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Fontos tudnivalók 

Tisztelt Vizsgázó! 

Jelen füzet a 2014/15/2. tanulmányi időszakának Digitális jelfeldolgozás tárgy szóbeli vizsgá-

jához lett kiadva. A füzet a félév során leadott tananyagot tekinti át fejezetenként a legfonto-

sabb összefüggéseket kiemelve. 

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányos-

ságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladat-

megoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik. 

Eredményes felkészülést kívánunk! 

A kiadványt összeállította: 

Naszlady Márton Bese – 2015 

 

 

Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 

A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 

Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 

kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  
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Témakörök 

Analóg jelek 

Definíció Az 𝑥(𝑡), 𝑡 ∈ 𝑋 folytonos függvényt analóg jelnek nevezzük, ahol 𝑋 ⊆ ℝ. Ennek 

értelmezése a következő: 

Az 𝑥(𝑡) érték valamilyen számszerűsített fizikai mennyiség (pl. feszültség, 

hangnyomás, fényerősség stb.) a 𝑡 időpillanatban. 

Általános leírásuk 

Az analóg jelek értelmezés tartományuktól és értékkészletüktől függően többfélék lehetnek: 

Definíció Azt mondjuk, hogy az 𝑥(𝑡), 𝑡 ∈ 𝑋 analóg jel véges tartójú, ha 𝑋 = [𝑎, 𝑏] ⊂ ℝ. 

Definíció Azt mondjuk, hogy az 𝑥(𝑡), 𝑡 ∈ 𝑋 analóg jel belépő (kauzális), ha ∀𝑡 < 0 esetén 

𝑥(𝑡) = 0. 

Definíció Azt mondjuk, hogy az 𝑥(𝑡), 𝑡 ∈ ℝ analóg jel véges átlagú, ha 

lim
𝑇→∞

(
1

𝑇
∫ 𝑥(𝑡) d𝑡

𝑇
2⁄

−𝑇 2⁄

) < ∞ 

Definíció Azt mondjuk, hogy az 𝑥(𝑡), 𝑡 ∈ ℝ analóg jel véges átlagenergiájú, ha 

lim
𝑇→∞

(
1

𝑇
∫ 𝑥2(𝑡) d𝑡

𝑇
2⁄

−𝑇 2⁄

) < ∞ 

Egyszerű jelek 

Dirac-delta 𝛿(𝑡) = {
0, 𝑡 ≠ 0
∞, 𝑡 = 0

 

 

Egységugrás 𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

 

 

Egységsebesség-ugrás 𝑣(𝑡) = {
0, 𝑡 < 0
𝑡, 𝑡 ≥ 0

 

 

Szinuszos jel 𝑥(𝑡) = 𝐴 ⋅ cos(2𝜋𝑓𝑡 + 𝜑) 

 

Periodikus jelek 

Definíció Az 𝑥(𝑡), 𝑡 ∈ ℝ analóg jel periodikus, ha 𝑥(𝑡) = 𝑥(𝑡 + 𝑘𝑇), ∀𝑘 ∈ ℤ. Az ebben 

szereplő rögzített 𝑇 ∈ ℝ számot periódusidőnek nevezzük. 
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Jelek leírása a transzformált tartományban 

Legyen 𝑥(𝑡) egy periodikus, analóg jel 𝑇 periódusidővel. Próbáljuk meg felírni 𝑥(𝑡)-t a kö-

vetkező végtelen sor összegeként: 

𝑥(𝑡) = ∑ 𝑥𝑘 ⋅ 𝑒
𝑗𝑘2𝜋𝑓𝑡

∞

𝑘=−∞

 

ahol 𝑓 =
1

𝑇
 és a felírásban szereplő 𝑥𝑘 mennyiség a következőképp áll elő: 

𝑥𝑘 =
1

𝑇
∫ 𝑥(𝑡) ⋅ 𝑒−𝑗𝑘2𝜋𝑓𝑡 d𝑡

𝑇
2

−
𝑇
2

 

Fourier-transzformáció 

Legyen adott egy 𝑥(𝑡) analóg jel, melyre teljesül, hogy ∫ |𝑥(𝑡)| d𝑡
∞

−∞
< ∞. Ennek Fourier-

transzformáltja: 

𝑥(𝑓) = ∫ 𝑥(𝑡) ⋅ 𝑒−𝑗2𝜋𝑓𝑡 d𝑡
∞

−∞

 

melyből 𝑥(𝑡) a következőképpen kapható meg: 

𝑥(𝑡) = ∫ 𝑥(𝑓) ⋅ 𝑒𝑗2𝜋𝑓𝑡 d𝑓
∞

−∞

 

Definíció Azt mondjuk, hogy az 𝑥(𝑡) analóg jel sávkorlátozott, ha 𝑥(𝑓) véges tartójú. 

Laplace-transzformáció 

Legyen adott egy 𝑥(𝑡) analóg jel, melyre ∃𝛼, hogy ∫ |𝑥(𝑡)| ⋅ 𝑒−𝛼𝑡 d𝑡
∞

0
< ∞. Ennek Laplace-

transzformáltja: 

𝑥(𝑠) = ∫ 𝑥(𝑡) 𝑒−𝛼𝑡 𝑒−𝑗2𝜋𝑓𝑡 d𝑡
∞

0

= ∫ 𝑥(𝑡) 𝑒−𝑠𝑡 d𝑡
∞

0

 

ahol 𝑠 = 𝛼 + 𝑗2𝜋𝑓. Ebből 𝑥(𝑡) a következőképpen kapható vissza: 

𝑥(𝑡) = ∮𝑥(𝑠) 𝑒𝑠𝑡 d𝑠
𝐺

 

Jelek lineáris időinvariáns transzformációja (jelek szűrése) 

Definíció Legyen 𝒯 a rendszeroperátor (vagyis 𝑦(𝑡) = 𝒯{𝑥(𝑡)}). A rendszer lineáris, ha 

𝒯{𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡)} = 𝑎1𝒯{𝑥1(𝑡)} + 𝑎2𝒯{𝑥2(𝑡)} = 𝑎1𝑦1(𝑡) + 𝑎2𝑦2(𝑡) 

Definíció Legyen 𝒯 a rendszeroperátor. A rendszer időinvariáns, ha 

𝒯{𝑥(𝑡 + 𝜏)} = 𝑦(𝑡 + 𝜏), ∀𝜏 

Rendszer leírása az impulzusválasszal 

Először lássuk be, hogy teljesül az alábbi egyenlőség: 

∫ 𝛿(𝑡 − 𝜏)𝑥(𝜏) d𝜏
∞

−∞

= ∫ 𝑥(𝑡 − 𝜏)𝛿(𝜏) d𝜏
∞

−∞

= 𝑥(𝑡) 

Vagyis a 𝛿(𝑡) a konvolúció egységeleme: 𝑥(𝑡) ∗ 𝛿(𝑡) = 𝑥(𝑡) 
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Ennek felhasználásával keressük egy rendszer 𝑥(𝑡) bemenő jelre adott 𝑦(𝑡) válaszát: 

𝑦(𝑡) = 𝒯{𝑥(𝑡)} = 𝒯 {∫ 𝑥(𝜏)𝛿(𝑡 − 𝜏) d𝜏
∞

−∞

} = ∫ 𝑥(𝜏)𝒯{𝛿(𝑡 − 𝜏)} d𝜏
∞

−∞

= 𝑥(𝑡) ∗ ℎ(𝑡) 

ahol ℎ(𝑡) = 𝒯{𝛿(𝑡)}. 

A transzformált tartományra való áttéréssel a konvolúciók szorzássá vihetők át. 

 𝑡-időtartomány 𝑓-frekvenciatartomány 𝑠-tartomány 

végrehajtás – ℱ ℒ 

fizikai értelmezés limitált teljesen informatív nem informatív 

hogyan lehet hálózat-

analízist végezni 

differenciálegyenlet, 

nehéz 
könnyű (

d

d𝑡
= 𝑗𝜔) könnyű (𝑠) 
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Analóg-digitális átalakítás 

Az analóg-digitális átalakítás célja az 𝑥(𝑡) analóg jel mintavételezése, kvantálása és kódolása 

révén történő 𝑥𝑘 jellé való átalakítása. E feladat alapkérdései a hatékonyság (mennyire tömö-

ríthető a kapott bitsorozat) és az információveszteség (visszaállítható-e az eredeti analóg jel a 

mintavételezettből). 

Mintavételezés 

Definíció Legyen 𝑥(𝑡) tetszőleges analóg jel. Az ebből előállított 𝑥𝑘 = 𝑥(𝑡0 + 𝑘𝑇) jelet 

mintavett jelnek nevezzük, ahol 𝑇 a mintavételi idő, 𝑡0 pedig a mintavételezés 

kezdőpontja, valamint 𝑘 ∈ ℤ. 

Mintavételi tétel 

Szeretnénk valamilyen feltételt találni arra vonatkozóan, hogy egy 𝑥𝑘 mintavételezett jelből 

mikor állítható vissza veszteség nélkül az 𝑥(𝑡) analóg jel. Ehhez tekintsük először, hogy min-

ként áll elő ez előbbi a Fourier-transzformáltjából: 

𝑥(𝑡) = ∫ 𝑥(𝑓) 𝑒𝑗2𝜋𝑓𝑡 d𝑡
𝐵

−𝐵

 

ahol 𝐵 a sávszélesség. Az 𝑥𝑘 mintavett jelet az 𝑥(𝑡)-ből 𝑡 = 𝑘𝑇 helyettesítéssel kapjuk meg: 

𝑥𝑘 = 𝑥(𝑡)|

𝑡=𝑘𝑇

= ∫ 𝑥(𝑓) 𝑒𝑗2𝜋𝑓𝑘𝑇 d𝑓
𝐵

−𝐵

 

Legyen 𝑥𝑚(𝑓) a mintavett jel a frekvenciatartományban:  

𝑥𝑚(𝑓) = ∑ 𝑥 (𝑓 +
𝑘

𝑇
)

∞

𝑘=−∞

 

melyre ekkor teljesül, hogy 𝑥𝑚(𝑓) = 𝑥(𝑓), ha 
1

𝑇
≥ 2𝐵 és |𝑓| ≤ 𝐵. Ezért hát vehetjük az 

𝑥𝑚(𝑓) Fourier-transzformáltját: 

𝑥𝑚(𝑓) = ∑ 𝑐𝑘 ⋅ 𝑒
−𝑗𝑘2𝜋𝑓𝑇

∞

𝑘=−∞

 

ahol 

𝑐𝑘 =
1

1
𝑇⁄
∫ 𝑥𝑚(𝑓) 𝑒

𝑗𝑘2𝜋𝑓𝑇

1
2𝑇

−
1
2𝑇

 d𝑓 = 𝑇∫ 𝑥(𝑓) 𝑒𝑗2𝜋𝑓𝑘𝑇 d𝑓
𝐵

−𝐵

= 𝑇𝑥𝑘 

Innen az 𝑥(𝑓) előáll mint 𝑥(𝑓) = 𝑇∑ 𝑥𝑘 ⋅ 𝑒
−𝑗𝑘2𝜋𝑓𝑇

𝑘 , vagyis 

𝑥(𝑡) = ∫ 𝑥(𝑓) 𝑒𝑗2𝜋𝑓𝑡  d𝑓
𝐵

−𝐵

= 𝑇∫ (∑𝑥𝑘 ⋅ 𝑒
−𝑗𝑘2𝜋𝑓𝑇

𝑘

) 𝑒𝑗2𝜋𝑓𝑡  d𝑓
𝐵

−𝐵

= 𝑇∑𝑥𝑘∫ 𝑒𝑗2𝜋𝑓(𝑡−𝑘𝑇)
𝐵

−𝐵⏟        
ℎ(𝑡−𝑘𝑇)

𝑘

d𝑓 

vagyis azt kapjuk, hogy 

𝑥(𝑡) = 𝑇∑𝑥𝑘 ℎ(𝑡 − 𝑘𝑇)

𝑘
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Tétel (Mintavételi tétel) Legyen adott egy 𝑥(𝑡) analóg jel. Ha teljesül, hogy a mintavé-

teli frekvencia legalább akkora, mint a sávszélesség kétszerese, azaz 𝑓𝑠 ≥ 2𝐵, 

akkor az 𝑥𝑘 mintavett jelből az 𝑥(𝑡) eredeti analóg jel visszaállítható, mégpedig: 

𝑥(𝑡) = 𝑇∑𝑥𝑘 ℎ(𝑡 − 𝑘𝑇)

𝑘

 

ahol ℎ(𝑡) a következő aluláteresztő szűrőt valósítja meg: 

ℎ(𝑡) =
sin(2𝜋𝐵𝑡)

2𝜋𝐵𝑡
 

Gyakorlati mintavételezés 

A mintavételezés alapját képző pillanatszerű érték-vételezés a gyakorlatban nem teljesülhet, 

mivel nincs olyan kapcsoló, mely képes lenne csupán egyetlen pillanatban mintát venni a jel-

ből. Ehelyett a kapcsoló a mintavételezés során nagyon rövid ideig tartó mintákat vesz, és 

ennek átlagát tekinti az adott időpillanathoz tartozó mintának. 

Ha figyelembe vesszük azt, hogy túlmintavételezés esetén, vagyis amikor 𝑓𝑠 > 2𝐵, több adat 

keletkezik, melynek továbbításához nagyobb sávszélesség kell, akkor felvetődik a kérdés, 

hogy miért nem a lehető leggazdaságosabb 𝑓𝑠 = 2𝐵 mintavételi frekvencia mellett történik a 

mintavételezés. A válasz erre az, hogy az 𝑓𝑠 = 2𝐵 frekvenciával mintavett jel analóg átalakí-

tásához a ℎ(𝑡) aluláteresztő szűrőnek ideálisnak kéne lennie, ilyet pedig a gyakorlatban nem 

lehet megvalósítani. 

Kvantálás 

A kvantálás feladata, hogy a mintavett jelet a kvantálási szinteknek megfelelő, digitálisan is 

értelmezhető jellé alakítsa, mégpedig úgy, hogy az egyes mintákat a legközelebbi kvantálási 

szintre kerekíti. 

Jel-zaj viszony 

A jel-zaj viszony (Signal-to-Noise Ratio, SNR) két teljesítmény jellegű mennyiség hányado-

saként azt fejezi ki, hogy hogyan viszonyul a jel teljesítménye a háttérzajhoz: 

SNR =
𝑃jel

𝑃zaj
= (

𝐴jel

𝐴zaj
)

2

, SNRdB = 10 log10 (
𝑃jel

𝑃zaj
) = 20 log10 (

𝐴jel

𝐴zaj
) 

ahol 𝑃 az átlagos teljesítmény, 𝐴 pedig az amplitúdó négyzetes átlaga. Sokszor a decibelská-

lán feltüntetett érték az informatívabb. 

Kvantálók típusai 

Ekvidisztáns kvantáló 

Tegyük fel, hogy a kvantálás −𝐶 és 𝐶 közötti jelszintekre történik, mégpedig ezt a szakaszt 

több részre osztva, úgy, hogy az osztópontok közti távolság Δ. Ez azt jelenti, hogy 𝑁 =
2𝐶

Δ
 

darab kvantálási szint van. Jelölje a kvantált (kerekített) jelet 𝑥̂. Ekkor a kvantálás hibáját le-

írhatjuk az 𝜀 valószínűségi változóval, mely 𝜀 = 𝑥 − 𝑥̂ ∈ [−
Δ

2
,
Δ

2
]. Mivel a kvantálás során a 

kerekítés zajként jelentkezik az eredeti jelhez képest, fontos mutatószám az SNR érték, mely 

lineáris kvantálóra a következőképp számolható: 

𝑃jel =
𝐶2

2
, 𝑃zaj = 𝔼(𝜀

2) = ∫ 𝑢2ℙ(𝑢) d𝑢

Δ
2

−
Δ
2

= ∫ 𝑢2
1

Δ
 d𝑢

Δ
2

−
Δ
2

=
Δ2

12
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és ebből: 

SNR =
  𝐶2 2⁄   

  Δ2 12⁄   
=
3

2

4𝐶2

Δ2
=
3

2
𝑁2 =

3

2
2𝑛 

ahol 𝑛 a lineáris kvantáló bitszáma. 

Logaritmikus kvantáló 

Ha a kvantálás ekvidisztáns, akkor például beszédjelek esetén a felhasználók a rájuk jellemző 

hangtartomány miatt különböző SNR értéket kapnak: ugyanazon a lineáris kvantálón egy 

[−𝐶, 𝐶] maximális kivezérlésű jel SNR értéke SNR =
3

2

4𝐶2

Δ2
, mely egy fele annyira kivezérelt 

jel esetén, ahol 𝑥𝑘 ∈ [−
𝐶

2
,
𝐶

2
] a jel-zaj viszony romlik: SNR′ =

12

2Δ2
(
𝐶

2
)
2
=
1

4
SNR 

A megoldás az, hogy az ekvidisztáns kvantáló 𝑥𝑖 osztópontjait valamilyen ℓ függvénnyel mó-

dosítva 𝑦𝑖 = ℓ(𝑥𝑖) osztópontokkal megvalósított kvantálót kapunk. 

d

d𝑥
ℓ(𝑥𝑖) ≈

Δ𝑦

Δ𝑥𝑖
=
2𝐶

𝑁

1

Δ𝑥𝑖
→ Δ𝑥𝑖 =

1

ℓ′(𝑥𝑖)

2𝐶

𝑁
 

Az SNR számolásához: 

𝑃jel = 𝔼(𝑥
2) = ∫ 𝑥2𝑝(𝑥) d𝑥

𝐶

−𝐶

 

𝑃zaj = 𝔼(𝜀
2) =∑𝔼(𝜀2|𝑥 ∈ Δ𝑥𝑖)ℙ(𝑥 ∈ Δ𝑥𝑖)

𝑁

𝑖=1

=∑
Δ𝑥𝑖
12
𝑝(𝑥𝑖)Δ𝑥𝑖

𝑁

𝑖=1

= K∫
1

ℓ′2(𝑥)
𝑝(𝑥) d𝑥

𝐶

−𝐶

 

ahol 𝐾 valamilyen konstans. Ebből az SNR a következő: 

SNR = 𝐾′
∫ 𝑥2𝑝(𝑥) d𝑥
𝐶

−𝐶

∫
1

ℓ′2(𝑥)
𝑝(𝑥) d𝑥

𝐶

−𝐶

 

Differenciális kvantálás 

A differenciális kvantálás fölhasználja, hogy az előző minta meghatározó a kurrens mintára 

nézve. Megvalósíthatja ezt például úgy, hogy ahelyett, hogy a kivezérelt jel minden mintájá-

hoz annak feszültségértékét rendeli hozzá, csak azt mutatja meg, hogy a jel csökkent vagy 

nőtt-e az előzőhöz képest. 

 

hagyományos kvantálás: 01 11 10 10 10 01 01 01 00 

differenciális kvantálás: 1 1 0 0 1 0 0 0 0 

E módszer hátrányossága, hogy nem követi pontosan az eredeti jelalakot (pl. a nagy 01-11 

ugrás ugyanúgy 1 mint a kisebb 10-11 ugrás; valamint az 10-10 változás nélküli állapotot is 

vagy csökkenésként (0) vagy növekedésként (1) értelmezi). 

A differenciális kvantálás másik megvalósítása az, amikor az eddig beérkezett jelből ismerve 

azt, hogy mi a következő jelek valószínűsége, a valószínűbb (gyakrabban előforduló) jelhez 

rövid kódot rendelünk: 

  ℙ buta kód okos kód 

Kérek egy jó pohár sö… 

…rt! 0,999 00 0 

…tét gépolajat! 0,0005 01 10 

…rétet a puskámba! 0,0003 10 110 

…ntésből maradt lét! 0,0002 11 111 

00 

01 

10 
11 
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Lloyd-Max algoritmus 

Keressük az optimális logaritmikus kvantálót megvalósító ℓ𝑜𝑝𝑡 függvényt, vagyis a feladat 

azon ℓopt meghatározása, ami mellett 

ℓopt:max
ℓ(𝑥)

SNR 

Ez a feladat rendkívül nehéz, mivel a jel valószínűségi eloszlása, 𝑝(𝑥), nem ismert. Ezért 

szub-optimális megoldást keresünk, ahol ℓsubopt független 𝑝(𝑥)-től: 

𝑥2 ∼
1

ℓ′2(𝑥)
→ ℓ′(𝑥) ∼

1

𝑥
→ ℓsubopt ∼ log(𝑥) 

A Lloyd-Max algoritmus a következőképpen jár el: Kiinduláskor két halmazt tekint: 

Δ = {Δ1, … , Δ𝑁} a kvantálási szintek közti különbségek halmaza, 

𝑄 = {𝑞1, … , 𝑞𝑛} a kvantáló osztópontjainak halmaza. 

Az algoritmus a hűségkritérium megfelelő mértékű csökkenéséig fut, mely hűségkritérium: 

𝐽(Δ, 𝑄) ≔∑∫ (𝑥 − 𝑞𝑖)
2𝑝(𝑥)  d𝑥

Δ𝑖

𝑁

𝑖=1

 

Az algoritmus lépései a következők: 

Ha az adott lépésben optimális 𝑄 ismert, akkor 

Δℓ,opt ≔ {𝑥: (𝑥 − 𝑞ℓ)
2 < (𝑥 − 𝑞𝑖)

2, ∀𝑖 𝑖 ≠ ℓ} 

Ha az adott lépésben optimális Δ ismert, akkor 

𝑞ℓ,opt ≔
∫ 𝑥 𝑝(𝑥) d𝑥
Δℓ

∫ 𝑝(𝑥) d𝑥
Δℓ

= 𝔼(𝑥|𝑥 ∈ Δℓ) ∀ℓ 

Ez a rekurzív algoritmus, mely a 

Δ(0), 𝑄(0) → Δopt(1), 𝑄(0) → Δopt(1), 𝑄opt(1) → Δopt(2), 𝑄opt(1) → ⋯ 

útvonalon halad, megtalálja a globális szélsőértéket. 
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Digitális jelek 

Definíció Azt mondjuk, hogy az 𝑥(𝑛), 𝑛 ∈ ℤ függvény digitális jel, ha értékkészlete diszk-

rét értékekből áll, vagyis 𝑥(𝑛) ∈ ℕ. 

Tulajdonságok 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel véges idejű (tartójú), ha 𝑥(𝑛) ≠ 0 csak 

𝑛 ∈ [𝐴, 𝐵] esetén teljesül. 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel kauzális (belépő), ha 𝑥(𝑛) = 0, 𝑛 < 0. 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel véges átlagú, ha 

lim
𝑁→∞

1

2𝑁 + 1
 ∑ 𝑥(𝑛)

𝑁

𝑛=−𝑁

< ∞ 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel véges energiájú, ha  

∑ 𝑥2(𝑛)

∞

𝑛=−∞

< ∞ 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel véges átlagenergiájú, ha 

lim
𝑁→∞

1

2𝑁 + 1
∑ 𝑥2(𝑛)

𝑁

𝑛=−𝑁

< ∞ 

Definíció Azt mondjuk, hogy az 𝑥(𝑛) digitális jel periodikus 𝑁 periódusidővel, ha ∃𝑁 

melyre 𝑥(𝑛) = 𝑥(𝑛 + 𝑘𝑁), ∀𝑘 ∈ ℤ 

Speciális jelek 

Dirac-impulzus 𝛿(𝑛) = {
0, 𝑛 ≠ 0
1, 𝑛 = 0

 

 

Egységugrás 𝑢(𝑛) = {
0, 𝑛 < 0
1, 𝑛 ≥ 0

 

 

Egységsebesség-ugrás 𝑣(𝑛) = {
0, 𝑛 < 0
𝑛, 𝑛 ≥ 0

 

 

Szinuszos jel 𝑥(𝑛) = 𝐴 ⋅ cos(2𝜋𝑓𝑛) 

 
Digitális jelek közül csak olyan szinuszos jel lehet periodikus, melynek frekvenciája 𝑓 racio-

nális szám, azaz 𝑓 ∈ ℚ. 
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Digitális jelek lineáris és időinvariáns transzformációi 

Definíció Legyen 𝒯 a rendszeroperátor (vagyis 𝑦(𝑛) = 𝒯{𝑥(𝑛)}). A rendszer lineáris, ha 

𝒯{𝑎1𝑥1(𝑛) + 𝑎2𝑥2(𝑛)} = 𝑎1𝒯{𝑥1(𝑛)} + 𝑎2𝒯{𝑥2(𝑛)} = 𝑎1𝑦1(𝑛) + 𝑎2𝑦2(𝑛) 

Definíció Legyen 𝒮 az eltolási operátor, vagyis 𝒮𝑘{𝑥(𝑛)} = 𝑥(𝑛 − 𝑘). A rendszer lineáris 

és időinvariáns, ha 

𝒯{𝒮𝑘{𝑥(𝑛)}} = 𝒮𝑘{𝒯{𝑥(𝑛)}}, ∀𝑛 

Az ilyen lineáris és időinvariáns rendszerek jelölésére az LTIS (Linear Time 

Invariant System) rövidítést használjuk. 

LTIS leírása az impulzusválasszal 

Először lássuk be, hogy teljesül az alábbi egyenlőség: 

𝑥(𝑛) ∗ 𝛿(𝑛) = ∑ 𝛿(𝑘)𝑥(𝑛 − 𝑘)

∞

𝑘=−∞

= ∑ 𝑥(𝑘)𝛿(𝑛 − 𝑘)

∞

𝑘=−∞

= 𝑥(𝑛) 

Vagyis a 𝛿(𝑛) a konvolúció egységeleme: 𝑥(𝑛) ∗ 𝛿(𝑛) = 𝑥(𝑛) 

Ennek felhasználásával keressük egy rendszer 𝑥(𝑛) bemenő jelre adott 𝑦(𝑛) válaszát: 

𝑦(𝑛) = 𝒯{𝑥(𝑛)} = 𝒯 { ∑ 𝛿(𝑛 − 𝑘)𝑥(𝑘)

∞

𝑘=−∞

} = 𝒯 { ∑ 𝑥(𝑘)𝒮𝑘{𝛿(𝑛)}

∞

𝑘=−∞

} = 

= ∑ 𝑥(𝑘)𝒮𝑘{𝒯{𝛿(𝑛)}}

∞

𝑘=−∞

= ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

= ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

∞

𝑘=−∞

= 𝑥(𝑛) ∗ ℎ(𝑛) 

ahol ℎ(𝑛) = 𝒯{𝛿(𝑛)}. 

Ha ezt kauzális esetre vizsgáljuk, akkor ugyanezen levezetés szumáiban a futóindex a [0,∞) 
intervallumot járja be, és itt is teljesül, hogy 𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛). 

Ugyanúgy, mint az analóg jelek esetében, itt is igaz, hogy a transzformált tartományra való 

áttéréssel a konvolúciók szorzássá vihetők át. 

BIBO-stabilitás 

Definíció Azt mondjuk, hogy egy 𝑥(𝑛) digitális jel transzformációját megvalósító szűrő 

BIBO stabil, ha minden korlátos bemenetre korlátos kimenetet ad, vagyis 

∃𝑀𝑥 , 𝑀𝑦: |𝑥(𝑛)| ≤ 𝑀𝑥 ⟹ |𝑦(𝑛)| ≤ 𝑀𝑦   ∀𝑛 

Nézzük most, hogy milyen olyan feltételt tudunk megadni ℎ(𝑛)-re, melyből a BIBO stabilitás 

következik! 

|𝑦(𝑛)| = | ∑ ℎ(𝑘) 𝑥(𝑛 − 𝑘)

∞

𝑘=−∞

| ≤ ∑ |ℎ(𝑘) 𝑥(𝑛 − 𝑘)|

∞

𝑘=−∞

≤ ∑ |ℎ(𝑘)|| 𝑥(𝑛 − 𝑘)|

∞

𝑘=−∞

≤ 

≤ ∑ |ℎ(𝑘)| 𝑀𝑥

∞

𝑘=−∞

= 𝑀𝑥 ∑ |ℎ(𝑘)|

∞

𝑘=−∞

≤ 𝑀𝑦 → ∑ |ℎ(𝑘)|

∞

𝑘=−∞

< ∞  

vagyis a stabilitás feltétele, hogy ℎ(𝑛) abszolút értékben szummábilis legyen.  
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Szűrők 

Egy 𝑇 szűrőt az operátorok Op = {+,×, 𝒮} halmaza és a topológia valósít meg. A szűrőkkel 

kapcsolatos két alapkérdés az analízis és a szintézis (vagyis ℎ(𝑛) felírása a szűrő hálózatából 

és fordítva). 

Szűrők típusai 

FIR (Finite Impulse Response, véges impulzusválaszú) 

 

𝑦(𝑛) =∑𝑏𝑗  𝑥(𝑛 − 𝑗)

𝑁

𝑗=0

 

𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘)

∞

𝑘=0

 

ahol 

ℎ(𝑗) = {
𝑏𝑗 , 𝑗 = 0,… ,𝑁

0, egyébként
 

 

IIR (Infinite Impulse Repsonse, végtelen impulzusválaszú) 

 

𝑦(𝑛) =∑𝑏𝑗  𝑥(𝑛 − 𝑗)

∞

𝑗=0

 

Ez a szűrő ilyen megvalósítással végtelen komplexitású, nem implementálható. Ha azonban a 

megvalósítást rekurzióval végezzük, azaz például 

𝑦(𝑛) =
1

𝑛 + 1
∑𝑥(𝑘)

𝑛

𝑘=0

→ (𝑛 + 1)𝑦(𝑛) = ∑𝑥(𝑘) + 𝑥(𝑛)

𝑛−1

𝑘=0

= 𝑛 ⋅ 𝑦(𝑛 − 1) + 𝑥(𝑛) 

akkor a látszólag végtelen komplexitású szűrő egyetlen késleltetővel megvalósítható: 

 
  

𝑇 𝑇 

∑ 

𝑇 
𝑥(𝑛) 

𝑦(𝑛) 

(1) (2) (𝑁) 

𝑏0 𝑏1 𝑏2 𝑏𝑁 

𝑇 𝑇 

∑ 

𝑇 
𝑥(𝑛) 

𝑦(𝑛) 

(1) (2) (𝑁) 

𝑏0 𝑏1 𝑏2 𝑏𝑁 

𝑇 

𝑥(𝑛) 𝑦(𝑛) 

1

𝑛 + 1
 

𝑛

𝑛 + 1
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Rekurzív architektúra 

 
A fenti ábrán megvalósított szűrő egy általános rekurzív megvalósítású szűrő, melynek kime-

nete: 

𝑦(𝑛) = −∑𝑎𝑖 𝑦(𝑛 − 𝑖)

𝑁

𝑖=1⏟        
visszacsatolt

+∑𝑏𝑗  𝑥(𝑛 − 𝑗)

𝑀

𝑗=0⏟        
előrecsatolt

 

Ez egy 𝑁-edrendű lineáris differencia-egyenletet határoz meg: 

𝑎0𝑦(𝑛) +∑𝑎𝑖 𝑦(𝑛 − 𝑖)

𝑁

𝑖=1

=∑𝑏𝑗 𝑥(𝑛 − 𝑗)

𝑀

𝑗=0

 

∑𝑎𝑖  𝑦(𝑛 − 𝑖)

𝑁

𝑖=0

=∑𝑏𝑗  𝑥(𝑛 − 𝑗)

𝑀

𝑗=0

 

Differenciaegyenlet 

Legyen adott a ∑ 𝑎𝑖 𝑦(𝑛 − 𝑖)
𝑁
𝑖=0 = ∑ 𝑏𝑗 𝑥(𝑛 − 𝑗)

𝑀
𝑗=0  differenciaegyenlet az 𝑦(−1),… , 𝑦(−𝑁) 

kezdeti értékekkel. Ennek megoldása a következő: 

Alkalmazzuk az argumentumban való kivonás helyett a visszaléptetési operátort, és emeljük 

ki a jeleket. Ennek során két változót kapunk, melyeteket jelöljünk 𝐷-vel és 𝜌-val: 

𝐷 ≔∑𝑎𝑖𝒮
𝑖

𝑁

𝑖=0

, 𝜌(𝑛) ≔∑𝑏𝑗  𝑥(𝑛 − 𝑗)

𝑀

𝑗=0

 

E változókkal a differenciaegyenlet: 

𝐷𝑦(𝑛) = 𝜌(𝑛) 

𝑇 𝑇 

∑ 

𝑇 
𝑥(𝑛) 

𝑦(𝑛) 

(1) (2) (𝑀) 

𝑏0 𝑏1 𝑏2 𝑏𝑀 

𝑇 𝑇 

∑ 

𝑇 

(1) (2) (𝑁) 

𝑎1 𝑎2 𝑎𝑁 
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A differenciaegyenlet megoldását a homogén valamint az inhomogén partikuláris megoldás 

összegeként kapjuk, vagyis 𝑦(𝑛) = 𝑦ℎ(𝑛) + 𝑦𝑝(𝑛). 

𝑦ℎ(𝑛): 𝐷𝑦𝑛(𝑛) = 0, 𝑦𝑝(𝑛): 𝐷𝑦𝑝(𝑛) = 𝜌(𝑛) 

𝑦(𝑛) = 𝑦ℎ(𝑛) + 𝑦𝑝(𝑛) → 𝐷 (𝑦ℎ(𝑛) + 𝑦𝑝(𝑛)) = 𝐷𝑦ℎ(𝑛) + 𝐷𝑦𝑝(𝑛) = 𝜌(𝑛) 

Ezt követően elégítjük ki a kezdeti feltételeket, vagyis a megoldás általános menete: 

1. homogén megoldás, 2. partikuláris megoldás, 3. általános megoldás, 4. kezdeti feltételek 

1. Homogén egyenlet megoldása 

Lássuk be, hogy 𝒮{𝑓(𝑛)} = 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑓(𝑛), ahol 𝑓(𝑛) = 𝜆𝑛. Ez teljesül, hiszen 𝒮{𝜆𝑛} = 𝜆−1𝜆𝑛 

ahol 𝜆−1 valóban konstans. Ebből kiindulva: 

𝐷𝜆𝑛 = 0 =∑𝑎𝑖𝒮
𝑖{𝜆𝑛}

𝑁

𝑖=0

 

Kiemelve és leosztva 𝜆𝑛-el, majd pedig beszorozva 𝜆𝑁-el azt kapjuk, hogy 

∑𝑐𝑖𝜆
𝑁−𝑖

𝑁

𝑖=0

= 0 

2. Inhomogén rész partikuláris megoldása 

A 𝐷 𝑦𝑝(𝑛) = 𝜌(𝑛) inhomogén egyenletet próbafüggvény segítségével oldjuk meg. Néhány 

alapvető próbafüggvény: 

𝝆(𝒏) 𝒚(𝒏) 

𝑀 ⋅ 𝑢(𝑛) 𝐾 ⋅ 𝑢(𝑛) 

𝑀 ⋅ 𝑟𝑛 ⋅ 𝑢(𝑛) 𝐾 ⋅ 𝑟𝑛 ⋅ 𝑢(𝑛) 

cos(2𝜋𝑓𝑛) 
 

 
} 𝐴 cos(2𝜋𝑓𝑛) + 𝐵 cos(2𝜋𝑓𝑛) 

sin(2𝜋𝑓𝑛) 

𝑛𝑀 ⋅ 𝑟𝑛 ∑𝑏𝑘 𝑛
𝑀−𝑘 𝑟𝑛

𝑀

𝑘=0

 

3. Általános megoldás 

𝑦(𝑛) =∑𝑐𝑖𝜆𝑖
𝑛

𝑁

𝑖=1

+ 𝑦𝑝(𝑛) 

4. Kezdeti feltételek kielégítése 

Keressük a 𝑐𝑖 konstans együtthatókat az 𝑦(−𝑁), … , 𝑦(−1) ismeretében. Ehhez az iterációt 

fölhasználva az általános megoldásból azt kapjuk, hogy 

∑𝑐𝑖𝜆𝑖
𝑙

𝑁

𝑖=1

= −𝑦𝑝(𝑙) + 𝑦(𝑙), 𝑙 = 0,1, … , 𝑁 − 1 

Ez egy lineáris egyenletrendszert határoz meg: 

𝚲𝐜 = 𝐲 − 𝐲p 
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Példa 

Oldjuk meg az 𝑦(𝑛) + 1,5𝑦(𝑛 − 1) + 0,5𝑦(𝑛 − 2) = 𝑥(𝑛) + 0,5𝑥(𝑛 − 1) differenciaegyen-

letet 𝑥(𝑛) = 𝑢(𝑛) gerjesztés és 𝑦(−1) = 𝑦(−2) = 1 kezdeti feltételek mellet. 

1.) 

𝜆2 + 1,5𝜆 + 0,5 = 0 

𝜆1,2 =
−1,5 ± √2,25 − 2

2
→ 𝜆1 = −0,5;  𝜆2 = −1 

2.) 

𝑦𝑝 = 𝑀 ⋅ 𝑢(𝑛) → 𝑀 + 1,5𝑀 + 0,5𝑀 = 1 + 0,5 

𝑀 = 0,5 

3.) 

𝑦(𝑛) = 𝑐1(−0,5)
𝑛 + 𝑐2(−1)

𝑛 + 0,5 

4.) 

𝑦(0) = −1,5𝑦(−1) − 0,5𝑦(−2) + 𝑥(0) + 0,5𝑥(−1) = −1,5 − 0,5 + 1 = −1 

𝑦(𝑛)|𝑛=0:  𝑐1 + 𝑐2 + 0,5 = −1 

𝑦(1) = −1,5𝑦(0) − 0,5𝑦(−1) + 𝑥(1) + 0,5𝑥(0) = 1,5 − 0,5 + 1 + 0,5 = 2,5 

𝑦(𝑛)|𝑛=1:  −0,5𝑐1 − 𝑐2 + 0,5 = 2,5 

[
1 1

−0,5 −1
|
−1
2,5
] → 𝑐1 = 1;  𝑐2 = −2,5 

𝑦(𝑛) = [1(−0,5)𝑛 − 2,5(−1)𝑛 + 0,5]𝑢(𝑛) 

Komplexitás és kanonikus alak 

Válaszjel számítása 

Egy 𝑎 és 𝑏 paraméterivel adott hálózat analízisének feladata a rendszer impulzusválaszának 

megadása. Legyen relaxált a rendszer, vagyis 𝑦(−1) = ⋯ = 𝑦(−𝑁) = 0. Tegyük fel, hogy 

ismerjük a rendszer differenciaegyenletéből kiszámítható 𝜆𝑖 együtthatókat. Ekkor 

ℎ(𝑛) =∑𝑐𝑖𝜆𝑖
𝑛

𝑁

𝑖=1

 

melyre ha |𝜆𝑖| < 1, 𝑖 = 1,2, … , 𝑛, akkor ebből a BIBO stabilitás következik. 

Komplexitás 

Egy rendszer komplexitása alatt a 

benne található késleltetők számát 

értjük. 

A 14. oldalon felírt rekurzív architek-

túra komplexitása eszerint  

𝑂(𝑀 + 𝑁) 
ez azonban a kanonikus alakra való 

áttéréssel 

𝑂(max{𝑀,𝑁}) 
nagyságrenddé vihető át, mely jóval 

kisebb az előző komplexitásnál. 

𝑥(𝑛) 𝑦(𝑛) 

∑ 

𝑇 

𝑇 

𝑇 

𝑇 

∑ 

𝑎1 

𝑎2 

𝑎𝑁 

𝑏1 

𝑏2 

𝑏𝑀 
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Z-transzformáció 

Definíció Egy tetszőleges 𝑥(𝑛) digitális jel Z-transzformáltja alatt a következő sorösszeget 

értjük: 

𝒵{𝑥(𝑛)} = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= 𝑋(𝑧) 

Ebből az eredeti jel inverz Z-transzformációval kapható meg: 

𝒵−1{𝑋(𝑧)} = 𝑥(𝑛) 

Az 𝑥(𝑛) jelben szereplő 𝑛 ∈ ℤ, míg az 𝑋(𝑧) jelben szereplő 𝑧 ∈ ℂ. 

RoC 

A RoC (Region of Convergence) jelentése az a komplex számhalmaz, melynek elemeire még 

teljesül, hogy a Z-transzformált (előállítása) véges. 

𝑅𝑜𝐶 = {𝑧 ∈ ℂ ∶ |𝑋(𝑧)| < ∞} 

RoC-vizsgálat 

|𝑋(𝑧)| = | ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

| ≤ ∑ |𝑥(𝑛)|𝜌−𝑛
∞

𝑛=−∞

= ∑ |𝑥(𝑛)|𝜌−𝑛
−1

𝑛=−∞

+∑|𝑥(𝑛)|𝜌−𝑛
∞

𝑛=0

= 

= ∑|𝑥(−𝑛)|𝜌𝑛
∞

𝑛=1⏟        
𝜌<𝐵

+∑|𝑥(𝑛)|𝜌−𝑛
∞

𝑛=0⏟        
𝜌>𝐴

 

Tehát 𝑅𝑜𝐶 = {𝑧 ∈ ℂ ∶ 𝐴 < |𝑧| < 𝐵}. 

Nevezetes Z-transzformáltak 

𝒵{𝛿(𝑛)} = 1 𝑅𝑜𝐶 irreleváns 

𝒵{𝑢(𝑛)} =
𝑧

𝑧 − 1
 𝑅𝑜𝐶 = {𝑧 ∈ ℂ ∶ |𝑧| > 1} 

𝒵{𝑎𝑛𝑢(𝑛)} =
𝑧

𝑧 − 𝑎
 𝑅𝑜𝐶 = {𝑧 ∈ ℂ ∶ |𝑧| > 𝑎} 

𝒵{−𝑎𝑛𝑢(−𝑛 − 1)} =
𝑧

𝑧 − 𝑎
 𝑅𝑜𝐶 = {𝑧 ∈ ℂ ∶ |𝑧| < |𝑎|} 

Tulajdonságok 

1.) linearitás 

𝒵{𝛼1𝑥1(𝑛) + 𝛼2𝑥2(𝑛)} = 𝛼1𝒵{𝑥1(𝑛)} + 𝛼2𝒵{𝑥2(𝑛)} = 𝛼1𝑋1(𝑧) + 𝛼2𝑋2(𝑧) 

2.) időbeli eltolás 

𝒵{𝒮𝑘{𝑥(𝑛)}} = 𝒵{𝑥(𝑛 − 𝑘)} = 𝑧−𝑘𝑋(𝑧) 

3.) derivált 

𝒵{𝑛 ⋅ 𝑥(𝑛)} = −𝑧
d𝑥(𝑧)

d𝑧
 

4.) konvolúció 

𝒵{𝑥(𝑛) ∗ 𝑦(𝑛)} = 𝑋(𝑧)𝑌(𝑧) 
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Rendszerek jellemzése a Z-transzformáció segítségével 

Zérus és pólus 

Definíció Legyen 𝑓(𝑧) analitikus függvény. Ha 𝑓(𝑧0) = 0 és 𝑓(𝑧) felírható mint  

𝑓(𝑧) = (𝑧 − 𝑧0)
𝑛𝑓 ̃(𝑧) 

ahol 𝑓 ̃(𝑧) ≠ 0 és analitikus valamely 𝑛 ≥ 1 számra, akkor azt mondjuk, hogy 

𝑧0 𝑛-szeres zérusa 𝑓-nek. 

Definíció Legyen 𝑓(𝑧) analitikus függvény. Ha 𝑓(𝑧) felírható mint 

𝑓(𝑧) =
1

(𝑧 − 𝑧0)
𝑛
ℎ(𝑧) 

ahol ℎ(𝑧0) ≠ 0 és analitikus valamely 𝑛 ≥ 1 számra, akkor azt mondjuk, hogy 

𝑧0 𝑛-szeres pólusa 𝑓-nek. 

A rendszer impulzusválasza 

Ismeretes, hogy egy LTI rendszert leírhatunk az impulzusválasszal. A Z-transzformáció tulaj-

donságai közt pedig láttuk, hogy a konvolúciót szorzássá alakítja. E két tényt felhasználva 

keressük a rendszer impulzusválaszának megfelelő transzformáltat, az átviteli függvényt. 

Legyen egy differenciaegyenletével adott rendszer: 

∑𝑎𝑘𝑦(𝑛 − 𝑘)

𝑁

𝑘=0

=∑𝑏𝑗 𝑥(𝑛 − 𝑗)

𝑀

𝑗=0

 

Vegyük mindkét oldal Z-transzformáltját! Ekkor azt kapjuk, hogy 

∑𝑎𝑘𝑧
−𝑘𝑌(𝑧)

𝑁

𝑘=0

=∑𝑏𝑗  𝑧
−𝑗𝑋(𝑧)

𝑀

𝑗=0

 

Innen a keresett 𝑌(𝑧) kirendezhető, mégpedig 

𝑌(𝑧) =
∑ 𝑏𝑗  𝑧

−𝑗𝑀
𝑗=0

∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=0

𝑋(𝑧) =
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑀𝑧
−𝑀

𝑎0 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁
𝑋(𝑧) 

Ha az 𝑥(𝑧) gerjesztő jel a Dirac-impulzus, akkor a jobboldalon álló 𝑋(𝑧) ennek transzformált-

ja, vagyis 1. Ha elnevezzük a fenti kifejezés számlálójában álló polinomot 𝐵(𝑧)-nek, a neve-

zőben lévőt pedig 𝐴(𝑧)-nek, akkor a 𝐻(𝑧) átviteli függvény a következőképp írható: 

𝐻(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
 

A 𝐵(𝑧) = 0 egyenlet megoldásai (𝑧1, … , 𝑧𝑀) zérusok, az 𝐴(𝑧) = 0 megoldásai (𝑝1, … , 𝑝𝑁) 
pedig pólusok lesznek. Így tehát az átviteli függvény írható mint 

𝐻(𝑧) =
𝑧−𝑀

𝑧−𝑁
𝑏0
𝑎0

(𝑧 − 𝑧1)(𝑧 − 𝑧2)… (𝑧 − 𝑧𝑀)

(𝑧 − 𝑝1)(𝑧 − 𝑝2)… (𝑧 − 𝑝𝑁)
= 𝑧𝑁−𝑀

𝑏0
𝑎0

∏ (𝑧 − 𝑧𝑚)
𝑀
𝑚=1

∏ (𝑧 − 𝑝𝑛)
𝑁
𝑛=1

 

Ez a polinom per polinom alakú kifejezés többnyire egyszerűsíthető és így inverz Z-transzfor-

mációjával az impulzusválasz függvényt kapjuk. 
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Zérus-pólus diagram 

A zérus-pólus diagram alkalmas egy rendszer leírására azáltal, hogy a komplex számsíkon 

ábrázolja a rendszer zérusait és pólusait. Ez a leírás a (később látott) gyökinvariancia miatt 

nem egyértelmű, de jellegre azonos rendszereket eredményez.  

 

BIBO stabilitás 

A BIBO stabilitás feltétele a Z-transzformált tartományon az, hogy a pólusok az egységkör 

belsejébe essenek, azaz hogy 𝑝𝑖 < 1, ∀𝑖. 

Gyökinverzió, minimálfázis 

Definíció A 𝑧𝑖 gyök inverze alatt a (𝑧𝑖)
−1 komplex számot értjük, ahol a felülvonás a 

komplex konjugálást jelenti. 

Állítás Egy rendszer amplitúdó-karakterisztikája a gyökinverzióra (egy konstans szorzó-

tól eltekintve) invariáns. 

Ez azt jelenti, hogy a szűrő karakterisztikája nem változik, akár pólusokat, akár zérusokat 

invertálunk. Ennek haszna abban mutatkozik meg, hogy egy nem BIBO stabil rendszerből 

gyökinverzióval, a pólusok egységkörön belülre vitelével a rendszer BIBO stabillá tehető. 

Definíció Azt mondjuk, hogy a 𝐻(𝑧) átviteli függvénnyel adott szűrő minimálfázisú, ha a 

szűrő és inverze is kauzális és stabil. 

𝐻(𝑧) stabilitása és kauzalitása azt jelenti, hogy pólusai (az 𝐴(𝑧) gyökei) az egységkörön belül 

vannak. 𝐻(𝑧) inverzének stabilitása és kauzalitása azt jelenti, hogy ennek pólusai (a 𝐵(𝑧) 
gyökei) is az egységkörön belülre esnek. Ez azt jelenti, hogy a minimálfázisú szűrő pólusai is 

és zérusai is az egységkörön belül vannak. 

  

𝑧1 

𝑧2 

𝑧3 

𝑝1 𝑝2 
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Spektrális analízis 

A spektrális analízis célja, hogy az időben változó jelet a transzformált tartományban ismerje 

meg, és a különböző időpillanatokban tett megfigyelésekből képes legyen számos költség-

csökkentő, hatékonyságnövelő vagy előrejelző funkciót megvalósítani. 

Jelentőség 

Több területen is jelenős haszon meríthető: 

Kommunikációs technológia: sávszélesség és adatátviteli sebesség optimalizálása 

Szeizmológia: földrengés-előrejelzés 

Orvosi alkalmazások: epilepszia-előrejelzés 

Rezgésanalízis: hibás gépelem mechanikai diagnosztikája 

Spektrum megismerése 

A spektrum megismerése a digitális jelfeldolgozás eszközeivel a következő útvonalon zajlik: 

a bejövő 𝑥(𝑡) jelből mintavételezés és kvantálás útján előállítjuk az 𝑥(𝑛) digitális jelet. Ebből 

diszkrét Fourier-transzformációval megkapjuk az 𝑋𝑠(𝜔) diszkrét Fourier-transzformáltat. 

Ebből az analóg frekvenciatartománybeli 𝑋(𝜔) jel szűréssel kapható. 

DFT 

Az 𝑥(𝑛) jel diszkrét Fourier-transzformáltjához (DFT) a következő úton juthatunk: 

𝑋𝑠(𝜔) = ℱ{𝑥(𝑛)𝛿(𝑡 − 𝑛𝑇)} = ∑ 𝑥(𝑛) 𝑒−𝑗𝑛𝜔
∞

𝑛=−∞

 

𝑋𝑠(𝜔)|

𝜔=
𝑘2𝜋
𝑁

= 𝑋 (
𝑘2𝜋

𝑁
) = ∑ 𝑥(𝑛) 𝑒−𝑗𝑘𝑛

2𝜋
𝑁

∞

𝑛=−∞

= ∑ ∑ 𝑥(𝑛 + 𝑙𝑁)

∞

𝑙=−∞⏟          
periodikus: 𝑥𝑝(𝑛)

⋅ 𝑒−𝑗𝑘
2𝜋
𝑁

𝑁−1

𝑛=0

 

Ha a digitális jel végső tartójú, akkor 𝑥𝑝(𝑛) = 𝑥(𝑛), és így a DFT: 

𝑋 (𝑘
2𝜋

𝑁
) ≔ 𝑋(𝑘) = ∑ 𝑥(𝑛) ⋅

𝑁−1

𝑛=0

𝑒−𝑗𝑘
2𝜋
𝑁 , 𝑘 = 0,… ,𝑁 − 1 

vagyis egy lineáris egyenletrendszert kaptunk, melynek alakja 

𝐗 = 𝐖𝐱 

ahol 𝐗 = [𝑋(0), 𝑋(1), … , 𝑋(𝑁 − 1)], 𝐱 = [𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)], a 𝐖 mátrix pedig 

𝐖 = [𝑊𝑘𝑛]𝑘=0,…,𝑁−1
𝑛=0,…,𝑁−1

, 𝑊𝑘𝑛 ≔ 𝑒−𝑗𝑘𝑛
2𝜋
𝑁  

Ha pedig ismerjük 𝑋(𝑘)-t akkor innen 

𝑋𝑠(𝜔) = ∑ 𝑋(𝑘)𝑃 (𝜔 + 𝑘
2𝜋

𝑁
)

𝑁−1

𝑘=0

, 𝑃(𝜔) =
1

𝑁

1 − 𝑒−𝑗𝑛𝜔

1 − 𝑒−𝑗𝜔
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Inverz DFT 

Az inverz DFT végrehajtása a mátrixegyenletből triviálisan látható: 

𝐱 = 𝐖−1𝐗 

A 𝐖 mátrix tulajdonságai 

Legyen 𝑊𝑁 = 𝑒
−𝑗

2𝜋

𝑁 . Ekkor igazak az alábbiak: 

 𝑊𝑁
𝑘+

𝑁

2 = −𝑊𝑁
𝑘 𝑊𝑁

𝑘+𝑁 = 𝑊𝑁 Ha 𝑁 = 𝑀𝐿, akkor 𝑊𝑁
𝑘𝑀 = 𝑊𝐿

𝑘 

𝐖−1 =
1

𝑁
𝐖
𝑇
, azaz unitér 

Komplexitás 

A DFT komplexitása (az összeadások és szorzások száma) a következő: 

szorzás: 𝑁2 db 

összeadás: 𝑁(𝑁 − 1) db 

FFT 

A DFT komplexitásának csökkentésére szolgál az FFT módszer. Lényege, hogy az adatokat 

több dimenzióban reprezentálja. Például: 

Legyen 𝑁 = 𝐿𝑀. Sorvektor helyett történjék az ábrázolás egy 𝐿 ×𝑀-es mátrixban, 𝐱 esetén 

oszlop-, 𝐗 esetén sorfolytonosan. 

𝐱 = [… ] helyett  [
𝑥(0,0) ⋯ 𝑥(0,𝑀)
⋮ ⋱ ⋮

𝑥(𝐿, 0) ⋯ 𝑥(𝐿,𝑀)
] , 𝑥(𝑛) ↦ 𝑥(𝑙,𝑚) ∶ 𝑛 = 𝑚𝐿 + 𝑙 

𝐗 = [… ] helyett  [
𝑋(0,0) ⋯ 𝑋(0,𝑀)
⋮ ⋱ ⋮

𝑋(𝐿, 0) ⋯ 𝑋(𝐿,𝑀)
] , 𝑋(𝑘) ↦ 𝑋(𝑝, 𝑞) ∶ 𝑘 = 𝑝𝐿 + 𝑞 

Ekkor a DFT így számolható: 

𝑋(𝑝, 𝑞) =∑∑ 𝑥(𝑚𝐿 + 𝑙)𝑊𝑁
(𝑝𝑀+𝑞)(𝑚𝐿+𝑙)

𝑀−1

𝑚=0

𝐿−1

𝑙=0

=∑[(∑ 𝑥(𝑚, 𝑙)𝑊𝑀
𝑞𝑚

𝑀−1

𝑚=0

)𝑊𝑁
𝑞𝑙
]𝑊𝐿

𝑝𝑙

𝐿−1

𝑙=0

 

Bár a kifejezés látszólag bonyolultabb lett, komplexitása sokkal kedvezőbb: 

Radix-2 pontos FFT esetén: 

 𝐿 db 

𝑀-dim DFT 
𝐿𝑀 db szorzás 

𝑀 db 

𝐿-dim DFT 
összesen 

szorzás: 𝐿𝑀2 𝐿𝑀 𝐿2𝑀 𝑁(𝑀 + 𝐿 + 1) 
összeadás: 𝐿𝑀(𝑀 − 1) 0 𝐿𝑀(𝐿 − 1) 𝑁(𝑀 + 𝐿 − 2) 
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Szűrőtervezés 

Digitális szűrőtervezés 

A szűrőtervezés feladata egy olyan 𝐡 koefficiensvektor megadása, mely paraméterekkel egy 

kívánt 𝐻𝑑(𝜔) karakterisztikájú szűrőt valósíthatunk meg. 

Adott 𝐻𝑑(𝜔) esetén a ℎ𝑑(𝑛) impulzusválasz integrálással kapható: 

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑗𝜔𝑛 d𝜔
𝜋

−𝜋

=
𝜔𝑐
𝜋

sin(𝑛 ⋅ 𝜔𝑐)

𝑛 ⋅ 𝜔𝑐
 

Ezzel két baj van: nem FIR és nem kauzális (tehát megvalósíthatatlan és használhatatlan). 

Kauzalitás és FIR mivolt megvalósítása 

Egyrészt olyan 𝐻𝑑(𝜔) karakterisztikából kell kiindulni, melyből előállítható kauzális szűrő. 

Ennek megállapítására szolgál a Paley–Wiener-tétel. 

Paley–Wiener-tétel 

Tétel (Paley–Wiener-tétel a kauzalitásról) Legyen adott egy kívánt átviteli karakterisz-

tika 𝐻𝑑(𝜔). A ℎ𝑑(𝑛) akkor stabil ∀𝑛-re, ha 

∫ |ln(|𝐻𝑑(𝜔)|)| d𝜔
𝜋

−𝜋

< ∞ 

Másrészt szükséges, hogy az impulzusválasz véges legyen. Ezt legegyszerűbben a  

ℎ(𝑛) = {
ℎ𝑑(𝑛), 𝑛 = 0,… ,𝑀 − 1

0, egyébként
 

levágással tehetjük meg. Ha ezt úgy valósítjuk meg, hogy a ℎ𝑑(𝑛) függvényt valamilyen 

𝑤(𝑛) függvénnyel szorozzuk meg, mely 𝑤(𝑛) függvény az előző esetben például 

𝑤(𝑛) = {
1, 𝑛 = 0,… ,𝑀 − 1
0, egyébként

 

akkor ablakolásról beszélünk. 

Nem minden „evidensnek látszó” ablakolófüggvény képes a 𝐻𝑑(𝜔) karakterisztikához hason-

ló szűrő előállítására, a levágás miatt elvesző egyes felharmonikusok a végső karakterisztikát 

jelentősen befolyásoló, ún. side lobes révén tönkreteszik a szűrőt. 

Néhány szokásos ablakolófüggvény 

négyszögletes Bartlett 

𝑤(𝑛) = 1 𝑤(𝑛) = 1 −
2 |(𝑛 −

𝑀 − 1
2

)|

𝑀 − 1
 

Hanning Hamming 

𝑤(𝑛) = 0,5 (1 − cos (
2𝜋𝑛

𝑀 − 1
)) 𝑤(𝑛) = 0,54 − 0,46 cos (

2𝜋𝑛

𝑀 − 1
) 
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Adaptív jelfeldolgozás 

Az adaptív jelfeldolgozás célja, hogy valamilyen ismeretlen rendszer hatását, viselkedését 

modellezni tudjuk, illetve ennek ismeretében a rendszer kimenetét megfelelően vegyük figye-

lembe. Ilyen ismeretlen rendszerre lehet példa egy idegrendszer vagy akár a komplexitása 

miatt megbecsülhetetlen internet. Ezt a feladatot látja el az ASP. Két lehetséges felépítés: 

  

Wiener-szűrés 

Legyen az ismeretlen rendszerbe belépő jel 𝑥𝑘, a kilépő jel 𝑑𝑘. Legyen ugyanez az 𝑥𝑘 jel az 

ASP bemenete is, melyre a kimenet 𝑦𝑘. Végül képezzük a két kilépő jel különbségét: 

𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘 

Az ASP a következőt valósítja meg: 

𝑦𝑘 =∑𝑤𝑗𝑥𝑘−𝑗

𝐽

𝑗=0

 

Legyen 𝑥𝑘 gyengén stacionárius sztochasztikus jel: 𝔼(𝑥𝑘) = 0 ∀𝑘, és az autokorreláció 

𝑅(𝑙) = 𝔼(𝑥𝑘𝑥𝑘−𝑙). Tegyük fel, hogy az ismeretlen rendszerből kilépő 𝑑𝑘 jel is ugyanilyen 

tulajdonságú. E két jel figyelembevételével a keresztkorrelációs függvény: 𝑟(𝑙) = 𝔼(𝑑𝑘𝑥𝑘−𝑙). 
Definiáljuk az autokorrelációs mátrixot 

𝐑 = [𝑅𝑖𝑗]𝑖=0,…,𝐽
𝑗=0,…,𝐽

, 𝑅𝑖𝑗 = 𝑅(𝑖 − 𝑗) = 𝔼(𝑥𝑘−𝑖𝑥𝑘−𝑗) 

és a keresztkorrelációs vektort 

𝐫 = [𝑟𝑖]𝑖=0,…,𝐽, 𝑟𝑖 = 𝑟(𝑖) = 𝔼(𝑑𝑘𝑥𝑘−𝑖) 

Az autokorrelációs mátrix tulajdonságai 

1.) Szimmetrikus 

𝐑 = 𝐑𝑇 

2.) Hermitikus 

∀𝐚, 𝐛 ∈ ℝ𝐽+1 ∶ 𝐚𝐑𝐛 = 𝐛𝑇𝐑𝐚 

3.) Pozitív szemidefinit 

∀𝐚, 𝐛 ∈ ℝ𝐽+1 ∶ 𝐚𝑇𝐑𝐚 ≥ 0 

4.) Sajátvektorai teljes ortonormált rendszert alkotnak 

𝐑𝐬𝑖 = 𝜆𝑖𝐬𝑖 𝑖 = 0,… , 𝐽, 𝐬𝑖
𝑇𝐬𝑗 = 𝛿𝑖,𝑗 

5.) Sajátértékei nemnegatívak 

𝜆𝑖 ≥ 0  ∀𝑖 

6.) A mátrix nyoma a sajátértékeinek összege 

trace(𝐑) =∑𝜆𝑖

𝐽

𝑖=0

 

− 
𝐴𝑆𝑃 

? 
+ 

− 

𝐴𝑆𝑃 ? 

+ 



 „Korlátozott terjesztésű”  1. számú példány 

 

Digitális jelfeldolgozás — PPKE ITK 

 
 

 

szóbeli vizsga 1503 24 / 28 2015. június 3. 

 

 „Korlátozott terjesztésű”   
 
 

 

A Wiener-szűrés alapfeladata 

A Wiener-szűrő olyan 𝐰opt optimális együtthatóvektort ad, melyre az 𝑒𝑘 jel négyzetes várha-

tó értéke a lehető legkisebb: 

𝐰opt ∶  min
𝐰
𝔼(𝑒𝑘

2) 

Ez a fent bevezetett korrelációs vektor és mátrix felhasználásával: 

𝐰opt ∶  min
𝐰
{𝐰𝑇𝐑𝐰− 2𝐫𝑇𝐰} 

Ez egy minimumkeresési feladat. A megfelelő deriválások után a feladat az alábbi roppant 

egyszerű mátrixegyenletre redukálódik: 

𝐑𝐰opt = 𝐫 

Felvetődnek azonban a praktikus megvalósítás problémái, nevezetesen a real-time megoldha-

tóság és a megoldás menete ismeretlen 𝐑 és 𝐫 esetén. 

Algoritmikus megoldás 

Real-time megoldhatóság 

Bizonyítható, hogy a 

𝐰(𝑘 + 1) = 𝐰(𝑘) − Δ{𝐑𝐰(𝑘) − 𝐫} 

rekurzió megtalálja a 𝐰 koefficiensvektort. A konvergencia sebessége Δ helyes megválasztá-

sától függ. 

Δopt =
2

𝜆min + 𝜆max
 

Δopt esetén a rekurzió a lehető leggyorsabban konvergál. Ez azonban nem tökéletes megoldás, 

mivel a 𝜆 sajátértékek meghatározása nem könnyű feladat (és pláne nem gyorsabb, mint a 

mátrixinverziós megoldás). Mátrixinverzió nélkül is belátható azonban, hogy 

Δopt ≈
2

𝑅(0)
 

és ezzel a becsléssel a 

𝐰(𝑘 + 1) = 𝐰(𝑘) −
2

𝑅(0)
{𝐑𝐰(𝑘) − 𝐫} 

rekurzió real-time megoldása a feladatnak. 

Megoldás ismeretlen 𝐑 és 𝐫 esetén: Robbins-Monroe 

Legyen 𝜏𝑘 = {(𝑥𝑘, 𝑑𝑘), 𝑘 = 1,… , 𝐾} 𝐾 méretű tanulóhalmaz. Ekkor az algoritmus a követ-

kezőre módosítva képes az 𝐑 és 𝐫 nélküli megoldásra: 

𝑤𝑙(𝑘 + 1) = 𝑤𝑙(𝑘) − Δ(k) {𝑑𝑘 −∑𝑤𝑗𝑥𝑘−𝑗

𝐽

𝑗=0

}𝑥𝑘−𝑙 , 𝑙 = 0,… , 𝐽 

Megjegyzendő, hogy itt Δ „visszatérése” nem jelent gondot, Δ többnyire a becslési módszer 

által előre meghatározott konstans. 
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Lineáris prediktív kódolás 

Predikció esetén is működik mind a rekurzív módszer, mind pedig a Robbins-Monroe algo-

ritmus. A tanulóhalmaz hossza ez esetben a megfigyelt idősor hossza mínusz a fokszám: 

𝐾 = 𝐿 − 𝐽 

Már korábban láttuk, hogy ha a kvantálási jelszintekhez rendelt azonos hosszúságú kódok 

helyett a gyakoribb jelszintekhez rövidebb, a ritkábbakhoz pedig hosszabb kódot rendelünk, 

akkor jelentős megtakarítás érhető el. Ezt valósítja meg a lineáris prediktív kódolás (LPC) 

mind az adó mind pedig a vevő oldalán. 

A spektrális hatékonyság növelése adaptív jelfeldolgozással 

Definíció A spektrális hatékonyság mérőszáma megmutatja, hogy mekkora az adatátviteli 

sebesség frekvenciánkénti hányadosa, vagyis megadja a 
𝑏𝑖𝑡

𝑠⁄

𝐻𝑧
 értéket. 

A spektrális hatékonyság jelenleg a mobilszolgáltatások terén 0,52 ami messze elmarad az 

elméletileg lehetséges 5,6-es értéktől. 

Multipath propagation 

Kulcskérdés a rádiótávközlés esetén az, hogy a kisugárzott jel nemcsak egyenes vonalban 

terjed az adó és a vevő között, hanem visszaverődéseket és így késleltetést is szenved. Így az 

átvitel az ideálishoz képest egy reflexióból eredő tényezővel egészül ki. 

𝐻(𝑓) = 1 + 𝜌𝑒−𝑗2𝜋𝑓𝜏⏟      
reflektált

 

A szolgáltatás csak azon a területen nyújtható megfelelő minőséggel, ahol a bithiba-

valószínűség a szolgáltatási küszöb alatt marad. 

A szolgáltatási terület megnövelésére különféle módok állnak rendelkezésre: 

Space diversity 

Két antenna alkalmazásával a sugárzott jel még akkor is megfelelő minőségben fogható, ha az 

egyik antennára a reflexiók miatt használhatatlan jelsorozat érkezik. Ekkor a másik antennán 

fogott jel értelmes. 

Hatalmas hátránya az antennák építési, üzemeltetési, karbantartási költségeinek megkétszere-

ződése. 

Frequency diversity 

Két (megfelelően megválasztott) frekvenciasáv alkalmazása esetén az egyik sávban jelentkező 

leszívás a másikban nem jelentkezik, így szintén megfelelő az átvitel. 

Hatalmas hátránya hogy az amúgy is telített rádióspektrumban két frekvenciasávot kell birto-

kolni, mely hatalmas költségekbe kerül. 

ASP 

Jó algoritmus találása esetén a hibák helyreállítása gyors, és mivel a DSP processzorok olcsón 

beszerezhetőek, a költségek nem számottevőek. 

Kommunikációs modell 

A modell a valóságban fellépő torzító hatásokat hivatott 

szemléltetni: az eredeti 𝑦𝑘 bináris jelsorozat az időfüggő, 

ismeretlen csatornatorzítás (ℎ𝑗) és az additív 𝜈 zaj miatt 

módosul, az antennán az 𝑥𝑘 jelet vesszük. 

  

ℎ𝑗 

𝜈 
𝑦𝑘 𝑥𝑘 
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Ez a következő: 

𝑥𝑘 = ℎ0𝑦𝑘 + ∑ ℎ𝑘−𝑛𝑦𝑛
𝑛,𝑛≠𝑘

+ 𝜈𝑘 

Ebből az eredeti 𝑦𝑘 jel visszaállított 𝑦̂𝑘 formája Wiener-szűrés és kvantálás után nyerhető 

vissza. A szűrt jel: 

𝑦̃𝑘 =∑𝑤𝑗𝑥𝑘−𝑗

𝐽

𝑗=0

= 𝑞0𝑦𝑘 + ∑ 𝑞𝑘−𝑛𝑦𝑛
𝑛,𝑛≠𝑘

+ 𝜂𝑘 

Ez Wiener szűréssel kapható, mely ismeretlen csatorna esetén a következőképp alakul: 

𝜏𝑘 = {(𝑥𝑘 , 𝑑𝑘), 𝑘 = 1,… , 𝐾} 

𝑤𝑙(𝑘 + 1) = 𝑤𝑙(𝑘) − Δ(k) {𝑦𝑘 −∑𝑤𝑗𝑥𝑘−𝑗

𝐽

𝑗=0

}𝑥𝑘−𝑙 , 𝑙 = 0,… , 𝐽 

Mivel 𝑦𝑘 ismeretlen, tanulóhalmaz nélkül két lehetséges módon tehetjük teljessé az algorit-

must: 

1. Időszakonként (csomagkapcsolt adatátvitelről lévén szó, a csomagok elején) meg-

egyezés szerinti 𝑦𝑘 jelet küldünk, melynek torzulásából az algoritmus a tanuló perió-

dus alatt kalibrációt végez. 

2. Az 𝑦𝑘 jelet az algoritmusban 𝑦̂𝑘-val becsüljük. 
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Jegyzetek  
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Évközi eredmény 

  max. 

jegy 

kapott 

jegy 

Kis zárthelyik 

1. Kis zárthelyi dolgozat 5  

2. Kis zárthelyi dolgozat 5  

3. Kis zárthelyi dolgozat 5  

4. Kis zárthelyi dolgozat 5  

5. Kis zárthelyi dolgozat 5  

Összesen 25  

I. Elért jegyösszeg  

Házi feladat 

1. Házi feladat 3  

2. Házi feladat 3  

3. Házi feladat 3  

Összesen 9  

II. Elért jegyösszeg  

 
Nagy zárthelyi dolgozat 5  

Összesen 5  

 III. Elért érdemjegy  

 (I. + II.)/50 + III./2 

Féléves érdemjegy 
5 

 

 

Ha a kis zárthelyi dolgozatok átlaga és a nagy zárthelyi dolgozat eredménye legalább 4-es, 

akkor a hallgató mentesül a vizsgadolgozat megírása alól, és csak szóbeli vizsgát kell tennie. 

Ez esetben a vizsga jegye meg van ajánlva a gyakorlati jegyére. 

 

A vizsga jegyét fele részben a féléves érdemjegy, fele részben pedig a vizsgadolgozatra kapott 

jegy alkotja, melyhez kerekítési tényezőként hozzá jön a vizsga szóbeli részén nyújtott telje-

sítmény alapján megítélt pontszám. 


