶 zárt 

2.) 𝐶 kontinuum számosságú, sőt, létezik izomorfia 𝐶 és [0,1] közt. 

3.) 𝐶 mérhető és mértéke 𝑚(𝐶) = 0. 

Bizonyítás A zártság teljesül, hiszen ∀𝑘 esetén 𝐶𝑘 zárt. Zárt halmazok metszete pedig zárt. 

𝐶 mértéke pedig 𝑚([0,1]) − 𝑚(𝐾), ahol 𝐾 a kivágott rész mértéke, ami 1. ∎ 
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5. tétel: Mérhető függvények. Egyszerű függvények. (Lépcsős 

függvények.) Lebesgue-integrál bevezetése. Integrálható-

ság feltétele. Lebesgue- és Riemann-integrál kapcsolata. 

Mérhető függvények 

Definíció Az 𝑓 ∶ ℝ𝑛 → ℝ∪ {+∞} függvény mérhető, ha {𝑥 ∶ 𝑓(𝑥) < 𝑎} ⊂ ℝ𝑛 halmaz 

mérhető minden 𝑎 ∈ ℝ esetén. 

A fenti definícióban a (−∞, 𝑎) nyílt halmaz ősképét tekintjük. 

Állítás Ha az 𝑓 függvény folytonos, akkor mérhető is. 

Állítás Az 𝑓 függvény mérhetősége ekvivalens az alábbi állítások bármelyikével: 

∀𝑎 ∈ ℝ, {𝑥 ∶ 𝑓(𝑥) > 𝑎} ∈ ℳ 

∀𝑎 ∈ ℝ, {𝑥 ∶ 𝑓(𝑥) ≥ 𝑎} ∈ ℳ 

∀𝑎 ∈ ℝ, {𝑥 ∶ 𝑓(𝑥) ≤ 𝑎} ∈ ℳ 

Következmény, hogy mérhető függvény esetén ∀𝑎 ∈ ℝ-re {𝑥 ∶ 𝑓(𝑥) = 𝑎} ∈ ℳ. 

Állítás Ha 𝑓, 𝑔 mérhető függvények, akkor 

1) 𝑓 + 𝑔 is mérhető 

2) 𝑓 ⋅ 𝑔 is mérhető 

3) min(𝑓, 𝑔) is mérhető. 

4) Ha (𝑓𝑛) mérhető függvények sorozata, akkor inf 𝑓𝑛 , sup 𝑓𝑛 , lim𝑛→∞ 𝑓𝑛 is 

mérhető. 

Bizonyítás Az 1) tulajdonság teljesülését látjuk be: Legyen 𝑎 ∈ ℝ. Ekkor 

{𝑥 ∶ 𝑓(𝑥) + 𝑔(𝑥) < 𝑎} =⋃({𝑥 ∶ 𝑓(𝑥) < 𝑟} ∩ {𝑥 ∶ 𝑔(𝑥) < 𝑎 − 𝑟})

𝑟∈ℚ

 

Ugyanis, ha 𝑓(𝑥) + 𝑔(𝑥) < 𝑎, akkor 𝑓(𝑥) < 𝑎 − 𝑔(𝑥). Ezért ∃𝑟 ∈ ℚ, melyre 

𝑓(𝑥) < 𝑟 és 𝑟 < 𝑎 − 𝑔(𝑥) ⟹ 𝑔(𝑥) < 𝑎 − 𝑟 

Ezért tehát az {𝑥 ∶ 𝑓(𝑥) + 𝑔(𝑥) < 𝑎} előállítható megszámlálhatóan sok mérhe-

tő halmaz uniójaként, vagyis maga is mérhető. ∎ 

Definíció Legyenek 𝑓 és 𝑔 mérhető függvények. Azt mondjuk, hogy 𝑓 = 𝑔 majdnem min-

denütt (m. m.) ha 𝑚({𝑥 ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}) = 0. 

Állítás Ha 𝑓 és 𝑔 folytonosak és 𝑓 = 𝑔 majdnem mindenütt, akkor 𝑓(𝑥) = 𝑔(𝑥) ∀𝑥. 

Tétel (Luzin-tétel) Ha 𝑓 ∶ 𝑋 → ℝ mérhető függvény, akkor ∀𝜀 > 0-hoz ∃𝑔 ∶ 𝑋 → ℝ 

folytonos függvény, ahol 𝑚({𝑥 ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}) < 𝜀. 

Tehát a mérhető függvényeken belül a folytonos függvények sűrűn vannak. 
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Egyszerű függvények, (lépcsős függvények) 

Definíció Legyen 𝐸 ⊂ ℝ𝑛 mérhető. Legyen 𝜒𝐸 az alábbi függvény: 

𝜒𝐸(𝑥) = {
1, 𝑥 ∈ 𝐸
0, 𝑥 ∉ 𝐸

 

Ezt a mérhető 𝜒𝐸 függvényt az 𝐸 halmaz karakterisztikus függvényének hívjuk. 

Definíció Azt mondjuk, hogy az 𝑓 függvény egyszerű (vagy másik elnevezéssel lépcsős), 

ha értékkészlete, 𝑅𝑓 véges elemszámú. Ez azt jelenti, hogy 𝑅𝑓 = {𝑦1, … , 𝑦𝑛}. 

Ekkor 𝐸𝑘 = {𝑥 ∶ 𝑓(𝑥) = 𝑦𝑘} jelöléssel az 𝑓 egyszerű függvény úgy írható mint 

𝑓 = ∑𝑦𝑘 ⋅ 𝜒𝐸𝑘

𝑛

𝑘=1

, 𝐸𝑘 ∩ 𝐸𝑗 = ∅  ∀𝑦𝑘 ∈ ℝ 

Állítás Az 𝑓 egyszerű függvény pontosan akkor mérhető, ha 𝐸𝑘 ∈ ℳ. 

Állítás Ha 𝑓 ∶ [𝑎, 𝑏] → ℝ függvény mérhető, akkor ∃(𝑠𝑛) egyszerű (lépcsős) függvé-

nyekből álló függvénysorozat, melyre lim𝑛→∞ 𝑠𝑛(𝑥) = 𝑓(𝑥)  ∀𝑥. Továbbá, ha 𝑓 

nemnegatív, akkor ∃(𝑠𝑛) monoton növő egyszerű függvényekből álló sorozat 

melynek szintén 𝑓 a határértéke. 

Bizonyítás (vázlatosan) Csak a monotonitást bizonyítjuk: Ha 𝑓 ≥ 0, akkor az 𝐸𝑘 halmazok 

mellett, melyek alakja 𝐸𝑘 = {𝑥 ∶ 𝑘 < 𝑓(𝑥) < 𝑘 + 1} ∈ ℳ, felírható egy másik 

halmaz: 𝐸𝑛
+ = {𝑥 ∶ 𝑓(𝑥) > 𝑛}. Ezzel a függvény: 

𝑓 ∼∑𝑘 ⋅ 𝜒𝐸𝑘 + (𝑛 + 1)

𝑛

𝑘=1

𝜒𝐸𝑘
+ 

Következmény Az egyszerű függvények sűrűn vannak a mérhető függvények közt. 

Lebesgue-integrál bevezetése 

Az integrálnak szemléletesen ebben az esetben is a függvény alatti terület a jelentése. A 

Lebesgue-integrált négy lépésben fogjuk bevezetni: 

1. lépés 

Tekintünk egy egyszerű függvényt: 

𝑆(𝑥) = 𝜒𝐸(𝑥) = {
1, 𝑥 ∈ 𝐸
0, 𝑥 ∉ 𝐸

 

Az 𝐴 ∈ ℳ mérhető halmazon 

∫𝑆  d𝑚
𝐴

= 𝑚(𝐴 ∩ 𝐸) 

2. lépés 

Most legyen az 𝑆 függvény a következő lépcsős függvény: 

𝑆(𝑥) = ∑𝑐𝑘 ⋅ 𝜒𝐸𝑘

𝑛

𝑘=1

 

Az 𝐸 ∈ ℳ mérhető halmazon 

∫𝑆 d𝑚
𝐸

=∑𝑐𝑘 ⋅ 𝑚(𝐸 ∩ 𝐸𝑘)

𝑛

𝑘=1
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3. lépés 

Most tegyük fel, hogy 𝑓 ≥ 0 nemnegatív, mérhető függvény. Ekkor ennek integrálja a követ-

kezőt jelöli: 

∫𝑓  d𝑚
𝐸

= sup {∫𝑠  d𝑚
𝐸

∶ 0 ≤ 𝑠 ≤ 𝑓 (m. m.)} 

4. lépés 

Most már megengedjük, hogy 𝑓 tetszőleges mérhető függvény legyen. Ekkor 𝑓 felbontható 

két függvényre, melyeket 𝑓+ és 𝑓− jelöl, mégpedig 

𝑓 = 𝑓+ + 𝑓−, 𝑓+(𝑥) = {
𝑓(𝑥), 𝑓(𝑥) ≥ 0
0, 𝑓(𝑥) < 0

, 𝑓−(𝑥) = {
0, 𝑓(𝑥) ≥ 0

−𝑓(𝑥), 𝑓(𝑥) < 0
 

Tehát 𝑓+ ≥ 0 és 𝑓− ≥ 0. Ezek integrálja már jól definiált: 

∫𝑓+ d𝑚
𝐸

, ∫𝑓− d𝑚
𝐸

 

Definíció Azt mondjuk, hogy az 𝑓 függvény Lebesgue-integrálható, ha mind a két fenti 

integrál véges. Ebben az esetben 𝑓 integrálja az 𝐸 halmazon a Lebesgue-mérték 
szerint: 

∫𝑓  d𝑚
𝐸

= ∫𝑓+ d𝑚
𝐸

+∫𝑓− d𝑚
𝐸

 

Az 𝑅 halmazon Lebesgue-integrálható függvények terét ℒ(𝑅) jelöli. 

Integrálhatóság feltétele 

Állítás Ha 𝑓 ∶ [𝑎, 𝑏] → ℝ függvény korlátos és mérhető, akkor Lebesgue-integrálható. 

Lebesgue- és Riemann-integrál kapcsolata 

Tétel Ha 𝑓 ∈ ℛ([𝑎, 𝑏]), akkor 𝑓 ∈ ℒ([𝑎, 𝑏]) is és 

∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

= ∫ 𝑓  d𝑚
[𝑎,𝑏]

 

Bizonyítás Csupán csak szemléletesen: Ha az 𝑓 Riemann-integrálható, akkor a végtelen 
sűrű felosztásnak megfeleltetve egy lépcsős függvényt, az Lebesgue-integrál-

ható, az integrál pedig éppen a Riemann-integrállal fog megegyezni. 

Megjegyzés Előny, hogy több függvény Lebesgue-integrálható, mint Riemann-integrálható, 

vagyis ℛ([𝑎, 𝑏]) ⊊ ℒ([𝑎, 𝑏]). 

Tétel (Lebesgue-féle monoton konvergencia tétel) Adott nemnegatív, mérhető, mono-

ton növő függvények (𝑓𝑛) sorozata: 0 ≤ 𝑓1 ≤ 𝑓2 ≤ ⋯, melyre a pontonkénti ha-

tárérték-függvény lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥). Ekkor 

∫𝑓 d𝑚
𝐸

= lim
𝑛→∞

∫𝑓𝑛  d𝑚
𝐸

 

Tétel (Lebesgue-féle dominált konvergencia tétel) Adottak az (𝑓𝑛) mérhető függvé-

nyek, a pontonkénti határérték lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥). Tegyük fel, hogy létezik 

𝑔 ∈ ℒ(ℝ) közös felső korlát, melyre 𝑓𝑛(𝑥) ≤ 𝑔(𝑥) ∀𝑥, ∀𝑛. Ekkor 

∫𝑓 d𝑚
𝐸

= lim
𝑛→∞

∫𝑓𝑛  d𝑚
𝐸
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6. tétel: ℒ𝑝(𝑅) terek 1 ≤ 𝑝 < ∞ esetén. ℒ𝑝(𝑅) és ℒ𝑞(𝑅) kapcso-

lata, ha 𝑝 < 𝑞, véges ill. végtelen mértékű 𝑅 mellett. Lé-

nyegében korlátos függvények, ℒ∞(𝑅) tér. Riesz-tétel. 

ℒ𝑝(𝑅) terek 1 ≤ 𝑝 < ∞ esetén 

Legyen 𝑝 ≥ 1 és 𝑅 = [𝑎, 𝑏]. 

Definíció A ℒ𝑝(𝑅) függvényhalmazt a következőképpen értelmezzük: 

ℒ𝑝(𝑅) = {𝑓 ∶ 𝑅 → ℝ, ∫|𝑓|𝑝 d𝑚
𝑅

< ∞} 

Állítás ℒ𝑝 vektortér. 

Bizonyítás Be kell látni, hogy ℒ𝑝 a skalárral való szorzásra és az összeadásra nézve zárt. 

 Ha 𝑓 ∈ ℒ𝑝, akkor 𝑐 ⋅ 𝑓 ∈ ℒ𝑝, ahol 𝑐 ∈ ℝ. 

 Ha 𝑓, 𝑔 ∈ ℒ𝑝, akkor következik-e, hogy (𝑓 + 𝑔) ∈ ℒ𝑝? 

Vegyük azt a becslést, hogy |𝑎 + 𝑏|𝑝 ≤ (|𝑎| + |𝑏|)𝑝. Ez felülbecsülhető: 

|𝑎 + 𝑏|𝑝 ≤ (|𝑎| + |𝑏|)𝑝 ≤ (2 ⋅ max{|𝑎|, |𝑏|})𝑝 = 2𝑝 ⋅ max{|𝑎|𝑝, |𝑏|𝑝} 

2𝑝 ⋅ max{|𝑎|𝑝, |𝑏|𝑝} ≤ 2𝑝(|𝑎|𝑝 + |𝑏|𝑝) 

Ebből 𝑎 = 𝑓(𝑥) és 𝑏 = 𝑔(𝑥) választással azt kapjuk, hogy  

∫|𝑓 + 𝑔|𝑝 d𝑚
𝑅

≤ 2𝑝(∫|𝑓|𝑝 d𝑚
𝑅⏟      

<∞

+∫|𝑔|𝑝 d𝑚
𝑅⏟      

<∞

) < ∞ ∎ 

A ℒ𝑝 térben a majdnem mindenütt való egyenlőség ekvivalencia-reláció, így a majdnem min-

denütt egyenlő függvényeket azonosnak tekintjük. Az így faktorizált ℒ𝑝 térben normát defini-
álunk: 

‖𝑓‖𝑝 = (∫|𝑓|
𝑝 d𝑚

𝑅

)

1
𝑝

 

Tétel (Minkovszkij-egyenlőtlenség) Ha 1 ≤ 𝑝 < ∞, akkor ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝. 

Bizonyítás Az 𝑝 = 1 estre a már ismert háromszög-egyenlőtlenséget kapjuk. 𝑝 > 1-re a 
bizonyítás bonyolult. 

ℒ𝑝(𝑅) és ℒ𝑞(𝑅) kapcsolata, ha 𝑝 < 𝑞, véges ill. végtelen mértékű 𝑅 mellett 

Állítás Tegyük fel, hogy az alaptér mértéke 𝑚(𝑅) < ∞. Legyenek 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. Ek-

kor ℒ𝑞(𝑅) ⊂ ℒ𝑝(𝑅). (Speciálisan ℒ∞(𝑅) ⊂ ℒ𝑝(𝑅).) 

Állítás Ha az alaptér mértéke nem véges, vagyis 𝑚(𝑅) = ∞, akkor ℒ𝑝(𝑅) ⊄ ℒ𝑞(𝑅), 
sem ℒ𝑞(𝑅) ⊄ ℒ𝑝(𝑅). 

Definíció Legyen 𝑝 > 1. Azt mondjuk, hogy a 𝑞 a 𝑝 Hölder-konjugáltja, ha 
1

𝑝
+
1

𝑞
= 1 és 

∀𝑝 > 1-hez ∃! 𝑞. 

Tétel Ha 𝑝 és 𝑞 Hölder-konjugáltak, akkor ∀𝑓 ∈ ℒ𝑝, ∀𝑔 ∈ ℒ𝑞 esetén 𝑓𝑔 ∈ ℒ1 és 

‖𝑓 ⋅ 𝑔‖1 ≤ ‖𝑓‖𝑝 ⋅ ‖𝑔‖𝑞 



 „Korlátozott terjesztésű”  1. számú példány 

 

Funkcionálanalízis — PPKE ITK 

 

 

 

szóbeli vizsga 1511 20 / 48 2015. június 11. 

 

 „Korlátozott terjesztésű”   
 

 
 

Lényegében korlátos függvények 

Definíció Az 𝑓: 𝑅 → ℝ függvény lényegében korlátos, ha ∃𝐴 ∈ ℳ halmaz, melyre 

𝑚(𝐴) = 0 és ∃𝐾 ∈ ℝ konstans, melyre |𝑓(𝑥)| ≤ 𝐾 ha 𝑥 ∉ 𝐴. 

Definíció Az 𝑓 lényegében korlátos függvény lényeges szuprémuma 

ess sup 𝑓 ≔ inf{𝐾 ∶ ∃𝐴 ∈ ℳ,𝑚(𝐴) = 0, |𝑓(𝑥)| ≤ 𝐾  ∀𝑥 ∉ 𝐴} 

ℒ∞(𝑅) tér 

Definíció A ℒ∞(𝑋) függvénytér az 𝑋-en értelmezett lényegében korlátos függvények ösz-

szessége, a majdnem mindenütt egyenlő függvényeket azonosnak tekintjük: 

ℒ∞(𝑋) = {𝑓 ∶ 𝑋 → ℝ,  lényegében korlátos} 

Állítás A ℒ∞(𝑋) függvénytér vektortér. 

Definíció A „végtelen norma” a következő: ‖𝑓‖∞ ≔ ess sup|𝑓|. 

Riesz-tétel 

Tétel (Riesz-tétel) Az 1 ≤ 𝑝 ≤ ∞ esetén a ℒ𝑝(𝑋) tér teljes. Más szóval ez azt jelenti, 

hogy ∀(𝑓𝑛) ⊂ ℒ
𝑝(𝑋) Cauchy-sorozatnak van határértéke: 

∃ lim
𝑛→∞

𝑓𝑛 = 𝑓 ∈ ℒ
𝑝(𝑋) 
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7. tétel: Lineárisan független függvényrendszer ℒ2(𝑅)-ben. 

Ortonormált ill. teljes függvényrendszer. Lineárisan füg-

getlen rendszer ortogonalizációja. Általános Fourier-

analízis. 

Vegyük a ℒ2(𝑅) teret, ahol a majdnem mindenütt egyenlő függvényeket azonosnak tekintjük: 

ℒ2(𝑅) = {𝑓: 𝑅 → ℂ, ∫|𝑓|2 d𝑚
𝑅

< ∞} 

A norma ebben a térben skalárszorzatból származtatható: 

‖𝑓‖2 = 〈𝑓, 𝑓〉
1
2 = (∫|𝑓|2 d𝑚

𝑅

)

1
2

 

Lineárisan független függvényrendszer ℒ2(𝑅)-ben 

Definíció Az 𝑓1, … , 𝑓𝑛 ∈ ℒ
2(𝑅) függvények lineárisan függetlenek, ha 

∑𝛼𝑘𝑓𝑘

𝑛

𝑘=1

= 0 

valamely 𝛼1, … , 𝛼𝑛 esetén akkor és csak akkor teljesül, ha 𝛼𝑘 = 0  ∀𝑘. 

Definíció Az (𝑓𝑛)𝑛∈ℕ végtelen függvényrendszer lineárisan független, ha ∀𝑁 ∈ ℕ esetén 
(𝑓𝑘)𝑘=1,…,𝑁 függvényrendszer lineárisan független. 

Ortonormált ill. teljes függvényrendszer 

Definíció Az 𝑓, 𝑔 ∈ ℒ2 függvények ortogonálisak, ha 〈𝑓, 𝑔〉 = 0. 

Definíció Az 𝑓 ∈ ℒ2 függvény normált, ha ‖𝑓‖2 = 1. 

Definíció Az (𝑓𝑘)𝑘=1,…,𝑛 függvényrendszer ortogonális, ha 𝑘 ≠ 𝑗 esetén 〈𝑓𝑘, 𝑓𝑗〉 = 0. 

Definíció Az (𝑓𝑛)𝑛∈ℕ függvényrendszer ortonormált, ha  

〈𝑓𝑘, 𝑓𝑗〉 = 𝛿𝑘,𝑗 = {
1, 𝑘 = 𝑗
0, 𝑘 ≠ 𝑗

 

Definíció Az (𝑓𝑛)𝑛∈ℕ függvényrendszer teljes, ha ∀𝑓 ∈ ℒ2 előállítható a következőképpen 

𝑓 = ∑𝑐𝑘𝑓𝑘

∞

𝑘=1

, 𝑐𝑘 ∈ ℝ 

vagyis  

lim
𝑛→∞

‖𝑓 −∑𝑐𝑘𝑓𝑘

𝑛

𝑘=1

‖2 = 0 

Következmény Az (𝑓𝑛) teljes, ha ∀𝑓𝑛 ∈ ℒ
2, ∀𝜀 > 0-ra ∃ véges ∑ 𝑐𝑘𝑓𝑘

𝑁
𝑘=1 = 𝐹, melyre 

∫|𝑓 − 𝐹|2 d𝑚
𝑋

< 𝜀 

Következmény
2
 ℒ2-ben az 𝐴 = {∑ 𝑐𝑘𝑓𝑘

𝑛
𝑘=1 : 𝑛 ∈ ℕ, 𝑐𝑘 ∈ ℝ} halmaz sűrűn van. 

Definíció Az (𝑓𝑛)𝑛∈ℕ függvényrendszer teljes ortonormált rendszer (TONR), ha teljes és 

ortonormált is. 
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Lineárisan független rendszer ortogonalizációja 

Tétel (Gram–Schmidt-ortogonalizáció) Adott az (𝑓𝑛) ⊂ ℒ
2 lineárisan független függ-

vényrendszer. Ekkor létezik olyan (𝜑𝑛) ⊂ ℒ
2 függvényrendszer, melyre teljesül-

nek az alábbi tulajdonságok: 

 (𝜑𝑛) ortonormált 

 𝑓𝑛 ∈ {𝜑1, … , 𝜑𝑛} által kifeszített altér: 𝑓𝑛 =∑𝛼𝑘𝑛𝜑𝑘

𝑛

𝑘=1

 𝛼𝑛𝑛 ≠ 0 

 𝜑𝑛 ∈ {𝑓1, … , 𝑓𝑛} által kifeszített altér: 𝜑𝑛 =∑𝛽𝑘𝑛𝑓𝑘

𝑛

𝑘=1

 𝛽𝑛𝑛 ≠ 0 

 Előbbi két tulajdonságból következik, hogy {φ1, … , φn} = {f1, … , fn}  

 (φn) előjelétől eltekintve egyértelmű. 

Bizonyítás Konstruktívan bizonyítunk, megadjuk a 𝜑𝑘 függvényeket. 

1. lépés 

𝜑1 =
𝑓1
‖𝑓1‖

 

2. lépés 

Célunk, hogy {𝜑1, 𝜑2} ON rendszer legyen, miközben 𝑓2 = 𝛼12𝜑1 + 𝛼22𝜑2. 
Ehhez úgy jutunk, hogy meghatározzuk 𝑓2 vetületét 𝜑1-re, majd ezt kivonjuk 𝑓2-
ből és a kapott függvényt lenormáljuk.  

Ha ‖𝜑1‖ = 1, akkor 𝑓2 vetülete 𝜑1-re 𝑓2|𝜑1 = 〈𝑓2, 𝜑1〉 ⋅ 𝜑1. Tehát a 2. lépés után 

𝜑2 =
𝑓2 − 〈𝑓2, 𝜑1〉𝜑1
‖𝑓2 − 〈𝑓2, 𝜑1〉𝜑1‖

 

𝒏. lépés 

Tegyük fel, hogy 𝜑1, … , 𝜑𝑛−1 már a kívánt tulajdonságú. Most is az előző utat 

követjük. Ennek alapján az ortonormált rendszer 𝑛-edik eleme: 

𝜑𝑛 =
𝑓𝑛 − ∑ 〈𝑓𝑛, 𝜑𝑘〉

𝑛−1
𝑘=1 𝜑𝑘

‖𝑓𝑛 − ∑ 〈𝑓𝑛, 𝜑𝑘〉
𝑛−1
𝑘=1 𝜑𝑘‖

 

∎ 

Következmény Ha a kiinduló (𝑓𝑛) teljes, akkor az ortogonalizálással kapott (𝜑𝑛) is teljes. 

Általános Fourier-analízis 

A klasszikus Fourier-sorfejtés 

Tétel Ha 𝑓 ∶ [−𝜋, 𝜋] → ℝ véges sok szakadási hely kivételével folytonosan differenci-
álható és a szakadási helyeken a kétoldali határérték átlagát veszi fel, akkor 

𝑓(𝑥) előáll a következő alakban: 

𝑓(𝑥) =
𝑎0
2
+∑𝑎𝑘 ⋅ cos(𝑘𝑥) + 𝑏𝑘 ⋅ sin(𝑘𝑥)

∞

𝑘=1

   ∀𝑥 

ahol 𝑎𝑘 és 𝑏𝑘 a korábbi tanulmányaink során megismert integrálok. 
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Az imént szereplő tételben a cos(𝑘𝑥) és sin(𝑘𝑥) az alapfüggvények. Most azonban, hogy 

megismertük, miként lehet ortonormált függvényrendszerekkel foglalkozni, megadhatunk más 

alapfüggvényeket, melyekre az ortonormált tulajdonság ugyancsak teljesül. 

Általános Fourier-sorfejtés 

Legyen az alaptér, amelyben dolgozunk, ℒ2. Vegyük a klasszikus Fourier-sorfejtés tételében 

szereplő 𝑎𝑘 ⋅ cos(𝑘𝑥) kifejezést, és alakítsuk át a következőre: 

𝑎𝑘 ⋅ cos(𝑘𝑥) = 𝑎𝑘√𝜋⏟  
𝑐𝑘

⋅
cos(𝑘𝑥)

√𝜋
 

Ekkor 𝑐𝑘 a következőképp számolható: 

𝑐𝑘 =
1

√𝜋
 ∫ 𝑓(𝑥) cos(𝑘𝑥)  d𝑥

𝜋

−𝜋

= ∫ 𝑓(𝑥)
cos(𝑘𝑥)

√𝜋
 d𝑥

𝜋

−𝜋

= 〈𝑓,
cos(𝑘𝑥)

√𝜋
〉 

Tétel Ha (𝜑𝑛) teljes ortonormált rendszer ℒ2-ben, akkor ∀𝑓 ∈ ℒ2 függvény előáll az 

𝑓 = ∑𝑐𝑘𝜑𝑘

∞

𝑘=1

 

konvergens sor összegeként, ahol az ebben szereplő 𝑐𝑘 együtthatók úgy számol-

hatók mint 𝑐𝑘 = 〈𝑓, 𝜑𝑘〉. 

Definíció Ez az előállítás az 𝑓 függvény Fourier-sorfejtése a (𝜑𝑘)𝑘=1,…,∞ rendszer szerint. 

Lemma A 𝐻 Hilbert-térben (𝑥𝑛) ⊂ 𝐻 és lim𝑛→∞ 𝑥𝑛 = 𝑥0 mellett ∀𝑦 ∈ 𝐻 esetén 

lim
𝑛→∞

〈𝑥𝑛, 𝑦〉 = 〈𝑥0, 𝑦〉 
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8. tétel: Ortonormált polinomrendszer: Legendre-polinomok. Parse-

val-egyenlőség és általánosítása. Riesz–Fisher-tétel. 

ℒ2(𝑅) és ℓ2 izometriája. Általános Fourier-együtthatók. 

Ortonormált polinomrendszer: Legendre-polinomok 

Tekintsük a ℒ2([−1,1]) teret. Ennek elemei az 𝑓: [−1,1] → ℝ négyzetesen integrálható függ-

vények. Ebben a térben egy lineárisan független teljes rendszert határoz meg az {1, 𝑥, 𝑥2…} 
függvényrendszer. Ebből a Gram–Schmidt-ortogonalizációval ortonormált bázist kaphatunk: 
(𝑃𝑛)𝑛=1,2,…, melyek ortogoálisak, azaz 

∫ 𝑃𝑛(𝑥) ⋅ 𝑃𝑚(𝑥) d𝑥
1

−1

= 0, ha 𝑛 ≠ 𝑚 

és ∀𝑛-re a 𝑃𝑛(𝑥) pontosan 𝑛-edfokú polinom: 

𝑃𝑛(𝑥) =∑𝛽𝑘𝑛𝑥
𝑘

𝑛

𝑘=0

, 𝛽𝑛𝑛 ≠ 0 

Definíció Az imént bemutatott tulajdonságú polinomrendszer neve Legendre-polinomok. 

Állítás A Legendre-polinomrendszer teljes ortonormált függvényrendszer. 

𝑃𝑛(𝑥) = 𝑐𝑛
d𝑛

d𝑥𝑛
(𝑥2 − 1)𝑛 = 𝑐𝑛((𝑥

2 − 1)𝑛)(𝑛) 

ahol a normalizáló konstans 

𝑐𝑛 = √
2𝑛 + 1

2
⋅

1

2𝑛 ⋅ 𝑛!
 

Bizonyítás Csak az ortogonalitást látjuk be, a normáltság (majdnem) triviális. 

Legyen 𝑛 < 𝑚. Ekkor 

∫ ((𝑥2 − 1)𝑛)(𝑛) ⋅ ((𝑥2 − 1)𝑚)(𝑚) d𝑥
1

−1

= 

= [((𝑥2 − 1)𝑛)(𝑛) ⋅ ((𝑥2 − 1)𝑚)(𝑚−1)]
−1

1
−∫ ((𝑥2 − 1)𝑛)(𝑛+1) ⋅ ((𝑥2 − 1)𝑚)(𝑚−1) d𝑥

1

−1

 

Itt az első tag nulla. A megmaradó integrált parciálisan integrálva szintén hason-

ló eredményre jutunk: az első tag itt is nulla. A parciális integrálást addig foly-

tatva, míg az (𝑥2 − 1)𝑛 tag deriváltja nem nulla, az első tagok kiesnek. Mikor 

pedig a derivált nulla, akkor az egész integrál nulla. ∎ 

Megjegyzés „Legrende-polinomrendszer” címszó alatt más 𝑐𝑛 főegyütthatós 𝑝𝑛 polinomokat 

is találhatunk. Ennek oka, hogy a normalizálás nem mindig a ℒ2 norma szerint 

történik. A két legfontosabb tulajdonság ebben az esetben is, hogy 𝑝𝑛 𝑛-edfokú 

polinom, és ortogonálisak, azaz 〈𝑝𝑛, 𝑝𝑚〉 = 0 
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Parseval-egyenlőség és általánosítása 

Tétel (Parseval-egyenlőség) Legyen (𝜑𝑛) teljes ortonormált rendszer ℒ2(𝑅)-ben. Az 

𝑓 ∈ ℒ2 Fourier-sorfejtése legyen 

𝑓 = ∑𝑐𝑘𝜑𝑘

∞

𝑘=1

 

Ekkor 

‖𝑓‖2 =∑𝑐𝑘
2

∞

𝑘=1

 

Bizonyítás A Fourier-sorfejtésben a végtelen összeg konvergenciája ℒ2(𝑅) normájában 

értendő, azaz 

lim
𝑛→∞

‖∑𝑐𝑘𝜑𝑘

𝑛

𝑘=1

‖ = ‖𝑓‖ 

Az ortogonalitást felhasználva a baloldalon szereplő összeg négyzete: 

‖∑𝑐𝑘𝜑𝑘

𝑛

𝑘=1

‖

2

=∑‖𝑐𝑘𝜑𝑘‖
2

𝑛

𝑘=1

=∑𝑐𝑘
2

𝑛

𝑘=1

 

és ezzel az állítást beláttuk. ∎ 

Tétel (Általánosított Parseval-egyenlőség) Legyen (𝜑𝑛) teljes ortonormált rendszer 

ℒ2(𝑅)-ben és 𝑓, 𝑔 ∈ ℒ2 tetszőlegesek. Ekkor 

〈𝑓, 𝑔〉 = ∑𝑐𝑘𝑑𝑘

∞

𝑘=1

 

ahol 𝑐 = (𝑐𝑘) és 𝑑 = (𝑑𝑘) a megadott 𝑓 és 𝑔 függvények Fourier-együtthatói. A 

fenti összefüggés így is írható: 

〈𝑓, 𝑔〉ℒ2 = 〈𝑐, 𝑑〉ℓ2 

Riesz–Fisher-tétel 

Tétel (Riesz–Fisher-tétel) Adott tetszőleges (𝑑𝑘) ∈ ℓ
2, azaz 

∑𝑑𝑘
2

∞

𝑘=1

< ∞ 

Ekkor létezik 𝑓 ∈ ℒ2(𝑅), melyre 

‖𝑓‖2 =∑𝑑𝑘
2

∞

𝑘=1

 

és melynek Fourier-együttható a 𝑑𝑘 számok. 

Bizonyítás Legyen (𝜑𝑛) teljes ortonormált rendszer. Definiáljuk a következő mennyiséget: 

𝑠𝑛 =∑𝑑𝑘𝜑𝑘

𝑛 

𝑘=1
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Bármilyen 𝑚 > 𝑛 esetén 

‖𝑠𝑛 − 𝑠𝑚‖
2 = ∑ ∑ 𝑑𝑗𝑑𝑘〈𝑓𝑗 , 𝑓𝑘〉

𝑚

𝑘=𝑛+1

𝑚

𝑗=𝑛+1

= ∑ 𝑑𝑘
2

𝑚

𝑘=𝑛+1

 

Tehát az (𝑠𝑛) sorozat Cauchy-sorozat. Mivel Hilbert-térben vagyunk, ezért léte-

zik olyan 𝑓, melyre a lim𝑛→∞ ‖𝑠𝑛 − 𝑓‖ = 0, így a tétel állítása igaz. ∎ 

ℒ2(𝑅) és ℓ2 izometriája 

A Parseval-egyenlőségből az következik, hogy ∀𝑓 ∈ ℒ2(𝑅) függvényhez hozzá tudunk ren-

delni egy ℓ2-beli sorozatot, éspedig a (𝜑𝑛) teljes ortonormált rendszer segítségével. Az álta-

lánosított Parseval-egyenlőség következménye, hogy a ℒ2(𝑅) és ℓ2 terek izometrikusan izo-

morfak. Az izometriát tetszőleges teljes ortonormált rendszer alapján a Fourier-együtthatókkal 

meg lehet adni: 

𝑓 ⟷ (𝑐𝑛) 

Ha az ortonormált rendszer nem teljes, akkor is definiálhatjuk a Fourier sorfejtését az adott 

ortonormált rendszer szerint. Ekkor azonban a sor összege nem feltétlenül egyezik meg a ki-

induló függvénnyel. 

∑𝑐𝑘𝜑𝑘

∞

𝑘=1

= 𝑆 ⇏ 𝑓 = 𝑆 

Általános Fourier-együtthatók 

Legyen az alaptér, amelyben dolgozunk, ℒ2. Vegyük a klasszikus Fourier-sorfejtés tételében 

szereplő 𝑎𝑘 ⋅ cos(𝑘𝑥) kifejezést, és alakítsuk át a következőre: 

𝑎𝑘 ⋅ cos(𝑘𝑥) = 𝑎𝑘√𝜋⏟  
𝑐𝑘

⋅
cos(𝑘𝑥)

√𝜋
 

Ekkor 𝑐𝑘 a következőképp számolható: 

𝑐𝑘 =
1

√𝜋
 ∫ 𝑓(𝑥) cos(𝑘𝑥)  d𝑥

𝜋

−𝜋

= ∫ 𝑓(𝑥)
cos(𝑘𝑥)

√𝜋
 d𝑥

𝜋

−𝜋

= 〈𝑓,
cos(𝑘𝑥)

√𝜋
〉 

Tétel Ha (𝜑𝑛) teljes ortonormált rendszer ℒ2-ben, akkor ∀𝑓 ∈ ℒ2 függvény előáll az 

𝑓 = ∑𝑐𝑘𝜑𝑘

∞

𝑘=1

 

konvergens sor összegeként, ahol az ebben szereplő 𝑐𝑘 együtthatók úgy számol-

hatók mint 𝑐𝑘 = 〈𝑓, 𝜑𝑘〉. 

Definíció Ez az előállítás az 𝑓 függvény Fourier-sorfejtése a (𝜑𝑘)𝑘=1,…,∞ rendszer szerint. 
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9. tétel: Általános ℒ𝜌
2(𝑅) terek adott 𝜌 súlyfüggvénnyel. ON 

polinomrendszerek tulajdonságai. Példák: Csebisev-, 

Hermite-, Laguerre-polinomok. Egy ON függvényrendszer: 

Haar-rendszer. 

Általános ℒ𝜌
2(𝑅) terek adott 𝜌 súlyfüggvénnyel 

Legyen 𝑅 ⊂ ℝ. A klasszikus Lebesgue-mérték helyett egy súlyfüggvénnyel megadott mérté-

ket használunk. Ez a következő: 

𝑚𝜌(𝐴) = ∫𝜌 d𝑚
𝐴

 

ahol 𝜌 ∶ 𝑅 → ℝ+ adott Lebesgue-integrálható függvény. Formálisan tehát azt írhatjuk, hogy 

d𝑚𝜌 = 𝜌 d𝑚 

Az 𝑚𝜌 mérték szerinti integrál egy 𝐸 mérhető halmazon így számolható: 

∫𝑓 d𝑚𝜌
𝐸

= ∫𝑓 ⋅ 𝜌 d𝑚
𝐸

 

Definíció Az általános ℒ𝜌
2(𝑅) teret így értelmezzük: 

ℒ𝜌
2(𝑅) = {𝑓: 𝑅 → ℝ ∶  ∫𝑓2 d𝑚𝜌

𝑅

= ∫𝑓2 ⋅ 𝜌 d𝑚
𝑅

< ∞} 

Ebben a térben is azonosnak tekintjük azokat a függvényeket, melyek majdnem 

mindenütt egyenlők. 

Definíció A ℒ𝜌
2(𝑅) térben a skalárszorzatot úgy definiáljuk mint 

〈𝑓, 𝑔〉𝜌 = ∫𝑓 ⋅ 𝑔 ⋅  𝜌 d𝑚
𝑅

 

és ezért a belőle származtatható norma 

‖𝑓‖2,𝜌 = (∫|𝑓|
2 ⋅ 𝜌 d𝑚

𝑅

)

1
2

 

ON polinomrendszerek tulajdonságai 

Ebben a „súlyozott” térben a polinomrendszer ortogonalitása azt jelenti, hogy 

∫𝑃𝑛𝑃𝑚 ⋅ 𝜌 d𝑚 = 0, 𝑛 ≠ 𝑚
𝑅

 

Ugyanígy a normáltságot a súlyfüggvénnyel ellátott norma szerint kell érteni: 

(∫|𝑃𝑛|
2 ⋅ 𝜌 d𝑚

𝑅

)

1
2

= 1 

Tehát az ortonormáltság feltétele: 

〈𝑃𝑘, 𝑃𝑗〉 = ∫𝑃𝑘𝑃𝑗 ⋅  𝜌 d𝑚
𝑅

= 𝛿𝑘,𝑗 = {
1, 𝑘 = 𝑗
0, 𝑘 ≠ 𝑗
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Példák: Csebisev-, Hermite-, Laguerre-polinomok 

Polinomrendszerek megadásánál mindig az {1, 𝑥, 𝑥2, … } bázisból indulunk ki, melyre az 

∫(𝑥𝑘)2 𝜌 d𝑚
𝑅

 

integrált számoljuk ki. Ennek eredményeképp állnak elő az alábbi polinom-rendszerek. 

Csebisev-polinomok 

Legyen 𝑅 = [−1,1]. 

Állítás Az elsőfajú (még normálatlan) Csebisev-polinomok: 

𝑇𝑛(𝑥) = cos(𝑛 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥)) 

és a súlyfüggvény 

𝜌1 =
1

√1 − 𝑥2
 

Állítás A másodfajú (még normálatlan) Csebisev-polinomok: 

𝑈𝑛(𝑥) =
sin((𝑛 + 1) 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥))

sin(𝑎𝑟𝑐𝑐𝑜𝑠(𝑥))
 

és a súlyfüggvény 

𝜌2 = √1 − 𝑥2 

Bevezetve az 𝑥 = cos(𝜃) jelölést a polinomok a következő alakban is írhatók: 

𝑇𝑛(𝑥) = cos(𝑛𝜃) 

𝑈𝑛(𝑥) =
sin((𝑛 + 1)𝜃)

sin(𝜃)
 

Hermite-polinomok 

Legyen 𝑅 = ℝ. 

Állítás A Herimte-polinomok: 

𝐻𝑛(𝑥) = (−1)
𝑛𝑒𝑥

2
⋅
d𝑛

d𝑥𝑛
(𝑒−𝑥

2
) 

és a súlyfüggvény 

𝜌 = 𝑒−𝑥
2
 

A fenti képlet deriválásával az alábbi rekurzív előállítást kapjuk: 

𝐻𝑛
′ (𝑥) = 2𝑥𝐻𝑛(𝑥) − 𝐻𝑛+1(𝑥) 

Laguerre-polinomok 

Legyen 𝑅 = ℝ+. 

Állítás A Laguerre-polinomok: 

𝐿𝑛(𝑥) =
𝑒𝑛

𝑛!

d𝑛

d𝑥𝑛
(𝑥𝑛𝑒−𝑥) 

és a súlyfüggvény 

𝜌 = 𝑒−𝑥 
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Egy ON függvényrendszer: Haar-rendszer 

Legyen az alaptér ℒ2([0,1]). Ebben a térben a Haar-függvények ortonormált rendszert alkot-

nak. Ezek nem polinomok, hanem „wavelet”-ek. Megadásuk blokkokban történik: az 𝑛-edik 

blokk függvényei 𝐻𝑛,𝑘, ahol 𝑘 = 1,… , 2𝑛. Minden esetben 𝐻𝑛,𝑘: [0,1] → ℝ. 

Ha 𝑛 = 0, akkor két függvény van. A (kivételesen létező) 𝐻0,0 és 𝐻0,1. Ezek a következők: 

𝐻0,0(𝑥) = 1  ∀𝑥 ∈ [0,1], 𝐻0,1(𝑥) = {
1, 0 ≤ 𝑥 <

1

2

0,
1

2
≤ 𝑥 ≤ 1

 

Ha 𝑛 = 1, akkor 21, azaz két függvény van. A [0,1] intervallumot ugyanennyi darabra oszt-

juk. A 𝐻1,1 az első, a 𝐻1,2 a második részen vesz föl nullától különböző értéket: 

𝐻1,1(𝑥) =

{
 
 

 
 √2, 0 ≤ 𝑥 <

1

22

−√2,
1

22
≤ 𝑥 <

1

2

0, 𝑥 ≥
1

2

, 𝐻1,2(𝑥) =

{
 
 

 
 √2,

1

2
≤ 𝑥 <

3

22

−√2,
3

22
≤ 𝑥 ≤ 1

0, 𝑥 ≤
1

2

 

Ha 𝑛 > 0 tetszőleges szám, akkor a [0,1] intervallumot 2𝑛 részre osztjuk és a 𝐻𝑛,𝑘 függvény 

a 𝑘-adik blokkban veszi fel a nullától különböző értékeit. Általánosan 𝐻𝑛,𝑘 megadása: 

𝐻𝑛,𝑘 =

{
 
 

 
 √2𝑛,

𝑘 − 1

2𝑛
≤ 𝑥 <

𝑘 − 1 2⁄

2𝑛

−√2𝑛,
𝑘 − 1 2⁄

2𝑛
≤ 𝑥 ≤

𝑘

2𝑛

0, máskülönben
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10. tétel: Absztrakt lineáris operátorok. Folytonosság. Korlátosság. 

Operátor normája. Példák: ℓ2-ben, 𝒞([𝑎, 𝑏])-ban, ℝ𝑛-

ben. ℬ(𝑋, 𝑌) mint normált tér. 

Absztrakt lineáris operátorok 

Legyen 𝑋 és 𝑌 két vektortér a 𝕂 számtest felet. (A számtest most ℝ vagy ℂ.) 

Definíció Egy 𝑇 ∶ 𝑋 → 𝑌 leképezést operátornak nevezünk. 

Definíció A 𝑇: 𝑋 → 𝑌 operátor lineáris, ha értelmezési tartománya 𝐷𝑇 ⊂ 𝑋 lineáris altér és 

ha 𝑇{𝛼𝑥 + 𝛽𝑦} = 𝛼𝑇{𝑥} + 𝛽𝑇{𝑦} ∀𝑥, 𝑦 ∈ 𝑋 és 𝛼, 𝛽 ∈ 𝕂. 

Definíció Ha 𝑅𝑇 = ℝ vagy ℂ számtest, akkor a 𝑇: 𝑋 → 𝕂 operátort funkcionálnak hívjuk. 

Folytonosság 

Definíció Azt mondjuk, hogy a 𝑇:𝑋 → 𝑌 lineáris operátor folytonos az 𝑥0 ∈ 𝑋 pontban, ha 

∀𝜀 > 0-hoz ∃𝛿 > 0, melyre ha ‖𝑥 − 𝑥0‖𝑋 < 𝛿, akkor ‖𝑇𝑥 − 𝑇𝑥0‖𝑌 < 𝜀. 

Állítás A 𝑇 operátor folytonossága az 𝑥0-ban ekvivalens a sorozatfolytonosságggal. Ez 

azt jelenti, hogy ha tetszőleges 𝑋-beli sorozat esetén lim𝑛→∞ 𝑥𝑛 = 𝑥0, akkor a 

megfelelő 𝑌-beli sorozatra lim𝑛→∞ 𝑇𝑥𝑛 = 𝑇𝑥0 teljesül. 

Tétel A 𝑇: 𝑋 → 𝑌 lineáris operátor pontosan akkor folytonos minden pontban, ha 
egyetlen pontban folytonos. 

Bizonyítás Tegyük fel, hogy 𝑇 folytonos valamely 𝑥0 ∈ 𝑋 pontban. Legyen 𝑥 ∈ 𝑋 egy má-

sik tetszőleges pont. A sorozatfolytonosságot látjuk be. Legyen (𝑥𝑛) ⊂ 𝑋 egy 

olyan sorozat, melyre lim𝑛→∞ 𝑥𝑛 = 𝑥. Definiálunk egy másik (𝑦𝑛) sorozatot: 

𝑦𝑛 = 𝑥𝑛 − 𝑥 + 𝑥0 
Ennek határértéke: 

lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

(𝑥𝑛 − 𝑥 + 𝑥0) = 𝑥 − 𝑥 + 𝑥0 = 𝑥0 

Ezért lim𝑛→∞ 𝑇𝑦𝑛 = 𝑇𝑥0 az 𝑥0-beli folytonosság miatt. Másrészt 𝑇 lineáris: 

𝑇𝑥0 = lim
𝑛→∞

𝑇𝑦𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 − 𝑇𝑥 + 𝑇𝑥0 

Ezért valóban lim𝑛→∞ 𝑇𝑥𝑛 = 𝑇𝑥, ami az 𝑥-beli folytonosságot igazolja. ∎ 

Korlátosság 

Definíció A 𝑇: 𝑋 → 𝑌 lineáris operátor korlátos, ha ∃𝑀 > 0, melyre 

‖𝑇𝑥‖𝑌 < 𝑀 ⋅ ‖𝑥‖𝑋   ∀𝑥 

Tétel Egy 𝑇: 𝑋 → 𝑌 lineáris operátor pontosan akkor korlátos, ha folytonos. 

Bizonyítás „Odafele” Tegyük fel, hogy 𝑇 korlátos. Nyilván 𝑇(0) = 0. A korlátosság miatt 

van olyan 𝑀, amelyre ‖𝑇𝑥‖ ≤ 𝑀‖𝑥‖, ∀𝑥. Ezért ha az (𝑥𝑛) sorozatra 𝑥𝑛 → 0, 

akkor 𝑇𝑥𝑛 → 0. Tehát 𝑇 az 𝑥0-ban folytonos. 

„Visszafele” Tegyük fel, hogy 𝑇 folytonos 𝑥0 = 0-ban. Ekkor 𝜀 = 1-hez van 

olyan 𝛿, melyre ‖𝑥 − 0‖ ≤ 𝛿 ⟹ ‖𝑇𝑥 − 0‖ ≤ 1. Legyen 𝑥 ∈ 𝑋 tetszőleges, 

𝑥 ≠ 0. Ekkor az 𝑦 = 𝛿
𝑥

‖𝑥‖
 vektor normája ‖𝑦‖ =

𝛿

‖𝑥‖
‖𝑥‖ = 𝛿. A folytonosság 

miatt ezért ‖𝑇𝑦‖ ≤ 1. Átrendezve 

𝑇𝑦 = 𝑇 {
𝛿

‖𝑥‖
𝑥} =

𝛿

‖𝑥‖
𝑇𝑥 ⟹ ‖𝑇𝑦‖ =

𝛿

‖𝑥‖
‖𝑇𝑥‖ ≤ 1 

Ebből azt kapjuk, hogy ‖𝑇𝑥‖ ≤
1

𝛿
‖𝑥‖ ∀𝑥. Tehát 𝑀 =

1

𝛿
 választással a korlátos-

ság definíciója teljesül. ∎ 
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Operátor normája 

Definíció Egy 𝑇 korlátos és lineáris operátor normája a legkisebb 𝑀 ≥ 0, melyre a 
‖𝑇𝑥‖𝑌 < 𝑀 ⋅ ‖𝑥‖𝑋   ∀𝑥 tulajdonság teljesül: 

‖𝑇‖ = min{𝑀 ∶ ‖𝑇𝑥‖ ≤ 𝑀‖𝑥‖, ∀𝑥} 

Példák: ℓ2-ben, 𝒞([𝑎, 𝑏])-ben, ℝ𝑛-ben 

Példa ℝ𝒏-ben 

Legyen 𝑋 és 𝑌 véges dimenziós vektortér, például 𝑋 = ℝ𝑛 és 𝑌 ∈ ℝ𝑚. Egy 𝑇:𝑋 → 𝑌 operá-

tor pontosan akkor lineáris, ha ∃𝐴 ∈ ℝ𝑚×𝑛 mátrix, melyre 𝑇𝑥 = 𝐴 ⋅ 𝑥, vagyis 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] , 𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑛

] , (𝐴𝑥)𝑗 =∑𝑎𝑗𝑘𝑥𝑘

𝑛

𝑘=1

 

Példa 𝓵𝟐-ben 

Legyen 𝑋 = 𝑌 = ℓ2. A bal shift (balra tolás) operátort úgy definiáljuk mint 𝑇: ℓ2 → ℓ2, ahol 

𝑇{[𝑥1, 𝑥2, … , 𝑥𝑛, … ]} = [𝑥2, 𝑥3, … , 𝑥𝑛, … ] 

Vizsgáljuk meg a korlátosságot! Legyen 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛, … ] ∈ ℓ
2. Ennek normája 

‖𝑥‖ = (∑𝑥𝑖
2

∞

𝑘=1

)

1
2

 

Megbecsüljük 𝑇𝑥 normáját: 

𝑇𝑥 = [𝑥2, 𝑥3, … , 𝑥𝑛 , … ], ‖𝑇𝑥‖ = (∑𝑥𝑖
2

∞

𝑖=2

)

1
2

≤ 1 ⋅ (∑𝑥𝑖
2

∞

𝑖=1

)

1
2

= ‖𝑥‖ 

Ezért minden 𝑀 ≥ 1 számra teljesül a korlátosság feltétele, vagyis 𝑇 korlátos. E felső korlát 

mellet ha 𝑥 = [0,1,0,0, … ], akkor ‖𝑥‖ = 1 és ‖𝑇𝑥‖ = ‖[1,0,0,… ]‖ = 1, tehát ‖𝑇‖ = 1. 

Példa 𝓒([𝒂, 𝒃])-ben 

Legyen 𝑋 = 𝒞([𝑎, 𝑏]) és 𝑌 = ℝ. Az integrál operátor már jól ismert: 𝑓 ∈ 𝒞([𝑎, 𝑏]) esetén 

𝑇𝑓 ≔ ∫ 𝑓(𝑥)  d𝑥
𝑏

𝑎

 

Vizsgáljuk meg a korlátosságot! 

‖𝑇𝑓‖ = |∫ 𝑓(𝑥) d𝑥
𝑏

𝑎

| ≤ ∫ |𝑓(𝑥)| d𝑥
𝑏

𝑎

≤ ∫ ‖𝑓‖ d𝑥
𝑏

𝑎

= (𝑏 − 𝑎)‖𝑓‖ 

Ezért minden 𝑀 ≥ 𝑏 − 𝑎 számra teljesül a korlátosság feltétele, vagyis 𝑇 korlátos. A norma 

meghatározásához nézzük azt, ha 𝑓 ≡ 𝑐 konstanssal, akkor 

|𝑇𝑓| = ∫ |𝑐| d𝑥
𝑏

𝑎

= |𝑐|(𝑏 − 𝑎) = ‖𝑓‖(𝑏 − 𝑎) 

ezért az integrál operátor normája ‖𝑇‖ = 𝑏 − 𝑎. 
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ℬ(𝑋, 𝑌) mint normált tér 

Definíció Az 𝑋 és 𝑌 közötti korlátos lineáris operátorok halmaza ℬ(𝑋, 𝑌): 

ℬ(𝑋, 𝑌) = {𝑇 ∶ 𝑋 → 𝑌, korlátos, lineáris} 

Ez az operátornormával normált-teret alkot. 

Állítás Ha 𝑌 Banach-tér, akkor ℬ(𝑋, 𝑌) is Banach-tér. 

Bizonyítás (Vázlat) Legyen (𝑇𝑛) ⊂ ℬ(𝑋, 𝑌) korlátos lineáris operátorokból álló Cauchy-

sorozat. Ez azt jelenti, hogy ∀𝜀 > 0-hoz ∃𝑁 küszöbindex, melyre 

‖𝑇𝑛 − 𝑇𝑚‖ < 𝜀, ∀𝑛,𝑚 ≥ 𝑁 

Az operátornorma definíciója szerint ebből következik, hogy ∀𝑥-re 

‖(𝑇𝑛 − 𝑇𝑚){𝑥}‖ ≤ ‖𝑇𝑛 − 𝑇𝑚‖‖𝑥‖ ⟹ ‖𝑇𝑛𝑥 − 𝑇𝑚𝑥‖ ≤ 𝜀‖𝑥‖ 

Emiatt (𝑇𝑛𝑥) ⊂ 𝑌 Cauchy-sorozat minden 𝑥-re, tehát 𝑌 teljessége miatt a soro-

zat konvergens. Ezért lim𝑛→∞ 𝑇𝑛𝑥 jól definiált. Legyen 𝑇𝑥 ≔ lim𝑛→∞ 𝑇𝑛𝑥, ahol 

𝑇𝑥 ∈ 𝑌. Az így kapott 𝑇: 𝑋 → 𝑌 operátor lineáris és korlátos. Korlátossága abból 

következik, hogy ha (𝑇𝑛) operátor-sorozat Cauchy-sorozat, akkor korlátos. Ezért 

van olyan 𝑀, melyre ‖𝑇𝑛‖ ≤ 𝑀 minden 𝑛-re teljesül, és a határérték monotoni-

tása miatt 𝑇-re is. ∎ 

Következmény Ha 𝑌 = ℝ, akkor ℬ(𝑋,ℝ) Banach-tér. Tehát az 𝑋 téren értelmezett funkcionálok 

Banach-teret alkotnak. 
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11. tétel: Lineáris funkcionál mint absztrakt lineáris operátor. Példák 

függvényterekben. Funkcionál normája. Duális tér. Pél-

da: ℝ𝑛. Gyenge és erős konvergencia. Második duális tér. 

Reflexív terek. 

Lineáris funkcionál mint absztrakt lineáris operátor 

Definíció Az 𝑓 ∶ 𝑋 → ℝ korlátos lineáris operátort lineáris funkcionálnak nevezzük. 

A funkcionálok jelölésére kisbetűket használunk: 𝑓, 𝑔 stb. Az 𝑥 ∈ 𝑋-hez rendelt értéket újra a 

valós függvényeknél megszokott módon 𝑓(𝑥) fogja jelölni. 

Példák függvényterekben 

1 Példa 

Legyen 𝒞([𝑎, 𝑏]) az [𝑎, 𝑏]-n értelmezett valós értékű folytonos függvények tere. Az integrál-

operátor jól ismert, 𝑥(𝑡) ∈ 𝒞([𝑎, 𝑏]) esetén 

𝑓(𝑥) = ∫ 𝑥(𝑡) d𝑡
𝑏

𝑎

 

2. Példa 

Rögzített 𝑦 ∈ 𝒞([𝑎, 𝑏]) mellett 

𝑔(𝑥) = ∫ 𝑥(𝑡)𝑦(𝑡) d𝑡
𝑏

𝑎

 

2. Példa 

Rögzített 𝑡0 ∈ [𝑎, 𝑏] mellett 

𝛿𝑡0(𝑥) = 𝑥(𝑡0) = ∫ 𝑥(𝑡)𝛿(𝑡 − 𝑡0) d𝑡
𝑏

𝑎

 

Funkcionál normája 

Definíció Egy 𝑓 korlátos és lineáris funkcionál normája a következőképpen kapható meg: 

‖𝑓‖ = sup{|𝑓(𝑥)| ∶ ‖𝑥‖ = 1} 

Duális tér 

Definíció Az (𝑋, ‖⋅‖) tér duálisa az 𝑋-en értelmezett korlátos lineáris funkcionálok hal-

maza. Jele 𝑋∗. 

A korábbi jelöléssel 𝑋∗ = ℬ(𝑋, ℝ). Az 𝑋∗ elemei korlátos és lineáris operátorok, tehát 𝑋∗-ban 

norma értelmezhet a már ismert módon: 
‖𝑓‖ = sup{|𝑓(𝑥)| ∶ ‖𝑥‖ = 1} 

Példa: ℝ𝑛 

Belátjuk, hogy ha 𝑓:ℝ𝑛 → ℝ lineáris leképezés, akkor ∃𝑎 ∈ ℝ𝑛, melyre 𝑓(𝑥) = 𝑎𝑇𝑥. Legyen 

ugyanis 𝑒𝑗 ∈ ℝ𝑛 a 𝑗-edik egységvektor, melynek csupán a 𝑗-edik eleme 1, a többi 0. Jelölje 

𝑎𝑗 = 𝑓(𝑒
𝑗). Ekkor 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] = ∑ 𝑥𝑗𝑒

𝑗𝑛
𝑗=1  miatt a linearitást felhasználva: 
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𝑓(𝑥) =∑𝑥𝑗𝑓(𝑒
𝑗)

𝑛

𝑗=1

=∑𝑎𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑎𝑇𝑥 

Ezért (ℝ𝑛)∗ = ℝ𝑛. Az (ℝ𝑛)∗-on indukált norma függ attól, hogy ℝ𝑛-ben milyen normát te-
kintünk. Az Euklideszi normával 

|𝑓(𝑥)| = |∑𝑎𝑗𝑥𝑗

𝑛

𝑗=1

| ≤ √∑𝑎𝑗
2

𝑛

𝑗=1

⋅ √∑𝑥𝑗
2

𝑛

𝑗=1

= ‖𝑎‖ ⋅ ‖𝑥‖ 

Mivel 𝑓(𝑎) = ‖𝑎‖ ⋅ ‖𝑎‖, ezért azt kapjuk, hogy ‖𝑓‖ = ‖𝑎‖2 

Most ha a normát megváltoztatjuk és az ‖𝑥‖∞ = max{𝑥𝑗} normával számolunk, akkor 

|𝑓(𝑥)| = |∑𝑎𝑗𝑥𝑗

𝑛

𝑗=1

| ≤ ∑|𝑎𝑗𝑥𝑗|

𝑛

𝑗=1

≤ max|𝑥𝑗|∑|𝑎𝑗|

𝑛

𝑗=1

= ‖𝑥‖∞‖𝑎‖1 

A fenti sorban 𝑥𝑗 = sign(𝑎𝑗) választással egyenlőséget kapunk. Így ‖𝑓‖ = ‖𝑎‖1. A duális tér 

függ az alaptér normájától. Azt kapjuk, hogy 

(ℝ𝑛, ‖⋅‖2)
∗ = (ℝ𝑛, ‖⋅‖2), (ℝ𝑛, ‖⋅‖∞)

∗ = (ℝ𝑛, ‖⋅‖1) 

Általában is igaz, hogy 

(ℝ𝑛, ‖⋅‖𝑝)
∗
= (ℝ𝑛, ‖⋅‖𝑞),  ahol 

1

𝑝
+
1

𝑞
= 1 

Hasonlóan belátható, hogy (ℓ2)∗ = ℓ2 és (ℓ𝑝)∗ = ℓ𝑞, ahol 𝑝, 𝑞 Hölder-konjugáltak. 

Gyenge és erős konvergencia 

Definíció Az (𝑥𝑛) sorozat gyengén konvergál az 𝑥0 ponthoz, ha 

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(𝑥0), ∀𝑓 ∈ 𝑋∗ 

Definíció Az (𝑥𝑛) sorozat erősen konvergál az 𝑥0 ponthoz, ha  

lim
𝑛→∞

‖𝑥𝑛 − 𝑥0‖ = 0 

Állítás Ha ahz (𝑥𝑛) ⊂ 𝑋 sorozat erősen konvergens, akkor gyengén is konvergens. 

Bizonyítás Tegyük fel, hogy az (𝑥𝑛) sorozat erősen konvergens. Legyen 𝑓 ∈ 𝑋∗egy funkci-

onál. Ekkor a linearitás miatt 𝑓(𝑥𝑛) − 𝑓(𝑥0) = 𝑓(𝑥𝑛 − 𝑥0). Ezért 

|𝑓(𝑥𝑛) − 𝑓(𝑥0)| = |𝑓(𝑥𝑛 − 𝑥0)| ≤ ‖𝑓‖‖𝑥𝑛 − 𝑥0‖ → 0 

tehát a sorozat gyengén is konvergens. ∎ 

Megjegyzés A fenti állítás megfordítása nem igaz. 
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Második duális tér 

Definíció Az 𝑋 normált tér második duális tere az 𝑋∗ duális tere. Jelölése: 𝑋∗∗ 

Nézzünk egy példát! Legyen 𝑥0 ∈ 𝑋 rögzített. Ennek megfeleltethető egy 𝜑𝑥0: 𝑋
∗ → ℝ leké-

pezés: 𝑓 ∈ 𝑋∗ ⟼𝜑𝑥0(𝑓) = 𝑓(𝑥0). A 𝜑𝑥0 lineáris és korlátos. Utóbbi azért, mert 

|𝜑𝑥0(𝑓)| = |𝑓(𝑥0)| ≤ ‖𝑓‖‖𝑥0‖ 

Tehát 𝜑𝑥0 ∈ 𝑋
∗∗, sőt, igazolható, hogy ‖𝜑𝑥0‖𝑋∗∗ =

‖𝑥0‖𝑋. 

Mindezekből azt kapjuk, hogy 𝑋 ⊆ 𝑋∗∗ természetes módon beágyazható. 

Reflexív terek 

Definíció Ha 𝑋 = 𝑋∗∗, akkor a tér reflexív. Ha 𝑋 ⊊ 𝑋∗∗, akkor a tér irreflexív. 

Példa 

Az 𝑋 = ℝ𝑛 tér bármilyen normával tekintve reflexív. 

Az 𝑋 = 𝑐0, ahol 𝑐0 a nullsorozatok tere, irreflexív. 
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12. tétel: Folytonos lineáris operátorok Banach térben: ℬ(𝑋). Operá-

torok szorzata. Banach-algebra. Inverz operátor létezésé-

nek feltétele. Inverz operátorok tulajdonságai. Spektrum. 

Kapcsolat a sajátértékkel. Operátor spektrumának alaptu-

lajdonságai. Példák. 

Folytonos lineáris operátorok Banach térben: ℬ(𝑋) 

Definíció Az 𝑋 és 𝑌 közötti korlátos lineáris operátorok halmaza ℬ(𝑋, 𝑌), ahol speciálisan, 

ha 𝑌 = 𝑋, akkor ezt úgy írjuk, mint ℬ(𝑋): 

ℬ(𝑥) = {𝑇: 𝑋 → 𝑋 ,  korlátos, lineáris} 

A ℬ(𝑋)-en gazdag struktúra van. Vektortér, és van rajta norma is értelmezve. 

Operátorok szorzata 

A ℬ(𝑋) téren definiálható két operátor, 𝑇, 𝑆 ∈ ℬ szorzata, mégpedig 𝑇𝑆 ≔ 𝑇 ∘ 𝑆 ∈ ℬ(𝑋). 

Banach-algebra 

Definíció Tegyük fel, hogy 𝑋 teljes normált tér, azaz Banach-tér. Ekkor ℬ(𝑥) is Banach-
tér, melyen szorzást értelmeztünk. Ez egy Banach-algebra. 

Ebben a térben a szorzásra nézve van egységelem: 𝐼: 𝑋 → 𝑋, melyre 𝑥 ↦ 𝐼𝑥 ≔ 𝑥. Ekkor 

𝑇𝐼 = 𝐼𝑇 = 𝑇, ∀𝑇 ∈ ℬ(𝑋) 

Inverz operátor létezésének feltétele 

Definíció A 𝑇 ∈ ℬ(𝑋) operátor invertálható, ha van olyan 𝑆 ∈ ℬ(𝑋) operátor, melyre 

𝑇𝑆 = 𝑆𝑇 = 𝐼. 

Tétel Legyen 𝑋 egy Banach-tér. Tegyük fel, hogy valamely 𝑇 ∈ ℬ(𝑋) lineáris operá-

torra teljesül, hogy ‖𝑇‖ < 1. Ekkor 𝐼 − 𝑇 invertálható, és 

(𝐼 − 𝑇)−1 =∑𝑇𝑘
∞

𝑘=0

 

Bizonyítás Az 𝐼 − 𝑇: 𝑋 → 𝑋 hozzárendelés azt jelenti, hogy ha (𝐼 − 𝑇)𝑥 = 𝑦, akkor 

𝑥 − 𝑇𝑥 = 𝑦. Ha invertálható az operátor, akkor bármilyen rögzített 𝑦-hoz meg-

kereshetjük a megfelelő 𝑥-et. Átrendezve az 𝑥 − 𝑇𝑥 = 𝑦 összefüggés azzal lesz 

ekvivalens, hogy 𝑥 = 𝑦 + 𝑇𝑥. Tetszőleges 𝑦 ∈ 𝑋 esetén ez előbbi egyenlet meg-
oldását iterációval keressük: 

Legyen 𝑥0 ∈ 𝑋 tetszőleges, ez a kiindulópont. Az iteráció további lépései 

𝑥1 = 𝑦 + 𝑇𝑥0, 𝑥2 = 𝑦 + 𝑇𝑥1, … , 𝑥𝑛 = 𝑦 + 𝑇𝑥𝑛−1, … 

Így kapunk egy (𝑥𝑛) ⊂ 𝑋 sorozatot. Ekkor 

𝑥𝑛+1 − 𝑥𝑛 = (𝑦 + 𝑇𝑥𝑛) − (𝑦 + 𝑇𝑥𝑛−1) = 𝑇𝑥𝑛 − 𝑇𝑥𝑛−1 = ⋯ = 𝑇𝑛(𝑥1 − 𝑥0) 

Ezért a norma korlátossága miatt ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ ‖𝑇
𝑛‖ ⋅ ‖𝑥1 − 𝑥0‖. Felhasznál-

va a szub-multiplikatív tulajdonságot: 

‖𝑇𝑛‖ ⋅ ‖𝑥1 − 𝑥0‖ ≤ ‖𝑇‖
𝑛 ⋅ ‖𝑥1 − 𝑥0‖ 
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Felhasználva továbbá, hogy ‖𝑇‖ < 1, látható, hogy ‖𝑥𝑛+1 − 𝑥𝑛‖ → 0 exponen-

ciális sebességgel. Ezért (𝑥𝑛) Cauchy-sorozat 𝑋-ben, tehát konvergens, és határ-

értéke az 𝑥∗. A sorozatot definiáló egyenlet 𝑥𝑛+1 = 𝑦 + 𝑇𝑥𝑛 átrendezése a ha-

tárátmenettel: 𝑥∗ = 𝑦 + 𝑇𝑥∗, átrendezve azt kapjuk, hogy 𝑥∗ = (𝐼 − 𝑇)−1𝑦 , te-

hát 𝑦-nak valóban létezik ősképe. 𝑥0 = 0 választással pedig a fenti sorozat tagjai 

𝑥𝑛 = 𝑦 + 𝑇𝑥𝑛−1 = 𝑦 + 𝑇(𝑦 + 𝑇𝑥𝑛−1) = 𝑦 + 𝑇𝑦 + 𝑇
2𝑥𝑛−1 = ⋯ =∑𝑇𝑘𝑦

𝑛−1

𝑘=0

 

ahol 𝑛 → ∞ esetben a tétel állítását kapjuk. ∎ 

Inverz operátorok tulajdonságai 

A tételnek két következménye van: 

Állítás Legyen 𝑇 ∈ ℬ(𝑋) invertálható operátor. Tegyük fel, hogy valamely 𝑆 ∈ ℬ(𝑋)-re 

‖𝑆‖ <
1

‖𝑇−1‖
 

Ekkor 𝑇 + 𝑆 is invertálható marad. 

Bizonyítás Szorzatként írva: 𝑇 + 𝑆 = 𝑇(𝐼 + 𝑇−1𝑆) = 𝑇(𝐼 + 𝐴). A jobboldal első tényezője 

invertálható. A második tényezőben szereplő 𝐴 mátrix normája 

‖𝐴‖ = ‖𝑇−1𝑆‖ ≤ ‖𝑇−1‖‖𝑆‖ < 1 

ezért 𝐼 + 𝐴 invertálható. ∎ 

Állítás ℬ(𝑋)-ben az invertálható operátorok halmaza egy 𝐺 ⊂ ℬ(𝑋) nyílt halmaz. 

Bizonyítás Ha 𝑇 ∈ ℬ(𝑋) invertálható, akkor 𝜀 =
1

‖𝑇−1‖
 választással a 𝑇 operátor 𝜀 sugarú 

környezetében lévő operátorok is invertálhatóak lesznek, tehát 𝑇 belső pontja 𝐺-

nek. ∎ 

Spektrum 

Definíció Egy 𝑇 ∈ ℬ(𝑋) operátor spektruma azokból a 𝜆 ∈ ℂ értékekőbl áll, melyekre 

𝑇 − 𝜆𝐼 nem invertálható. A spektrumot 𝜎(𝑇) jelöli. 

Kapcsolat a sajátértékkel 

Ha 𝑋 véges dimenziós, akkor ℬ(𝑋) elemei a négyzetes mátrixok. Ebben az esetben a spekt-

rum a sajátértékek halmaza. Ha 𝑋 végtelen dimenziós, akkor egy operátor spektruma a saját-

értékeken kívül folytonos spektrumot is tartalmazhat, vagyis végtelen dimenziós Banach-

térben egy operátor spektruma bővebb is lehet, mint a sajátértékek halmaza. 

Operátor spektrumának alaptulajdonságai 

Tétel 𝜎(𝑇) nemüres halmaz. 

Tétel 𝜎(𝑇) mindig zárt halmaz ℂ-ben. 

Bizonyítás Belátjuk, hogy 𝜎(𝑇) komplementere nyílt. Tegyük fel, hogy 𝜆 nem tartozik a 

spektrumba. Ekkor 𝑇 − 𝜆𝐼 invertálható. 𝑇 − 𝜆𝐼 eleme a nyílt 𝐺 halmaznak. (𝐺 

jelölte az invertálható operátorok halmazát ℬ(ℓ2)-ben.) Ezért van olyan 𝜀 > 0, 

hogy 𝑇 − (𝜆 + 𝜀′)𝐼 ∈ 𝐺 ha |𝜀′| < 𝜀, és emiatt 𝜆 körüli 𝜀 sugarú gömb is benne 

van a spektrum komplementerében. ∎ 
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Tétel 𝜎(𝑇) korlátos halmaz. 

Bizonyítás Legyen |𝜆| > ‖𝑇‖. Belátjuk, hogy ekkor 𝜆 biztosan nem tartozik a spektrumba. 

Azt írhatjuk, hogy 𝑇 − 𝜆𝐼 = −𝜆(𝐼 − 𝜆−1𝑇), ahol a jobboldalon az 𝐼 mellett sze-

replő mátrix normája ‖𝜆−1𝑇‖ = |𝜆|−1‖𝑇‖ < 1. Ezért 𝐼 − 𝜆−1𝑇 inevrtálható, 

azaz 𝑇 − 𝜆𝐼 is invertálható. Ez azt jelenti, hogy 𝜆 ∉ 𝜎(𝑇). Tehát 𝜎(𝑇)-ben csak 

olyan értékek lehetnek, melyre |𝜆| ≤ ‖𝑇‖. ∎ 

Példák 

1. Példa 

Legyen az 𝐴 mátrix 

𝐴 = [
1 0 0
0 2 0
0 0 5 − 𝑖

] 

Ekkor sajátértékei leolvashatók a főátlóból, és így a mátrix által megvalósított operátor spekt-

ruma 𝜎(𝐴) = {1,2,5 − 𝑖} 

2. Példa 

Tekintsük ℓ2-ben azt a folytonos lineáris operátort, melyet a 𝐷 végtelen dimenziós diagonális 

mátrix határoz meg. Határozzuk meg 𝐷 spektrumát! 

Ha 𝜆 = 𝜆𝑛, akkor (𝐷 − 𝜆𝑛𝐼)-ben van egy nulla sor, és ezért nem invertálható. Sőt, 𝜆 = 𝜆𝑛 

egyben sajátérték is. Emiatt {𝜆𝑛 ∶ 𝑛 ∈ ℕ} ⊂ 𝜎(𝐷).  

Vajon van-e más eleme is a spektrumnak? Ha 𝜆 ∈ ℂ, akkor (𝐷 − 𝜆𝐼) = diag{𝜆𝑛 − 𝜆, 𝑛 ∈ ℕ}. 
Ennek az operátornak az „inverz jelöltje”: 

𝑆 = diag {
1

𝜆 − 𝜆𝑛
, 𝑛 ∈ ℕ} 

Kérdés, hogy ez a mátrix ℬ(ℓ2)-beli-e. Felhasználva azt az állítást, hogy 𝐷 ∈ ℬ(ℓ2) pontosan 

akkor teljesül, ha a (𝜆𝑛) sorozat korlátos, azt kapjuk, hogy ha 𝜆 torlódási pontja a (𝜆𝑛) soro-

zatnak, akkor (
1

𝜆−𝜆𝑛
) nem korlátos. Tehát (𝐷 − 𝜆𝐼) nem invertálható. Ezért 𝜆 ∈ 𝜎(𝐷), tehát a 

sajátértékek sorozatának torlódási pontjai is benne vannak a spektrumban. 
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13. tétel: Funkcionálok Hilbert-térben. Riesz reprezentációs tétel. 

Hilbert-tér duális tere. Lineáris operátor adjungáltja 

Hilbert-térben. Példa véges és végtelen dimenzióban. 

Önadjungált operátorok. Példák. Ortogonális vetítés. 

Funkcionálok Hilbert-térben 

Legyen 𝑦 ∈ 𝐻 rögzített ebben a térben. Az 𝑓𝑦: 𝐻 → ℝ funkcionált így definiáljuk: 

𝑓𝑦(𝑥) = 〈𝑥, 𝑦〉 

Ekkor a CBS-egyenlőtlenség miatt |〈𝑥, 𝑦〉| ≤ ‖𝑥‖‖𝑦‖, ezért ‖𝑓𝑦‖ = ‖𝑦‖. Belátható, hogy 

nincs más funkcionál ebben a térben. 

Riesz reprezentációs tétel 

Tétel (Riesz reprezentációs tétel) Minden 𝑓 ∈ 𝐻∗ funkcionálhoz létezik olyan 𝑦 ∈ 𝐻, 

melyre 𝑓(𝑥) = 〈𝑥, 𝑦〉 és ‖𝑓‖ = ‖𝑦‖. 

Hilbert-tér duális tere 

A Riesz reprezentációs tétel következménye, hogy a 𝐻 és 𝐻∗ izomorfak, azaz 𝐻 = 𝐻∗ = 𝐻∗∗. 

Lineáris operátor adjungáltja Hilbert-térben 

Definíció Az 𝐴 ∈ ℬ(𝐻) lineáris operátor adjungáltja az az 𝐴∗ ∈ ℬ(𝐻) lineáris operátor, 
melyre 

〈𝐴𝑥, 𝑦〉 = 〈𝑥, 𝐴∗𝑦〉, ∀𝑥, 𝑦 ∈ 𝐻 

Az adjungált operátor jól definiált, ha tekintjük az 𝑓(𝑥) = 〈𝐴𝑥, 𝑦〉 funkcionált, akkor a Riesz 

reprezentációs tétel szerint van egy 𝑦∗ ∈ 𝐻 elem, melyre 𝑓(𝑥) = 〈𝑥, 𝑦∗〉. Tehát létezik 

𝑦 ↦ 𝑦∗ hozzárendelés, mely az 𝐴∗ operátor, hiszen 𝑓(𝑥) = 〈𝐴𝑥, 𝑦〉 = 〈𝑥, 𝑦∗〉. 

Tétel Az adjungált operátor tulajdonságai 

1. 𝐼∗ = 𝐼 

2. (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ 

3. (𝛼𝐴)∗ = 𝛼𝐴∗ 

4. (𝐴𝐵)∗ = 𝐵∗𝐴∗ 

5. ‖𝐴∗‖ = ‖𝐴‖ 

Példa véges és végtelen dimenzióban 

1. Példa 

Legyen 𝐻 = ℝ𝑛 az Euklideszi normával. Itt egy lineáris operátor megadása egy 𝑛 × 𝑛-

dimenziós 𝐴 mátrixot jelent. Ekkor 𝐴∗ = 𝐴𝑇, hiszen 〈𝐴𝑥, 𝑦〉 = (𝐴𝑥)𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 〈𝑥, 𝐴𝑇𝑦〉. 

2. Példa 

Legyen 𝐻 = ℒ2([0,1]). Tekintsük azt az alteret, ahol a végtelen sokszor differenciálható 𝑢(𝑡) 
függvények vannak, melyekre 𝑢(0) = 𝑢(1) = 0. Ebben az altérben értelmezzük a differenci-

ál-operátort: 𝐴𝑢 = 𝑢′. Ennek adjungáltja (a skalárszorzatoknak megfelelő integrálások elvég-

zése után) 𝐴∗𝑣 = −𝑣′. 
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Önadjungált operátorok 

Definíció Az 𝐴 operátor önadjungált, ha 𝐴 = 𝐴∗. 

Tétel Ha 𝐴 önadjungált operátor, akkor 

1. ‖𝐴𝑛‖ = ‖𝐴‖𝑛 

2. Spektrálsugara: 𝑟(𝐴) = ‖𝐴‖ 

3. Spektruma valós: 𝜎(𝐴) ⊂ ℝ 

Ortogonális vetítés 

Legyen 𝐸 ⊂ 𝐻 egy zárt altér. Ekkor ∀𝑥 ∈ 𝐻 elem előáll összegként 𝑥 = 𝑥𝐸 + 𝑥0 alakban, 

ahol 𝑥𝐸 ∈ 𝐸 és 𝑥0 ⊥ 𝐸. Ez utóbbi tulajdonság azt jelenti, hogy 〈𝑥0, 𝑦〉 = 0 ∀𝑦 ∈ 𝐸.  

Az ortogonális vetítés operátora 𝑃 ∶ 𝐻 → 𝐻, 𝑃𝑥 = 𝑥𝐸 . Ennek adjungáltját a következőképpen 
számoljuk: 

〈𝑃𝑥, 𝑦〉 = 〈𝑃𝑥, 𝑃𝑦 + 𝑦0〉 = 〈𝑃𝑥, 𝑃𝑦〉 + 〈𝑃𝑥, 𝑦0〉 = 〈𝑃𝑥, 𝑃𝑦〉 + 〈𝑥0, 𝑃𝑦〉 = 〈𝑥, 𝑃𝑦〉 

Ahol felhasználtuk azt, hogy 〈𝑃𝑥, 𝑦0〉 = 0 = 〈𝑥0, 𝑃𝑦〉. 

Azt kapjuk tehát, hogy 

𝑃 = 𝑃∗ 

vagyis a vetítés operátora önadjungált. 
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14. tétel: Disztribúciók mint speciális lineáris operátorok. Kapcsolat 

a közönséges függvényekkel. Példák. Reguláris disztribú-

ció. Dirac delta. Disztribúció deriváltja. Lokálisan integ-

rálható függvény gyenge deriváltja. 

Disztribúciók mint speciális lineáris operátorok 

Definíció Legyen 𝒞0
∞(ℝ) az a függvénytér, mely a vételen sokszor differenciálható, kom-

pakt tartójú függvényeket tartalmazza, ahol egy 𝜑:ℝ → ℝ függvény tartója alatt 

a következőt értjük: 

supp𝜑 = {𝑥 ∶ 𝜑(𝑥) ≠ 0} 

Definíció A (𝜑𝑛) sorozat konvergens és határértéke 𝜑, ha ∃𝐼 ⊂ ℝ véges intervallum, 

melyre supp𝜑𝑛 ∈ 𝐼 ∀𝑛 valamint ∀𝑘 𝜑𝑛
(𝑘) → 𝜑(𝑘) egyenletesen. 

Definíció A 𝐷0 ⊂ 𝐷 halmaz korlátos, ha ∃𝐼 ⊂ ℝ véges intervallum, melyre supp𝜑 ⊂ 𝐼 
∀𝜑 ∈ 𝐷0 esetén, valamint ∀𝑘 ∃𝑀𝑘 melyre |𝜑(𝑘)(𝑥)| ≤ 𝑀𝑘 ha 𝜑 ∈ 𝐷0 és 𝑥 ∈ 𝐼. 

Definíció A 𝑇: 𝐷 → ℝ funkcionál általánosított függvény (vagy más néven disztribúció), 

ha lineáris (azaz 𝑇(𝛼𝜑 + 𝛽𝜓) = 𝛼𝑇(𝜑) + 𝛽𝑇(𝜓), ha 𝜑,𝜓 ∈ 𝐷 és 𝛼, 𝛽 ∈ ℝ), va-

lamint folytonos a fenti konvergenciára nézve (azaz ∀𝜑𝑛 → 𝜑 konvergens függ-

vénysorozat esetén 𝑇𝜑𝑛 → 𝑇𝜑). 

Az általánosított függvény tehát egy speciális lineáris funkcionál. 

Kapcsolat a közönséges függvényekkel 

Egy példán keresztül mutatjuk meg. Legyen 𝑓:ℝ → ℝ tetszőleges folytonos függvény. A 𝑇𝑓 

hozzárendelést így adjuk meg: 

𝜑 ⟼ 𝑇𝑓(𝜑) = ∫𝑓𝜑 d𝑥
ℝ

 

Dirac delta 

Legyen 𝑇(𝜑) = 𝜑(0). Ez egy nevezetes disztribúció. Az ehhez kapcsolódó jelölések 

𝛿(𝜑) = 𝜑(0) és 𝛿𝑎(𝜑) =  𝜑(𝑎) 

Jelölje ℒloc
1 (ℝ) az ℝ-en értelmezett lokálisan integrálható függvények halmazát. Minden 

𝑓 ∈ ℒloc
1 (ℝ) „közönséges” függvény egyben általánosított függvény is. Ha 𝑓:ℝ → ℝ tetszőle-

ges lokálisan integrálható függvény, akkor a megfelelő disztribúció 

𝑇𝑓: 𝐷 → ℝ, 𝑇𝑓(𝜑) = ∫𝑓𝜑 d𝑥
ℝ

 

Ebben az esetben a „közönséges” és az általánosított függvényt azonosnak vesszük. 

Reguláris disztribúció 

Definíció Ha a 𝑇 ∈ 𝐷 disztribúcióhoz van 𝑓 ∈ ℒloc
1 (ℝ) függvény, melyre 𝑇 = 𝑇𝑓, akkor 𝑇 

reguláris disztribúció. 
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Disztribúció deriváltja 

Azt várjuk el a deriválástól, hogy ha 𝑓 differenciálható „közönséges” függvény, akkor 

(𝑇𝑓)
′
= 𝑇𝑓′  

Definíció A 𝑇 ∈ 𝐷 általánosított függvény deriváltja 𝜕𝑇 ∈ 𝐷, melyet így értlemezünk: 

𝜕𝑇(𝜑) = −𝑇(𝜑′) 

A definícióból következik, hogy minden 𝑇 ∈ 𝐷 akárhányszor deriválható és 𝑘-adik deriváltja 

𝜕𝑘𝑇(𝜑) = (−1)𝑘𝑇(𝜑(𝑘)) 

Lokálisan integrálható függvény gyenge deriváltja 

Definíció Az 𝑓 ∈ ℒloc
1  függvény gyenge deriváltja 𝑔 ∈ ℒloc

1 , ha 

∀𝜑 ∈ 𝐷: − ∫𝑓𝜑′ d𝑥
ℝ

= ∫𝑔𝜑  d𝑥
ℝ

 

Állítás A gyenge derivált alaptulajdonságai 

1. Ha létezik az 𝑓 függvény gyenge deriváltja, akkor az majdnem mindenütt 

egyértelmű. 

2. Ha 𝑓 differenciálható, akkor gyenge deriváltja 𝑔 = 𝑓′. 

3. Ha 𝑓 = 𝑓0 majdnem mindenütt és 𝑓0 differenciálható, akkor 𝑓 gyenge deri-

váltja 𝑔 = 𝑓0
′. 

4. Ha az 𝑓 függvényhez tartozó 𝑇𝑓 disztribúció deriváltja reguláris, éspedig 

𝜕𝑇𝑓 = 𝑇𝑔, akkor 𝑓 gyenge deriváltja 𝑔. 
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15. tétel: Egy példa. Operátorok alkalmazása kvantummechaniká-

ban: egyetlen részecske mozgásának és momentumának 

együttes határozatlanságaira vonatkozó Heisenberg-féle 

becslés bizonyítása. 

Tegyük fel, hogy egyetlen részecske (pl. elektron) mozgását vizsgáljuk. Feltesszük, hogy a 

részecske egy végtelen hosszú egyenes mentén mozog, helyzetét egy komplex értékű 𝑓(𝑥, 𝑡) 
függvény írja le. A 𝑡 változó az időt jelenti, az 𝑥 pedig a helyzetet írja le a következő módon: 

annak valószínűsége, hogy a részecske az [𝑎, 𝑏] intervallumban tartózkodik a 𝑡 időpontban 
egy integrállal adható meg: 

∫ |𝑓(𝑥, 𝑡)|2 d𝑥
𝑏

𝑎

 

A fenti 𝑓(𝑥, 𝑡) ∈ ℂ az állapotfüggvény. Elvárjuk, hogy  

∫ |𝑓(𝑥, 𝑡)|2 d𝑥
𝑏

𝑎

= 1 

Jelenleg csak az állapotfüggvény abszolútértékének négyzete ad számunkra információt. 

Tekintsünk most egy fix 𝑡 időpontot, és ez az egyetlen időpont érdekel csak bennünket. Ezért 
az állapotfüggvény második argumentumát elhagyjuk. 

Matematikai modell és egy tétel 

Absztrakt matematikai nyelven fogalmazva az állapotfüggvény 𝑓 ∈ ℒ2(ℝ), melyre ‖𝑓‖ = 1. 

A részecske helyzete 𝑥, ami egy valószínűségi változóként fogható fel. Egy másik fizikai jel-

lemző a momentum, melyet az 𝑓 függvény Fourier-transzformáltja ad meg: 

𝑓(𝑤) =
1

√2𝜋
 ∫ 𝑒−𝑖𝑥𝑤 𝑓(𝑥) d𝑥

∞

−∞

 

A Parseval-egyenlőség miatt 

∫ |𝑓(𝑥)|2  d𝑥
∞

−∞

= ∫ |𝑓(𝑤)|
2
  dw

∞

−∞

 

és ezért 𝑓 ∈ ℒ2(ℝ) továbbá ‖𝑓‖ = 1. Annak valószínűsége, hogy a momentum az [𝑎, 𝑏] in-

tervallumba esik a következő: 

∫ |𝑓(𝑤)|
2
 d𝑤

𝑏

𝑎

 

Jelölje 𝑥 és 𝑤 a hely és a momentum átlagát a megadott valószínűségek szerint: 

𝑥 = ∫ 𝑥 ⋅ |𝑓(𝑥)|2  d𝑥
∞

−∞

, 𝑤 = ∫ 𝑤 ⋅ |𝑓(𝑤)|
2
 d𝑤

∞

−∞

 

A szórásnégyzetek: 

𝜎𝑥
2 = ∫ (𝑥 − 𝑥)2 ⋅ |𝑓(𝑥)|2  d𝑥

∞

−∞

, 𝜎𝑤
2 = ∫ (𝑤 − 𝑤)2 ⋅ |𝑓(𝑤)|

2
 d𝑤

∞

−∞

 

A Heisenberg-féle határozatlansági elv azt mondja ki, hogy 𝜎𝑥 és 𝜎𝑤 nem lehetnek „egyszerre 

kicsik”, azaz 𝜎𝑥
2𝜎𝑤

2 ≥ 1/4. 
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Bizonyítás a Hilbert-térben 

Tegyük fel, hogy 𝑥 = 0 és 𝑤 = 0. Ezt eltolással megtehetjük és eközben nem veszítünk az 

általánosságból. A ℒ2(ℝ) Hilbert-térben két operátort fogunk definiálni: 

𝑀𝑓(𝑥) = 𝑥 𝑓(𝑥) 

𝐷𝑓(𝑥) = 𝑓′(𝑥) 

Mindkét operátor a fenti Hilbert-tér egy-egy alterében, de bizonyításunk szempontjából „jó 

helyen” vannak. 

Lemma ‖𝑀𝑓‖2 = 𝜎𝑥
2 és ‖𝐷𝑓‖2 = 𝜎𝑤

2  

Bizonyítás  

‖𝑀𝑓‖2 = ∫ |𝑥 ⋅ 𝑓(𝑥)|2 𝑑𝑥
∞

−∞

= ∫ 𝑥2 ⋅ |𝑓(𝑥)|2 𝑑𝑥
∞

−∞

= 𝜎𝑥
2 

A második rész több lépésből áll. A Parseval-egyenlőség miatt  ‖𝐷𝑓‖2 = ‖𝐷𝑓̂‖
2
. A norma 

definíciója szerint 

‖𝐷𝑓̂‖
2
= ∫ |𝐷𝑓̂(𝑤)|

2
 d𝑤

∞

−∞

 

A Fourier-transzformáció egyik alaptulajdonsága a deriváltfüggvény Fourier-

transzformáltjáról szól: 𝐷𝑓̂(𝑤) = 𝑖𝑤𝑓(𝑤), ezért 

‖𝐷𝑓‖2 = ⋯ = ∫ 𝑤2 |𝑓(𝑤)|
2
 d𝑤

∞

−∞

= 𝜎𝑤
2  

∎ 

Ezután egy sajátos, meglepő tulajdonságát látjuk be az operátorainknak: 

Lemma Az előbb definiált operátorok kielégítik az alábbi operátor-egyenletet: 

𝐷𝑀 −𝑀𝐷 = 𝐼 

Bizonyítás Egyszerűen a szorzat-deriválási szabályt alkalmazzuk: 

(𝑥 𝑓(𝑥))
′
= 𝑓(𝑥) + 𝑥𝑓′(𝑥) 

ami operátor-alakban 𝐷 ∘ 𝑀(𝑓) = 𝐼(𝑓) + 𝑀 ∘ 𝐷(𝑓). ∎ 

Lemma Az 𝑀 operátor önadjungált, azaz 〈𝑀𝑓, 𝑔〉 = 〈𝑓,𝑀𝑔〉. A 𝐷 operátor adjungáltja 

−𝐷, azaz 〈𝐷𝑓, 𝑔〉 = −〈𝑓, 𝐷𝑔〉. 

Bizonyítás  

〈𝑀𝑓, 𝑔〉 = ∫ 𝑥 𝑓(𝑥)𝑔(𝑥) d𝑥
∞

−∞

= ∫ 𝑓(𝑥) 𝑥 𝑔(𝑥) d𝑥
∞

−∞

= 〈𝑓,𝑀𝑔〉 

A második részben parciálisan integrálva: 

〈𝐷𝑓, 𝑔〉 = ∫ 𝑓′𝑔
∞

−∞

= 𝑓𝑔|−∞
∞ −∫ 𝑓𝑔′

∞

−∞

= −〈𝑓, 𝐷𝑔〉 

Közben felhasználtuk, hogy 𝑔 ∈ ℒ2(ℝ) esetén lim𝑥→±∞ 𝑔(𝑥) = 0. ∎ 
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A fenti lemmák segítségével végre igazolhatjuk a Heisenberg-féle bizonytalansági tételt: 

‖𝑓‖2 = 〈𝑓, 𝑓〉 = 〈𝑓, (𝐷𝑀 −𝑀𝐷)𝑓〉 = 〈𝑓, 𝐷𝑀𝑓〉 − 〈𝑓,𝑀𝐷𝑓〉 = −〈𝐷𝑓,𝑀𝑓〉 − 〈𝑀𝑓,𝐷𝑓〉 = 

= −2〈𝐷𝑓,𝑀𝑓〉 

Mivel ‖𝑓‖2 = 1, ezért a Cauchy–Bunyakovszkij–Schwaz-egyenlőtlenség alapján 

1 = −2〈𝐷𝑓,𝑀𝑓〉, |〈𝐷𝑓,𝑀𝑓〉| ≤ ‖𝑀𝑓‖ ⋅ ‖𝐷𝑓‖ 

ahonnan átrendezéssel épp a Heisenberg-féle határozatlansági elvet kapjuk. 
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Jegyzetek 
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Évközi eredmény 

  maximális 

pontszám 

elért 

pontszám 

Házi feladat 

zárthelyi 

dolgozatok 

1. házi feladat zárthelyi dolgozat 5  

2. házi feladat zárthelyi dolgozat 5  

Összesen 10  

I. Elért pontszám  

Pluszpont  

Nagy zárthelyi 

dolgozatok 

1. nagy zárthelyi dolgozat 45  

2. nagy zárthelyi dolgozat 45  

Összesen 90  

II. Elért pontszám  

 I. + II. + pluszpont 

Az évközi dolgozatok pontszáma 
100 

 

 

 

Megajánlott jegy 

Érdemjegy ponthatárok 

–  0 –  39 

aláírás  40 –  59 

2 (elégséges)  60 –  79 

3 (közepes)  80 –  99 

4 (jó)  100 –   
 

Megajánlott jegy 

 

 

Osztályzás 

 

 
 1 2 3 tételek száma 

megajánlott 

jegy 

nincs 3 4 5 
 

2 4 5  
 

3 5   

4 5   

 

Egyetlen tétellel 2 jegy javítható, ha a tételt a vizsgázó kiválóan tudja, és el tudja mondani az 

órán bemutatott bizonyításokat is. Minden további tétellel további egy jegy javítható, ha a 

tételt a vizsgázó kiválóan tudja. Ha valaki egyik kihúzott tételét nem tudja, vizsgája elégtelen. 


