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1. Feladat

Az alabbiakban egy tetszéleges [°, %] intervallumon értelmezett, egységnyi négyszogjel
savszélességének karakterisztikdjat hatarozom meg, mérnoki modszerekkel. Elobb a jel
transzformaltjanak abszolitmaximumabdl, majd a jel energidjabdl irom fel a sdvszélesség
paraméterfliggését.

2. Hattér

2.1. Felhasznalt matematika
2.1.1. Fourier Transzformacio
Adott egy x: R — R fiiggvény melyre igazak az alabbi feltételek:

— Tetszoleges I C R véges intervallum esetén x lesziikitése az intervallumra véges
sok pontot kivéve folytonosan differencialhato.

— Ha t, szakadasi pont, akkor ez a szakadés elséfaju, és itt a fliggvényérték:

_ .T(to + 0) + l‘(to — 0)

(to) ; (1)

— A fliggvény abszolutintegralhatd, tehat:
/ |x(t)|dt < oo (2)

Definicié: Ha x teljesiti a fenti harom feltételt, akkor a Fourier transzformadltja
az az X: R — C komplex értéki fiiggvény, melyet igy definidlunk:

X(f) = /_ () - ey (3)

o0

2.1.2. A Sltﬂ fliggvény maximuma

Allitas: A L hatdrértéke a t = 0 pontban:

int
lim 22t = (4)
t—0 ¢

2.1.3. A sin(At) sorfejtése

Allitas: A sin(At) fiiggvény Taylor-sora a to = 0 pont koriil:

O (1Y A2+
sin At = EA™ 12>, (f)l ¢ (5)
7

1=

Megjegyzés: A to = 0 pont koriili sorfejtést szokds McLaurent-sornak is hivni.



2.1.4. A SAD Y fiiggvény integralja R-en

Allftas: Adott egy A € R tetszdleges szdm. Ekkor a & (At) alaku fliggvény integralja az

egeSZ Szamegyenesen.
00 102
sin®(At)
[ e = a) (6)

—00

3. Megoldas menete

1. Négyszogjel Fourier-transzformaltjanak meghatarozasa
2. A transzformalt fiiggvény abszolutértéke és energidja
3. Savszélesség meghatdrozasa a transzformalt jel

(a) Abszolutmaximumabdl(e)
(b) Energiaprofiljabdl(n)

3.1. Négyszogjel Fourier-transzformaltjanak meghatarozasa
Allitas: Adott egy x(t) jel, mely a kovetkez&képpen néz ki:

_J 1 hate[=2D
z(t) = { 0 kiilonben
Ekkor ennek a jelnek a Fourier transzformaéltja:
sin Tym f
X(f)=——
(="

Bizonyitas:
Végezziik el a Fourier-transzforméciét az x(t) figgvényre:

To

X R Y (Lt s il
(f)_/_of”'e _/—;oe A .
eiTomf eitonf 1 eiTom) _ e=iTomf sin Ty f ®)
S R A  siTyrf = 0
j2nf 12nf  nf 27 7 f _nf

Ezzel belattuk a fenti allitast.

3.2. A transzformalt fuggvény abszolitértéke, energiaja

3.2.1. Az abszolutérték kiszamitasa

SlIl X

Az altalanos ’ fiiggvény grafikonjarol lathato, hogy a maximuma x = 0-ban talalhaté
és szimmetrikus az y tengelyre:
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1. 4bra.

Allitas: Egy tetszoleges ’M‘ fiiggvény maximuma is x=0-ban taldlhatd, és pontosan
A értékét veszi fel:

max
zeR

sin Az
=4 (9)

Xz

Bizonyitas: Nézziink hatarértéket t — 0 esetén

) sin Az A
lim = lim
x—0 €x A x—0

Kovetkezmény: Az x(t) fliggvény frekvenciatartomanyba transzformaltjanak maximuma

T
sin wa‘ _7. (11)

sin Ax
- A‘ — A (10)

sin Az
= lim
x x—0

sin Ty f _
im

max|X = max|——
feER (£) ferl  wf =0

3.2.2. A jel energidjanak kiszamitasa

Allitas: A jel energiajat a Parseval-tétel segitségével irhatjuk fel:

EX(f) _ /_ ‘X(f)|2df _ /_ SlIlToﬂ'f‘ df _ W|ZTO| \T0| — TO (12>

[e.o]

A ’X(f)‘ fiiggvény grafikonja:



2. abra.

Megjegyzés: 1. abraval osszevetve lathaté, hogy sokkal ” gyorsabban” konvergal nulldhoz
a fliggvény

3.3. Savszélesség meghatarozasa

3.3.1. Savszélesség ¢ paraméter segitségével

Definicié: Tegyiik fel, hogy egy x(t) véges tartdju jel frekvencia-tartoménybeli
transzforméltja paros. Ekkor x(t) jel sdvszélessége meghatarozhatd, ha rogzitiink egy
e € (0,1) paramétert, és I € R szimmetrikus, nyilt intervallumot, akkor Vf & I esetén

(XN < e-max|X(f)] = - Ty (13)

Kovetkezmény: Ekkor a jel sdvszélessége I = (-B,B) intervallum hosszanak fele, tehat B

Savszélesség kiszamitasa:
Els6 megkdzelités: Mivel | X(f)

‘ periodikusan veszi fel a nullat, azaz:

[ X(N|=[X(f+P)|=0
tovabba P = k/T}, amennyiben k € Z ugyanis

(14)

| X(f)]

sin k7

B SIHTOT('f"

sin T07T—
‘ - ‘ ‘ 0 (15)

=k
=1

Ezutan pedig elegendd lesz az egyes periédusonként esedékes (A, A+

70+ 1) intervallumok maxi-
mumét vizsgalni elsédlegesen, ami majdnem pontosan az intervallum felére esik (a tényleges

maximumhely abszoltutértékben kisebb - ha Ty > % -, vagy nagyobb - Ty < =-, mint az inter-

1 . .
vallum fele, de ezt most elhanyagoljuk). Ekkor ugyanis ha a submaximum mar kisebb, mint
a referenma értéknek vélasztott €Ty, akkor a (2L

T T %) intervallumban valé értékek Voltak az
utolsék, amiket figyelembe kell venniink a savszelesseg meghatarozasanal.



Ekkor a (kT;Ol,TﬁO) intervallumon kell megoldanunk az aldbbi egyenletet:

T
sin wa‘_g T (16)

Tegyiik fel, hogy f > 0, ugyanis f < 0 esettel a szimmetria miatt felesleges foglalkoznunk
- tovabba ennek fizikai tartalma amugy sincs. Ekkor az egyenlet a kdvetkezo alakban irhato,
elvégezve az egyenletrendezést:

{ sin Tyr f | = enTo f (17)

Az egyenletet analitikusan nem lehet megoldani, a sinTyn f fliggvényt azonban felirhatjuk
McLaurent sorfejtéssel, felhasznalva az (5) egyenletet. Majd, ha vessziikk ennek a végtelen
Osszegnek egy bizonyos N kiiszobindex el6tti tagjait, akkor egy N-ed foku polindmot kapunk
az egyenletre, amit mar meg tudunk oldani, de csak kozelitésekkel, tehat a

Y (Tyr)2+
Z 2z+1 Fl=eTo (18)

egyenlet ’%l,% )-ba esé megoldésa(i) lesz(nek) a szdmunkra relevans megoldasok. Ek-
kor a B savszélesség megegyezik a (17) egyenlet, fenti intervallumba esé megoldasaval (két
megoldas esetén a nagyobb megoldassal), hiszen ekkor a (-B,B) intervallumon kiviil es6
fliggvényrész mar sohasem lesz az eredetileg kijelolt referenciaérték felett.

Madsodik megkozelités: Tulajdonképpen az el6z6 megoldasmenet elsé részét vessziik. Mivel
a fenti probléma még N-t6l is fiiggne, hogy mennyire pontosan tudjuk megadni (minél na-
gyobb N, annél pontosabb lesz a szdmoldsunk), ezért egyszeriisitjiik a problémat, és csak
azt a legnagyobb k£ € N indexet keressiikk melyre, ha definidljuk f,.,, szdmot, mint a

Tﬁo,% intervallum kozepét (ami a fenti indokok miatt csupan submaximum), akkor az
alabbi egyenlotlenség igaz '
% <e Ty, (19)
meaxk
ahol ko K+l
F :TO+T_0:2k+1T0:2k+1_ (20)
Ak 2 2 2Ty

(20)-at helyettesitve (19)-be:

sin Tym 2t sin 7 2EHL
‘ pIEs) —m | <€ To (21)
2T0 2TO
Ezt atrendezve: ok i 1
| sin (2K + 1)%\ < M (22)

A legutolsé (22) egyenlet mar sokkal bardtsagosabb, mint a (17)-es, ugyanis egy egyszeri
iteracioval minden e-ra kiszamolhaté a k és, ha ezt meghataroztuk, akkor az azt jelenti,



hogy a k. intervallum mar nagy valdsziniiségre nem lesz savszélesség-meghatarozo, és az
egyszerlsités kedvéért a k. intervallum felso hatarat tekinthetjiik a savszélességnek, tehat

- (23)

Megjegyzés: Azért valasztottuk a k. intervallum felsé hatarat, mert igy az esetleges

2k+1  k+1
270 To

ténylegesen csak submaximum, igy € < 1 esetén mar tapasztalhatunk ennél nagyobb hibat,
de ettdl most eltekintiink). A mintavételi frekvencia egyébként is a mintevételi tétel miatt
fs > 2B, ahol f, a mintavételi frekvencia, és B a savszélesség.

hibank maximuma (amennyiben eltekintiink attdl, hogy a maximum valasztasunk

Masodik moédszer eredménye:
Az iteraciokat elvégezve midon € — 0, megkaphatjuk a k lehetséges értékeit, amelyet az
alabbi abra szemléltet:

g flggvényében a k valtozasa
70 T T \

B0+ : ’
50| | | -
40 , : .
30- § .
20 § s
10 ‘ -

~10- : . _

3. dbra. Ty = 1s esetén ez ekvivalens B valtozasaval is

Megjegyzés: A fenti grafikonon is latszik, hogy € és k forditottan aranyos egymassal,
ami mar a (20)-ban is latszott. Az Tj szorzdtdl, pontosabban ennek reciprokétdl eltekintve
(mivel, hogy ez csak egy konstans paraméter) a B savszélesség valtozasanak karakterisztikédja
is megfigyelhet6 az dbran. Jol ldthaté a hogy Ty > k+1 esetén a (22) miatt a B ennél kisebb
értékeket vesz fel e fiiggvényében, mig Ty < k+1 esetén a B ennél nagyobb értékeket vesz
fel.

Kovetkezmény: Az elsé mdodszerben bemutatott szamolast numerikusan elvégezve ugyan-
ehhez a karakterisztikahoz jutunk, a kiilonbséget a probléma diszkretizalasa jelenti, ezért lett
1épcsos a fiiggvény, de az e-tdl vald fliggését a sdvszélességnek a 3. abra remekiil szemlélteti.
Amennyiben rogzitett e és Tj esetén kivancsiak vagyunk a tényleges B savszélességre, akkor




a (17) egyenletet az elsé 1épésben ismeretett algoritmussal megoldhatjuk numerikusan, fel-

hasznalva a masodik megkozelitésben kapott eredményt, konnyitve a numerikus szamolast.

Megjegyzés: Szamitogéppel szamolva a y, :’ —Sin:}gﬂf

, illetve a konstans y, =¢-Tj fiiggvény

kiilonbségét tekintve konnyen meghatarozhatjuk rogzitett e-ra és Ty-ra a savszélességet.

3.3.2. Savszélesség 1 paraméter segitségével

Definicié: Tegyiik fel, hogy egy x(t) véges tart6ju jel frekvencia-tartomanybeli transz-
forméltja paros. Ekkor x(t) jel sdvszélessége meghatarozhaté, ha rogzitiink egy n € (0,1)
paramétert,és a frekvencia-tartomanybeli !X (f )‘2 fliggvénynek egy olyan I :(-B,B) € R
szimmetrikus, nyilt intervallumra vett megszoritasat nézziik, ahol

B B, ..
Exp Z/_B}X(f)fdf: /_B ‘%’2#:7@0 (24)

ahol nTy a jel energidjanak n-szorosa, ahogy azt (12)-ben lattuk.
Kovetkezmény: Ekkor a jel sdvszélessége I = (-B,B) intervallum hosszénak fele, azaz B.

Savszélesség kiszamitasa:

Az el6z6 (3.3.1) fejezetben ismeretett mddszerhez hasonléan fogjuk meghatarozni ezeset-
ben is a savszélességet.

Elsé megkizelités: Vegyiik a (25) egyenletet. Az integréldst elegendd elvégezni csak a
tartomdny felére, ugyanis a fuggvény szimmetridja miatt a teljes integrdl az intervallumra
felére vett integral kétszerese lesz. Igy az alabbi improprius integralt kapjuk:

B B & 27 fTo sin T B
T 2 27 11 ST dr + 2 fTy) — 1
lim [ [X(f)|%df = hm/ sinTomf 12 e g 20T Jy " Edr + cos(2nfTo) _
C—0 Jo C=0 Jo f C—0 22 f o
27 BTy fO%BTO SNTdr + cos(2nBTy) — 1 2wCTy fozﬂCTO SINT g1 + cos(2nCTy) — 1
= T + lim e =
2m2B C—0 2m2C
To Jy"" rdr  —cos@aBTy) +1 (T Jy"T SEdr  —cos(2nCTy) + 1)
= - 11m — =
T 212 B C—0 s 2m2C
Ty [Pt gr in2(xBTy) . (T [T EIdr sin(rCOTy)
= - + hm — ) —=
@ mB C—0 T 2C
T fOQWBTO Si%dT sin?(7 BTy) (Ty)? = N1y
B T B D
ahol felhasznaltuk, hogy
.9, l—cos2t
sin“t = ——— (25)
2
és L
lim [ 22 Tgr =0, (26)
t—0 0 T



A fenti egyenletet sem lehet megoldani analitikusan, de 3.3.1-hez hasonléan mas uton is
kozelithettiink a problémahoz.

Masodik megkozelités: IrJuk fel az elébbi integralt, mint a (7 7’3 ,k; !
kon értelmezett integralok Osszegeként, azaz

/OB X(f) | df = ké/

Szamoljuk ki a k. integral értékét:

), k € N, intervallumo-

e
S fom) J(jﬂf ’ df, aholN € N (27)
T

k+1

ko 2 27 [T, fO%fTO ST dr + cos(2m fTy) — 1] ™
k 7Tf df 27T2f B
o T
2Ty
k+1T fo bl]”dT + COS(Q?TkT——TTO) —1 ZW%TO Jo 0 ST dr 4 COS(QW%T()) -1
272 k:ﬁol a 272 7’30 B
TO 2m(k+1) sde TO f027"k Si;lT .
T T
ahol felhasznaltuk, hogy
cos(2km) = cos(2(k + 1)m) = cos(2m) = cos0 =1 (28)

a cosinus fliggvény periodicitasa miatt.
Kovetkezmény: Tehat az eredményiinket beirva a fenti szummaba, és elvégezve egy-két

egyenletrendezést:

N 27 (k+1) s 2rk

1t sin T sin 7

=2 ( / dr — / dT) (29)

™= \Jo T 0 T

A szumma kibontasa utan, pedig a kovetkezo eredményre jutunk:
2m(N+1) 2m(N+1)
sin T T, [°sin 7' sin 7'
b / gr— D _ D / (30)
T T Jo

(26) egyenléség miatt.
Kovetkezmény: Igy zart alakban megkaptuk az k. intervallumig az integral értékét.
Ekkor tekintentiink kell azt a legkisebb M,,;, € N szamot, melyre az alabbi egyenlotlenség

teljesiil
/ a1 (31)
0 T 2
és ekkor (23)-at figyelembe véve B = 0 “min yilasztassal adhatjuk meg a sdvszélességet az

energiaprofilbdl, ha elvégezziik az iteraciot. Fontos kiilonbség az eloz6 fejezetben taglaltakhoz
azonban, hogy itt a fliggvény fiiggvény nagyon ”gyorsan” konvergal 0-hoz, és igy Th = 1



—k k

valasztas esetén megmutathatd, hogy £ = 2-re a T Ty

energidjanak 95%-a
75 75
0 2 0
/k | X(f)] de/k
_ }70

To

intervallumon van a fiiggvény

= 0.9499 (32)

sin Tom f |2
wf ) af

ahol a fiiggvény teljes energidja (12) miatt Ty = 1.

Kovetkezmény: A 3.3.1 fejezetben ismeretett masodik megkozelitéshez hasonldan itt
is 1épcsos fliggvényt fogunk kapni, ami a karakterisztikat szépen mutatja, am itt most az
n i 0.85 esetet nem vizsgaljuk, ott a sdvszélesség a (7=, % ) intervallumba fog esni, tehat a

L : To’ To
szamolasunk miatt M = 1.

n fllggvényében az M véltozasa
kS T T T T

)

0.64 0.8 0.88 09 0.82 0.54 0.95 0.98 1 1.02

4. 4bra.

1. Megjegyzés: Jol lathato a grafikonon, hogy n — 1 esetén a meredeksége a grafikonnak
a végtelenbe konvergal.

2. Megjegyzés: Az el6z6 fejezettel ellentétesen itt most a rogzitett paraméterrel egyene-
sen aranyos a savszélesség. Ugyanehhez a karakterisztikdhoz jutnank, ha az egzakt egyenletet
prébaljuk meg numerikusan kozeliteni, de ez még néha szamitogépeknek is komoly feladat,
ezért egyszerusitettiilk a problémat. Amennyiben rogzitett n és Ty mellett szeretnénk meg-
hatarozni a savszélességet, ugy a

T, f027rBTo Si%d’]‘ B sin2(7TBTO)
m 7'{'23

2 _ nTo
—(To)" = <> (33)

egyenletet kell megoldanunk numerikusan.
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4. Osszegzés

Ennek a probléméanak a meghatarozasahoz a folytonos problémakat célszert volt diszkre-
tizalni, és az alapjan meghatarozni a karakterisztikajat a savszélességnek e és n paraméterek
mellett.

Fontos megjegyezni, hogy a karakterisztikakat meghatarozé modszerek NEM alkalmasak
arra, hogy ténylegesen szamoljunk savszélességet, de ezesetben célravezetonek bizonyultak.
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5.

6.

Felhasznalt programok

1 Wolfram Mathematica 9.0
2 MATLAB R2014a

Forras

1 users.itk.ppke.hu/~nasmal
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