Chapter IT
METRIC SPACES

§8. Definition and examples of metric spaces

Passage to the limit is one of the most important operations in analysis.
The basis of this operation is the fact that the distance hetween any two
points on the real line is defined. A number of fundamental facts from
analysis are not connected with the algebraic nature of the set of real num-
bers (i.e, with the fact that the operations of addition and multiplication,
which arc subject to known laws, are defined for real numbers), but de-
pend only on those properties of real numbers which are related to the
concept of distance. This situation leads naturally 1o the concept of ““ metric
space’ which plays a fundamental role in modern mathematies. Further
on we shall discuss the basic facts of the theory of metric spaces. The re-
sults of this chapter will play an essential role in all the following diseussion.

DEFINITION. A melric space is the pair of two things: a set X, whose
elements are called points, and a distance, 1.e. a single-valued, nonnegative,
veal function plz, u), defined for arbitrary @ and y in X and satisfying the
following conditions:

1) plz, ) = 0if and only if = = y,

2) (axiom of symmetry) o(z, 1) = ply, ),

3} (trangle axiom) plx, y) + oly, 2) = ol 2).

“The metric space itself, i.e. the pair X and p, will usually be denoted by
R=(X 1 P}

In cases where no misunderstanding can arise we shall sometimes denote
the metric space by the same symbol X which is used for the set of poinis
itself.

We list-a number of examples of metrie spaces. Some of the spaces listed
helow play a very important role in analysis.

1. If we set

P(I') ?f) = { i
1Ltz # y,
jor elements of an arbitrary set, we obviously obtain a metric space.
2, The set D' of real numbers with the distance function

plz, y) = jz — ¥l
forms the metric space &',
3. The set D" of ordered n-tuples of real numbers & = {1, %z, =+ * , Ta)
with distance function
ole, 1) = { Dope1 (s — z))!
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§8) DEFINTITON AND EXAMPLES OF METRIC SPACES 17

is called Euclidean n-space R". The validity of Axioms 1 and 2 for R" is
obvious. To prove that the triangle axiom ig also verified in R" we make

~use of the Bchwarz inequality

(l) (ZI:‘=1 a)abk)g < Zi‘;l O‘»kzz:;:‘:q _bf.

(The Schwarz inequality follows from the identity
(i adi)” = (fwr ) (Xha %) — 320 2 s (aibs —

bl'a.f)zj

* which can be verified directly.) If

3;=(.’.C1,x2,"',$“), yt(yl,yQ)"';yn) and 35(31,32,"‘,2’,‘),

then setting

e — T = g, Zk—yk:bk,

we obtain

2y — Xx = ap + by

by the Schwars inequality

_Zi;;l (ak + b.!:)s = Z;—l ﬂ'k2 -+ 2..2;-1 aby + ZI:LI bke
< Y’ 4 2{ e L B T b
I == [(ZJ:-:L akz)} +. (E;:LI bkz)g]g’
ie.
o'z, 2) < oz, 9) + oly, D}
or’
oz, z) < plz, y) + o{y, 2).

4. Consider the space R," in which the points are again ordered n-tuples
of numbers (zy , 22, - - ‘s x,,), and for which the distance function is defined
by the formula

pol, y) = max {{ g — o5 L <k < m}

The validity of Axioms 1-3 is obvious. In many questions of analysis
this space ig no less suitable than Fuclidean space B™,

. Examples 3 and 4 show that sometimes it is actually important to have
different notations for the set of points of a metrie space and for the metric
space itseli because the same point set can be metrized in various ways.

5. The set Cla, b of all continuous real-valued functions defined on the
segment [a, b] with distance function

@ pfyg) = sup {[g(8) — fO) ;@ < ¢ < b}
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likewise forms a metric space. Axioms 1-3 can be verified directly. This
space. plays a very important role in analysis. We shall denote it by the
same symbol Cla, b] as the set of points of this space. The space of con-
tinuous functions defined on the segment [0, 1] with the metric given above

will be denoted simply by C.

6. We denote by l the metric space in which the points are all possible
SeqUeNces T = {1, Lz, ~* ', Tu, *--) Of real numbers which satisfy the
condition Y e z:° < » and for which the distance is defined by means

of the formula
(3) oz, y) = | i (e — 3"}

. We shall first prove that the function o(z, y) defined in this way always
has meaning, i.e. that the series Do e — x:)Y converges. We have

@) (D - 2 < (D + aw)
for arbitrary natural number n (see Example 3).
Now let n — =. By hypothesis, the right member of this inequality has

a limit. Thus, the expression on the left is bounded and does not decrease
as n — oo consequently, it tends to a limit, 1.e. formuls (3) has meaning,.
Replacing = by —a in (4,) and passing to the limit as n — =, we obtain
(4} [ (e + 2 < (hm o + (21?=1_ ) _
but this is essentially the triangle axiom. In fact, let

& = (a'lya?a Ty Gy "'))

b= (blrbzf e :b‘ﬂ} "'))

C=(f31,('4, Ty Eny )

be three points in L. If we &et
by — G = Tk, € — by = Ur,
then
G — Gk = Yr + T
and, by virtue of (1), _
(X o — @)}t < 4 58 B — @)} 4 (X (o — 8,
L.e.
pla, ) < pla, b) + olb, ©).
7. Consider, as in Example 5, the totality of ail continuous functions on
the segment [a, ], but now let the distance be defined by setting

(5) _ plx, y) = ]:f: fx(f) — y(t)}zdt]}.
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§8] DEFINITION AND EXAMPLES OF METRIC SPACES 19

- This metri(-: space is denoted by C’[a, b] and is called the space of con-

tmuo:u:s Functions wzt:h quadratic metric. Here again Axioms 1 and 2 in the

Fleﬁlutl_on of a metric space are obvious and the triangle axiom follows
. immediately from the Schwarz inequality

{f: :c(t)y(t) dt}s < j: mﬂ(t) i jj ys(t) dt,

which can be obtained, for i . )
dentity: ed, for instance, from the following easily-verified

{ JECI ds}z. - (20« [voa

- % a f {elo)yt) — y(s)e O ds dt.

8. Consider the set of al! bounded sa
quences ¥ = (x
of real numbers. We obtain the metric space M™ if tErel ;thz , )

(6) p(x, ¥} = sup [y — i |-
The validity of Axioms 1-3 is obvious.

‘9. The following principle enables us to write down an infinite numb
of 1further examples: if R = (X, p) is a metric space and M is an arblirrlafyr
El; ;:1{; r;aefd)f) ,n ;;hefn M with t_he same fm_lction o(z, ¥), but now assumed to
e {h ;)1; pxaz;ujlg y in M, likewise forms a metric space; it is called

(I) In th.e deﬁnltlon Of & metl'lc Sp we 1i} l] Ve ]1 il Q v
y) a mlte urse] 28 tD

B ole; 1) = 0
if, and only if, v = y;
2) p(z, 1) < oz, 2) + oz, )

for arbitrary r, y, 2.
It follows that

)] P(x: 2/) = 0,
4) p(x, y) = P(yi $_)

and consequently Axiom 2 can he written in the form
2 ) ’ ,0(23, ?j) < p(xs Z) + p(z, ?})

(2) The set D™ of ordered n-tuples of real numbers with distance
polt, ) = (i [y — o [HV® =21
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. also forms a metric space which we shall denote by R,". Here the validity
of Axioms 1 and 2 is again obvious. We shall check Axiom 3. Let

s= (8,02, )y Y= Wi,y ¥a) and 2= (21,2, " ;%)

he points in R,". Tf, as in Example 3, we set
Yr — Tx = @, Ze — yr = b,
then the inequality
(T, 2) < ity ¥ + 2y, 2)
assumes the form

B (| a + b Y S (i e i A (k| B ("2,

This is the so-called Minkowski inequality. Minkowski’s inequality is
obvious for p = 1 (since the ahsolute value of a sum is less than or equal
to the sum of the absolute values) and therefore we can restrict ourselves
to considering the case p > 1.

In order to prove inequality (7) for p > 1 we ghall first establish Holder's
inequality:

(8) Z:al | Trle k = (wal | T3z I’”)”"( Zf;;l | Yk |q)uq,
where the number ¢ is defined by the condition
(9 1/p + 1/¢ = 1.

We note that inequality (8) is homogeneous in the sense that if it is
satisfied for any two vectors

,2a) and y = (n, ¥, Sy Yads

then it is also xatisfied for the vectors Az and uy whare » and u are arbitrary
numbers. Therefore it is sufficient to prove inequality (8) for the case when

(10) Soiala P = Zdm |y "= L
Thus, we must prove that if Condition (10} is satisfied, then
11) Do || < 1.

Clonsider in the (¢, 7)-plane the curve defined by the equation 5 = £,
or equivalently by the equation § = 57" (see Fig. 7). Tt is clear from the
figure that for an arbitrary choice of positive values for @ and b we have
8, 4 8 > ab. If we caleulate the areas &, and S:, we obtaip

.’B=(§C1,i"g,"'

a &
si=[era=am S [ 07 d= b
0 0
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C Fre 7
Thus
ab < o¥/p + bY/y.
. Sett-in-g a = ||, b = | | and summing with respect to & from 1 to n
we obtain ' "

2;“1 E xkyk | S 1:
if we t-ake_ (9) and (10) into consideration.
thlnequahtg}r (11‘1) and consequently the more genera! inequality (8) are
us proved. For p = 2 Hslder’s inequality (8) becomes
e Iq ¥y (. ) becomes the Schwarz
We now proeeed to the proof of the Minkowski inequality. Consider the

" identity

Gal+ 15" = (af+ 160" |a]+ (af+[6p™ b,

Befting ¢ = =+, b = y; in the above identit i i
Tt v and summing w
k from 1 to n, we obtain g with respect to

T Gan| + |l = 2 (] 4 s D77 o

+ 2ol + 1y D e .

If we now appl;f Hélder’s inequality to each of the two sums on the right
of the above equality and take into consideration the fact that (p — 1)g =
we obtain =

Db (el + |y )
< 200 Qe |+ Ly DY |2 Y7+ (08 | e D7)
Dividing both sides of this inequality by
{20 Qo |+ [y 7YY

- we gbtain

{200 (e |+ L D37 < (2;_1 L2 )% 4 (S0 | s |p)up,'




22 METRIC BPACES [cH. 11

whence inequality (7; follows immediately. This also establishes the triangle
axioni-for the space R,
(8) Tt is possible to show that the metric

w(z, y) = max {{g — w31 Sk < ml
introduced in Example 4 can be defined in the following way:
pol@, 3) = Tt (i | 30— 22 [
{4) From the inequality
ab < a*/p + b/q (U/p+1/g=1)

established in Example (2} it is easy to deduce also the integral form of
Holder’s inequality :

[ a0 2 < ([ 1wo1a)” ([ 1vora)”,

which is valid for arbitrary functions z(t) and y(t) for which the integrals
on the right have meaning. From this in turn we obtain the integral form
of Minkowski’s inequality:

(fnb |20 + 3@ dt)”p < (fis | 2(t) ¥ dc)m’ + (fb @ |7 dz)m.

{5) We shall point out still another interesting example of a metric

space. Its elements are all possible sequences of real numbers
xr = (xljxﬂj ¥y "')

such that D et | zx |° < =, where p > 1isany fixed number and the dis-
tance is defined by means of the formula

(12) oz y) = (i lm — o D7

We shall denote this metzic space by I .
By virtue of Minkowski’s inequality (7) we have

(il — 2 [ < (Dl o 177+ (S| 0
for arbitrary n. Since the series
Sealml? and Xialwl
converge by assumption, passing to the limit as 7 — = we obtain
a3) (Tl — =P < (i la ) + Eialun,

and so the series on the left side also converges. This proves that formula
(12), which defines distance in I,, actually has meaning for arbitrary
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z, ¥ E I',, . {&.t the same time inequality (13) shows that the triangle axiom
is satisfied in 1, . The remaining axioms are obvious. :

§0. Convergence of sequences. Limit points

In §§9-11 we shall establish some fundamental concepts which we shall
frequently use in the sequel.

An open sphere S(x, r) in the metric space R is the set of all points
x € R which satisfy the condition p(z, z;) < 7. The fixed point «, is called
the center and the number r is called the radius of this sphere.

A closed sphere Sfxu , 7] is the set of all points £ € R which satisfy the
condition p(x, 7o) < 1.

An e-neighborhood of the point 2, denoted by the symbaol O{x, ¢}, is an
open sphere of radius € and center 2, . o

A ploint z is called & contact point of the set M if every neighborhood of x
contains at least one point of M. The set of all contact points of the set M
is denoted by [M] and is called the closure of M. Sinee every point belonging
to M is obviously & contact point of M (each point is contained in every
one of its neighborhoods), every set is contained in itz closure: M < [3]

TaroreM 1. The closure of the closure of M is equal to the elosure of 3 : .

18] = (M),

-Pm'of. Let'a: € [[M]i. Then an arbitrary eneighborhood O(x, ¢) of z
containg a point z € [M]. Betting ¢ — p(x, 21) = & , we consider tl;e spherle
O(x1, @). This sphere lies entirely in the interior of O(z, €. In fact, if
2 € Q(xl, ), then p{z, ) < @ ; and sinee p(x, 21} = « _ e, then ,by
the triangle axiom p{z, 2) < & + (¢ — ¢) = ¢ ie. 2 € Olz, €. ,Since :’vl €
!M 3 0(:;:3,_:1) contgilisba ];lﬂi(lil; #p € M. But then z; € Oz, €). Since Oz, 'ej
is an arbitrary neighborhood of the poi f i
pletes the proof ofgthe theorem. potnt @ we have € (M) This com-

The validity of the following assertion is obvious.

TueEorEM 2. If My © M, then [M,] & [M]. :

Tumores 3. The closure of @ sum 15 equal to the sum of the closures:

(A, U M) = MU ).
Proof. Let z € [M, U My}, ie. let an arbitrary neighborhood Oz, €

~ contain the pointy € My U M, . If it were true that = ¢ [M,) and = ¢ [M,],

we could .ﬁnd a neighborhood O(z, &) which does not contain points of M,
and a neighborhood Oz, &) which does not eontain points of M, . But
tht.el} the neighborhood O(z, €), where ¢ = min (a , e}, would not contain
pqmts of M; U M, . From the contradiction thus obtained it follows that
% is contained in at least one of the sets [M;] and {3, i.e.

M, U} o (M) U 1.




24 ' METRIC SPACES fcu. 1L

Sinee M, © M, U M, and M. © M, U M, the converse inclusion follows
k. - X

m Theorcm 2. - . . ]
f-mﬁéﬁ point z is called a limil point of the set M if an arbitrary neighbor

y i infinite er of points of M.

od of  contains an infinite number o ) ~
hGA limit point of the set M ean either belong to‘M or not. For example, if
M is the set of rational numbers in the closed interval [0, 1], then every

int of this interval is a limit point of M: . ) N
POIE point 2 belonging to the set M is said to be an zs?la.ted point of fth?;;
bLt if  has a neighborhood O(z, €} which does not contain any points of I

ifferent from x. - o
¢ rI{:HFOREM 4. Bvery contact poind of the set M is either Limit point of the

solated point of M.
Setl'ﬁ};; Te:sfal;zdapcontait point of the set M, Th.is mcains t.-hat tiveﬂ?r
neighborhood Oz, € of = contains at least one point belonging M.
T“E (Eii; r&?;ﬁ?ﬂi@ of the peint r contains anIiuﬁnitc number of
i he set M. In this cage, @ is a limit poi.nt‘ of M. . ‘
Pﬂg)lts“?i tc};i find a neighborhood Oz, .e) of & ‘\\jhlch contains ofntlgr a Sgnjl;e
number of points of M. In this case, ® ?\’111 be an 1sol_ated [?omi‘a {1_} -tefror.n. 1,
In fact, let 2y, 2, -+, & be the points of M which are dis in: ro th.Q
and which are contained in the neighborhood O{z, €). Further,he @ hbor:
least of the positive numbers p{x, %), ¢ = 1,2, s k. T?G§ tt ec:egom i
hood O(z, «) obviously does not. contain any point of 111{ istin Otherwisé
The point @ itself in this case must }qecess'sarﬂy be_long ft(;' ; .slmzewounzl rise
O(z, &) in general would not conta.u} a single point o ,f 1?&:} would no
be a eontact point of the set M. This compl'et-es the proot o : .
Thus, the set [M] consists in general of points of three types:
1) Isolated points of the set M ‘ .
2) Limit points of the set 3 wh%ch belong to M; "
2) Limit points of the set Ilg Iwi;;c.}; dl(iJ nrlliqttpl:)?natx;g to M.
i i ding to A all its hrmt 2.
[MIlJ;: 2':’133:-:;1‘3(1. b -yl;lf:, zgqtloence of points in the metrip space E. We say
that this,seq,uencc converges o the point x if every nelgh’_borh.?ofd rol(;;p re;
contains all points m, starting with some one of them (i.e. K on Oil;t.q
¢ > 0 we can find a natural number N such that 'O (_a:, €) contains acep{”c }.
i, with n > N.). The point x ig said to be the I'-tmzt of the sequefn : -‘t'il é
‘This definition can obviously be fomEulate)d 1110the following form: the
; e ) converges 1o x if lim,.e pl2, Ta) = o -
se(fllu}?:_‘l ‘:Jliézf}ing asse?tions follow direfctly fr‘om the dehmtlorf ?f 111111:;:[: il
no sequenee can have two distinet limits; 2) if the sequence {x,} eo s

to the point x then every subsequence of {z.} converges to the same point x.

The following theorem establishes the close connection between the
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concepts of contact point and limit point on the one hand and the coneept
of limit on the other.

THEOREM 5. A necessary and sufficient condilion that the point z be a con-
tact poind of the set M is that there exist g sequence. {x,} of points of the
set M which converges to x; a necessary and sufficient condition that the point x
be a limit point of M s that there exist o sequence of distinct points of the set
M which converges o x.

. Proof. Necessity. If z is a contact point of the set M, then every neighbor-
heod Oz, 1/n) contains at least one point x, of M. These peints form a
sequence which converges to z. If the point x is a limit point of M, every
neighborhood O(z, 1/n) contains a point z, € M which is distinet from al]
the z:(¢ < %) (since the number of such points is finite). The points #, are
distinet and form a sequence which eonverges to x.

Sufficieney is obvious.

Let A and B be two sets in the metrie space B. The set A is said to be
densein B if [4) D B. In particular, the set 4 is said to be everywhere dense
in R if its elosure [4] coincides with the entire space R. For example, the
se$ of rational numbers ig everywhere dense on the real line.

EXAMPLES OF SPaczs CONTAINING AN Evenywnrre DeNsz DENUMER-
ABLE SET. (They are sometimes ealled “separable.” For another definition
of such spaces in terms of the concept of basis sce §10, Theorem 4.) We
shall consider the very same examples which were pointed out in §8.

" 1. The space deseribed in Example 1, §8, is separable if, ahd only if, it
consists of a denumerable number of points. This follows directly from
the fact that in this space [M] = Mf for an arbitrary set M,

All spaces enumerated in Examples 2-7, §8, are separable. We shall

indicate a denumerable everywhere dense set in each of them and leave the
details of the proof to the reader.

2. Rational points.
3. The set of all vectors with rational eoordinates,
1. The set of all vectors with rational coordinates.
. The set of all polynomials with rational coefficients.
‘6. The set of all sequences in each of which all terms are rational and
only a finite (but arbitrary) number of terms is distinet, from zero.
7. The sct of all polynomials with rationsl coeflicients, :
- The space of bounded sequences (Example 8, §8) is not separable. In
fact, let us consider all possible sequences consisting of zeros and gnes, They

Qi

_Torm a set with cardinal number thai, of the continuum (since each of them

ean be put into correspondence with the dyadie development of some real
number which is contained in the interval [0, 1]). The distance between two
such distinet points defined by formula (6), §8, is 1. We surround each of
these points with a sphere of radius 7- These spheres do not intersect. If
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* some set is everywhere dense in the space under consideration, then each
of '__t_he indicated spheres should eontain at least one point of this set and
. consequently it cannot be denumerable.
(1) Let A be an arbitrary set in the metric space R and let x be a point
in R. The distance from. the point  to the set A is defined by the number

plA, %) = inf {pla, )} ¢ € A}

I € A, then p(d, ) = 0; but the fact that p(4, z) = 0 does not imply
that = € A. From the definition of contact point it follows immediately
that p(4, ) = 0if, and only if, x is a contact point of the set 4.

Thus, the closure [4] of the set A can be defined as the totality of all
those points whose distance from the set A is zero.

{2) We can define the distance hetween two sets analogously. If A and B

are two sets in R, then
P(Ay B) = inf {p(a-, b),ﬂ. € A;b € B}

Ii A N B # 0, then (4, B) = 0; the converse is not true in general.

(8) If A is a set in the metric space B then the totality A’ of its limit
points is called its derived sel.

Although the application to {M] once more of the operation of closure
always Tesults again in [M], the equality (M') = M’ does not hold in
general, In fact, if we take, for example, the set A of points of the form
1/n on the real line, then its derived set .4’ consists of the single point 0,
but the set A7 = (47 will already be the void set. If we consider on the
real line the sct B of all points of the form 1/a + 1/ ) (ny,m= 1,2, ),
then B' = A U A7, B’ is the point 0, and B’ is the void set.

§10. Open and closed seis

in this section we shall consider the more important types of sets in a
metric space; these are the open and closed sets.

A set M in a metric space R is said to be closed if it coincides with ita
closure: [M] = M. In other words, a set is said to be cloged if it contains
all its limit points.

By Theorem 1, §9, the closure of an arbitrary set M is a closed set.
Theorem 2, §9, implies that [M] is the smullest closed set which contains M.

ExaMmpLES. 1. An arbitrary closed interval [z, b] on the real line is a
closed set.

2. The closed sphere is a closed set. In particular, in the space Cla, b]
the set of functions satisfying the condition | f| < K is closed.

3. The set of functions satisfying the condition | f| < K {open sphere)
is not closed; its closure is the set of functions satisfying the condition

171 K.
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4. Whatever the metric space R, th i
", the void set he w 4
L ateve and the whole space R
i.hE;erﬁ set consisting of a finite number of points is closed
The fundamental properties of elosed seta ¢ i
! > an be f :
of the following theorem. © formulated tu the form
Turorey 1. The intersection of an arbitrary i
' _ wrary number and th
arbilrary finile number of closed sets are elosed sels. ¢ s of an
' f.’roof.. Let ¥ = NF,, w.'here the 7, are closed sets. Further, let z be s
limnit pomt_ of the‘ sat F This means that an arbitrary neighborhood O(z, €
of 2 cogt-aans an infinite .number of points of F. But then O(z, ¢) conta,ins
an mlﬁmtie n}lllmber of points of each #, and consequently, since all the F
are cloged, the point & belongs to each F,, - thus ~ i is
are clo «ithug, 2 € F = N, F, ie Fis
Now let ¥ be .the sum of a finite number of elosed scts: F = UL, F; |
s:nd. let 2 .b_e a Pomt not helonging to 7, We shall show that 2 canno‘; be‘aj
limit point of iff.‘In fact,  dees not belong to any of the closed sets F; and
Ef)nsc{]utflltl}' it is not a limit point of any of them. Therefore for eviery )
we can find a mjllghborhood O(z, &) of the point & which does not, contain
mgrf} li;han a finite number of points of F; . If we take the smallest of the
ilheéngi{:zloodsh_O%c,del), -+, O(z, ¢,), we obtain a neighborhood Olz, € of
: . & whic - i i :
the b 0es not contain more than a finite number of points
'rhus, .if the point i does not belong to F, it cannot be & limit point of
F,.rl;c. F is c]osc‘d. This completes the proof of the theorem.
‘1 hel‘; point @ 13 said to be an inderior point of the set M if there exists a
neighborhood Oz, €) of the point z which is contained entirely in M.
%}zet all of xjvhosc Pomts are interior points is said to he an open set.
il <-LMPL<ESE.) ()ﬁi{‘he gzterval (a, b) of the real line D' is an open set: in fact
< , then O{a, €}, where ¢ = min {¢ — - is contained
entirely in the interval (a, b). ( 0 contaw‘led
. 7 I ht? open sphere S(a, #) iu an arbitrary metric space & is an open set
n-fact, if z ¢ S(a, ), then pla, 2) < r. We set ¢ = r — ple, ). Ther;

8, &) < 8{a, 7).

8. The_ set of continuous functions satisfying the eondition |l < K
\'vfhere K is an arbitrary nuinber, is an open subset of the space Cla, b] ’

Tr{EOREM 2. A necessary and sufficient condition that the set M be, o ‘en s
{hat ifs Coﬂ?pfﬂn?m-i BN\ M with respect to the whole space R be closed.p
1 lP-roof. It _M is open, Fhen eslmch point € M has a neighborbood which
velongs entirely to M, i.e. which does not have a gingle point in comm
with B ™\ 'M . Thus, no point which does not belong to B\ M oﬁn beoz
contuct point of B N\ M, ie. B\ M is closed. Conversely, if B \ M is

elosed; an arbitrary point of 3 i : ‘hich i ; :
M e M 15 open YD of M has a neighborhood which lies entirely in
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Since the void set and the whole space R are closed and ave at the same
time -complements of each other, the theorem proved above implies the
following corollary.

CoroLnary. The void set and whaole space R are open sets.

The following important theorem which s the dua! of Theorem 1 follows
from Theorem 1 and the principle of duality established in §1 {the inter-
gsection of complements equals the complement: of the sums, the sum of the
complements equals the compiement of the intersections).

TrEOREM 17. The sum of an arbitrary nwmber and the tntersection of an
arbitrary finite number of open sefs are open sets. :

A family {(,} of open sets in R is called a basis in B if every open set
in R can be represented as the sum of a {finite or infinite) number of sets
helonging to this family.

To check whether or not a given family of open sets i a basis we find
the following eriterion useful. :

Truores 3. A necessary and sufficient condition thal o system of open seis
1G4 be a basis tn R 4s that for every open set G and for every point x € ¢
a sel Go can be found in this system such that x ¢ G. C G

Proof. If {G,) is a bagis, then every open set G is asum of @,/8: G =
U, G, , and eonsequently every point x in & belongs to some ¢, contained
in G. Conversely, if the condition of the theorem is fulfilled, then {G,} is
a basis. In fact, let & be an arbitrary open set. Tor cach point x € G we
can find some G.(z) such that & € G C G. The =um of these G, (x) over all
z € G equals G.

With the aid of this eriterion it is easy to establish that in every metric
space the family of all open spheres forms a basis. The family of all spheres
with rational radii also forms a basis. On the real line a basis is {formed,
for example, by the family of all rational intervals (i.e. intervals with
rational endpoints). '

We shall say that a set is countable if it is cither finite or denumerable.

R is said to be a space with countable basis or to satisfy the second axiom
of countabelity if there is at least one basis in B consisting of a countable
number of elements.

TeroreM 4. A necessary ond sufficient condtiion that R be a space with
countable basis is that there exist in R an everywhere dense countable set. (A
finite everywhere dense set occurs only in spaces consisting of a finite set
of points.) _

Proaf. Necessity. Let R have a eountable basis {G}. Choose from each
¢, an arbitrary point %, . The set {x.} obtained in this manner is every-
where dense in E. In fact, let  be an arbitrary point in R and let Oz, ¢
be a neighborhood of x. According to Theorem 3, & set ¢, can be found
such that & € G, C O(z, ¢). Bince G, contains at least one of the points of
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‘TEE; :::t {;';;(]3, I;i;;ytnl:eighbl{:rh?od O{x, ¢) of an arbitrary point 2 € R contains
: $ nt from {z,} a § I3 ever ' )
at o ud this means that {z.] is everywhere dense
' ,S:z;;ﬁim;m:cy. It jz.} is 2 countable everywhere dense set in R, then the
lamily 1? spheres S(fr-,, , 1/k) forms a countable basis in #. In fact, the qef
of a : tblcse .'ip;lei‘es 15 countable (being the sum of a countable fz,imilyk{;f.
countable sets). I'urther, let 7 be an arbitrary
nita er, 1 rary open set and let x he
point in G. By the definition of an open set an-m > 0 can be found sizi
;:hat ‘;.ﬁe spherc!S(m, 1/m) lies entirely in . We now select a point x
rﬂril the .s;et- {;r-,.‘, such thaif P, Tay) < 1/3m. Then the sphere S(z.,, ,1 /2?1:;
conl.ams the Pomt b :-_md 15 contained in S{x, 1/m) and eonsequ:ar,ltly n
C:‘ also. By virtue of Theorem 3 it follows from this that the spheres
S(xa, 1/k) form s basis in R. e
i ]i;ra;ln'tue of this theorem, the examples introduced above (§ 9 of
sep e spaces are at t i ith c
repar he same time examples of spaces with countable
L1 ST H
X We 8oy that a‘bys,tem of sets M, is a covering of the space Rit UAf, = R
A eovering consisting of open (rlosed) sets wi s (closed)
o pet p%ed) sets will be called an open (closed)
THEOREM 5. If B is @ metric s
IR ctric space with countable basis, then we ca
o iiun?blﬁ covering from cach of its epen coverings , e cam el
roof. Let 10,1 be an arbitrary open coveri , " i
¥ € R s contained in some 0, | pon covering of & Thus, every point
. Let {G,} be a countable basis in B. Then for every & € /i there exists a
_Gn(x) € {Gd ‘and an «a such that ¥ € @.(x) € O, . The family of sefs
fngi) sge(ct)ed in this way is countable and covers B. If we choose for each
of the ¢,(x) one of the sets 0, containing it w i .
covering of thn soetins ot g it, we obtain & countable sub-
It‘.waa already indicated above that the void set and the entire space R
are mm}Jlt-aneougy open and closed. A spaee in which there are no other
setT “_.hich are simultancously open and closed is said to be -connected. The
I’Bea,t ?}ncv R is one of t.l.m simplest examples of a connected metrie s'pace
1;hu‘ i we remove a ﬁ‘mte set of points (for example, one point) from Rf
€ remaining space is no longer connected. The simplest example of aj
space which 1s not vqnnectcd is the space consisting of two points which
ar(z s)mt an arbitrary distanee from one another ' ‘ ;
1) Let My be the set of all functions f in Cfa
_ [ gt etions fin whi is
Lipsehits pepe f la, b] w h1§}1 satisfy a so-called

_ rf(tl) _f(f9)| < K,]I‘l - zzf,

;\;h;e}fe Kisa con.stant. ':l"he set M 1s closed. It coincides with the closﬁfp
@ set of all differentiable functions which are such that [y | < K ‘
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(2) Theset M = UM, of all funetions each of which satisfies a Lipschitz
condition for some K is not closed. Gince M contains the set of all poly-
nomials, its closure is the entire space Cla, bl

(3) Let distance be defined in the space X in two different ways, ic. fet
there be given two distinet metrics pi(x, ¥) and palz, ). The metrics p; and
pz are said to be equivalent if there exist two positive constants o and b such
that o < [a(@, ¥)/ ez, ¥)] < biorallz = yin R. 1f anarbitraryset M € X
is elosed (open) in the sense of the metric pp , then it is closed {open) in the
gense of an arbitrary moetric ps which is equivalent to py .

(4) A number of important definitions and assertions concerning metric
spaces (for example, the definition of connectedness) do not make use of
the concept of metric itself but only of the concept of open (closed) set, or,
what is essentially the same, the concept of neighborhood. 1n particular, in
many questions the metric introduced in a metric space can be replaced by
any other metric which is equivalent to the initial mettie. This peint of
view leads naturally to the concept of topological space, which is a gen-

eralization of metric space.

A topological space is a set T of elements of an arbitrary nature (ealled
points of this space) some subsets of which are labeled open sets. In this
connection we assume that the following axioms are fulfilled:

i. T and the void set are open;
9. The sum of an arbitrary (finite or infinite) number and the inter-

section of an arbitrary finite number of open sets are open.

The sets 7 \_G, the complements of the open sets G with respect 10 T,
are said to be closed. Axioms 1 and 2 imply the following two assertions.

/. The void set and T are closed;

! The intersection of an arbitrary (finite or infinite) number and the
sum of an arbitrary finite pumber of closed sets are closed.

A neighborhood of the point © & T is any open set containing .

In a natural manner we introduce the coneepts of contact point, limit
point, and closure: & € T is said to be a contact point of the set M if every
neighborhaod of the point ¢ contains ab least one point of M; 13 gaid o
be a limit point of the set M if every neighhorhood of the point = contains
an infinite number of points of M. The totality of all contact points of the
set M is called the elosure [3] of the set M. :

It can easily be shown that closed sets (defined as the complements of
open sets), and only closed sets, gatisfy the condition [M] = M. As also
in the case of a metric space [M] is the smallest closed set containing M.

Similarly, as a metric space is the pair: set of peints and a metlric, 50 a
topological space is the pair: set of points and a topology defined in this
gpace. To introduce a topology into T means to indicate in T those subsets

_ which are to be considered open in 7.
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ExaMpLEs. (4-a) By virtue of Theorem 1’ o i i
satisfy Con.ditions 1 and 2 in the definition of ie?o;iﬂli;i;; {:itclzc ;I}JlaCe
eyery metric space can be considered as a topological space pase T
(4-b_) Let T consist of two points @ and b and let the open éets inTheT
the void set, and the set consisting of the single point b. Axioms 1 and 2e ;
f?.]ﬁlied. .The closed sets are T, the void set, and the set consisting of ?}l;e
single point a. '1th elosure of the set consisting of the point b is allgof T )
duffil 1]; :gptclaiogm:l ;pace};f' 1% said to be metrizable if a metric c;an be int;'o
& 0 the se so that the sets which are i f _
metric 00111(‘31(118 with the open sets of the injtia?pti)r;);loélit;%snﬁ:cg t '11:‘1;;5
spsz,g)e Ef]-fh) is galt.ln cxampltfa of a topological space which cannot bepmt;,t;‘rizeci‘3
ough many fundamental concepts io
spaces tg topological spaces defined in (4), t}fis c;?;gt E;:nrs ifl?;n:o gmttlm
gene_ral in a number of cases. An important class of topological se o
congists of those spaces which satisfy, in addition to Axi 1 ) the
Hausdorff separation axiom: ome 1 and 2, the

3. Any two distinet poi ; i8] 0l
. Ay points = and y of the space T have disjoint neigh-
A topological space satisfyin i i i |
. i g this axiom is called a Housd
Clearly, every metrie space is a Hausdorff space. The space poin?c:g sﬂfsf{f?-
Example {(4-b) does not satisfy the Hausdorfl axiom, "

§11. Open and closed sets on the real line

) The structurt? of open and closed sets in an arbitrary metric space can
e veiry }fum_phcated. We shall now consider the simplest special Jcase
n?me g t a:t qf open and closed sets on the real line. In this case their comi
plete ’escrlpuon does not present much of a problem and is gl b
following theorem. : given by the
TrrorkM 1. Every open set on the real line 1 '
of diornt ot al line is the sum of a countable number
}?roof. [We shall also include sets of the form (— =, =), (, =), (~ =, §)
E? ;iti;va.ls.] tLet & befaau::1 open set and let x € @. Then by, the ’déﬁm{ion
en set we can find some interval I which contains the poi !
belongs entirely to the set G. This i oy be chomon v g
. ' t L@, interval can always be chosen
}ts e_ndpomts are ratlox}al. Having taken for every pointx € G s corrssopélrig
:;i ;Bnr:lerx}all I 1,; we (;bt-s(uE a covering of the set @ by means of a denumerable
; of intervals (this system is denumerable b
infervals with rational endpoints is d s ot
' enumerable), Furthermore, we sh
s?,y t!lat the m‘tervals I" and I” (from the same covering) belm,'lg :oq "
class if there exists a finite chain of intervals: : o

I' = I],Ig, "':In:[”
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"tbelonging to our covering} such that I intersects Ty (1 < %k < n — 1),
Tt is clear that there will be a countable number of such clagses, Further,
“the urion of all the intervals which belong to the same class obviously
again forms an interval U of the same type, and intervals corresponding
to distinet classes do not intersect. This completes the proof of the theorem.

Since closed sets are the complements of open sets, it follows that every
closed set on the real Iine is obtained by removing a finite or denumerable
number of open intervals on the real line.

The simplest examples of closed zets are segments, individual points,
and the sum of a finite number of such sets. We shall now consider a more
complicated example of a closed set on the real line, the so-called Cantor
set.

Let F, be the closed interval [0, 1. We remove the open interval {(}, 3
from F, and denote the remaining elosed set by F.. Then we remove the
open intervals (§, §) and (%, §) from Fy and denote the remaining closed set
(consisting of four closed intervals) by Fz. From each of these four intex-
vals we remove the middle interval of length (3)°, and so forth. If we con-
tinue this process, we obtain a decreasing sequence of closed sets F,.We
cot F = N°_o Fn ; F is a closed set (since it is the intersection of the closed
sets F.). It is obtained from the closed interval {0, 1] by removing a de-
numerable number of open intervals. Let us consider the structure of the
set F. The points

(1) 1t 1:%:%:%)%77}9%:"'

which arc the endpeints of the deleted intervals obviously belong to F.
However, the set F is not exhausted by these points. In fact, those points
of the closed interval [0, 1} whick belong to the set F can be characterized
in the following manner. We shall write each of the numbersz, 0 € & £ 1§,

in the triadic system:
e =a/3+a/F+ o F /3

where fhe numbers a, can assume the values 0, 1, and 2. As in the case of
the ordinary decimal expansion, some numbers allow two different develop-
ments. For example, : _
ol @+ @ =@ BT

Tt is easily verified that the set F contains those, and only those, numbers
€, 0 € x < 1, which can be written in at least one way in the form of &

triadic fraction such that the number 1 does not appear in the scquence

@,0s, ", 8, - - Thus to each point z € F we can assign the sequence

(2) a‘)a‘-’-zl”!a’njn's
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§12] CONTINUOUS MAPPINGS. HOMEOMORPHISM. ISOMETRY 33
where a,, 18 0 or 2, The set of all such sequences forms a set having the
power of the continuum. We ean covvince ourselves of this by assigning
to each sequence (2) the sequence

(2 Bu,ba, - b, e,

where by, = 0if 4, = O and b, = 11if g, = 2. The sequence (2’) ean bhe
considered as the development of a real number y, 0 < y < 1, in the form
of o dyadic fraction. We thus obtain a mapping of the sct F onto the entire
closed interval [0, 1]. This implies that F has the cardinal number of the
continuum. [The correspondence established between F and the closed
interval [0, 1] is single-valued but it iz not one-to-one (becaunse of the fa(;t
that the same number can sometimes be formed from distinct fractions).
This implies that F has cardinal number net less than the cardinal number
of the continuura. But F is a subset of the closed interval [0, 1] and conse-
quently its eardinal number cannot be greater than that of the continuum.
(See §5.)] Since the set of points (1) is denumerable, these points cannot
exhaust all of .

ExtrcisE. Prove divectly that the point } belongs to the set F although
it is not an endpoint of a single one of the intervals deleted. Hint: The
point 1 divides the closed interval {0, 1] in the ratio 1:3. The closed interval
0, 3] which remains after the first deletion is also divided in the ratio 1:3
by the point %, and so on.

Th_e Points (1) are said to be points of the first type of the set F and the
remaining points are said to be points of the second type. '

Exerciss. Prove that the points of the first type form an everywhere
dense set in F. . '

' We have shown that the set F has the cardinal number of the con-
‘E-{l}ntilfm, i.e. that it contains as many points as the entire closed interval

Tt is interesting to compare this fact with the following result: the sum

of the lengths of all the deleted intervalzis: + 4+ % + - - Jl.e exactly 1!

§12, Continuous mappings. Homeomorphism. Isometry

Let B = (X, .p} and E’ = (¥, p") be two metiic spaces. The mapping f
of t_.he space R into R’ is said to be continuous af fhe point xy € R if for
arbitrary ¢ > 0 a § > 0 can be found such that '

p'Lfx), flag)] < e

for all z such that
P(:"-', -TD) < 4

In cther words, the mapping f is continuous at the point xp i an arbitrary
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- neighborhood O(f(xs), €} of the point f{zo) contains a neighborhood O(xo , 5}
of the point x, whose image is contained in the interiar of O(f(xo), €.

A mapping f is said to be confinuous if it is continuous at each point of
the space K.

If &’ is the real line, then a confinuous mapping of B into R’ is called a
continuous function on K.

As in the case of the mapping of arbitrary scts we shall say that fis a
mapping of K onfo R’ if every elemens y € R’ has at least one inverse
image.

Tn analysis, together with the definition of the eontinuity of a function
“in terms of neighborhoods™, the definition of continuity “in terms of
sequences”, which is equivaleat to it, is widely used. The situstion is
analogous also in fhe case of continuous mappings of arbitrary metric
gpaces.

TrEoREM 1. A necessary and sufficient condition that the mapping | be
continuous of the point z s that for every sequence {x.} which converges lo
the corresponding sequence {f(x,)} convergetoy = Fix).

Proof. The necessity is obvious. We shali prove the sufficiency of this
condition. If the mapping f is not continuous at the point x, there exists a
neighborhood O(y, €) of the pont y = f(z) such that an arbitrary Oz, 8)
contains points whose images do not belong to Oy, €. Betting 3, = 1/n
(n = 1,2, --), we seleet in ecach sphere O(x, 1/n) a point x, guch that
f(x,) € Ofy, ¢). Then z, — = but the sequence {f(xn)} does not converge to
§(@), Le. the condition of the theorem is not satisfied, which was to be
proved. .

TrEOREM 2. A necessary and sufficient condition thal the mapping | of the
space B onto R’ be continuous 7s thal the inverse image of each closed sef in R
he closed.

Proof. Necessity. Let M < R be the complete inverse image of the closed
set M’ < R'. We shall prove that M is closed. I x € [M], there exists a
sequence {x,} of points in M which converges to z. But then, by Theorem 1,
the sequence {f(z,)} converges to f(z}. Since flz.) € M'" and M’ is closed,
we have f(z) € M'; consequently z € M, which was to be proved.

Sufficiency. Let = be an arbitrary point in R, y = f(x), and let Oy, €
be an arbitrary neighborhood of y. The set Rf \_O(y, € is closed (since it
is the complement. of an open set). By assumption, F = TR N\ Oy, )
is closed, and moreover, = ¢ F. Thus, B \ I isopen and x € RN\ F3
consequently, there is a neighborhood O(z, 8) of the point x which is con-
tained in B \_F. If 2 € O(z, 8), then f(z) € Oy, ¢), i.e. f is continuous,
whichk was to be proved.

Rrmark. The image of a closed set under a continuous mapping is not
necessarily closed as is shown by the { ollowing example: map the half-open
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£{0)
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Fig. 8

interval [0, 1) onto a circle of the same length. The set [, 1) which is elosed
in [0, 1), goes over under this mapping into & set which is not closed (sce
Fig. 8). .

Sinece in the case of & mapping “onte” the inverse image of the comple-
ment equals the complement of the inverse image, the following theorem .
which is the dual of Theorem 2 is valid.

TuEoreM ¥. A necessary and sufficient condition that the mapping f of the
space E onto R’ be continuous s that the tnverse image of each open set tn B’
be open.

The f _ollnwing theorem which i the analogue of the well-known theorem
from analysis on the continuity of a composite function is valid for con-
tinuous mappings.

TuroreM 3. If B, R/, R” are melric spaces and | and ¢ are confinuous
mappings of B info R’ and R’ inlo R”, respeciively, then the mapping 2 =
o(f(2)) of the space R info R” 15 continuous.

The proof is carried out exactly as for real-valued functions,

The mapyping f is said to be a hemeomorphism if it is one-to-one and
bicontinuous (i.e. both f and the inverse mapping /' are continuous).

The spaces B and R’ are said to be homeomorphic if 2 homeomaorphic
correspondence can be established between them.

It is easy to sce that two arbitrary intervals are homeomorphic, that an
arbitrary open interval is homeomorphic to E', and so forth.

Tt follows from Theorems 2 and 2’ of this section that a necessary and
sufficient condition that a one-to-one mapping be a homeomorphism is that
the closed (open) sets correspond to closed (open) sets.

This _implies that & necessary and sufficient condition that a one-to-one
mapping ¢ be & homeomorphism is that the equality

o((M]) = [o(3)]

h_old for arbitrary M. (This follows from the fact that [M] is the intersec-

tion of all closed sets which contain M, i.e, it is the minimal closed set

which contains M.} o
Tixanmpre. Consider the spaces B® = (D", p} and Ry" = (D", pg) (see §8,
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Examples 3 and 4). The following inegualities hold for the mapping which
- agsigns to an element in B with coordinates a1, @, - . ., T» the element in
_R." with the same coordinates:

ooz, y) < olz, y) < nipolz, u).

Consequently an arbitrary e-neighborhood of the pomnt z of the space R"
contains a §-neighborhood of the same point z considered 4s an element of
the space Ro", and conversely. It follows from this that our mapping of R
onto By" is a homeomorphism.
An important special case of a homeomerphism is an isometric mapping.
We say that a one-to-one mapping y = f(z) of a metric space R onto a
metric space R is isometric if

plir, @) = plflan), flaa)]

for arbitrary @ , 22 £ R. The spaces R and R’ themselves, between which
an isometrie correspondence can be established, are said to he 1somelric.

The isometry of two spaces R and R’ means that the metric relations
between their elements are the same and that they can differ only in the
nature of their elements, which is unessential. Jn the sequel we shall con-
sider two isometric spaces simply as identical.

(1} The concept of continuity of a mapping can be defined not onty for
metric but also for arbitrary topological spaces. The mapping f of the
topological space T into the topological space T’ is said to be continuous
at the point z, if for arbitrary neighborhood O(zo) of the peint yo = flxa)
there exists a neighborhood G{z) of the peint 2y such that FO(ze)) < Olyo).

Theorems 2 and 3 catry over sutomatieally to continuous mappings of

topological spaces.

§13. Complete metric spaces

From the very beginning of our study of mathematical analysis we are
convinced of the important role in analysis that is played by the property
of completeness of the real line, ie. the fact that every fundamental se-
quence of real numbers converges to some limit. The real line represents
the simplest example of the so-called complete metric spaces whose basie
properties we shall consider in this seetion,

We shall call a secquence {x,.} of points of a metric space R a f undamental
sequence if it satisfies the Cauchy criterion, ie, if for arbitrary ¢ > 0 fhere
evists an N, such that p(zw , xp) < efor alln’ 2 No,n" 2 N..

Tt follows directly from the triangle axiom that every convergent sequence
is fundamental. In fact, if {r,} converges to z, then for given ¢ > 0 it is
possible to find a natural number ¥, such that p(e., ©) < /2 for all
n > N.. Then p(ze , Tur) < plza, x} + olzer, 2} < e for arbitrary
n > N.andn® > N..
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DeFiNiTIoN 1. If every fundamental sequence in the space B converges
1o an clement in B, R is said te be complete.

* ExampLEs. All the spaces considered in §8, with the exception of the
one given in Example 7, are complete. In fact: '

1. In the space consisting of isolated points (Example 1, §8) only those
sequences in which there is a repetition of some point, beginning with gome
index, are fundamental. Clearly, every such sequence converges, i.e. this
space 18 complete.

2. The completeness of the space B' of real numbers is known from
analysis.

3. The completeness of the Euclidean space B follows directly from the
completeness of R Infact, let {:} be a fundamental sequence; this means

_that for every € > 0 an N = N. can be found such that

S @ - < 8
for all p, ¢ greater than N. Then foreach k& = 1,2, -, »

(%) &
t Lp "’mq)|<5

for all p, ¢ > N, ie. {£,%"} is a fundamental sequence of real numbers.
We st
x(k} — limp_.,c xﬁw,
and
z = @™z, -, 2™,

Then it is obvious that
Im, ..z, = 2.

" 4. The completeness of the space Ro" is proved in an exactly analogous
nianner. :

5. We shall prove the completeness of the space Cfa, bl. Let {z.{t)} be a '
fundamental sequence in Cfa, b]. This means that for each ¢ > 0 there
exists an N such that [ z.(f) — 2.() | < eforn,m > Nandallt,a < ¢ < b,
This implies that the sequence {z.(f)} converges uniformly and that its
limit'is & continuous function z(!), where

{3l) — 2| < ¢

for all { and for all n larger than some N; this means that {2.(¢)} converges
to _;c(i,)' in the sense of the metric of the space Cla, b]. ' '
6. The space I» . Let {2}, where K

— (nl (n) ()
£ "'(xl s 42 1”')xknr"'):

be & fundamental sequence in Iz .
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~ For arbitrary ¢ > 0 an N can be found such that
{1y PE™, ™) = i (5™ — 2™ < ¢ for m,m >N
Tt follows from this that for arbitrary &

(ka _ _,vktma)z < e

ic. for each k the sequence of real numbers {xk‘“)} converges. Set
lifpow 22" = ;. Denote the sequence (x1; 2, "+ 7y Tny -} by =. We
must show that

a) Sy < w; b)Y limaes p@™, z) = 0.
To this end we shall write inequality (1) in the form
S @™ — o™y
= T @™ - 5™+ 32 e @ — 5 < e

(M arbitrary). Since each of these two sums is nonnegative, each of them
igt less than e. Consequently

E?‘c‘:- . (37&(“) o
If we fix m in this inequality and pass to the limit as n — «, we obtain
S —nY <
Sinee this inequality is valid for arbitrary M, we can pass to the limit as
M — =, We then obtain .
Z?—x (ar — -’Ca‘e(m))2 < e

The inequality thus obtained and the convergence of the series
32, 2 imply that the series 2 84 @ converges; consequently x is an
element in 1. Further, since ¢ is arbitrarily small, this ipequality means
that

xk("‘)f < £

limm s P{xtm)z :B) = liMpao {Z?ml (xk - xk(m})2}§ = 0)

ie. 2™ — .

7. It i3 easy to convince ourselves of the fact that the space *la, b) is
not complete. For example, the sequence of continuous functions

ea(f) = arctan ni (-1£t< 1)

is fundamental, but it does not converge to any continuous function (it
converges in the sense of mean square deviation to the discontinuous fune-
tion which is equal to —#/2 fort < 0, 7/2 for ¢ > 0, and 0 for £ = 0}.

Exercise, Prove that the space of all bounded sequences (Example 8,
$8) iz complete,
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In analysis the so-ealled lemma, on nested. segments is widely used. In the
gheory of metric spaces an analogous role is played by the following theorem
which is called the grinciple of nested spheres.

TreorEM 1. A necessary and sufficient condition that the melric space R be
complete is that every sequence of closed nested spheres in I with radii tending
{o zero have nonvoid intersection.

Proof. Necessily. Assume the space R 15 complete and let S;, S5, Sy, - -
be a sequence of closcd nested spheres. Let d, be the diameter of the
sphere 8, . By hypothesis lim,.. d. = 0. Denote the center of the spheré
8. by 2. The sequence {z,.} is fundamental. In fact, if m > =, then oh-
vioudly p(®n , #.) < d, . Since R iz complete, lim,.. &, exists, If we. set

T = liMyen 0,

then z € .8, . In faet, the sphere S8, contains ali the points of the given
sequence with the exception perhaps of the points 2y, 22, -+, ®»1 . Thus,
£ ig a limit point of each sphere S, . But since S, is a closed set, we have
that & € S, for all n. '
Suffictency. To prove the sufficiency we shall show that if the space &£ is
not eomplete, i.e. if there exists a fundamental sequence in £ which does
not have a limit, then it is possible to construct a sequence of closed nested
spheres in 2 whose diameters tend to zero and whose intersection is void.
Tet {x.} be a fundamental sequence of points in £ which does not have a
limit. We shall construct a sequence of closed spheres S, in the following
way. Let ni be such that p{z., , £.) < § forallm > n;. Denote by 8, the
sphere of radius 1 and center at ., . Further, let n: > n; be such that
Ty s Tm) < § for all m > ny . Denote by 8; the sphere of radius 3 with
center x,, . Jince by assumption p(z,, , T.,} < %, we have §; C 8:. Now
let n; > ns be such that plo,, , x.) < & for all m > ns and let 5; be a
sphere of radius 1 with center x.,, and so forth. If we continue this con-
struction .we obtain & sequence of closed nested spheres [8.}, where S,
has radius (). This sequence of spheres has void interseetion; in fact, if
r _ﬂkS;ﬂ_, then & = liMa.w. &, . Asa matter of fact the sphere S, contains
all points x, beginning with x,, and consequently p(z, 2.) < (3" for all
% >z . But by assumption the sequence {x,} does not have a limit. Therc-
fore NS, = 6. : '
. If the space R is not complete, it is always possible to embed it in an

_e_ntire]y'deﬁhite manner in a complete space.

_ DeFIxrTION 2. Let B be an arbitrary metric space. A complete metric

space- B* is said to be the completion of the space R if: 1) R is a subspace

of the space B*; and 2) R is everywhere dense in R¥, i.e. [R] = R*. (Here
[R] naturally denotes the closure of the space R in R*.) _

TFor example, the space of all real numbers is the completion of the space
of rationals. '
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TaoREM 2. Frery metric space has ¢ completion and oll of s complelions
~.are isometric.

Proof. We begin by proving uniqueness. It is necessary to prove that if
R* and B** are two completions of the space K, then they are isometric, i.e.
there is a one-to-one mapping ¢ of the space B* onto R** such that 1)
olz) = xforall & £ R; and 2) if «¥ < o** and y* > y**, then p(a®, y*) =
plz**, y**).

Such a mapping ¢ is defined in the following way. Let 2* be an arbitrary
point of R*. Then, by the definition of completion, there exists a scquence
fz.} of points in R which converges to z*. But the sequence {x.} can be
assumed to belong also to £*¥. Since B** is complete, {x,} converges in B¥
to some point 3*¥*, We set p(x*) = #**. Tt is clear thal this correspondence
is one-to-one and docs not depend on the choice of the sequence {x.} which
converges to the point »*. This is then the isometric mapping sought. In
fact, by construction we have (x) = xforallz € k. Furthermore, if we
let

{z,} — a*in B* and {x,} — & in R**,

{ya} — ¥* in R* and {y,} — y** in B*,
then

pla*, y*) = limn.w (2, ¥a)
and at the same time
p(*%, y**) = HiMpoce p(T , Ya)
Consequently
pla®, y*) = ola™, ¥™).

We shall now prove the existence of the completion. The ides involved in
the proof is the same as that in the so-called Cantor theory of real numbers.
The situation here is essentially even simpler than in the theory of real
numbers since there it is required further that one define all the arithmetic
operations for the newly introduced objects—the irrational numbers.

Let R be an arbitrary metrie space. We shall say that two fundamental
sequences {x.} and {z,’} in K are equivalent {denoting this by {x.} ~ {2."])
if i p(Tn , #") = 0. This equivalence relation is reflexive, symmetric
and transitive. Tt follows from this that all fundamental sequences which

* ean be constructed from points of the space K are partitionied into equiva-
lence classes of sequences. We shall now define the space B* in the following
manner. The peints of R* will be all possible equivalence classes of funda-

mental sequences and the distance between points in B* will be defined in
the following way. Let * and y* be two such classes. We choose one repre-
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sentative from each of these two classes, i.e. we select some fundamental
sequence {«.} and {y.} from each, respectively. We set

(2) p(,’C*, 3/*) i limu—am P(xn 2 yn)'-

~We shall prove the correctness of this definition of distance, i.e. we shall
show that the limit {2) exists and does not depend on the choice of the
representatives {z,} € «* and {y.] € y*.

Since the sequemees {x,} and {y.} are fundamental, with the aid of the
triangle axiom we have for all sufficiently large »’, n”: '

| p(@n 5 Ynr} — P(Tars s Yur) |
= | p(@ar y Yu) — 2@ 5 Ynr} + Pt 5 Yarr) — p@atr , Yore) |
< b plan, yu) = p(@ar s Ynee) | 4 | 0(Enr 5 Yarr) — pl@wre, Yoor) |
< e, Yurr)  p(Tar ) Tnr) < €/2 + /2 = &

Thz‘m_, the sequence of real numbers s, = pl(., , y.) safisfies the Cauchy
crit'enon and consequently it has a limit. It remains to prove that this
limit does not depend on the choice of {z.} € 2% and {y.} € y*. Let

{n}, {:?:“‘} € 2* and ({y.l, {yﬂ,} € ¥
Now
{2a) ~ {=."} and  {ya} ~ {ya')

imply that _
! P(x’? ) yn) - p(xnr: yn’)|

= !p(:rm yﬂ) - p(:r'n!) yu) + p(xn!s yn) - P(xﬂ?r yn’)|

< o, e — plan’, yull + | o{ad, #2) — oled, 4]

< o(@n, 22) + oy, ¥ — 0,
e,
limn-aw P(xn » yn) = limn-uw P(xu! y yn')-

We shall now show that the metric space axioms are fulfilled in R*.

Axiom 1 follows directly from the definition of equivalence of funda-
mental sequences, .

Axiom 2 is obvious.

We shall now verify the triangle axiom. Since the triangle axiom is satis-
fied in the initial space R, we have ' )

P(xn y Zn) = P(xn 'y 'yﬂ) + P(y‘l 3 z'l)' |
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: Passing to the limit asn — », We obtain
. . Do P(xu ' 3:4) S Hmn—-w P(ﬂﬂn 3 yﬂ) + lim s P(yﬂ 3 zﬂ))

ie.
olz, 2) < alz, ) + oly, 2).

We shall now prove that R* is the completion of the space f. {We use the
keeping in mind that all completions of the space & are isometric.)

o each point & € I there corresponds some equivalence class of funda-
mental sequences, namely the totality of all sequences which converge 1o
the point. i,

We have:
if

2 = liMpae & and 3 = liMae ¥,y

then
p(@, ) = liMusw p(@n s Yn)-

Consequently, letting the corresponding class of fundamental sequences
converging to x correspond to each point & we embed & isometrically in the
gpace R*.

In the sequel we shall not have to distinguish between the space R itself
and its image in R* (i.e. the totality of all equivalence classes of convergent
gequences) and we ¢an consider R to be a subset of R*.

We shall now show that B is everywhere dense in B*. In fact, let x*
be & point in B* and let € > 0 be arbitrary. We select a representative
in z*, i.e. we choose & fundamental sequence {x,}. Let N be such that
p(#y , Tm) < eforalln, m > N. Then we have

p(xn » .T*) = liMme P(-T-n ¥ zm} S €

{e. an arbitrary neighborhood of the point &* eontains a point of BE. Thus
we have [R] = E*.

1t remains to be proved that the space R* is complete. We note, first of
all, that by the construction of B* an arbitrary fundamental sequence

;;1"11; P

(3) Ty, &,
consisting of peints belonging to R, converges in B* to some point, namely
to the point * € R*, defined by the sequence (3). Further, since R is dense
in R*, then for an arbitrary fundamental sequence z;*, 2%, =+, &%, o of
‘points in R* we can construct an equivalent sequence 1, &2, " 5 Tny "7
consisting of points belonging to R. To do this it is sufficient to take for
x, any point in R such that p(@y , T¥) < 1/n,

TR
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The sequence {;n} thus constructed will be fundamental and by what was
proved above it will converge to some point 2* € RB*, But then the sequence
{z.*} also converges to x*. This proves the theorem completely.

§14. Principle of contraction mappings and its applications

As examples of the applications of the concept of completeness we shall
consider the so-called contraction mappings which form a useful technique
for the proof of various existence and uniqueness theorems (for example
in the theory of differential equations). : ’

Let R be an arbitfary metric space. A mapping A of the space K into
itself 1s said to be a contraction if there exists a number « < 1 such that

(1) pldz, Ay) < eplz, i)

for any two points , ¥ € R. Every contraction mapping is continuous. tn
fact, if z. — =, then, by virtue of (1), we also have Az, — Ax.
_ TurorEM (PriNcrene OF CoNTrAcTION Maprivas). Every condraction
mapping defined in a complete meiric space K has one and only one fized
point (i.e. the equation Az = ¥ has one and only one solution}. ‘ ‘
Proof. Let @ be an arbitrary point in . Set 2, = Az, 2 = A2y = A'x
and in general let , = Az, ;1 = A"y . We shall show that the sequcncé
fa,} is fundamental. In faef,

P(-Tm 3 Tw) = P.(A-ﬂxn | m—'»‘«”o} < QHP(% ’ ﬂ:m—.n)
..<_ aﬂgp(ﬂ.:n ] a':l) + p(ml t .'172) + PR + p(xm——n—l 3 xm-—n)}
< oplz, )l + a6 + - + 2" < arplan, 1) {1/(1 — o).

Six_lce a <1, th_is quantity is arbitrarily small {for sufficiently large n. Since
Ris lcon.lplcte, HMlyo s T, exists, We set £ = lim,.. z, . Then by virtue of the
continuity of the mapping 4, Az = A Hme,e 3, = lim,,, 47, = lim
x“+1 _ . =

'.l'hus, the existenes of a fixed point is proved. We shall now prové its
uniqueness. If Ax = x, Ay = ¥, then plx, ¥) < aplz, ¥), where @ < 1;
this implies that p(z, y) = 0,1c. 2 = 4. }

:I‘he principle ?f contraction mappings can be applied to the proof of the
existence ar%d uniqueness of solutions obtained by the method of suceessive
approximations. We shall consider the following simple examples.

__]_. y = flx), where f{z} is a function defined on the closed interval [a, b)
satisfying the Lipschitz condition ' '

| fas) — f@) | € K |2 — o),

with K < 1, and mapping the closed interval [a, b] into itsclf. Then fis a
contraction mapping and according to the theorem proved above the
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sequence rp, 1 = §(xo), 22 = f(z1), -+ converges to the gsingle root of the
equation z = flz)

In particular, the condition of contraction is fulfilled if | f/(x)] £ K <1
on the closed interval [a, b].

As an illustration, Figs. 9 and 10 indicate the course of the successive
approximations in the case 0 < f(x) < 1 and m the case —1 < F'iz) < 0.

In the ease where we are dealing with an equation of the form F(z) = 0,
where F{a) < 0, F(®) > 0and 0 < K; < F/(z) < Ksonla, b], a widely
used method for finding its root amounts to setiing flx) = 2 — AF(x)
and seeking a solution of the equation z = f{z), which is equivalent
to F(z) = 0. Infact, since f'(z) = 1 — AF'(x), 1 — M < fizy <1 — MK
and it is not difficult to choose A so that we can apply the method of suc-
cessive approximations. '

?'ﬁ%‘fﬁ?\ﬁﬁﬁﬁ'{x‘?’m.m’?&mW&’Eﬂiﬁ%I‘i;i:\iw%%&m‘mmﬁ‘m-Fm%ﬁﬁ‘mﬁﬁﬁsﬁﬁ’ﬂmﬁ%l‘ﬁ%‘@?.ﬂ?&rﬁm"e‘i‘}‘?v&'éiH‘ﬁ‘.??{.‘-.'9.;m%?;}:}‘.-'@i:‘a%ﬁ“.S’E\*ﬂ?ﬁﬁ1.‘ei?i.’s'm\"{;‘a‘»"ﬁ*.'n{f:&‘,&.:?;'-.‘.‘;%?.‘.}'i’;r_'\ﬁ:_‘fl
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2. Let us consider the mapping ¥ = Ax of the space B" into itself given
by the system of linear equations

i = Z?:-l aix; + b: , n)

It Az is & contraction mapping, we can apply the method of successive
approximations to the solution of the equation x = Axz.

Under what conditions then is the mapping A a contraction? The answer
to this question depends on the choice of the metric in R, (It is easy to see
that with the metric (b} B is a metric space.)

(=12

a) plz,y) = max {|z; — y:|;1 < ¢ < n};
ply', ") = max; lye' — 3| = max; | E! aiizy — )]
< max; Y og| a2 — 27| < max; 3| @i | max; |z — 24 |

= max; 2;| &y | pla’, 7).

This yields
2 _ 2ol L a< ]
as the condition of contraction. .

b) pla, ) = 20w — yel;

oy = 2 lud =yl | = 2| 2 aula/ — 2/
< 2 2ilagllsd —af | < max; X[ ai | o(@, 27).

This yields the following condition of contraction:

(3) Zs|a55f5a<1.
¢) o, y) = § 20 (o — y)'}h
Here

Py = 2 i iayad — a2 < 2 s adei, )
on the basis of the Schwarz inequality.
Then : '

@) 2iriai<ax
is the contraction condition.

jI‘hus, in the case where one of the Conditions {2)-{4) is fulfilled there
exists one and only one point x = (23, @2, *++ , %,) such that

C Xy = E;;l Sty + b P
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- where the successive approximations to this solution have the form:

o 0 _0 Oy,
PR EE CARE PR A K
A (b .1
v = (@, e, %6 )
3] k ky,
X =(x1:x2) y T )3

where
:t'.ﬁJh = Z}Ll a-_;j:!:jk'_l + b;.
(Consequently any one of the Clonditions (2)—(4) implies that

an — 1 e ORI 1™ |
g an — 1 (25 l = 0.)
2%} (L% et Qun — 1 |

Fach of the Conditions (2)-(4) is sufficient in order that the mapping
y = Ax be a contraction. As concerns Condition (2) it could have been
proved that it is alsc necessary in order that the mapping ¥ = Az be a
contraction (in the sense of the metric a)l.

None of the Conditions (2)—(4) is necessary for the application of the
method of suceessive approximations. Examples can be constructed in
which any one of these conditions is fulfilled but the other two are not.

Tf | a; | < 1/ (in this case all three conditions ave fulfilled), then the
method of suceessive approximations is applicable.

If | e ] = 1/n (in this case all three sums equal 1}, it is easy to sce
that the method of successive approximations is not appiicable,

§15. Applications of the principle of contraction mappings in analysis'

Tn the preceding scetion there were given some of the simplest examples
of the upplication of the principle of contraction mappings in one- and
n-dimensional spaces, However, the most essential applications for analysis
of the principle of contraction mappings are in infinite-dimensional fune-
tion spaces. Further on we shall show bow with the aid of this prineiple
we can obtain theorems on the cxistence and uniquencss of solutions for
some types of differential and integral equations.

(1 dy/dx = flx, y)
be a given differential equation with the initial condition

(2) y(ﬂ?g) = Yo,
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where f(z, y_) is defined and eontihuous in some plane region & which con-
tains the point (xs , ) and satisfies & Lipschitz condition with respect to y:

| f, ) — fGe, )| € My — .

We shall prove that then on some closed interval |2 — 2| < d there
exists a unique solution y = (z) of the equation (1) satisfyin niti
§ S ! - sat the init
condition (2) (Picard’s theorem). ying the tnitia
Equation (1) together with the initial condition (2) is equivalent to the
integral equation .

® o) = w0t [ 1 0®)

Sinfze th? funct-ion. Fz, ¥) is continuous, we have | f(z, ¥)| < k in some
region (' © G which contains the point (20, #). Now we select a d > 0
such that the following conditions are fulfilled:

Dy ed@ifle —x| <d |y —yp| < kd;

2y Md < 1.

Denote by .C* the space of continuous functions ¢* which are defined
on the closed interval | x — x| < d and are such that | o*(x) — 4| < Id
with _the metric plgr, ¢2) = max, L er{a) — e@olx)]. T

It is easy to see that C* is a complete space. (This follows, for instance

from the fagt that a closed subset of a complete space is a complete space,)
Let us consider the mapping ¢ = Ay defined by the formula '

V&) = gt [ flt o)

where | # — x| < d. This is a contraction mapypi :
€ _ = pping of the complete spae
€*into itself. In fact, let ¢ € C*, |2 — x f < d. Thegn mplete space

[¢@ — yo| = < Id

[ 16,00 as

and consequently A (C*) ¢ C*. Moreover, we have

) = 9) | < [ 150, 01®) — 5, ) |

< Md max, | ez} — eale) |.

Bince Md < .1, the mapping A is a eontraction.
I*‘rqm this it follows that the operator equation ¢ = A (and consequently
equation (3) also} has one and only one solution. -
IL, Let :
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{4) 0l (@) = Filzo, @@, -, eal@)):
bea given system of differential equations with initial conditions

6)) oilrs) = Hoi i=1,2 .M

, ) aTe defined and eontinuous in some

where the funetions fi#®, y1, =+
' yﬂﬂ)

region G of the space R"* such that G contains the point (¥, oy«
and satisfy a Lipsehitz condition
Ii f,'(.'l’,‘, ylmj R yull)) - f\e'(x: y1(2)s Tty yn(g)ﬂ
< M maxi]| gt - P 1 <4 g ni
We shall prove that then on some closed interval |z — 2o | < d there
exists one and only one system of solutions y; = ¢:{x) satisfying system (4)

and the initial couditions (3).
System (4) together with the initial conditions (5} is equivalent to the

gystem of integral sqquations
(6) i) = yu + f Jlt, ), oo, eaD) dly T = 1, vrey i
o0

Since the function f; is continuous in some region @' € G containing the
point (%o, Y1, <+ 5 Yon), the inequalities | fi(, 91, - -, y)| S K, where
K is a constant, are fulfilled.

We now choose d > 0 to satisfy the following conditions:

1 (&, 3, ¥ € Gifjz — < d, iy — uei | S Kd,
2) Md < 1.

We now consider the space (,* whose elements are ordered systems
7 = (ealx), -+ @n{)) consisting of functions which are defined and
continuous for all x for which |2 — %o | < d and such that Lpi(®) — goed <
Kd, with the metric

olip, §) = maXz, | gilx) — i) |

The mapping ¢ = Ag, given by the system of integral equations
@) = yor + | Sa®, o)t
EL

is a contraction mapping of the complete space C,* into itself, In fact,

';’iu) ('1:) - 'J/_i(z) (m) = fz [f(t, 'pl(n) et ,wn(n) - .f(t) ¢1(2)g T "an)] df

and consequently
maxe, s W @) — ¥:P @) < Md max;, ¢ 0@ — o @)
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Since Md < 1, 4 is a contraction mapping
It follows that the operat iong = A
Ly perator equation ¢ = Ap has one and only one solu-
I{II. W"e ghall now apply the method of contraction mappings to the proof
of the em'stence. and uniqueness of the solution of the Fredholm nonhomo-
geneous linear integral equation of the second kind:

B
@ F@) = A [ Kz, ) dy + o(2),

where K(z, y) (the so-called kernel) and .
e g Y A w(x) are ve f . .
the function sought, and X s an arbitrary Pﬁ»"ametef n functions, f{x) is

We shall see that our method is applicabl i .
small values of the parameter M. oP e only in the case of sufficiently

V<Ve sl;al{l) assume that K{x, y) a.nld o(z) are continuous for ¢ < 2 < b;
a < y = b and consequently that | K(z, y}| < M. Consider the_map;ing,

g = Af, ie. 9@ = A [ K, 9)f@) d
Cla, b] into itself. We obtain VI dy o+ o), of the complete space

algr, ¢2) = max | 1) — (&) | < [ MM — o) max |fi — fu l.

Colr?lsequenfsly, the map;?ing 4 is & contraction for [\ | < 1/M(b — a)
rlor(rlm tf}lls’ on the basis of the principle of contraction mappings, we (‘lan
Zix;sy uI ; | z,tltflgaz gedho)lmTequat-ion has a unique continuous soh;tion i’or
.— a). The successive approximations (o thi i
. I t : ’ I :
fol@), fil@), --- , ful@), - - - have the form o i slutions

b
£u2) =\ [ K s dy + 0@

1V. This method is 1i : . )
the form is applicable also in the ease of nonlinear equations of

. b
® 1@ = [ Ky, 10D dy + (@),
Where K and ¢ are continuous. Furthermore X satisfies the condition .
fK(% Y, 21) - K(xr Y, z2)| SM ! Z — 32|

for {A| < 1/M(b — a) sin i
. ce here again for the mappin =
comiplete space Cle, b] into itself given by the formulai,) ping g = A7 of the

b
| @) = [ K@ 0 dy + ol
the inequatity | |
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max]g;(x)—gg(xﬂg|)\iM(b—a)ma.x|f1—fg|

'ho]ds. _ )
V. Consider the Volterra type integral equation

©) 1@ =2 [ K, 01@) dy + o)
which differs from an equation of Fredholm.t,ype in‘ that the upper limit
in the integral is the variable quantity . This equation can be COnSId.(aljed
as a particular case of the Tredholm equation if we c-ompie’te the definition
of the function K(z, 3) for y > z by means of the equation K(z, ) = 0
fory > ). . . ‘
( Inycontrast to the Fredholm integral equation for which we were required
to linit ourselves to small values of the parameter X the ppncl]?le of con-
traction mappings (and the method of successive approximations based
on it) is applicable to Volterra equations for all valges of t-he: parameter
%. We note first of all that the principle of contraction mappings can be
generalized in the following manner: if 4 s @ con-?znuo?s.mapp@ng of @
complete metric space B into ttself such that the mapping A" is a conlraclion
for some n, then the equation
Az ==

has one and only one solution. .

Tn fact, if we take an arbitrary point z ¢ R and conglder the sequence
APz k=0,1,2, -)a repetition of the argument introduced in §14

: kn
yields the convergente of this sequence. Let xp = ].1m;¢_,g A 2. Then
Azo = zo. Infact, Aze = liMsw A*" Az, Qince the mapping A" is a contrac-

tion, we have
—1}7 k
p(d¥ Az, A™z) < ap(A¥ "4z, A% ) £ - L o{Ax, ).

Consequently,
By p(d" Az, A*"2) = 0,

ie Az = %o .
Now consider the mapping

0@ =1 [ " K ) @) dy + o) = Af.

If f; and f; are two continuous funections defined on the closed interval

[a, b], then
| 476 — 4@ | = [ KGU@) — 5@ dy | <3 Mmle = o)

R T T B T S T T T R TR SO YR R AT
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§16]
(M = max [K{z, ), m =max ({fi = £]),
[ AMix) — &%) | < 2 Mmlz — a)'/2, -+,
| Af(@) — ATR@) < My — @) /nl < A Mmb — a)*/al
For an arbitrary value of A the number # can be chosen so large that
ATh - a)"/nl < 1,

ie. the mapping A" will be a contraction. Consequently, the Volterra
equation {9) has a solution for arbitrary X and this solution is unique.

§16. Compact sets in metric spaces

A set M in the metric space R is said to be compact if every sequence of
elements in 3 contains & subsequence which converges to some z € R.

Thus, for example, by virtue of the Bolzano-Weierstrass theorem every
bounded. set on. the real line is compact. Other examples of compact sets
will be given below. It is clear that an arbitrary subset of a compact set is.
compact.

The concept of total boundedness which we shall now introduce is
closely related to the concept of compactness.

Let M be any set in the metric space R and let ¢ be a positive number.
The set A in R is said to be an e-net with respect to M if for an arbitrary
point # € M at least one point ¢ € A can be found such that

p(a) ﬂ:) < €,

For example, the lattice points form a 2*-net in the plane. A subset M of
R is said to be tofally bounded if R contains a finite e-net with respeet to M
for every e > ). It is elear that a totally bounded set is hounded since if an
enet 4 .can be found for M consisting of a finite number of points, then A is
hounded and since the diameter of 3 does not exceed diameter A4 -+ 2¢, M
is also bounded; as Example 2 below will show, the converse is not true in
general, _

The following obvious remark is often useful: if the set M is totally
bounded, then its closure [M] is totally bounded.

It follows at once from the definition of total boundedness that every
totally bounded metric space 22 with an infinite number of points is sepa-
rable. In faet, construct a finite (1/n)-net in R for every . Their sum over
all » is a denumerable set which is everywhere dense in R. _ _

Examrres. 1. For subsets of Ruclidean n-space total boundedness coin-
cides with ordinary boundedness, i.e. with the possibility of enclosing a
given set in the interior of some sufficiently large cube. In fact, if such a
qubc 18 subdivided into cubicles with diagonal of length &/n’, then the ver-
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, #, we can find a point y;in 3, - -+, ¥ such that

plf(ad), ysl < e
Let the function ¢(x) € L be chosen so that ¢{x:) = y;. Then
oI}, g@)] < olfle), Fz)] + olf(zd), gledl + plgls); gla)} < 2e

if 4 is chosen so that = € ;. ‘
From this it follows that s{f, ¢} < 2¢ and thus the compactness of I} in

Mgy and consequently in Cxy also is proved.

every point &;in @, - - -

§19. Real functions in mhetric spaces
A teal function on a space R is a mapping of E into the space R' (the

real line). . _
Thus, for example, a mapping of E" into R' is an ordinary real-valued

function of n variables. ‘ '
In the case when the space R itsclf consists of functions, the functions of

the elements of B are usually called functionals. We introducc'severai
examples of funetionals of functions f{z) defimed on the closed interval

[0, 1]:
Fi(f) = sup f(z);
Fy(f) = inf f(z);
Fi(f) = f(mo) where o € [0, 1]
Fi(f) = elf(xd), fixs), -+, fza)] where @€ [0, 11

and the funetion ¢y, -+ , ¥a) is defined for all real ¥; ;

1
Fi() = [ ole, @) da,
]
where oz, ¢) is defined and continuous for all 0 < 2 < 1 and all real y;
W(f) = F{x);
1 . s
B = [ 1+ 7@ ds;

B = [ 176 | da.

Functionals can be defined on all of B or on a subset of . For example,
in the space C the functionals Fy, Fs, Fy, Fu, Fys are defined on the entire
space, FFa(f) is defined only for functions which are Fiiﬁerentmble atjthe
point & , F+(f} for functions for which {1 4 f’2(.fr.)]a is integrable, and Fy(f)
for functions for which | f(z) | is integrable.

2 LT
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The definition of continuity for real functions and functionals remains
the same as for mappings in general (see §12).
For example, F1(f) is a continuous functional in € since

of,g) =sup|f—gl and |supf—supyg| <sup|f—gl;

Fy, 3, Fs are also continuous functionsls in C'; Fy is continuous in the
space ' if the function ¢ is continuous for all arguments; Fy is discontinuous
at every point in the space (' for which it is definced, In fact, let g(x) be
such that ¢'(x0) = 1, gl&) | < eand f = f, + ¢g. Then flza) = fif (o) + 1
and p(f, fo) < e. This same functional is continuous in the space €V of
functions having a continuous derivative with the metric

plfyg) =supllf —gl+ | — ¢

F7 13 also a discontinucus funetional in the space €. In fact, let fy(z) = 0
and fu(x) = (1/r) sin 2rnx. Then o(f., i) = 1/» — 0. However, 7i(f,)
is a constant (it does not depend on ) which is greater than (17)* and
Fi(fo) = 1. '

Consequently, I(f) is discontinuous at the point f, .

By virtue of this same example Fy(f} is also discontinuous in the space
C. Both funectionals F; and F; are continuous in the space %,

The following theorems which are the generalizations of well-known
theorems of elementary analysis are valid for real functions defined on
compacta.

TaeoreM 1. A continuous real function defined on o compactum is uni-
Jormly continuous. ' :

Proof. Assume f is continuous but not uniformly continuous, ie. assume

there exist 2, and x,” such that
[€n — 2.’ ] <1/ and |[flz,) — fz))]| 2 e

From the sequence {x,} we can choose a subsequence {z.,} which con-

“verges to z. Then also {x,,’} — =z and cither |f(z) — f(z.}| = ¢/2 or

| flz) — flza) | 2 /2, which contradicts the continuity of f(z).

THEOREM 2. If the function f(x) is continuous on the compactum K, then
f 18 bounded on K.

Proof. If f were not bounded on K, then therc would exist.a sequence
{z.} such that f(z.) — . We choose from {z,} s subsequence which
converges to &: {&.,] — 2. Then in an arbitrarily small neighborhood of
the function f(z} will assume arbitrarily large values which contradiets the
continuity of f,

- TneoreM 3. A function [ which {s continuous on a compactim K attains

~4i8 least upper and greaiest lower bounds on K,

* Proof. Let A = sup f(z). Then there exists a sequence {z.} such that
A > o) > 4 — 1/n,
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We choose a convergent subsequence from {z,.}: {2} ~> 2. By continuity,

. - f(z) = A. The proof for inf f(x) is entirely analogous.

Theorems 2 and 3§ allow generalizations to an even more extengive class
of functions {the so-called semicondinuous functions).

A function f(x) is said to be lower (upper) semicontinuous at the point
4o if for arbitrary ¢ > 0 therc exists a s-ncighborhood of oy in which ) >
flae) — & (f@) < flan) + ).

Tor example, the function “integral parl of &7, flx) = Elr}, is upper
cemicontinuous. If we increase (decrease) the value of f(xs) of 1 continuous
function at a single point z, , we obtain a function which is upper (lower)
semicontinuous, If f{x} is upper gamicontinuous, then —f{z) is lower semi-
continuous. These two remarks at onee permit us to construet a large
number of examples of semieontinuous functions.

We shall also consider functions which assume the values £ ec. I1 flae) =

— o, then f{x) will be assumed to be lower semicontinuous at o and upper
semicontinuous at & if for arbitrary A > 0 there is a neighborhood of the
point xp in which f(z) < —h.

If f(z) = -+ o, then f(x) will be assumed to be upper semicontinuous at
0 and lower semicontinuous at @, if for arbitrary A > ) there is a neighbor-
hood of the point x¢ in which f(x) > 5.

The upper Hmit F(zo) of the function f(z) at the point xp is the lim.,

{sup [f(@); = € S, ©)}. The lower limit f{xo) is the lim..o {inf [fe);

¢ € S{zo, €}i}. The difference wf{z) = Fa) — f{xo) is the oseillation of
the function f{z) at the point 2y . It i8 easy to see that a neeessary and
sufficient. condition that the funetion f(z) be continuous at the point x; is
that wf(ze) = 0, Le. that Flan) = f(a).

For arbitrary f (z) the function j(z) is upper semicontinuous and the
function J{z) is lower semicontinuous. This follows easily from the defini-
tion of the upper and lower Jimits.

We now consider several important examples of semicontinuous func-
tionals.

Let f(z) be a real function of a real variable. For arbitrary real ¢ and b
such that f(z) is defined on the ciosed interval [a, b] we define the fotel
sariation of the function f(z) on [a, b] to be the functional

V() = sup 27 [ f(z) — f@en) |

where @ = 2 < & < %3 < -+ < %, = b and the least upper bound is
taken over all possible subdivisions of the closed interval la, b].

For & monotone function V.2(f) = | f() — f(a) |. For a piecewise mono- i

tone function V.2(f) is the sum of the absolute values of the increments on
the segments of monotonicity. For such functions
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sup 2 iy | f () ~ flwia) |

is attained for some subdivision.

We shail prove that the functional V. (f) is lower semicontinuous in the
space M of all bounded functions of « real variable with metric p(f, g) = sup
| f(x) — g(x) | (it is clear that (' is a subspace of the space M) ,t ie. that
for arbitrary f and e > 0 there exists a § such that V.'(g) > V.2(f) — e for

a(f,g) <6
We choose a subdivision of the closed interval [a, b] such that

L @) — flae) | > V(D — e/2.
Tet 8 = ¢/4n. Then if plg, f) < &, we have
SR f) — fla) | — 2hkalglr) — gleia) | < /2
and consequently
Vo) 2 2Xia|gled) — glzn) | > V() — e

In the case VJ2(f) = = the t-hgorem remains valid sinee then for arbi-
trary H there exists a subdivision of the closed interval [a, b] such that

Ea'n-l | flx) — fleen) > H
and & ean be chosen such that

D) — fa) | = Dialg) — glein) | < e

Then V{g) > H — ¢ ie. V' (g) > H, so that V.,'(§) = .

The functional V.2(f) is not continuous as is easily seen from the follow-
ing example. Let f(z)} = 0, g.(x) = (1/nr) sin nx. Then olga, ) = 1/n, but
Vo (ga) = 2 and Vo' (f} = 0.

Funetions for which V2 (f) < w are said to be functions of bounded (or
finite) variation. The reader ean find more information about the properties
of such functions in the bocks by Aleksandrov and Kolmogorov: ntroduce
tion to the Theory of Functions of & Real Variable, Chapter 7, §7; Natanson:
Theory of Functions of a Real Variable, Chapter 8; and Jeffery: The Theory
of Functions of o Real Yariable, Chapter 5.

We shall define the length of the curve ¥ = flz) (¢ < 2 < b) as the
funetional ' N

L) = sup i {(x: — ze)” + [fl@) — fl@n},
where the least upper bound is taken over all possible subdivisions of the

close.d interval {a, b]. This functional is defined on the entire space M. For
eontinuous funetions it coincides with the value of the limit

lim Y ofa {(we = zm0® + [f(z) —_f(a:.'_l)]g}} as max: [ — x| — 0.




66 METRIC SPACES [er. 11
Finally, for functions with continuous derivative if can be written in the
form

5
fa [+ @ da.

The functional L (f) is lower semicontinuous in M. This is proved
exactly as in the case of the funetional V.2(f).

Theorems 2 and 3 established above generalize to semicontinuous func-
tions.

TaEorEM 2a. A findte funclion which 1s lower (upper) semicontinuous on a
compactum K s bounded below {above) on K.

In fact, let f be finite and lower sernicontinuous and let inf flz) = —oc.
"Then there exists a sequence {x,} such that f(z.}) < —=». We choose a
subscquence {2,,} — #o . Then, by virtue of the lower semicontinuity of f,
f(zy) = — =, which contradicts the assumption that f(z) is finite,

In the case of an upper sexicontinuous function the theorem is proved
analogously.

TapoREM 3a. A findte lower (upper) semicontinuous function defined on a
compactum K attains ifs greatest lower (least upper) bound on K.

Assume the function f is lower semicontinuons. Then by Theorem 2 it
has a finite greatest lower bound and there exists a sequence {z.} such
that f(z.) < inf f(&) + 1/n. We choose a subscquence {r.,} — zo. Then
f(zy) = inf f(z) since the supposition that f(zs) > inf f(z) coniradicts the
lower semicontinuity of f.

The theorem is proved analogously for the case of an upper semicon-
tinuous funetion.

Tet K be a compact metric space and et Cx be the space of continucus
real functions defined on K with distance function p(f, ¢) = sup [ — ¢ |.
Then the following theorem is valid.

TumoreM 4. A necessary and sufficient condition thet the set D C Ty be
compact s thal the functions belonging to D be uniformly bounded and equi-
continuous (Arzeld’s theorem for continuous functions defined on an
srbitrary compactum).

The sufficiency follows from the general Theorem 7, §18. The nceessity
is proved exactly as in the proof of Arzelds theorem {sce §17).

§20. Continuous curves in metric spaces

Let P = f{t) be a given continuous mapping of the closed interval
a < { < b into a metric space B. When ¢ runs through the segment from
a to b, the eorresponding image point I’ runs through some “continuous
curve” in the space B. We propose to give rigorous definitions connected
with the above ideas which werc stated rather erudely just now. We shall
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consider the order in which the point traverses the eurve an essential
property of the eurve itself. The set shown in Fig. 11, traversed in the
directions indieated in Figs. 12 and 13, will be considered as distinet curves.
As another example let s consider the resl funetion defined on the closed
interval [0, 1] which is shown in Fig. 14. It defines a “curve’ situated on
the segment [0, 1] of lhe y-axis, distinet from this segment, traversed onece
from the point O to the peint 1, sines the segment [4, B} is traversed three
times (twice upward and once downward}.

However, for the same order of traversing the points-of the space we
shall consider the choice of the “parameter’” { unessential. For example,
the functions given in Figs. 14 and 15 define the same “‘eurve’ over the
y-axis although the values of the parameter ¢ corresponding to an arbitrary
point of the curve can be distinet in Figs. 14 and 15. IFor example, in Fig, 14
to the point 4 there correspond two isolated points on the f-axis, whereas
in Tig. 15 to the point A there correspond on the t-axis one isolated point -
and the segment lying to the right (when 7 traverses this segment the point
A on the eurve remains fixed). [Allowing such intervals of constaney of the
point P = f{t) is further convenient in the proof of the compactness of
systems of curves.] _

We pass over to formal definitions. Two continuous functions

P = f]_u’) and P = fg(tﬂ)
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defined, respectively, on the closed intervals
aig;err and G”gt”gb”

are said to be equivalent if there exist two continuous nondecreasing func-
tions

¢ = euf) and " = gult}
defined on a closed interval ¢ < { < b and possessing the properties
eb) = b,
pala) = a”,  wa(b) = b7,

Hle(®) = file:()]

ala) = o,

for all ¢ € [a, b].

It is easy to see that the equivalence property is reflexive (f is equivalent
to f), symmetric {if f; is equivalent to f;, then fi is equivalent to f1), and
transitive {the equivalence of fi and f; together with the equivalence of
f» and f; implies the equivalence of f1 and fi). Therefore all continuous fune-
tions of the type considered are partitioned into classes of equivalent func-
tions. Every such class also defines a continuous curve in the space B,

It is easy to see that for an arbifrary funetion P = fi{{’) defined on a
closed interval [a’, ¥'] we can find a function which ig equivalent to it and
which ig defined on the closed interval [a”, 5] = [0, 1]. To this end, it ix
sufficient to set

t=gl) = —ad+d, =ge@i=°t

(We always assume that & < b. However we do not exclude “curves”
consisting of a single solitary point which is obtained when the function
f{8) is constant on {g, b]. This assumption is also convenient in the sequel.)
Thus, we can assume that all curves are given parametrically by means of
functions defined on the closed interval [0, 1.

Therefore it is expedient to consider the space O'zz of continunous mappings
of the closed interval I = [0, 1] into the space B with the metric o(f, ¢) =
sup, o[f(t), ¢(6)). L

We shall assume that the scquence of curves Ly, Ly, ..., Ly, ... con-
verges to the eurve L if the curves I, can be represented parametrically in
the form

P = £.00,

and the curve I in the form
P = f(t),

go that p(f, fu) = Oasn-— =,
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‘We obtain Theorem 1 if we apply the generalized Arzels theorem (Theo-
rem 7, §18) to the space Cre.

TarorEM 1. If the sequence of curves In, Ly, <+, Ly, -+« lying in the
compactum K cun be represended paramelrically by means of equicontinuous
functions defined on the closed inderval [0, 1, then this seguence conifains a
convergent subsequence.

We chall now define the length of a curve given parametrically by means
of the function P = f(i), ¢ < £ < b, as the least upper bound of sums of
the form

__ St alftti), £(6),
where the points ¢; are subject only to the following conditions:

e ShSh< - SLE - Lis=0

It is easy to see that the length of a curve does not depend on the choice
of its parametric representation. If we limit ourselves to parametrie repre-
gentations by funetions defined on the closed interval [0, 1], then it is
easy to prove by considerations similar to those of the preceding seetion
that the length of a eurve ig a lower semicontinuous funciional of f (in the
space ('1z). In geometric language this result can be expressed in the form
of such a theorem on semicontinuity.

TaBoREM 2. If the sequence of curves L, converges io the curve L, then the
length of L is not greater than the gregtest lower bound of the lengths of the
eurves Ly, I

We shall now consider specially curves of finite length or rectifiable curves.
Let the eurve be defined parametrically by means of the function P = f(2), -
a < t < b The function f, considered only on the closed interval [a, 7],
where ¢ < T < b, defines an “initial segment”” of the curve from the point
P. = fla) to the point Py = f{T}. Let ¢ = ¢(T") be its length. It is easily
established that '

P = g(s) = fle (9]

is a new parametric representation of the same curve. In this connection s
runs through the closed interval ¢ < & < 8, where S is the length of the
entire curve under consideration. This representation satisfies the require-
ment

oo, gls)] < & — &

(the length of the curve is not less than the length of the chord).
Geing over to the closed interval [0, 1] we cbtain the parametric repre-
sentation ' '

P=F(@) =g@), r=3/8
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which satisfies the following Lipschitz condition:
- plF(m), Fr)] € 8{m — 7l

We thus see that for all curves of length S such that S < M, where M
is a constant, a parametric representation on the closed interval {0, 1] by
means of equicontinucus funetions is possihle. Consequently, Theorem 1 is
applicable to such curves.

We shall show the power of the general results obtained above by apply-
ing them to the proof of the {following important proposition.

TueoREM 3. If two points 4 and B in the compactum K can be connecled
by @ continuous curve of finile length, then among all such curves there exists
one of minimal length. _

In fact, let ¥ be the greatest lower bound of the lengths of curves which
connect A and B in the compactum K. Let the lengths of the cutves L,
| PRI UL connecting 4 with B tend to ¥. From the sequence L,
it is possible, by Theorem 1, to select a convergent subsequence. By
Theorem 2 the limit curve of this subsequence cannot have length greater
than Y-

We note that even when K is a closed smooth (i.e. differentiable a suffi-
sient number of times) surface in threc-dimensional Euclidean space, this
theorem does not follow directly from the results established in usual

gifferential geometry courses where we restriet ourselves ordinarily to the

case of sufficiently proximate points 4 and B.

All the arguments above would fake on great elarity if we formed of the
set of all curves of a given metric space R a metric space. This can be done
by introdusing the distance between two curves Ly and Lz by means of the

formula
ol , La) = inf p(f1, f2),

where the greatest lower bound is taken over all possible pairs of parametric
representations

P=F5flH, P=/f® 0<t<y

of the curves In and L, respectively.

The proof of the fact that this distance satisfes the axioms of a metric
space is very straightforward with the exception of one peint: there is some
dificulty in proving that p(I:, Lz) = 0 implies that the curves I, and L.
are identical. This fact is an immediate consequence of the fact that the
greatest Jower bound in the formula which we uscd in the definition of the
distance p(Ly , Lo} is attained for a suitable choice of the parametric repre-
gentations fi and fo . But the proof of this last assertion 18 also not wvery
straightforward.

Chapter I17
NORMED LINEAR SPACES

§21. Definition and exémples of normed linear spaces

DerNITIoN 1. A set B of clements #, ¥, 2, --- is said to be a linear
space if the following conditions are satisfied:

1. For any two elements x, ¥ € E there is uniquely defined & third ele-
ment z = & + y, called their sum, such that

Hz4y=y+=z

Ner+@+o=&+ty +s _

3} there exists an element ¢ having the property that z +- 0 = = for all
% € Ra and

4) for every x € R there exists an element —z such that © + (—z) = 0.

11. For an arbitrary number & and element # € R there is defined an ele-
ment az (the produst of the element & and the number «} such that

1) a(@z) = (ef)x, and

2) 1.z = z.

I1. The operations of addition and multiplication are related in the
{ollowing way:

1} (e + 8)x = ax + fz, and

2 ele + y) = ar + ay.

Depending on the numbers admitted (all complex numbers or only the
reals), we distinguish between complex and real linear spaces. Unless other-
wise stated we shall consider real linear spaces. In a linear space, besides
the operations of addition and multiplication by scalars, usually there is
introduced in one way or another the operation of passage to the limit.
It is most convenient to do this by introducing a norm into the linear space.

A linear space R is said to be normed if to each element x ¢ R there is
made to correspond a nonnegative number ! # || which is ealled the norm
of 2 and such that:

D [tz = 0if, and ouly if, z = 0,

%) Jazll = lallz],

Dlz+yl <[l + Nyl
1t is easy to see that every normed space is also & metric space; it is sufficient
to set o(x, ¥) = || — ¥ |l. The validity of the metric space axioms follows
directly from Properties 1-3 of the norm. ' o

A complete normed space is said to be a Banach space, a space of Banach
type, or, more briefly, a B-space.

ExampLes oF NORMED Sracks. 1. The real line with the usual arith-
metic definitions is the simplest example of a normed space. In this case
the norm is simply the absolute value of the real number. o
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2. Euclidean n-space, 1. e. the space eonsisting of all n-tuples of real
numbers: ¥ = (&, za, *+ - , £,) in which the norm (i. e. the length) of the
vector is defined to be the square roct of its scalar gquare,

af = (Tkady,

is also & normed linear space.
In an n-dimensional linear space the norm of the vector 3 = (w1, 4,
, Tn) can also be defined by means of the formula

|l = (i |2 ), (@ 2 1.

We also obtain a normed space if we sct the norm of the vector » =
(s, @2, **° , &,) equal to the max {jr |;F <k < nl.

3. The space Cla, b] of continuous functions with the operations of addi-
tion and multiplication by a scalar which are usual for functions, in which

| = max{|[ (e} [; 0 £ ¢ < b,

is a normed linear space.
4. Let ("la, b] consist of all functions continuous on [, b] and let the
nori be given by the formula

bt = ([ Fo ).

All the norm axioms are satisfied.
5. The space I, is & normed linear space if we define the sum of two

clementsx = (81,6, , &, )andy = (m,m, -, %, ) ink
to be
sty =t+m, bt m, kb, )
and let
ar = (aby, afz, -, ofa, ")
and
2] = (X3l 8 D
6. The space ¢ consisting of all sequences & = (x1, @2, -+, &n, -~ -) of

real numbers which satisfy the condition limu.. z. = 0.
Addition and multiplication are defined as in Example 5 and the norm
is set equal to
bell = max{lz.|;1 <n < o}

7. The space m of bounded sequences with the same definitions of sum,
produet, and norm as in the preceding example.
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In cach of these examples the linear space axioms are verified without
diffieulty. The fact that the norm Axioms 1-3 are fulfilled in Examples
1-5 18 proved exactly as was the validity of the metric space axioms in the
correspondmg examples in' §8, Chapter IT,

" All the spaces enumerated in the examples, except the space C’la, b,
are Banach spaces.

DermiTIoN 2, A Hnear manifold L in a normed linear space R is any set
of elements in R satisfying the following condition: if =, ¥ € L, then ax +
8y € L, where & and 8 are arbitrary numbers. A subspace of the space B
ig a closed linear manifold in B.-

Remarx 1. In Eueclidean n-space EB" the concepts of linear manifold
and subspace coincide because every linear manifoldin B" isautomatically
closed. {(Prove this!} On the other hand, linear manifelds which are not

" closed exist in an infinite-dimensional %pace For example, in I the set L

of points of the form

(1) m:(:cl,ir_g,...

i.e. of points which have only a finite (but arbitrary} number of nonzero
eoordinates, forms a linear manifold which is not closed. In fact, a linear
combination of points of form (1) is & point of the same form, ie. L is a
linear manifold. But L is not closed sinee, for instance, the scquence of
points

)xk:U:OJ "'))

(]s 0} 0} 0) T ')!
(]-1 %: 0: 0; t ')1
(1}. %; is Os n ')f

1

belonging to L, converges to the pomt (1, %, 4, -++,1/2" ...}, which does
not belong to L.

REMARK 2. Let 2y, 22, ---, 2n, --- be elements of a Banach space B
and let M be the totality of elements in R which are of the form D&~ cars
for arbitrary finite n. It is obvicus that 3 is a linear manifold in . We shall
show that [M] is a linear subspace. In view of the fact that [M]1s closed it
is sufficient to prove that it is a linear manifold.

Let x € [M]), ¥ € [M]. Then in an arbitrary e-neighborhood of x we can
find an x, € M and in an arbitrary e-neighborhood of ¥ we can find a y, € M.

We form the element az + By and estimate || ax + 8y — ez — By, |1
”“334‘13.?!—“-’3;—!3.?]:”
Slellle —z +181y —wll £ (Ja|+[8])e

_ from which it is clear that ax + By € [M].
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The subspace I, = {M] is said to be the subspace generated by the elements

._-xl._’xz’ vt B,

§22. Convex sets in normed linear spaces

Let = and y be two points in the linear space R. Then the segment con-
necting the points z and y is the totality of all points of the form ax + By,
wherea > 0,8 2> 0,anda + 8 = 1.

DEFmITION. A set 3 in the linear space B is said to be consex if, given
two arbitrary points z and y belonging to M, the segment connecting them
also belongs to M. A convex set is called a convex body if it contains at least
one interior point, i.e. if it contains some sphere completely.

TxampLrs. 1, In three-dimensional Fuelidean space, the cube, sphere,
tetrahedron, and halfspace are convex bodies; but & triangle, plane, and
segment are convex sets although they are not convex hodies.

2. A sphere in a normed linear space is always & convex set (and also a
convex body). In fact, consider the unit sphere S: [« €1

If 24, yo ave two arbitrary points belonging to this sphere: | 2o || < 1,
{3 < 1, then

oo + B ll < llazell + [ 80l = alzll + 8Nl S ot B

1
pm

1.8.
o+ B €5 (@2 0,82 0,a+8=1).

3. Let & be the totality of vectors r = (&, £} in the plane. Introduce
the following distinct norms in E:

Lale = & 4+ &5 (2w = max (|& ], ]&1);
alh=l&]+ &l lzl=(al+[D" @G>

Let us see what the unit sphere will be for cach of these norms (see Fig. 16).

Fig, 16
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In the case || @ [z it is a circle of radius 1, in the case || x [« it is a square
with vertices (&1, +1), in the case Fal, it is a square with vertices
©; 1), (1,0), (-1, 0}, (0, —1). i we consider the unit sphere corresponding,
io the norm || z ||, , and let p increase from 1 to =, then this ‘“sphere”
deforms in a continuous manner from the square cotresponding to || & ||« to
the square corresponding fo || @ [ . Had we set

M lolly = Q&P + 8"

for p < 1, then the set [| 2 ||, < 1 would not have been convex (for example
for p = 2/3 it would be the interior of an astroid). This is another expres:
cion of the fact that for p < 1 the “norm™ (1) does not satisiy Condition 3
in the definition of a norm, o '

4. Let ug consider a somewhat more complicated example, Let @ be the
st of points ¢ = (&, %2, *** , &=, »-+) in L which satisfy the condition

St <1

This is a convex set in I which is not 2 convex body. In faet, if «, gj -
and z = ax + fy, where «, 8 > 0 and & + 8 = 1, then by virtue of the
Schwarz inequality {(Chapter 1I),

S ni ks 4 Bna) = o D W' + 208 2 Wk + 8 2o hma
< & 3 0 208 (e WS D e ' A+ 8 2 e
= (RN B € (et 8) = 1.

We shall show that & contains no sphere. ® is symmetric with respect
to the origin of coordinates; hence, if & contaired some sphere &, it, would
also contain the sphere S” which is syminetric to S with respect to the
origin, Then ®, being convex, would contain all segments connecting
points of the spheres 8’ and 8”, and consequently it would also contain
a sphere S of the same radius as that of 8’, with the center of S at the ori-
gin, But if & contained some sphere of radius r with center at the origin
then on every ray emanating from zero there would lie a segment belonging’
entirely to ®. However, on the ray defined by the vector (1, 1/2,1/3, ---
l;’?}, + + -} there ohviously is no point except zero which belongs to &, ’ ,

Exercises. 1. Prove that the set @ is compact. Prove that no compact
convex set in ; van be a convex body.

2. Prove that & is not contained in any subspace distinet from all of & .
. 3. Prove that the fundamental parallelopiped in & (see Fxamyple 3, §1Ei\
is a convex set but not a convex body. ’

We shall now establish the following simple properties of convex sets.

THEO_REM 1. The closure of a convex set is ¢ convex sel, _ .

Proof. Let M be a convex set, [M] its closure and let x,  be two arbitrary
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points in [M]. Further, let ¢ be an arbitrary positive number, Points a, b

-+ can be found in M such that p(a, z) < ¢ and s(b, ¥} < e Then plaz 4+ By,

aa + 8b) < e for arbitrary nonnegative « and g8 such that o« + 8 = 1,
and the point aa + 8b belongs to M since M is convex, Since ¢ > (0 is ar-
bitrary, it follows that ex + 8y € [M], i. e. [M] is convex also.

Tuagorem 2. The infersection of an arbilrary number of convex sets 45
convexr sél

Proof. Let 8 = N,M, , where all } , are convex sets. Further, let v and
y be two arbitrary points in M. These points x and y belong to all M, .
Then the segment connecting the points x and y belongs to each M. and
consequently it also belongs to 3. Thus, M is in fact convex.

Since the intersection of closed sets is always closed, i follows that
the intersection of an avbitrary number of closed conver sels is ¢ closed convex
set.

T.et A be an arbitrary subset of a normed linear space. We define the
conver closure of the set A to be the smallest closed convex set containing 4.

The convex closure of any set can obviously be obtained as the intersec-

tion of all closed convex sets which contain the given set.

Consider the following important example of convex closure. Let
X1, @2, * ', Topn be points in a normed linear space. We shall say that
these = + 1 poluts are in general position if no three of them lie on one
straight line, no four of them lie in one plane, and so forth; in general, no
I + 1 of these points lie in & subspace of dimension less than %. The convex
‘closure of the points @, , a2, - -+ , Z»41 Which are in general pesition is called
an n-dimensional simplex and the points x1, x2, +++ , Za41 themselves are
called the vertices of the simplex. A zero-dimensional simplex consists of a
single point. One-, two-, and three-dimensional simplexes are, respectively,
a segment, triangle, tetrahedron.

If the points #,, 23, + - , Tny1 Are in general position, then any E41
of them (k < n) also are in general position and consequently they generate
a k-dimensional simplex, called a A-dimensional face of the given n-dimen-
gional simplex. For example, the tetrahedron with the vertices ey, e, €,
¢4 has four two-dimensional faces defined respectively by the triples of
vertices (e, €5, €1), (e1, ex, eu), {61, €2, 1), (&1, €2, &); BIX cne-dimensional
faces; and four zero-dimensional faces.

THEOREM 3. A simplex with the vertices &1, T2, - -+
all points which can be represented in the form

2) = Z:ill @y 5 ey 2> 0,

Proof. In faet, it is easy to verify that the totality of points of the form
(2) represents a closed convex set which contains the points a1, 2», <+ -,
Tas1 . On the other hand, every convex set which contains the points 2, , 22,

, Tny1 18 Lhe tolality of

A1
k=1 & = 1‘

TH A
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... , Zps1 Must also contain points of the form (2), and consequently these
points form the smallest closed convex set containing the points z,, 23,
crcy Lagl . .

§23. Linear functionals -

DeErmrTIoN 1. A numerical funetion f(z) defined on a normed linear
gpace B will be called a functional. A functional f(z) is said to be linear if

fleax + By) = of (@) + Bf(y),

where 2, ¥ € B and o, § are arbitrary numbers.
A funectional f(x) is said to be continuous if for arbitrary e > 0ad > 0
gan be found such that the inequality

[ flx) — Flaa) | < e
holds whenever
[|ﬂ?1“'$2[| <6.

In the sequel we shall consider only continuous functionals {(in particular
¢ontinuous linear funetionals) and for brevity we shall omit the weord
“gontinuous’™.

We shall establish some properties of linear functionals which follow

_almost direetly from the definition.

TuroREM 1. If the linear functional f{x) s continuocus at some point 2o € R,
then it 18 continuous everywhere in K.

Proof. In fact, let the linear functional f(x) be continuous at ihe point
z = % . This is equivalent to the fact that f(z.) — f(z) when x5 — @0 .

Further, let 7. ~— y. Then
flym) =fyn —y + 20 +y — ) = fy. — ¥ + w) + &) — F(zo).

But y. — ¥ + % — 2o . Consequently, by assumption, f(y. — ¥ + o) —
f(zs). Thus,

flyn) — flao) + @) — o) = fy)-

A functional f(z) is said to be bounded if there exists a constant N such
that :

) @) | < N |z}

forallz € K.

TrEOREM 2. For linear functionals the conditions of continuily and bounded-
ness are equivalent, : _ '

Proof. We assume that the linear functional f(z) is not bounded. Then for
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arbitrary natural number n we can find an element «, € E such that
Af@d | > niz |- We shall set 3. = 2/(r | 2. (). Then |y, f§ = 1/n,
ey, — 0. But at the same time
e | = [fea/m ]z )| = (nllan ) 1) | > L.

Consequently, the functional f(x) is not continuous at the point ¢ = 0.
Now let & be a number which satisties Condition (1). Then for an arbi-
trary gequence », — 0 we have:
) | < Nzl >0,
te. flx) is continuous at the point x = 0 and consequently at atl the re-

maining points also. This completes the proof of the theorem.
Drermrioxy 2. The quantity

15 = sup {5 /§ 2 5 @ = 0}

is called the norm of the linear funetional f(x).

FxaMpLEs or Linkanr Fuxorionats oN Various Seacrkg. 1. Let B® be
Fuelidean n-space and let a be a fixed nonzero vector in R". ¥or arbitrary
r € B weset fr) = (x, a), where (2, a} is the scalar product of the veetors
x and «. It iz elear that f(x) is a linear functional. In fact,

flaw + 8y) = {ax + By, &) = alx, @) + By, a) = of @} + 8y
Further; by virtue of Sechware’s inequality
(2) @) | =@ a| <lzileal

Consequenlly, the functional f{x) is bounded and is therefore continuouas,
From (2) we find

@ el < el
Since the right member of this inequality does not depend on , we have
sup | flz) [/ el <
Le, [[FI < |l all. But, setting 2 = a we obtain:
f@) | = (g, @) = |al’, e (f@l|/lalh="Lel

Therefore || £ = || e

It @ is zevo, then f Qs the zero linear functional. Hence | fi = | @ in
this case also.

2. The ntegral

bad,

{=j:x(z)dz

4
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23

() isa continuous funetion on [a, b} represents a linear functional on the
space Cla, b]. Its norm equals b — e. In fact,

(1] = ‘f +0) dt-‘ < max | 2() | ( = a),

where equality holds when & = constant.
3. Now let us consider a more general example. Let yoff) be a fixed con-
tinuous funetion on [a, b]. We sef, for arbitrary function =(#) € Cla, bl

f@) = f 2Wye(®) dt.

This expression represents a linear functional on Cla, b} because

flas + 8 = [ (an®) + By@)ald

b [
= o [ 2Oyt &t + 8 [ yOu® @t = afle) + B0,
This functional is bounded. In fact,

@1 = | [ st | < 121 [ 1o 1

Tﬁus, the functional f(z) is linear and bounded and consequently it is
continuous also. It is pessible to show that its norm is exactly equal to

[ 1w

4, We now consider on the same spaece Cla, b] a linear functional of
another type, namely, we set

619x(t) = x(tl})s

i.e. the value of the functional §,, for the function £(f) is equal to the value
of this function at the fixed point # . This functional is frequently en-
countered, for example, in quantum mechanics where it is usually written
it the form
3
diz(l) = f (Dot — &) di,

where §(£) is the “function” equal to zero everywhere except at the point
¢ = 0 and such that its integral equals unity (the Dirac é-function). The
é-funetion can be thought of as the limit, in some sense, of a sequence of
functions ¢.{) each of which assumes the value zere outside sonie &,-neigh-
borhood (¢, — 0 as n — =} of the point ¢ = 0 and such that the integral
of the limiting function equals 1.
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5. In the space l; we can define a linear functional as in R™ by choosing

. inl; some fixed element @ = (a;, a2, -+, @, -- ) and sctting
® &) = Tz,
Heries (3) converges for arbitrary = € Iy and
) | Ztrwatn | € (5w (Ehaa) = Jallllalf.
Inequality (4) transforms into the identity Y aeia.’ = 2.waa. for

= = a and consequently [ f|| = [ a|. .

(feometric interpretation of a Unear functional. Let f(x) be a linear fune-
tional on the space . We shall assume f(z) is not identically zero. The set
L; of those elements x in A which satisly the condition f{z) = 0 form a
subspace, In fact, i z, ¥ € L;, then

flex + By} = of (@) + 8f(y) = 0,

lLe. wx + By & Ly. Further, il , — 2 and z, € L;, then by virtue of the
continuity of the funetional f,

flx) = lima,e f(x,) = 0.

DermNerion 3. We say that the subspace L of the Banach space R has
index {or deficiency) s if: 1) B contains s linearly independent elements
Xy, X2, *++, 2, which do not belong to L with the property that every
element x € R can be represented in the form

T o= iy b oasts v+ &t F oy, y € L

and 2} it is impossible to find a smaller number of elements z; which possess
the indicated properties.

In the case of a finite-dimensional space & the index plus the dimension
of the subspace L ig equal to the dimension of the whole gpace.

THrOREM 3. Let f(5) £ 0 be a given functional. The subspace Ly has index
egual 1o unily, 1., an arbitrary element y € R can be represented in the form

(5) ¥y = A + @
where s € Ly, 20 & Ly,
Proof. Since xq ¢ Ly, we have f(x) £ 0. If we set A = f(y)/f(xe) and
x =y — {fN/flz)lzy, then y = Az -+ z, where
) = fon) — (S /Haw))f(ze) = 0.
If the clement =z, is fixed, then the element y can be represented in the

form (5) uniguely. This is easily proved by assuming the contrary. In fact,
let '

= )2;0 +$J

¥ = Ny 4 s’}

AN SRR
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It.hen'
= Ma = (@ — z).

If » — X = 0, then obvicusly, # — 2 = 0. But if A — X' 0, then
2 = (@ —a)/(\ — N} € Ly, which contradicts the condition that x § L.

Conversely, given a subspace I of B of index 1, L defines a continuous
linear functional f which vanishes precisely on L., Indeed, let 2y ¢ L. Then
forany z € B, = ¢ + o, withy € L, 20 § L. Let f(z) = A. It is easily
geen that [ satisfles the above requirements, If f, g are two such linear
functionals defined by L, then f(z) = ag(z) for all z € R, o & scdlar. This
follows because the index of I in R is 1.

We shall now consider the totality M, of elements in B which satisfy
the condition f{z) = 1. M; can be represented in the form M; = L; + o,
where z; 18 a fized element such that f(z,} = 1 and L, is the totality of
elements which satisfly the eondition f(x} = 0. In analogy with the finite-
dimensional case it is natural to call M; a hyperplane in the space K. It is
easy to verify that the hyperplanes f(z) = 1 and ¢(z) = 1 coincide i, and
only if, the functionals f and ¢ coincide. Thus, it is possible to establish a
one-to-one correspondence hetween all functionals defined on B and all
hyperplanes in @ which do not pass through the origin of coordinates.

‘We shall now find the distance from the hyperplane f{z} = 1 to the
origin. It is equal to

d = inf {fz [|; 7} = 1}.
For all 2 such that f(z) = 1 we have
L Irtll=l, e el 2 17051

therefore d = 1/|| fi. Further, since for arbitrary ¢ > 0 an element x
gatisfying the condition f(z}) = 1 can be found such that

1> (71— all=ll,
it-fallows that
d=inf {la| < L/(fl — 957 =1}

Consequently,

d =107 .
i.e, the norm of the inear functional f(z) equals the reciprocal of the magnitude
of the distance of the hyperplane f(x) = 1 from the origin of coordinates.

§24, The conjugate space

It is possible to define the operations of addition and multiplication by a
seéalar for Iinear functionals. Let fi and i be two linear functionals on a
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. normed linear space K. Their sum is & linear functional f = fi + fo such
© that f(z) = filz) + folx) for azbitrary x € R.

The product of & linear functional fi by a number o is a functional f = of;
such that

fz) = ofula)

for arbitrary = € R.

Tt is easy to verify that the operations of addition and multiplication by
2 scalar of functionals so defined satisfy all the axioms of a linear space.
Moreover, the definition we gave above of the norm of a linear functional
satisfies all the requirements found in the definition of a normed linear
space. In fact,

1) || £ > 0 for arbitrary f # 0,

2 efl =17l

3) i+ fll = sup {| 1) + £l |/ = 1}

sup {1 /i) | + 15:6) /1 = [I3

sup {1 £l |/ « I} + sup {722} |/ < [}
= A+ 1 F]

'Fhus, the totality of all linear functionals on a normed space [0 itself
represents a normed lincar space; it is called the conjugate space of i and
is denoted by R.

TaroneM . The conjugate space is always complete.

Proof. Let {f.} be a fundamental sequence of lincar functionals. By the
definition of a fundamental sequence, for every e >> O there exists an N
such that || fn — fm || < efor all », m > N. Then for arbitrary x € R,

| fult) — Fu(@) | S N Fu = Fnl Bz < elzll

i.e. for arbitrary # ¢ R the numerical sequence f,(x) converges.
If we =et

A A

f@) = lima.a ful®),
then f(x) represents a linear functional. In fact,
1) flex + By) = lima.xfalar + By)
= limpe [ofa(z) + B8] = of (@) + BF(®)-
2) Choose N so that [ fu — fatp || < Lforalln > N. Then
[ fars ! < 1 fall 4+ 1
for all p. Consequently, | fa+s(@) | < (Al -+ 1 |2 .

-
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Passing to the limit as p — =, we obtain

limysew | fagnl®) | = {f@V1 S ([ full + D |2 ”:

e, the funfztional f(zx} is bounded. We shall now prove that the functional
§ is the limit of the sequence fi, fz, <+, fa, +++ . By the definition of the
norm, for every € > 0 there exists an element . such that

1fa = £ < 105 = 5@) D/lacll} + ¢/2
= | falwe/l| 2 ) = flx/Twe ) | + &/2;
since
fa/ | e |} = limune fale/{ = ),
it is possible to find an ne{e) such that for n > ny

ifﬂ(xé/l[ Le H) - f(xe/!l Te ”) J < ¢/2,
so that for # > ng the inequality

[ fo = FI < e
ig fulfilled.
This completes the proof of the theorem.
Let us emphasize once more that this theorem is valid independently of
whether the initial space R is complete or not.
ExaMpLES. 1. Let the space E be finite-dimensional with hasis e, , e, + + -
¢, . Then the functional f(z} is expressible in the form

(1) F) = i fa,

where & = Y fur Ze: and f; = fle;).

Thus, the funectional is defined by the # numbers f;, ---, f, which are
the values of f an the basis vectors, The space which is the conjugate of the
finite-dimensional space is also finite-dimensional and haa the same dimen-
810m.

The explicit form assumed by the norm in the conjugate space depends
on the choice of norm in £.

) Let [z ] = OO x7)". We have already shown that then

7l = G,
Le. the conjugate of an Euelidean space is itself Kuclidean.
b} Let [z || = sup; | #: |. Then _ o
[F@) | = | 2 fme] < QT {Selysupe] @] = 01 2|l
From this it follows that

7

IF1 < 2151
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‘The norm || f !} cannot be less than »_, | f; | since if we set
+1if f; > 0,
—=1iff; <0,
| oiffi=0,
then the following equality is valid:
[FGe) s = 2N = QIAD el
O Iffal = CCiaM, p > 1, then | f|| = (159", where
i/p + 1/q = 1. This follows from the Hélder inequality
| fas | < e PSS

and from the fact that the equality sign is attained for f; = (sgn 2 {z)" .
2. Let us consider the space ¢ consisting of sequences x = (21, @2, ---

Ty =

¥

#,, -+ -} which are such that z, — 0 as n — <, where || 2 [} = sup, ®a .
If a functional in the space ¢ is expressible by means of the formula
2) f@) = 2 fas, = fi] <o,

then it has norm
£ =22 f: )
The inequality ||| < 2. %u|fi] is obvious. On the other hand, if
7. |f:! = @, then for every ¢ > 0 it is possible to find an N such that

J:'V=1[,)"fs| 0 — €
We now set

+1if f, > 0
—~1if, <0)n <N,
7 oitfi=0
Oifn > N
Then
|fz) ] = 2t [ fu] > a — &
whence it follows that [ | = e.

We shall prove that all functionals in the spacc ¢ have the form (2).
We shall set

€ = (030;"'11:0:"')?

ie. &, denotes the sequence in which the n-th entry is unity and the re-
maining are %eros.
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TLet the functional f(x) be given; we denote f(e.) by f, . If
(3} T = (@, @z, 0, &, 0, 00),
then

T= oot e o A e and fz) - 2.

The sum 2 7y |fu| is <o for every bounded linear funetional, If
3 na|fn | were =, then for cvery H it would be possible to find an N
guch that :

el fa| > H.
We construct the element x in the following way:
l1iffn > 0
—1iff, <0pn <N,
"7 ois =0
Qifn >N
The norm of such an element iz equal to unity, and
[f@) | = 2o = 2500l > H=Hlz),

which contradicts the assumption concerning the boundedness of the fune-
tional.

The set of elements of the form (3} is everywhere dense in the space ¢.
Therefore the continuous linear functional is uniquely defined by its values
on this set. Thus, for every x

f) = 2 s
The space which is comjugate to the space ¢ consists of sequences
(fiy fa, +++, fu, -+ +) satisfying the condition D> 7, |f.| < 0.
3. Let the space consist of sequences .

e — (xlgxz) PRI

:xﬂ)”')) Z?-:liﬂ?;i(m
with norm ||z | = > 5. |z, |.

It can be proved that the space conjugate to this space is the space of
bounded sequences
f = (fl':f'lﬁ )f‘l’l! )

with norm || f [ = sup. | fa |-
In all the examples of finite-dimensional spaces introduced above, the
space which is conjugate to the conjugate space coincides with the initial
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~space. This is always so in the finite-dimensional case. However, as Exam-
“- ples 2 and 3 show, in the infinite-dimensional case the space conjugate to
the conjugate space may not coincide with the initial space.

We consider eases when this coineidenee holds also in infinite-dimensional
space.

4. The space l, consists of sequences

s Ty )a

= (Y %, x5 All functionals in the

= (11,252,
with Doraa® < = and norm |2
spuce Iy have the form

-
Jloy = 2ot fas.

We shall prove this assertion.
To each funectional there is set into correspondence the sequence fy | f,
< fu, --- of its values on the elements e, &, ---, ex, - defined

exactly as in Example 2, shove.
If the functional is bounded, then Yo f’ < x. We shall assume the
contrary, i.e. we shall assume that for every H there exists an ¥ such that

Y= U2 H
1f we apply the functional under consideration to the element
:(.fls-fzi'“:f-‘"s[).""\)s ||fii= L.'i,
we obtain
f@) = St =Uz=Hi=|,

contrary to the assumption that the functional is bounded.

Since the functional f is linear, its values on the elements of the form

= (@1, @, o, &, 0, ) are casily found; on all other elements of
the space the values of f are found from continuity considerations and we
always have

flay = i fa
The norm of the functional f equals ():,nl fi f)* This is established with

the aid of the Schwarz inequality.
5. The spuce 1, is the spare of all sequences of the form

r = {1y, 22, 7 (z =1 ’hp)hp < =, (ZFI rﬂﬂ)”p'
The conjugate space of I, is the space I, , where 1/';3 + l/q = 1."The proof
is analogous to the preceding procf. Iint: Use Halder’s inequality.
§25. Extension of linear functionals

Turorem (Haun-Bavacn), Erery Lnear functional f(z) defired on. a
tinear subspace G of a normed linear space K can be extended to the entire

s ol
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space with preservafion of norm, i.e. it 1s possible to construct a linear func-
tional F{x) such that

1) F@) = flz),

D NF e =1Fle.

Proof. The theorem will be proved for a separable spaece ¥, although in
actuality it is valid also in spaces which are not separable.

First, we shall extend the functional to the linear subspace G, obtained

by adding to G some element 2y € . An arbitrary element of this subspace
is nniquely representable in the ferm

z € G,

¥ = txo + 7, x ¢ @

T the functional sought exists, then

Fly) = tF(x) + f(x)

or, if we set —F(xg) = ¢, then F(y) = f(x) — ot
In order that the norm of the functional be not incressed when it is
continued it is necessary to find a ¢ sueh that the inequality

(1) [f@) —etl S 1 fFlH = + o

be fulfilled for all x € G.
If we denote the element z/t by 2 (z € &), the inequality {1) can be re-
written

|fe) —e! < HFf Tz + 2.

This inequality is equivalent to the following inequalities:

—Nillle 4+l <@ —c<|fllz+ zl,

‘or, what amounts to the same thing,

@+ 17zl 2 e > i@ — 151z + 2l

for all z € &. We shall prove that such a number ¢ always exists, To do
this we shall show that for arbitrary elements 2, ¢* € & we always have

(2) JE + I fille" + ol 256 = 05112 + .
But this follows directly from the obvious inequality
f&) —f&) < [ FII12 =" =112 + 20~ & + ) ||
SHFNTE @l + 712" +xoff
" We' introduce the notation:
¢ = inf {fi} + | Sl + =i l;2 € G},
e’ =wsup {f() —~ If[[He+ a2 €6}
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It follows from inequality (2) that ¢” < ¢
We take an arbitrary ¢ such that ¢ < ¢ < ¢/, We set
Filz) = flz) — ot
for the elements of the subspace Gh = {6 U z}. We obtain the linear

functional Fy , where [ 711 = I f]-
The separable space f contains a denumerable everywhere dense set
, Zn, -+ . We shall construet the linear subspaces

T P I

and define the functional F on them as follows: we eonstruct functionals
.. which coincide with F._y on . and which have norm equal to IR
Thus, we obtain the functional F defined on a set which is everywhere
dense in E. At the remaining points of  the functional is defined by con-
tinuity: if & = limu.xZ., then Flz) = M. F(z,). The inequality
P F(@) | < 1 F ] = || is valid since
| F@) | = e | Flo) | < lime |78 el = 1712

This completes the proof of the theorem on the extension of a functional.

CoroLnAnY. et zo be an arbitrary nonzero element in R and let M be an
arbitrary positive number, Then there exists a linear functional f{x) in R

such that
17 =M and fleo) = (7112

Tn fact, if we set f(tze) = M I 2 [|, we obtain a linear functional with £

norm equal to M which is defined on the one-dimensional subspace of ele-

ments of the form fre and then, by the Hahn-Banach theorem, we can extend |

it to all of & without increasing the norm. The geometric interpretation of

this fact is the following: in a Banach space through every point x, there §
can be drawn a hyperplane which is tangent to the sphere ||« || = Il

§26. The second conjugate space

Inasmuch as the totality B of linear functionals on & normed linear -

space R itself represents a normed linear space it is possible to speak of the
space B of linear functionals on R, i.e. of the second conjugate space with
respect to R, and so forth, We note first of all that every element in B
defines a linear functional in B. In fact, let

Vaolf) = flo,

e L T A Y ) T AT R R R N
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where %o is a fixed element in R and f runs through all of &. Thus, to each
{ € E there is set into correspondence some number . is
‘tion we have ¥2o(f). In this connec-

ibsg(afl. + ﬁf2) = afi(xu) 4 ﬁfz(«"l'o) = aiff;eo(fl) 4+ ﬁ!ffzo (fz)

and

[¥al | < 15 20 f

ie. %u_( 1} is a bounded linear funectional on .
Bes;des the notation f(z) we shall also use the more symmetric notation:

L (f, =)

}’r’hi{}% is analogous to the symbol used for the scalar product. For fixed
€ K we can consider this expression as a f i '
F€ o an coneidor this unctional on & and for fixed
From' this it fo’llows that the norm of every & € R is defined in two ways:
ﬁr_stly., its norm is deﬁnedwas &n element in R, and secondly, as the nof":r;
of a linear functional on %, i.e. as an element in f. Let i z,ﬁ denote the
norm of 2 takefn as an element in R and let || z [, be the norm of z taken
as an element in B. We shall show that in fact | z.[| = || » fl2. Let f be
arbitrary hohzero element in £. Then ' ‘ -

[ < Hf)Dat, Wit 2 [ {2 /05 1l;
gnce the left member of the last inequality does not depend on f, we have
Il 2 sup {[ (£, 2) 1/ £Iif € Bf 0} = |2 .

But, according to the corollar
L, ac y to the Hahn-Banach ¢
% € B a linear functional fy can be found such that heoree, for every

FGo,2) | =l =4

(boundedness),

Consequently, .
sup {[ (1, 2) [/l 1; 7 € R} = || ],
ie [2 ] =l z|. : :
This proves the following theorem.
’Il‘zmomsnﬁ. R is isomelric (o some linear manifold in R
- knasmuch as we agreed 1ot to distinguish between i : i
_ ween isometric : i
thtra_rorer_r_l can be formulated as follows: B — Ppaces this
bhe space R is said to be reflexive i = z i
id to e e flexive in case B = R.If B = R, then R is
Finite-dimensiona] "
pace KB and the space ! Y i
spa'I“ces (we even have B = R for these sp;)ces). e examples of reflexive
he space ¢ of all sequences which converge to zero is an example of g
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complete irreflexive space. In fact, above (§24, Examples 2 and 3) we
- proved that the conjugate space of the space ¢ is the space I of numerical
"sequences (Z1, Lz, '+, Tu, - - ) which satisly the condition Y ae1 | @a | <
%, to which in turn the space m of all bounded sequences is conjugate.
The spaces ¢ and m are nob isometrie. This follows from the fact that ¢
is separable and m is not. Thus, ¢ is irreflexive.

The space Cla, b} of continuous functions on a closed interval [a, b] is
also irreflexive. However, we shall not stop to prove this assertion. {The
following stronger assertion can alsp be proved: No normed linear space
exists for which ([, b] is the conjugate space.)

A. I Plessner established thai for an arbitrary normed space R there
ist only two possibilities: either the space K 18 reflexive, L.e. & = B =
=--; k= R = ---; or the spaces R, R, R, --- are all distinet.
The space l,(p > 1) is an example of a reflexive spsce (since [, = 1,
where 1/p + i/g = 1, we havel, = 1, = 1,).

(’;X
R

§27. Weak convergence

The concept of so-called weak convergence of elements in a normed linear
space plays an important role in many questions of analysis.

DEFNITION. A sequence .} of elements in a norracd linear space R
converges weakly to the element x if

1) The norms of the elements «, are uniformly bounded: || =, | £ M,
and

2 f(zn) — f(x) for every f € R.
(Tt can be shown that Condition 1 follows from 2; we shall not carry out
this proof.)

Condition 2 can be weakened slightly; namely, the following theorem i
true.

TurorkM 1. The sequence {2} converges weakly to the element = if

1 fjza i £ M, and

2) fza) — f(x) for every [ € A, where A ds a sel whose Unear hull is 3

everywhere dense in K.
Proof. It follows {rom the conditions of the theorem and the definition

of a linear functional that if ¢ is a lLinear combination of elements in &4 §

then o(z,) — lz).

Now let ¢ be an arbitrary lincar functional on £ and let {¢i] be 8 sequence | :
of functionals which converges to ¢, each of which is a linear combination
of elements in A. We shall show that ez.) — e(2). Let A be such that |

o || € M (n=1,2, - )and jjz] £ M.
Tt us evaluate the difference | e(n) — @(2) |. Since or — ¢, given al

arbitrary ¢ > 0 a K can be found such that for all & > K,

¢ —exl < &

SRR T A R
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| it follows from this that
1&0(31'&) — () ’ < | elta) — enfzn) |+ ]pk(xn) — eil) i

| F o) — ole) | < M + M + | (@) — ez |

But by assumption |e(z,) -
n (2} | — 0 as n — . Consequen
[@(®a) = @) | —0asn— . quently,
If the seqtt;;ence {€x} converges in norm to x, that is, if iz, — | — 0
as » — «, then such convergence is frequently called stron
to distinguish it from weak convergence. § convergomee

If a sequence {x,] converges strongl i
ten n gly to x, it also converges weakl
the same limit. In fact, if | 2, — 2| — 0, then os memkly o

[f@) —f@ | < 1 fll2a ~ 2| >0

for an arbitrary lincar funetional §. The converse is not trie in general:
f;trong convergence does not follow from weak convergence. For example
in I; the sequence of vectors ,

e = (1, 0,0, )’
g = (0,1,0,-..),
¢ = (0) 0: 1, "'),

¢ & ly to zero. In fact, every linear function i
’ al fin i be
represented as the sealar product with some fixed vector ! : can.h

f(x) == (SL‘, a);

o= {ay, 8, 0, e, ),

henee,
. . f(eﬂ) = .(gn, G) = {Ix.
Since g, — 0 ag n — o for eve .
I rv a € I, we have li ) =
linear funetional in I, : e mfler) = 0 for every

quence {e"} dﬂe T tl converge the
H‘ e Sh.all mv eStlgate Wh.a-'} weak convergence a.]tll)ulll;s 0 in B8ey ]
. g t era.
. ]BX:\.MPLES. 1- In ii’-‘i@te-dﬂnenswﬁlﬂz Sptlﬂe R W ea\k and atr On.g con E«el‘g'EDce

[‘.(}incide. In fac t, cOnS].der functionals ch‘reSp(IIldl'] I.g 141 p i i )’
Pty t() Illl]“;l lll:a”_()n l)

a = (1,0,0, -, 0,
& = (0, 1,0 , 0,
en = (0,0,0, -, 1).
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If {x:} converges weakly to x, then
' (ax, 60 = o0 — 2 i=12"-,n),

i.e. the first coordinates of the vectors z; tend to the first coordinate of the
vector z, their second coordinates tend to the second coordinate of the
vector x, and so forth. But then

o, w) = [ @ — 2V -0,

i.e. {x:} converges strongly to x. Since strong convergence always implies

weak convergence, our assertion is proved.

2. Weak convergence in Iy . Here we can take for the set A, Iinear com-
binations of whose elements are everywhere dense in I, the totality of
vectors

g = (13 Or 0; . '):
gy = (0: 1, O: )5
€3 = (0: 0) 1) ' ”):

Tz = (£,&,  , a, ') i5 an arbitrary vector in I, then the values
asgumed at z by the corresponding linear funclionals are equal to (x, €.) =
£, ,i.e. to the coordinates of the vector x. Consequently, weak convergence
of the sequence {w,} in I» means that the numerical sequence of the k-th
coordinates of these vectors (B = 1, 2, - - +) converges. We saw above that
this convergenee does not coincide with strong convergence inl:.

3. Weak convergence in the space of continuous funciions. Let Cla, b] be
the space of continuous functions defined on the closed intervsl [e, b]. It
can be shown that the totality A of all linear functionals 8, , each of which
is defined as the value of the function at some fixed point f (see Example 4,
§23) satisfies the conditions of Theorem 1, Le. linear combinations of
these functionals are everywhere dense in C[a, b]. For each such funectional
3, , the condition 8,a(f) ~ 8:,,x{t) I8 equivalent to the condition x.(%) —
wlte).

Thus, weak convergence of a sequence of continuous functions means
that this sequence is a) uniformly bounded and b) convergent at every
point.

Tt is clear that this convergence does ot coincide with convergence in
norm in Cla, b}, i.e. it does not coincide with uniform convergence of con-
tinuous funetions. (Give a suitable example!)

§28. Weak convergence of linear functionals

We can introduce the concept of weak convergence of linear funectionals
as analogous to the concept of weak eonvergence of elements of a normed
linear space R.

Bbin AT ER T
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DerFINITION. A sequence {f,} of linear functionals eonverges weakly to
the linear functional f if : :

1) || fa If are uniformly bounded; ie. || f» || < M, and

2) fu(@) — f(2) for every element z € R.

(This is usually called weak* convergence.—Trans.)

Weak convergence of linear funetionals possesses properties which are
analogous to properties stated above of weak convergence of elements,
namely strong convergence (i.e. convergence in norm) of linear functionals
implies their weak convergence, and it is sufficient to require the fulfillment
of the condition f.(x) — f{z) not of all z € R, but only for a set of elements
linear combinations of which are everywhere dense in R,

We shall consider one important example of weak convergence of linear
functionals. Above (§23, Example 4), we spoke of the fact that the “8-func-
tion”, i.e. the functional on Clg, b], which assigns to every continuous fune-
tion its value at the point zero, can “in some sense” be considered as the
limit of _“ordinary”_ functions, each of which assumes the value zero outside
some small neighborhood of zere and has an integral equal to 1. [We assume
that the point # = 0 belongs to the interval (g, &). Of course, one can take
any other point instead of ¢ = 0.] Now we can state this assertion pre-
cisely. Let {¢n(t)} be.a sequence of continuous functions sat-isfyi:hg the

following conditions:

(1) 1) wlt) =0 for
-]
2) f%(t) it = 1.

Then for an arbitrary eontinuous function 2(f) defined on the closed
interval [a, b], we have

[t] > L/n,  eu) 20,

1in

B
f“ onlDa(®) dt = fl aDe®) dt— 2(0) s 0 .

_In fact, by the mean-value theorem,

1in e
| f_m son_(t)w(t) dt = x{¢.) f_ o oD dt = 2(&), —1/n <& < 1/m;

when n — =, £, — 0 and (%) — =(0).

The expression
b
f ea(Dz(d) dt

represents a linear functional on the space of continuous funetions. Thus,
t.he_ result we obtained can be formulated as follows: the s-function is the
ll_m.lt of the sequence (1) in the sense of weak convergence of linear fune-
tionals. o " '
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" The following theorem plays an important vole in various appheations of

.- the concept of weak convergence of linear functionals,

TaEOREM 1. If the normed linear space R s separable, then an arbitrary
bounded sequence of linear functionals on R conlaing ¢ weakly convergeni
subsequence.

Proof. Choose in F# a denumerable everywhere dense set

{xl;$2! oy Tay '“}'
If {f.} is a bounded (in norm) sequence of linear functionals on K, then

fl(xl)! f?(xl)p Ty .fﬁ(xl)a T

is 2 bounded numerical sequence. Therefore we can seleet from {f.} a
subsequence

fl’)fﬂ!s e 1fﬁ!: et
such that the numerical sequence
flr(xl)! f!f(xl)) e

converges. Furthermore, {rom the subsequence {f.'} we can select a sub-
sequence

I HooL . s
13f2; 1dn g

such that _
f7 (), B (22, -
converges, and so forth. Thus, we obtain & system of sequences
[0 "SR A NPT
R e B

each of which is a subsequence of the one preceding. Then taking the “di-
agonal”’ subsequence i, £/, fi’”’, - -+, we obtain a sequence of linear func-
tionals such that fi'(z,), £+ (%), - -+ converges for all n. But then Fi (=),
£,7(x), -+ also converges for arbitrary « € R. This completes the proof of
the theorem.

The last theorem suggests the following question. Is it possible in the
space I, conjugate to a separable space, to introduce a metric so that the
bounded subsets of the space B become compact with respect to this new
metric? In other words, is it possible to introduce a metric in £ so that
convergence in the sense of this metric in R coincides with weak con-
vergence of elements in R considered as linear functionals. Such a metrie
can in fact be introduced in R.

et {z.} be a denumerable everywhere dense set in R. Bet

(@) . p(fi, f) = 2 aa | Aulen) — falwa) /27 fn T

A

R

R L R R R
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for any two elements fi , f; € E. This series converges since its n-th term
does not exeeed (Jifi | + [ f2[)/2". The quantity (2) possesses all the
propert-ies of a distanece. In fact, the first two axioms are obviously satisfied.
We shall verify the triangle axiom.

Since

;f,(xn) - f3(xn) | = |fl(xn) - f2(55n) + f'ﬂ(xn) - f&(xn) i
' < [Alwa) = falen) | + | fol@a) — falmn) |,
we have .

o{fi, fa} < p(fs, f3) + p(fz, fo).

" Direct verification shows that convergence in the sense of this metrie is
in fact equivalent to weak eonvergence in E.

Now Theorem 1 can be formulated in the following manner.

TaworeM 1. In a space B, which is the conjugale of a separable space,
with metric (2), every bounded subset ¢s compact.

§29. Linear operators

1. Defintiton of a linear operaior. Boundedness and condinuily.

Iet R and R’ be two Banach spaces whose elements are denoted respec-
tively by x and y. Let a rule be given according to which to each x in some
set X & R there is assigned some element y in the space E’. Then we say
that an eperator y = Ax with range of values in £’ has been defined on the
set X. : :

DerFmrTion 1. An operator 4 is said to be Knear if the equality

4"1((111131 "I" az&»"z) = a},flx] + G!gA.ﬁg

is satisfied for any two elements x,, x» € X and arbitrary real numbers

ay, s
DerFINITION 2. An operator A is said to be bounded if there exists a con-
stant M such that '

Azl <M=

forgliz £ X. :
- DEFmNITON 3. An operator 4 is said to be continuous if for arbitrary
¢ > 0 there exists a number 8 > 0 such that the inequality
e — 2" e <8 @, 2" ¢ X)
implies that
| Az" — Az” g < e

) Only Hnear operators will be considered in the sequel. If the space R/
1s the real line, the operator y = Az} is a functional, and the formulated




96 NORMED LINEAR SPACES low, m

definitions of lincarity, eontinuity and boundedness go over into the

.. corresponding definitions introduced in §23 for functionals.

The following thecrem is a generalization of Theorem 1, §23.

TuroreM 1. Continuity is equivalent to boundedness for @ linear operator.

Proof. 1. Assume the operator 4 is bounded. The inequality || 2’ — 2" || <
& implies that

(1) |4z’ — Az" || = [[AG — ) | <
where M is the eonstant occurring in the definition of boundedness, If we

take 8§ < ¢/ M, Inequality (1) yields || Ax” — Ax” | <, 1.e. the operator 4
is continuous.

9. Assume now that the operator 4 is continuous. We shall prove that A
is bounded by contradiction. We assume that 4 1s not bounded. Then there

exists a scquence

M2 — 2| < M

(2) Tr, &2, ",

such that

xu’

[ Aaa |l > | 2 ||
Set 2, = aa./n || % ||; it is obvious that 2.} = 1/n, ie. 24 — 0 as

n — =, Consider the sequence
Az = Axy/n || 2. ]l
which ig the map of the sequence {2,} under A. The norm of each element
Az, 18 not less than 1:
| Aza || = [ Azo [l/n )20 || Z 2l zall/ 2ll 2 ]| = L.

Sinee for every linear operator, A(0) = 0, and lim,.x 2. = 0, Wwe cbiain a
contradiction of our hypothesis that the operator is continuous. Conse-
quently, the operator A4 must be bounded.

Exawmere. The general form of @ linear operalor mapping o finite- -dimen-

sional space tnfo a finite-dimensional space. Given an n-dimensional space §

R™ with basis e, €, - , €, , every point of this space can be represerited
in the form = = w2 .

A linear operator A maps E" into the finite-dimensional space R™ with

the basis &, &', -+~ r

s Em's

Let us consider the representatlon with respect to this basis of the images

of the basis vectors of the space R":
Ae; = 2 7 G3jef -
Now let y = Az,
= Az = Dt itide; =

Shaxi 2o aces = D dies

R

TR
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§29] LINEAR -OPERATORS 97
where
3 . d; = D oie1 @i .

It is cle.a,r from formula (3) that to determine the operator A it is suffi-
cient to give the coefficient matrix with entries a.; .

A linesf:r opelrator cannot map a finite-dimensional space into a space of
greater dimension since all linear relations among the elements are preserved
for their images.

2. Norm of an operator. Sum and product of operators. Product of an
operator by a scalar.

Dermirrion 4. Let A be a bounded linear operator. This means that
there exist numbers M such that

@ [Az < M |2

for all z € X. The norm || A || of the operator A is the greatest lower

bound of the numbers M which satisly condition (4). It follows from the

definition of the norm of an operator that || Az || < [ 4 || |z ). But if

M < || 4 |, then there exists an element x such that || Az || > M |z |.
TreoREM 2. If A is an arbitrary linear operalor, then

T4l = sup {[| Az {/[|=[; =] = 0}.

Prbaf. Introduce the notation
sup {[[ Az |l; || = 1} = sup {[ Az [/ = |; [ =] = o},

Weshall first provethat || 4 | > «. Sincea = sup{ || 4z |/l z ;|2 | = 0},
for arbitrary ¢ > 0 there exists an element x1 not zero such that
Az [/ 21]] > @ — e ot || Az fl > (@ — €) || 21 ||, which implies that
e — ¢ < || 4 || and hence that || A | > @ because ¢ is arbitrary.

The inequality cannot hold. In fact, f welet | A | — @ = ¢ then & <
| 4] — /2. But this implies that the following inequalities hold for an
arbitrary point x:

sup {[|dzlf; lz]l = 1} =

o =

Taz /2l Sa<All = ¢/2,

ar -
Az < (1A} — /2 | 2],

ie. || 4 || is not the greatest lower bound of those M for which || Az [[ <
M {2 . It is clear from this eontradiction that || 4 || =
In the sequel we shall make use of the above express:on for the norm of
an operator as equivalent to the original definition of the norm.
: :lDEFlNI_’I‘ION 5. Let- 4, and A; be two given continuous linear operators
Whlclh transform the Banach space E into. the Banach space E, . The sum
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: of these two operators is the operator A which puts the eleroent ¥ € E, & Toﬂeach y € B we can put info eorrespondence the solution of equation
defined by the formmla y = Ay 4+ Asr into correspondence with the ele- (7). The o_perator which realizes this correspondence is said to be the énverse
ient z € F. It is easy to verify that A = A, + Ay is also a linear operator. of T and is denoted by T~
‘uronen 3. The following relalion holds for the norms of the operalors & TaEOREM 5. The operator T which 15 the inverse of the linear operator T
Ay, Agand A = A+ Ay is also linear. _ peraior
. . Proof. To prove the linearity of 7 it i .- .o
) CA < AT A [ As = equality ¥ it is sufficient to verify that the
Proof. Tt is clear thal -
’ 1 l(a1y1 + o) = a;T_']yl + Q'QT_lyz
| Azl = | A + A || €[] A2 SfAm LA A ) = | - valid. © 7"
[ el = Ldw 3 Asm < I Al 4 A2 = (has] + A=D1 js valid. Denote 7'z by 1 and T, by . . Since T is linear, we have
whenge inequality (5) follows. : ®) Tty + d B
DermiTion 6. Let A, and A» be continuous linear operators where 4; % _ @y + date) = o + eatp .
transforms the Banach space E into the Bapach space Ey and A transforms ¢ By the definition of the inverse operator,
the Banach space E into the Ranach space Ex . The product of the operators gy X
Ay and A, (denoted by A = AsA,) is the operator which sets the element o= T Y2 = 23
. € E,into eorrespondence with the element € F, where ; whence, multiplying these equations by e and e, respectively, and addi
we obtain: : ’ adding,
= Az(A,_:v). :
1 —1, _
Tauores 4. TF A = Asd; , then aT i+ el yp = endi + e .

6} | 1A ] < 1l 4s A | 1(21; gﬁ;:f;iiiland, from (8) and from the definition of the inverse operator
procg. || Azl = T 4@ | < (4l 4l < QA LTANLL G
whenee the assertion of the theorem foilows.

The sun and preduct of three or more operators are defined by iteration.
Toth operations are asgociative.

The product of the operator A and the real number k {(denoted by kd}
i3 defined in the following manner: the operator kA puts the elerent k{Az)
of the space I5, into correspondence with the clement = € B, _

1t is easy to verify that with respect to the operations of addition and :
multiplication by a scalar introduced above the bounded linear operators
form a lnear space. If we introduce the norm of the operator in the way &
indieated ahove we can form 2 normed linear space.

Txereist, Prove that the space of bounded linear operators which trans-
form the space E, inbe & complete space Bz 18 complete.

3. The inverse operalor. .

T.et us consider the operator T which transforms the Banach space E .
into the Banach space Eq:

Tx =y, x £ F, y e B

ayty + ente = T o t1 + aaya)
. which together with the preceding equalities yields
. T_l(alyx + asyz) = alT—lyj + azT‘lyz .
. Taworem 6. If T 8 o bounded lincar operat ;
 THEOREN or who ! exi
fin T . D se tnverse T ewists,
) We ghall need the following two lemmas in the proof of this theorem.
LEnenma 1._ Let M be an everywhere dense set in the Banach space E.
Then an arbﬂ;rary element y € E, y # 0, can be developed in the series
y=htm+ o ttoo,
- where e € M and fy. || <3|y [l/2%

1 - e O o e 5e in ﬂ} OWII: WH y
1 ToO \' ¥ )| lStl}: 11 t th que]l[ae Uf e].enlel].tl

u:xmw .-ig-sg.-.:.:.\ia.--j-': L T

Ay by — |l < |y ll/2

T:Eus.' is possible because inequality (9) defines a sphere of radius || ¥ /2
Jth cente? at the point y, whose interior must contain an element of M
singe. M is everywhere dense in E). We choose 3y € M such t.hiat
| T T Y | < || ¥ l/4, ys such that || ¥ — 3 — vyl <y h/8
ndin general, y, such that ||y —y1 — -~ —w [ < [y e

Dermmmoy 7. The operator T is said to have an fnverse if for cvoery
y ¢ Eithe equation
7 Te = y

has a unigue solution.
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HBuch s choice i@ always possible becauge M iz everywhere densze in &

. By construction of the elements y,

v = Thayl =0 as 1 e,

. » )
i.c, the series Y i ¥ converges to y.
T'o evaluate the norms of the elements ¥, we proceed as follows:

ol =t —yv+ull <ln—yl +lul=31nil/2
Tyl = e+ 30— — 9+ v
—mll+ly—wmll <3iy]|/4

Finally, we obtain
” y-n + yu—l + ot
Sy —wp—

= Yt |
Cogaa |l =3y [I/2"

by = RS o Al TR
— ¥l + 1y = -

This proves Lemmas 1.
LewmMa 2. If the Banach space F is the sum of a denumerable number of
sets: B = UJa_, M, , then at least one of these sets is dense in some sphere,
Proof. Without loss of generality, we can assume that
x’l’f; — .-"H—g [ 3'1{3 o -

We shall assume that all the sets M, are nowhere dense, i.e. that in the

interior of every sphere Lhere exists ancther sphere which dees not con-

tain a single point of M, k= 1,2, -+ .

Take an arbitrary sphere &; ; in it there exists a sphere Sy which does not
contain & single point of M, ; in S; there exists a sphere S, which does not
contain a single point of M. ; and so forth. We obtaiu a sequence of nested
spheres which can be chosen so that the radius of the sphere S, converges
to zero as 7 — =, In a Banach space such spheres have a common point.
This point is an element of F but it does not belong to any of the sets M, .
This contradicts the hypothesis of the lemma and proves Lemma 2.

Proof of Theorem 6. In the space E; let us consider the s{fts f![ « , where
My is the set of all y for which the inequality |l <k Gyl holds

Every element of By is contained in some M, , ie By = U“°=1 M, . By
Lemma 2, at least one of the M, iz dense in some sphere 8, . In the interior
of the sphere S, let us consider the spherical shell P consisting of the polnts
z for which

whete

0 < B <a, w € M, .

A MR

o)

TR
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I we translate the spherical shell P so that its center coincides with the
origin of eoordinates, we obtain the spherical shell P, .

We shall show that some set M, is dense in Py . Consider z € P; then
2 — 4o € Py. Furthermore, let 2 € M, . By vn'tuP of the choice of z and Yo
we obtain:

[T -l <772+ 1Tl
<z + (vl <nllz—wll+20%
=alle—wlll+2lgpl/e—wlilsale—wlQ+21wl/8).

The quantity »{1 + 2| v ||/8) does not depend on z. Denote n(l +
2 || % 11/8) by N. Then by definition 2 — o € My and My is dense in Py

‘hecause My i3 obtained from M, , as was P, from P, by means of a trans-

lation by u and M, is dense in P. Consider an arbitrary element y in E; .
1t is always possible to ehoose A so that 8 < || Ay || < . For Ay we can con-
struct a sequence y; & My which converges to Ay. Then the sequence
(1/M\)y: converges toy. (It is obvious that if 4 ¢ My, then (1/M)y, € Mw
for arhitrary real 1/x.)

We have proved that for arbitrary y € Fi a sequence of elements of M N
ean be found which converges toy, 1.e. that My is everywhere dense in E, .

Consider ¥ € E; ; by Lemma 1, y can be developed in a series of elements
in My:

y=t1itypt - Fyt+-,

where || #a
Consider in the space E the series formed from the inverse images of the
Wi, Lo from o, = T 'y, :

Dt X = $1+:u"2.+ SRR i 28 SRR
" This series ccm'erges to some element x since the following inequality
holds: ,; To || = || T"y | < Ny} < 3N [ y][/2" and consequently,
Tol € 20 lloell <3N [yl 225 B =3y (N

By virtue of the convergence of the series Z 1 &, and the continuity of
T we can apply T to the serier. We obtain:

= Tord Tt o =qgn+ gt oo =y,
whenee £ = T Y. We have
lall =Tyl <8Nyl

and since this estimate is valid for arbitrary y, it follows that T is bounded.
THEGREM 7. 4n operalor which closely approrimales an operaior whose
inverse exisis has on tnverse, ie. if Ty i8 a linear operafor which has an in-
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verse and which maps the space E into the spoce K1, and AT is an operalor
_-which also maps E into Ey, where || AT || < 1/]] Ty ||, then the operator
- T = To + AT has an inverse.

Proof. Let 4 € E; . We wish to find a unique @ € E such that

= T:Bo - Tuxﬂ + ATxr; .

If we apply the operator Ty to this equation, we obtain

(10) Tu_ly = ¥n "I‘ Tn_lxﬁT.’lTn ;

if we denote To 'y by z € E and 75 'AT by A, then equation (10) can be
written in the form

z=$0+Axu,

where A is an operator which maps the Banach space % into itself and
41 <1

The mapping ' = z — Az is a contraction mapping of the space E into
itself; consequently, it has a unique fixed point which is the unique zolution
of equation (10) and this means that the operator T has an inverse.

TueoneM 8. The operalor which is the mverse of the operafor T = I — A,
where I is the identity operalor and the operatorisl (of E into E) has norm leas
than 1 (|| 4 || < 1), can be writlen in the form

() I -A4)7 =24
Proof. Consider the following transformation of the space E into itself:
y=Tz, =zcE, yck

The mapping »* = y + Az is a contraction mapping of the spaze E into
itself by virtue of the condition that ;| A || < L.

We solve the cquation & = y + Az by means of the iterations: r,q =
Y+ Az, If wesetzo = 0, weobtainm = y;a2 = y + Ay;0 = y + Ay +
A% o saa =y + Ay + A%+ R Ay,

Asn — =, 1, tends to the unique solution of the eyuation @ = y + Az,
ie. & = 2 i A%, whence

T -4y =

which yields equation (11},

4. Adjoint operators.

Consider the linear operator y = Aax which maps the Banach space E
into the Banach space E; . Let ¢(y) be a linear functional defined on £,
i.e. ¢(3) ¢ E;. Apply the functional g to the element y = Ax; g(dx), as 18
easily verified, is a lincar functional defined on ¥; dencte it by f(x). The
funciional f{z) is thus an element of the space £. We have assigned to each

S ra A%y,

Eoy

Lt L ATE,

o AT

)

o

fA* ) =
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functional g € E, a functional f € E, ie. we have obtained an operator
which maps E into E. This operator is called the adjoint operator of the
operator A and is denoted by A* or by f = A%g.

If we use the notation (f, x) for the functional f{z), we obtain (g, Az} =
{f, @), or (g, Az) = (A*g, x}. This relation ean be taken for the definition
of the adjoint operator,

ExaMmeLE, The expression for the adjoini operator in finite-dimensional
space. Euclidean n-space E” is mapped by the operator A into Euclidean
m-space E™. The operator A is given by the matrix ().

The mapping ¥ = Az can be written in the form of the system

Yi = Dofet GisTs i1=1,2, - ,m
The operator f(z) can be written in the form
fl@) = i fixs.
" The equalities
@) = g(Az) = Tl gy = Lt L giaet; = 2/ 35 2k gy

imply that f; = >k gio; . Since f = A%y, it follows that the operator A*
is given by the transpose of the matrix for the operator 4.

We shall now list the basic properties of adjoint operators.

1. The adjoint operator of the sum of two linear operators is equal to the
surn of the adjoint operators:

(4 + By* = A* + B~

Let fi = A%, fr = B*g, or fiz) = g(4%), fulz) = g(Ba); then (i + f2) (&)
= gldx + Bz) = g[(4 + B)z], whenee (4 + B)* = A* 4+ B*,

-2, The adjoint operator of the operator k4, where k iz a scalar multi-
plier, is equal to the adjoint operator of 4, multiplied by £:

(kAY* = kA™,

The verification of this property is elementary and is left to the reader.

3. I* = I, ie. the adjoint of the identity operator on ¥ is the identity
operator on E.

TeEorEM 9. The operator A*, the adjoint of a linear operator A which
maps the Banach space E inte the Banoch space By, is also linear and
|4 .

Proof. The linearity of the operator A1* is obwous We shall prove the
equality of the norms. By virtue of the properties of the norm of an operator
we have:

@ = o) | < Lol 42l < il g e,
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whence || | < [ A || 1 llorlf 4% | <] 4| g ] and consequently,
ag A% <14

let x € E and form yo = Ax/|| dz || € By ; it is clear that || % || = 1.
From the corollary to the Hahn-Banach theorem, there exists a func-
tional ¢ such that || ¢ || = 1 and g(ye) = 1, i.e. g{dz) = || Az ||.

From the inequalities || Az || = | (¢, A2) | = | (A*g,2) | < | A*¢ || =] <
BA* gzl = 1A% ([ we obtain |4 | < } A* | which, com-
hined with inequality (12), yvields } 4 || = [ 4* ||

ADDENDUM TO CHAPTER III
Generalized Functions

It a number of eases in analysis and in its various applications, for ex-
ample i1 theoretical physics, the ueed arises to introduce various “general-
ized”” functions in addition to the “ordinary” functions. A typical example
of this is the well.known $-function which we have already mentioned
above (§23, Example 4).

‘We wish to emphasize, however, that thesc concepts, which are
discussed briefly in this addendum, did not in any sense originate in an at-
tempt to generalize the concepts of analysis merely for the sake of general-

“izing. Rather, they were suggested by perfectly concrete problems. More-

over, essentially the same concepts were used by physicists for quite
some time before they attracted the attention of mathematicians.

The methed of introducing generalized functions which we shall use
below originated in the work of 3. L. Scbolev, published in 1935-36. Later,
these ideas were developed in a somewhat extended form by L. Schwartz.

Consider on the real line the set D of funetions ¢(z} each of which
vanishes outside some interval (where for each ¢ there is a corresponding
interval) and has derivatives of all orders. The clements of D can be added
and multiplied by a scalar in the usual way. Thus, ) iz a linear space.
We shall not introduce a rorm into this space; however, in D one can de-
fine in a natural way the convergence of a sequence of elements, We shall
say that . — ¢ if: 1) there exists an interval in the exterior of which all
. and ¢ are equal to zero and 2) the sequence of derivatives ¢, of order
(k= 0,1, 2, ---) (where the derivative of order zero is understood to be
as usual the function itself) converges uniformly to ¢™* on this interval.
The faet that this concept of convergenee is not connected with any norm
does not give rise to any inconveniences.

We now introduce the concept of generalized function.

DeriNiTioN 1. A generolized junction (with values on the real line
— = < { < =) isany linear functional 7'(¢) defined on the space D. Thus,
T'(y) satisfies the following conditions: '

1. Tlop, + Bes) = oT{e1) + 8T{e);

2, If ¢, — ¢ (in the sense indicated above), then T{g.) — T(e).

We now consider several examples. _

1. Let f(t) be an arbitrary continuous funetion of £ Then, since every
funetion ¢(f) & D vanishes outside some finite interval, the integral

W 76 = | 10 d

exists for all ¢ € D). The éxpression (1) represents a linear funetional on
105




