
DIGITÁLIS JELFELDOLGOZÁS
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3.3.1. Sávszélesség ε paraméter seǵıtségével . . . . . . . . . . . . . . . . . . . . . . . . 5
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1. Feladat

Az alábbiakban egy tetszőleges [−T0
2
, T0

2
] intervallumon értelmezett, egységnyi négyszögjel

sávszélességének karakterisztikáját határozom meg, mérnöki módszerekkel. Előbb a jel
transzformáltjának abszolútmaximumából, majd a jel energiájából ı́rom fel a sávszélesség
paraméterfüggését.

2. Háttér

2.1. Felhasznált matematika

2.1.1. Fourier Transzformáció

Adott egy x: R→ R függvény melyre igazak az alábbi feltételek:

– Tetszőleges I ⊂ R véges intervallum esetén x leszűḱıtése az intervallumra véges
sok pontot kivéve folytonosan differenciálható.

– Ha t0 szakadási pont, akkor ez a szakadás elsőfajú, és itt a függvényérték:

x(t0) =
x(t0 + 0) + x(t0 − 0)

2
(1)

– A függvény abszolútintegrálható, tehát:∫ ∞
−∞
|x(t)|dt <∞ (2)

Defińıció: Ha x teljeśıti a fenti három feltételt, akkor a Fourier transzformáltja
az az X: R→ C komplex értékű függvény, melyet ı́gy definiálunk:

X(f) =

∫ ∞
−∞

x(t) · e−j2πftdt (3)

2.1.2. A sin t
t

függvény maximuma

Álĺıtás: A sin t
t

határértéke a t = 0 pontban:

lim
t→0

sin t

t
= 1 (4)

2.1.3. A sin(At) sorfejtése

Álĺıtás: A sin(At) függvény Taylor-sora a t0 = 0 pont körül:

sinAt =
∞∑
i=0

(−1)i(A)2i+1

2i+ 1
t2i+1 (5)

Megjegyzés: A t0 = 0 pont körüli sorfejtést szokás McLaurent-sornak is h́ıvni.
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2.1.4. A sin2(At)
t2

függvény integrálja R-en

Álĺıtás: Adott egy A ∈ R tetszőleges szám. Ekkor a sin2(At)
t2

alakú függvény integrálja az
egész számegyenesen: ∫ ∞

−∞

sin2(At)

t2
dt = π|A| (6)

3. Megoldás menete

1. Négyszögjel Fourier-transzformáltjának meghatározása

2. A transzformált függvény abszolútértéke és energiája

3. Sávszélesség meghatározása a transzformált jel

(a) Abszolútmaximumából(ε)

(b) Energiaprofiljából(η)

3.1. Négyszögjel Fourier-transzformáltjának meghatározása

Álĺıtás: Adott egy x(t) jel, mely a következőképpen néz ki:

x(t) =

{
1 ha t ∈ [−T0

2
,T0
2

]
0 különben

Ekkor ennek a jelnek a Fourier transzformáltja:

X(f) =
sinT0πf

πf
(7)

Bizonýıtás:
Végezzük el a Fourier-transzformációt az x(t) függvényre:

X(f) =

∫ ∞
−∞

x(t) · e−j2πftdt =

∫ T0
2

−T0
2

ej2πftdt =
−e−j2πf

j2πf

∣∣∣T02−T0
2

=

= −e
−jT0πf

j2πf
+
ejT0πf

j2πf
=

1

πf

ejT0πf − e−jT0πf

2j
=

1

πf
sinT0πf =

sinT0πf

πf

(8)

Ezzel beláttuk a fenti álĺıtást.

3.2. A transzformált függvény abszolútértéke, energiája

3.2.1. Az abszolútérték kiszámı́tása

Az általános
∣∣ sinx

x

∣∣ függvény grafikonjáról látható, hogy a maximuma x = 0-ban található
és szimmetrikus az y tengelyre:
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1. ábra.

Álĺıtás: Egy tetszőleges
∣∣ sinAx

x

∣∣ függvény maximuma is x=0-ban található, és pontosan
A értékét veszi fel:

max
x∈R

∣∣∣sinAx
x

∣∣∣ = A (9)

Bizonýıtás: Nézzünk határértéket t → 0 esetén

lim
x→0

∣∣∣sinAx
x

∣∣∣ = lim
x→0

∣∣∣sinAx
x

A

A

∣∣∣ = lim
x→0

∣∣∣sinAx
Ax

A
∣∣∣ = A. (10)

Következmény: Az x(t) függvény frekvenciatartományba transzformáltjának maximuma:

max
f∈R

∣∣X(f)
∣∣ = max

f∈R

∣∣∣sinT0πf
πf

∣∣∣ = lim
f→0

∣∣∣sinT0πf
πf

∣∣∣ = T0. (11)

3.2.2. A jel energiájának kiszámı́tása

Álĺıtás: A jel energiáját a Parseval-tétel seǵıtségével ı́rhatjuk fel:

EX(f) =

∫ ∞
−∞

∣∣X(f)
∣∣2df =

∫ ∞
−∞

∣∣∣sinT0πf
πf

∣∣∣2df =
π|πT0|
π2

= |T0| = T0 (12)

A
∣∣∣X(f)

∣∣∣ függvény grafikonja:
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2. ábra.

Megjegyzés: 1. ábrával összevetve látható, hogy sokkal ”gyorsabban” konvergál nullához
a függvény

3.3. Sávszélesség meghatározása

3.3.1. Sávszélesség ε paraméter seǵıtségével

Defińıció: Tegyük fel, hogy egy x(t) véges tartójú jel frekvencia-tartománybeli
transzformáltja páros. Ekkor x(t) jel sávszélessége meghatározható, ha rögźıtünk egy
ε ∈ (0,1) paramétert, és I ∈ R szimmetrikus, nýılt intervallumot, akkor ∀f 6∈ I esetén∣∣X(f)

∣∣ < ε ·max
f∈R

∣∣X(f)
∣∣ = ε · T0 (13)

Következmény: Ekkor a jel sávszélessége I = (-B,B) intervallum hosszának fele, tehát B.

Sávszélesség kiszámı́tása:

Első megközeĺıtés: Mivel
∣∣X(f)

∣∣ periodikusan veszi fel a nullát, azaz:∣∣X(f)
∣∣ =

∣∣X(f + P )
∣∣ = 0 (14)

továbbá P = k/T0, amennyiben k ∈ Z ugyanis

∣∣X(f)
∣∣∣∣∣∣∣
f= k

T0

=
∣∣∣sinT0πf

πf

∣∣∣∣∣∣∣∣
f= k

T0

=
∣∣∣sinT0π k

T0

π k
T0

∣∣∣ =
∣∣∣T0 · sin kπ

πk

∣∣∣ = 0 (15)

Ezután pedig elegendő lesz az egyes periódusonként esedékes ( k
T0

,k+1
T0

) intervallumok maxi-

mumát vizsgálni elsődlegesen, ami majdnem pontosan az intervallum felére esik (a tényleges
maximumhely abszolútértékben kisebb - ha T0 >

1
π

-, vagy nagyobb - T0 <
1
π
-, mint az inter-

vallum fele, de ezt most elhanyagoljuk). Ekkor ugyanis, ha a submaximum már kisebb, mint
a referencia értéknek választott εT0, akkor a (k−1

T0
, k
T0

) intervallumban való értékek voltak az
utolsók, amiket figyelembe kell vennünk a sávszélesség meghatározásánál.
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Ekkor a (k−1
T0

, k
T0

) intervallumon kell megoldanunk az alábbi egyenletet:∣∣∣sinT0πf
πf

∣∣∣ = ε · T0 (16)

Tegyük fel, hogy f > 0, ugyanis f < 0 esettel a szimmetria miatt felesleges foglalkoznunk
- továbbá ennek fizikai tartalma amúgy sincs. Ekkor az egyenlet a következő alakban ı́rható,
elvégezve az egyenletrendezést: ∣∣ sinT0πf ∣∣ = επT0f (17)

Az egyenletet analitikusan nem lehet megoldani, a sinT0πf függvényt azonban feĺırhatjuk
McLaurent sorfejtéssel, felhasználva az (5) egyenletet. Majd, ha vesszük ennek a végtelen
összegnek egy bizonyos N küszöbindex előtti tagjait, akkor egy N -ed fokú polinómot kapunk
az egyenletre, amit már meg tudunk oldani, de csak közeĺıtésekkel, tehát a∣∣∣∣∣

N∑
i=0

(−1)i(T0π)2i+1

2i+ 1
f i

∣∣∣∣∣ = ε · T0 (18)

egyenlet (k−1
T0

, k
T0

)-ba eső megoldása(i) lesz(nek) a számunkra releváns megoldások. Ek-

kor a B sávszélesség megegyezik a (17) egyenlet, fenti intervallumba eső megoldásával (két
megoldás esetén a nagyobb megoldással), hiszen ekkor a (-B,B) intervallumon ḱıvül eső
függvényrész már sohasem lesz az eredetileg kijelölt referenciaérték felett.

Második megközeĺıtés: Tulajdonképpen az előző megoldásmenet első részét vesszük. Mivel
a fenti probléma még N -től is függne, hogy mennyire pontosan tudjuk megadni (minél na-
gyobb N, annál pontosabb lesz a számolásunk), ezért egyszerűśıtjük a problémát, és csak
azt a legnagyobb k ∈ N indexet keressük melyre, ha definiáljuk fmaxk számot, mint a
( k
T0

,k+1
T0

) intervallum közepét (ami a fenti indokok miatt csupán submaximum), akkor az
alábbi egyenlőtlenség igaz ∣∣∣sinT0πfmaxk

πfmaxk

∣∣∣ < ε · T0 (19)

ahol

fmaxk =
k
T0

+ k+1
T0

2
=

2k + 1T0
2

=
2k + 1

2T0
. (20)

(20)-at helyetteśıtve (19)-be:∣∣∣sinT0π 2k+1
2T0

π 2k+1
2T0

∣∣∣ =
∣∣∣sin π 2k+1

2

π 2k+1
2T0

∣∣∣ < ε · T0 (21)

Ezt átrendezve: ∣∣ sin (2k + 1)
π

2

∣∣ < επ(2k + 1)

2
(22)

A legutolsó (22) egyenlet már sokkal barátságosabb, mint a (17)-es, ugyanis egy egyszerű
iterációval minden ε-ra kiszámolható a k és, ha ezt meghatároztuk, akkor az azt jelenti,
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hogy a k. intervallum már nagy valósźınűségre nem lesz sávszélesség-meghatározó, és az
egyszerűśıtés kedvéért a k. intervallum felső határát tekinthetjük a sávszélességnek, tehát

B =
k + 1

T0
(23)

Megjegyzés: Azért választottuk a k. intervallum felső határát, mert ı́gy az esetleges

hibánk maximuma
∣∣∣2k+1

2T0
−k+1

T0

∣∣∣ (amennyiben eltekintünk attól, hogy a maximum választásunk

ténylegesen csak submaximum, ı́gy ε � 1 esetén már tapasztalhatunk ennél nagyobb hibát,
de ettől most eltekintünk). A mintavételi frekvencia egyébként is a mintevételi tétel miatt
fs ≥ 2B, ahol fs a mintavételi frekvencia, és B a sávszélesség.

Második módszer eredménye:
Az iterációkat elvégezve midőn ε → 0, megkaphatjuk a k lehetséges értékeit, amelyet az

alábbi ábra szemléltet:

3. ábra. T0 = 1s esetén ez ekvivalens B változásával is

Megjegyzés: A fenti grafikonon is látszik, hogy ε és k ford́ıtottan arányos egymással,
ami már a (20)-ban is látszott. Az T0 szorzótól, pontosabban ennek reciprokától eltekintve
(mivel, hogy ez csak egy konstans paraméter) a B sávszélesség változásának karakterisztikája
is megfigyelhető az ábrán. Jól látható a hogy T0 > k+1 esetén a (22) miatt a B ennél kisebb
értékeket vesz fel ε függvényében, mı́g T0 < k+1 esetén a B ennél nagyobb értékeket vesz
fel.

Következmény: Az első módszerben bemutatott számolást numerikusan elvégezve ugyan-
ehhez a karakterisztikához jutunk, a különbséget a probléma diszkretizálása jelenti, ezért lett
lépcsős a függvény, de az ε-tól való függését a sávszélességnek a 3. ábra remekül szemlélteti.
Amennyiben rögźıtett ε és T0 esetén ḱıváncsiak vagyunk a tényleges B sávszélességre, akkor
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a (17) egyenletet az első lépésben ismeretett algoritmussal megoldhatjuk numerikusan, fel-
használva a második megközeĺıtésben kapott eredményt, könnýıtve a numerikus számolást.

Megjegyzés: Számı́tógéppel számolva a y1=
∣∣∣ sinT0πfπf

∣∣∣, illetve a konstans y2=ε·T0 függvény

különbségét tekintve könnyen meghatározhatjuk rögźıtett ε-ra és T0-ra a sávszélességet.

3.3.2. Sávszélesség η paraméter seǵıtségével

Defińıció: Tegyük fel, hogy egy x(t) véges tartójú jel frekvencia-tartománybeli transz-
formáltja páros. Ekkor x(t) jel sávszélessége meghatározható, ha rögźıtünk egy η ∈ (0,1)

paramétert,és a frekvencia-tartománybeli
∣∣X(f)

∣∣2 függvénynek egy olyan I :(-B,B) ∈ R
szimmetrikus, nýılt intervallumra vett megszoŕıtását nézzük, ahol

EX(f) =

∫ B

−B

∣∣X(f)
∣∣2df =

∫ B

−B

∣∣∣sinT0πf
πf

∣∣∣2df = ηT0 (24)

ahol ηT0 a jel energiájának η-szorosa, ahogy azt (12)-ben láttuk.
Következmény: Ekkor a jel sávszélessége I = (-B,B) intervallum hosszának fele, azaz B.

Sávszélesség kiszámı́tása:
Az előző (3.3.1) fejezetben ismeretett módszerhez hasonlóan fogjuk meghatározni ezeset-

ben is a sávszélességet.
Első megközeĺıtés: Vegyük a (25) egyenletet. Az integrálást elegendő elvégezni csak a

tartomány felére, ugyanis a függvény szimmetriája miatt a teljes integrál az intervallumra
felére vett integrál kétszerese lesz. Így az alábbi improprius integrált kapjuk:

lim
C→0

∫ B

C

∣∣X(f)
∣∣2df = lim

C→0

∫ B

C

∣∣∣sinT0πf
πf

∣∣∣2df = lim
C→0

2πfT0
∫ 2πfT0
0

sin τ
τ
dτ + cos(2πfT0)− 1

2π2f

∣∣∣∣∣
B

C

=

=
2πBT0

∫ 2πBT0
0

sin τ
τ
dτ + cos(2πBT0)− 1

2π2B
+ lim

C→0

2πCT0
∫ 2πCT0
0

sin τ
τ
dτ + cos(2πCT0)− 1

2π2C
=

=
T0
∫ 2πBT0
0

sin τ
τ
dτ

π
− − cos(2πBT0) + 1

2π2B
+ lim

C→0

(T0 ∫ 2πCT0
0

sin τ
τ
dτ

π
− − cos(2πCT0) + 1

2π2C

)
=

=
T0
∫ 2πBT0
0

sin τ
τ
dτ

π
− sin2(πBT0)

π2B
+ lim

C→0

(T0 ∫ 2πCT0
0

sin τ
τ
dτ

π
− sin2(πCT0)

π2C

)
=

=
T0
∫ 2πBT0
0

sin τ
τ
dτ

π
− sin2(πBT0)

π2B
− (T0)

2 =
ηT0
2

ahol felhasználtuk, hogy

sin2 t =
1− cos 2t

2
(25)

és

lim
t→0

∫ t

0

sin τ

τ
dτ = 0. (26)
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A fenti egyenletet sem lehet megoldani analitikusan, de 3.3.1-hez hasonlóan más úton is
közeĺıthetünk a problémához.

Második megközeĺıtés: Írjuk fel az előbbi integrált, mint a ( k
T0

,k+1
T0

), k ∈ N, intervallumo-
kon értelmezett integrálok összegeként, azaz∫ B

0

∣∣X(f)
∣∣2df =

N∑
k=0

∫ k+1
T0

k
T0

∣∣∣sinT0πf
πf

∣∣∣2df, aholN ∈ N (27)

Számoljuk ki a k. integrál értékét:∫ k+1
T0

k
T0

∣∣∣sinT0πf
πf

∣∣∣2df =
2πfT0

∫ 2πfT0
0

sin τ
τ
dτ + cos(2πfT0)− 1

2π2f

∣∣∣∣∣
k+1
T0

k
T0

=

=
2π k+1

T0
T0
∫ 2π k+1

T0
T0

0
sin τ
τ
dτ + cos(2π k+1

T0
T0)− 1

2π2 k+1
T0

−
2π k

T0
T0
∫ 2π k

T0
T0

0
sin τ
τ
dτ + cos(2π k

T0
T0)− 1

2π2 k
T0

=

=
T0
∫ 2π(k+1)

0
sin τ
τ
dτ

π
−
T0
∫ 2πk

0
sin τ
τ
dτ

π

ahol felhasználtuk, hogy

cos(2kπ) = cos(2(k + 1)π) = cos(2π) = cos 0 = 1 (28)

a cosinus függvény periodicitása miatt.
Következmény: Tehát az eredményünket béırva a fenti szummába, és elvégezve egy-két

egyenletrendezést:

T0
π

N∑
k=0

(∫ 2π(k+1)

0

sin τ

τ
dτ −

∫ 2πk

0

sin τ

τ
dτ
)

(29)

A szumma kibontása után, pedig a következő eredményre jutunk:

T0
π

∫ 2π(N+1)

0

sin τ

τ
dτ − T0

π

∫ 0

0

sin τ

τ
dτ =

T0
π

∫ 2π(N+1)

0

sin τ

τ
dτ (30)

(26) egyenlőség miatt.

Következmény: Így zárt alakban megkaptuk az k. intervallumig az integrál értékét.
Ekkor tekintenünk kell azt a legkisebb Mmin ∈ N számot, melyre az alábbi egyenlőtlenség
teljesül ∫ 2π(Mmin)

0

sin τ

τ
dτ >

ηπ

2
(31)

és ekkor (23)-at figyelembe véve B = Mmin

T0
választással adhatjuk meg a sávszélességet az

energiaprofilból, ha elvégezzük az iterációt. Fontos különbség az előző fejezetben taglaltakhoz
azonban, hogy itt a függvény függvény nagyon ”gyorsan” konvergál 0-hoz, és ı́gy T0 = 1

9



választás esetén megmutatható, hogy k = 2-re a (−k
T0

, k
T0

) intervallumon van a függvény

energiájának 95% -a ∫ k
T0

−k
T0

∣∣X(f)
∣∣2df =

∫ k
T0

−k
T0

∣∣∣sinT0πf
πf

∣∣∣2df = 0.9499 (32)

ahol a függvény teljes energiája (12) miatt T0 = 1.
Következmény: A 3.3.1 fejezetben ismeretett második megközeĺıtéshez hasonlóan itt

is lépcsős függvényt fogunk kapni, ami a karakterisztikát szépen mutatja, ám itt most az
η ¡ 0.85 esetet nem vizsgáljuk, ott a sávszélesség a (−k

T0
, k
T0

) intervallumba fog esni, tehát a
számolásunk miatt M ≡ 1.

4. ábra.

1. Megjegyzés: Jól látható a grafikonon, hogy η → 1 esetén a meredeksége a grafikonnak
a végtelenbe konvergál.

2. Megjegyzés: Az előző fejezettel ellentétesen itt most a rögźıtett paraméterrel egyene-
sen arányos a sávszélesség. Ugyanehhez a karakterisztikához jutnánk, ha az egzakt egyenletet
próbáljuk meg numerikusan közeĺıteni, de ez még néha számı́tógépeknek is komoly feladat,
ezért egyszerűśıtettük a problémát. Amennyiben rögźıtett η és T0 mellett szeretnénk meg-
határozni a sávszélességet, úgy a

T0
∫ 2πBT0
0

sin τ
τ
dτ

π
− sin2(πBT0)

π2B
− (T0)

2 =
ηT0
2

(33)

egyenletet kell megoldanunk numerikusan.
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4. Összegzés

Ennek a problémának a meghatározásához a folytonos problémákat célszerű volt diszkre-
tizálni, és az alapján meghatározni a karakterisztikáját a sávszélességnek ε és η paraméterek
mellett.

Fontos megjegyezni, hogy a karakterisztikákat meghatározó módszerek NEM alkalmasak
arra, hogy ténylegesen számoljunk sávszélességet, de ezesetben célravezetőnek bizonyultak.
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5. Felhasznált programok

1 Wolfram Mathematica 9.0

2 MATLAB R2014a

6. Forrás

1 users.itk.ppke.hu/~nasma1
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