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Témakorok

Analog jelek

Definici6 Az x(t), t € X folytonos fliggvényt analog jelnek nevezziik, ahol X € R. Ennek
értelmezése a kovetkezo:
Az x(t) érték valamilyen szamszerGsitett fizikai mennyiség (pl. fesziiltség,

hangnyomas, fényerdsség stb.) a t idépillanatban.

Altalanos leirasuk
Az analdg jelek értelmezés tartomanyuktol és értékkészletiiktdl fliggden tobbfélek lehetnek:

Definici6 Azt mondjuk, hogy az x(t),t € X analog jel véges tartoju, ha X = [a,b] c R.

Definicié Azt mondjuk, hogy az x(t),t € X analdg jel belépé (kauzalis), ha Vt < 0 esetén
x(t) = 0.

Definicio Azt mondjuk, hogy az x(t), t € R analog jel véges dtlagu, ha

(1 (T

Definicio Azt mondjuk, hogy az x(t), t € R analog jel véges dtlagenergidaju, ha

(1 .
lim —f x?(t)dt | < o
T—oo T _T/z

Egyszerii jelek
Dirac-delta 6(t) = {Og i i g }
o 0, t<0 !
Egységugras u(t) = { 1 £>0
Egységsebesség-ugras v(t) = {2’ ; ; 8
Szinuszos jel x(t) = A-cos(2nft + @) \//\\//

Periodikus jelek

Definicio Az x(t),t € R analog jel periodikus, ha x(t) = x(t + kT), Vk € Z. Az ebben
szereplo rogzitett T € R szamot periodusidonek nevezziik.
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Jelek leirasa a transzformalt tartomanyban

Legyen x(t) egy periodikus, analdg jel T peridodusidével. Probaljuk meg felirni x(t)-t a ko-
vetkezd végtelen sor Osszegeként:

[ee]
x(t) = 2 Xy - eJk2mst
k=—o0
ahol f = = és a felirasban szerepld x;, mennyiség a kovetkez6képp all eld:
T plo Xy, yiseg pp

T
12 :
—— . p—Jjk2mft
X TJ_Zx(t) e dt

Fourier-transzformacio

Legyen adott egy x(t) analog jel, melyre teljesiil, hogy f_oooolx(t)l dt < oo. Ennek Fourier-
transzformaltja:

x(f) = foox(t) ce l2mIt

melybdl x(t) a kovetkezOképpen kaphatd meg:

x©) = [ x(p)- et ay

Definicié Azt mondjuk, hogy az x(t) analdg jel savkorlatozott, ha x(f) véges tartdju.

Laplace-transzformacio

Legyen adott egy x(t) analog jel, melyre 3a, hogy fooolx(t)l -e~ %t dt < o. Ennek Laplace-

transzformaltja:
oo

x(s) = f x(t) e~ e7J2mft dt = .f x(t) e~st dt
0 0

ahol s = a + j2nf. Ebbdl x(t) a kovetkezéképpen kaphatd vissza:

x(t) = fﬁx(s) est ds
G

Jelek linearis idéinvarians transzformacioja (jelek szlirése)
Definicié  Legyen T a rendszeroperator (vagyis y(t) = T{x(t)}). A rendszer lineadris, ha

T{ax1(t) + ax,(0)} = a, T{x; (O} + @, T{x2 ()} = a1y, () + azy,(¢)
Definicié  Legyen T a rendszeroperator. A rendszer iddinvaridans, ha

Tt +D} =yt +1), VI

Rendszer leirasa az impulzusvalasszal
Eldszor lassuk be, hogy teljesiil az alabbi egyenldség:

oo

foo(?(t —Dx(r)dr = f x(t —1)6(7) dr = x(t)

—00

Vagyis a §(t) a konvolucio egységeleme: x(t) * §(t) = x(t)
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Ennek felhasznalasaval keressiik egy rendszer x(t) bemend jelre adott y(t) valaszat:

() = T} = T { f

o)

x(1)8(t — 1) d‘L’} = foox(r)T{6(t — 1)} dt = x(t) = h(t)

ahol h(t) = T7{6(t)}.

A transzformalt tartomanyra val6 attéréssel a konvoluciok szorzéassa vihetok at.

t-idétartomany f-frekvenciatartomany s-tartomany
végrehajtas — F L
fizikai értelmezés limitalt teljesen informativ nem informativ
hogyan lehet halozat- | differencidlegyenlet, . (d . ) I
analizist végezni nehéz konnyi a ¢ kénnyi ()
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Analog-digitalis atalakitas

Az analog-digitalis atalakitas célja az x(t) analog jel mintavételezése, kvantalasa és kodolasa
révén torténd x;, jellé valo atalakitasa. E feladat alapkérdései a hatékonysag (mennyire tomo-
rithetd a kapott bitsorozat) €s az informacidveszteség (visszadllithato-e az eredeti analog jel a
mintavételezettbol).

Mintavételezés

Definicié  Legyen x(t) tetszéleges analog jel. Az ebbdl elballitott x;, = x(t, + kT) jelet
mintavett jelnek nevezziik, ahol T a mintavételi idd, t, pedig a mintavételezés
kezddpontja, valamint k € Z.

Mintavételi tétel

Szeretnénk valamilyen feltételt talalni arra vonatkozdan, hogy egy x; mintavételezett jelbdl
mikor allithat6 vissza veszteség nélkiil az x(t) analdg jel. Ehhez tekintsiik elészor, hogy min-
ként all el6 ez elobbi a Fourier-transzformaltjabol:

x(t) = fo(f) el2mft qt

-B

ahol B a savszélesség. Az x;, mintavett jelet az x(t)-bol t = kT helyettesitéssel kapjuk meg:

B
xe=x@| =[x e af
t=kr = °
Legyen x,,(f) a mintavett jel a frekvenciatartomanyban:
C k
D= Y x(r+7)
k=—0o0

melyre ekkor teljesiil, hogy x,,(f) = x(f), ha %2 2B és |f| < B. Ezért hat vehetjiik az
Xm (f) Fourier-transzformaltjat:

o

()= ) - e ST

k=—o0

ahol

1

1 (2T . B .

Ge=1 | 1w () I df =T [ x(f) BT df =T,
/T 2T -B

Innen az x(f) eléall mint x(f) = T Xy x; - e 7¥¥™T vagyis

B B B
() = f x(f) e/2mft df = Tf (Z X e—ijTrfT) e2nft gf = TZ xkf o2/ (t=kT) g
—B B\ K =B

) h(t—kT)
vagyis azt kapjuk, hogy
x() = TZ %, h(t — kT)
k
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Tétel (Mintavételi tétel) Legyen adott egy x(t) analog jel. Ha teljesiil, hogy a mintavé-
teli frekvencia legalabb akkora, mint a sdavszélesség kétszerese, azaz f; = 2B,
akkor az x;, mintavett jelb6l az x(t) eredeti analog jel visszadllithato, mégpedig:

x(t) = TZ %, h(t — kT)
k

ahol h(t) a kovetkezé aluldateresztd sziirdt valositja meg:
sin(2mBt)

h(t) = — &

Gyakorlati mintavételezés

A mintavételezés alapjat képz0 pillanatszerli érték-vételezés a gyakorlatban nem teljesiilhet,
mivel nincs olyan kapcsolo, mely képes lenne csupan egyetlen pillanatban mintat venni a jel-
bol. Ehelyett a kapcsold a mintavételezés soran nagyon rovid ideig tartd mintdkat vesz, és
ennek atlagat tekinti az adott idépillanathoz tartoz6 mintanak.

Ha figyelembe vessziik azt, hogy talmintavételezés esetén, vagyis amikor f; > 2B, tobb adat
keletkezik, melynek tovabbitdsdhoz nagyobb savszélesség kell, akkor felvetddik a kérdés,
hogy miért nem a lehetd leggazdasagosabb f; = 2B mintavételi frekvencia mellett torténik a
mintavételezés. A valasz erre az, hogy az fg = 2B frekvenciaval mintavett jel analdg atalaki-
tasahoz a h(t) alulateresztd szlirének idealisnak kéne lennie, ilyet pedig a gyakorlatban nem
lehet megvalositani.

Kvantalas

A kvantalas feladata, hogy a mintavett jelet a kvantalasi szinteknek megfeleld, digitalisan is
értelmezhetd jellé alakitsa, mégpedig tigy, hogy az egyes mintakat a legkdzelebbi kvantalasi
szintre kerekiti.

Jel-zaj viszony
A jel-zaj viszony (Signal-to-Noise Ratio, SNR) két teljesitmény jellegli mennyiség hanyado-
saként azt fejezi ki, hogy hogyan viszonyul a jel teljesitménye a hattérzajhoz:

P A\’ Pie) Ajel
SNR = 2% = <L> . SNRYB=101lo 2 )=201l0 )
Pzaj Azaj 810 Pzaj 810 Azaj

ahol P az atlagos teljesitmény, A pedig az amplitidé négyzetes atlaga. Sokszor a decibelska-
lan feltlintetett érték az informativabb.

Kvantalok tipusai

Ekvidisztans kvantalo

Tegyiik fel, hogy a kvantdlds —C és C kozotti jelszintekre torténik, mégpedig ezt a szakaszt

tobb részre osztva, ugy, hogy az osztépontok kozti tavolsag A. Ez azt jelenti, hogy N = %

darab kvantalasi szint van. Jelolje a kvantalt (kerekitett) jelet X. Ekkor a kvantalas hibajat le-
, . N S . o A A . 12 .
irhatjuk az & valoszinliségi valtozoval, mely e = x — X € [— 5’5]' Mivel a kvantalds soran a
kerekités zajként jelentkezik az eredeti jelhez képest, fontos mutatdoszadm az SNR érték, mely
linearis kvantalora a kovetkezoképp szamolhat6:

A A
2 2 1 A

2 2 2 2
DX Pzaj=IE(€)=JAuP(u)du=jAu—du

Pt =3 AT 12
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és ebbol:

2 2
€?/2__34C* 3., 3.,

AZ/12 2 Az 2 T2
ahol n a linearis kvantalo bitszama.

SNR =

Logaritmikus kvantalo
Ha a kvantalas ekvidisztans, akkor példaul beszédjelek esetén a felhasznalok a rajuk jellemzo
hangtartomany miatt kiilonb6z6 SNR értéket kapnak: ugyanazon a linearis kvantalon egy

2
[—C, C] maximalis kivezérlésti jel SNR értéke SNR = S5l

Y mely egy fele annyira kivezérelt

12

2
jel esetén, ahol x,, € [~ =,%| ajel-zaj viszony romlik: SNR' = == (£)" = 2SNR

A megoldas az, hogy az ekvidisztans kvantal6 x; osztopontjait valamilyen £ fliggvénnyel mo-
dositva y; = €(x;) osztopontokkal megvalositott kvantalot kapunk.

d o(x) Ay 2C 1 A 1 2C
—_— )y — = — , = —
dx - Ax; N Ax; X £ (x;) N
Az SNR szamolasahoz:
c
P =BG = | xp() dx
-C
N N
2 5 Axl- ¢ 1
P, = E(e%) = Z E(e*|x € Ax;))P(x € Ax;) = Z—p(xi)Axi = KJ ——p(x) dx
i=1 i=1 12 —C€, (x)

ahol K valamilyen konstans. Ebb6l az SNR a kovetkezo:
¢ 2
J_ . x*p(x) dx

c_ 1
f_cmp()() dx

SNR =K'

Differencialis kvantalas

A differencidlis kvantalas folhasznalja, hogy az el6z6 minta meghatirozo a kurrens mintara
nézve. Megvalosithatja ezt példaul tigy, hogy ahelyett, hogy a kivezérelt jel minden minta;ja-
hoz annak fesziiltségértékét rendeli hozza, csak azt mutatja meg, hogy a jel csokkent vagy
nétt-e az el6z6hoz képest.

hagyomanyos kvantalds: 0111 1010 1001 01 01 00

differencialis kvantalas: 110010000

E moddszer hatranyossaga, hogy nem koveti pontosan az eredeti jelalakot (pl. a nagy 01-11
ugras ugyanugy 1 mint a kisebb 10-11 ugras; valamint az 10-10 valtozas nélkiili allapotot is
vagy csokkenésként (0) vagy novekedésként (1) értelmezi).

A differencialis kvantalads masik megvaldsitasa az, amikor az eddig beérkezett jelbdl ismerve
azt, hogy mi a kovetkezo jelek valdsziniisége, a valdsziniibb (gyakrabban eléforduld) jelhez
rovid kodot rendeliink:

P buta kod  okos kod

...rtl 0,999 00 0
. ., - ...tét gépolajat! 0,0005 01 10
Kerek egy j6 pohdr so... . rétet a puskamba! 00003 10 110
...ntésbol maradt 1ét! 0,0002 11 111
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|

Lloyd-Max algoritmus f\w\:}‘*"" QL i~ 005=~+W\V°'
Keressiik az optimalis logaritmikus kvantalot megval6sitd €,,, fliggvényt, vagyis a feladat
azon ¢, meghatarozasa, ami mellett

Yopt: r{l}(%( SNR

Ez a feladat rendkiviil nehéz, mivel a jel valosziniiségi eloszlasa, p(x), nem ismert. Ezért
szub-optimalis megoldast keresiink, ahol £,popt fliggetlen p(x)-tol:
?
LMot

2 ~
22(x)

A Lloyd-Max algoritmus a kdvetkezéképpen jar el: Kiindulaskor két halmazt tekint:

- £'(x) ~ ; - esubopt ~ log(x)

A = {A,, ..., Ay} a kvantalasi szintek kozti kiillonbségek halmaza,
Q ={q1, .-, g} a kvantalo osztopontjainak halmaza.

Az algoritmus a hliségkritérium megfelel6 mértékii csokkenéséig fut, mely hiiségkritérium:
N

J0.0 =Y [ @-a@ i

i=1 A
Az algoritmus 1épései a kovetkezok:
Ha az adott 1épésben optimalis Q ismert, akkor
Apopt = {x: (x — q,)* < (x — q)%, Vii # £}
Ha az adott 1épésben optimalis A ismert, akkor
) N p(x) dx

=———=E € Ap) VY
q[,Opt J'A[p(x) dx (xlx {’)

Ez a rekurziv algoritmus, mely a
A(0),Q(0) - Aopt(l); Q(0) —» Aopt(l); Qopt(l) - Aopt(z): Qopt(l) =

utvonalon halad, megtaldlja a globalis sz¢lsOértéket.
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Digitalis jelek

Definicio

Azt mondjuk, hogy az x(n), n € Z fuggvény digitdlis jel, ha értékkészlete diszk-
rét értékekbdl all, vagyis x(n) € N.

Tulajdonsagok

Definicio

Azt mondjuk, hogy az x(n) digitalis jel véges idejii (tartéju), ha x(n) # 0 csak
n € [A, B] esetén teljesiil.

Definicié6 Azt mondjuk, hogy az x(n) digitalis jel kauzdlis (belépd), ha x(n) = 0, n < 0.
Definicié Azt mondjuk, hogy az x(n) digitalis jel véges dtlagui, ha
N
lim — > xm <
[0 0]
NBw2N +1 Ly
n=-N
Definicié Azt mondjuk, hogy az x(n) digitalis jel véges energidju, ha
z x%(n) < o
n=-—oo
Definicié Azt mondjuk, hogy az x(n) digitalis jel véges dtlagenergidju, ha
N
li ! Z () <
(00}
Now2N +1 Ly
n=—N
Definici6 Azt mondjuk, hogy az x(n) digitalis jel periodikus N periddusiddvel, ha AN
melyre x(n) = x(n + kN),Vk € Z
Specidlis jelek
Dirac-impulzus 6(n) = {(1) Z i 0 oo o o ! o o o o
Egységugras u(n) = {(1)' n<0 —.—.—.—.—J—I—I—L
, n=0
Egységsebesség-ugras v(n) = {2' Z ; 8 —o—o—o—o—o—t—l—l—>
Szinuszos jel x(n) = A - cos(2mfn) ol ? 1.
S LR

Digitalis jelek koziil csak olyan szinuszos jel lehet periodikus, melynek frekvenciaja f racio-
nalis szam, azaz f € Q.
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Digitalis jelek linearis és idéinvarians transzformacioi
Definicié  Legyen T a rendszeroperator (vagyis y(n) = T{x(n)}). A rendszer linedris, ha
T{a1x,(n) + axx,(n)} = a,T{x; (M)} + a;T{x, (M)} = a1y, (n) + a,y,(n)
Definici6  Legyen S az eltolasi operator, vagyis S¥{x(n)} = x(n — k). A rendszer linedris
és idbinvaridns, ha
T{skxm}} = sK{Tlxm)}},  wn

Az ilyen linearis és idGinvarians rendszerek jelolésére az LTIS (Linear Time
Invariant System) roviditést hasznaljuk.

LTIS leirasa az impulzusvalasszal
Eldszor lassuk be, hogy teljesiil az alabbi egyenldség:

[0

x(n) *6(n) = Z 6(k)x(n—k) = Z x(k)6(n—k) = x(n)

Kk=—o0c0 k=—o0
Vagyis a §(n) a konvoltci6 egységeleme: x(n) * §(n) = x(n)

Ennek felhasznalasaval keressiik egy rendszer x(n) bemend jelre adott y(n) valaszat:

y(n) = T{x(n)} = T{ > sk =71 ) x(k)sk{S(n)}} -
k=—o0 k=—o0
- Z (ST} = Z x(K)h(n — k) = Z h()x(n — k) = x(n) * h(n)
k=—00 k=—00 k=—c0

ahol h(n) = T{6(n)}.

Ha ezt kauzalis esetre vizsgaljuk, akkor ugyanezen levezetés szumaiban a futdindex a [0, o)
intervallumot jarja be, és itt is teljesiil, hogy y(n) = x(n) * h(n).

Ugyanugy, mint az analdg jelek esetében, itt is igaz, hogy a transzformalt tartomanyra valo
attéréssel a konvoluciok szorzassa vihetdk at.

BIBO-stabilitas

Definicio Azt mondjuk, hogy egy x(n) digitalis jel transzformaciojat megvaldsito sziird
BIBO stabil, ha minden korlatos bemenetre korlatos kimenetet ad, vagyis

AM,, My: |[x(n)| < M, = |[y(n)| < M, vn

Nézziik most, hogy milyen olyan feltételt tudunk megadni h(n)-re, melyb6l a BIBO stabilitas
kovetkezik!

< D RE xm =Bl < ) @l x( - 0] <

k=—o0 k=—o0

Z h(k) x(n — k)

k=—o

ly(m)| =

< i |h(k)| My = M, i |h(F)| < M), - i |h(k)| < oo
k=—o0

Kk=—oc0 k=—oc0

vagyis a stabilitas feltétele, hogy h(n) abszolut értékben szummabilis legyen.
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o

SzlirOk

Egy T sziir6t az operatorok Op = {+,%X, S} halmaza és a topoldgia valosit meg. A sziirékkel
kapcsolatos két alapkérdés az analizis és a szintézis (vagyis h(n) felirasa a sz{ir6 halozatabol
¢s forditva).

Sziirdk tipusai

FIR (Finite Impulse Response, véges impulzusvalaszi)

W @ ) C .
) T (@) —Z}b,-x(n—;)
]:
bg by b, by y(n) = Z h(k)x(n — k)
k=0
. - y()  ahol |
-- h(]):{b]' ]:0,,N
0, egyébként

IIR (Infinite Impulse Repsonse, végtelen impulzusvalaszi)

@) @ N)
x(n)
T T {4 T |-
bo bl bz bN :V(n) =Zb] x(n_])
j=0

- - v™)
2 |—F
Ez a szilir6 ilyen megvalositassal végtelen komplexitasu, nem implementalhato. Ha azonban a
megvaldsitast rekurzidval végezziik, azaz példaul

n n-1
1
y(m) = —= D x(0) > 1+ Dy() = ) x(k) +x(m) = - y(n = 1) +x(w)
k=0 k=0
akkor a latszolag végtelen komplexitasu szlir6 egyetlen késleltetovel megvalosithato:
x(n) y(n)
—>—
1
n+1 -
T
n
n+1
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Rekurziv architektura

) 2 (M)
x(n)
T T --—-———> T
bo by b, by
- y(n)
2 >
—--
(N) (2) (1)
T [€«—--- T T <
ay a; a
) 2

A fenti dbran megvaldsitott sziird egy altalanos rekurziv megvalositasu sziird, melynek kime-
nete:

N M
y) == ay—0+ ) bx(n-))
i=1 Jj=0
visszacsatolt elérecsatolt

Ez egy N-edrendii linearis differencia-egyenletet hataroz meg:
N M
QoY) + Y ary(n—i) = Y b x(n—))
i=1 =0

]

N

M
Yaym-0=) bxn-)
' =0

i=0 j

Differenciaegyenlet
Legyen adott a 3:}_, a; y(n — i) = Y7L, b; x(n — j) differenciaegyenlet az y(—1), ..., y(=N)
kezdeti értékekkel. Ennek megoldésa a kovetkezo:

Alkalmazzuk az argumentumban val6 kivonds helyett a visszaléptetési operatort, és emeljiik
ki a jeleket. Ennek soran két valtozot kapunk, melyeteket jeloljink D-vel és p-val:
N

D:=Zai5i, p(n) ::ibj x(n—j)
=0

i=0 J
E véltozokkal a differenciaegyenlet:
Dy(n) = p(n)
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A differenciaegyenlet megoldasat a homogén valamint az inhomogén partikularis megoldas
osszegeként kapjuk, vagyis y(n) = y,(n) + y,(n).

yr(n):Dy,(n) =0,  y,(n):Dy,(n) = p(n)

Y1) = yp(n) + y,(n) > D (y,(n) + 3,(0)) = Dyy(n) + Dy, (n) = p(n)
Ezt kovetden elégitjiik ki a kezdeti feltételeket, vagyis a megoldas altalanos menete:

1. homogén megoldas, 2. partikularis megoldas, 3. altalanos megoldas, 4. kezdeti feltételek

1. Homogén egyenlet megoldasa

Lassuk be, hogy S{f (n)} = const - f(n), ahol f(n) = A™. Ez teljesiil, hiszen S{A"} = A71A"

ahol 171 valdban konstans. Ebbél kiindulva:
N

DA =0 = Z a;SHA™}
i=0
Kiemelve és leosztva 1"-el, majd pedig beszorozva AN -el azt kapjuk, hogy
N

Z CiAN_i =0

i=0

2. Inhomogén rész partikularis megoldasa
A D y,(n) = p(n) inhomogén egyenletet probafiiggvény segitségével oldjuk meg. Néhany
alapvet6 probafiiggvény:

p(n) y(n)
M-u(n) | K-u(n)
M-r"-u(n) |K-r"-u(n)
cos(2mfn)
sin(2mfn)

}A cos(2nfn) + B cos(2mfn)

M
aley nMert Z by nM~k 1
=)

3. Altalanos megoldas
N

y(n) = Z ciAi + yp(n)
i=1
4. Kezdeti feltételek kielégitése

Keressiik a ¢; konstans egylitthatokat az y(—N), ..., y(—1) ismeretében. Ehhez az iteraciot
folhasznalva az altalanos megoldasbol azt kapjuk, hogy

N
Z ==y, () +y1), 1=01,..,N—1

i=1
Ez egy linearis egyenletrendszert hataroz meg: . U oude~ roude ~Fniv
£ y-y,
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Példa
Oldjuk meg az y(n) + 1,5y(n — 1) + 0,5y(n — 2) = x(n) + 0,5x(n — 1) differenciaegyen-
letet x(n) = u(n) gerjesztés és y(—1) = y(—2) = 1 kezdeti feltételek mellet.

1.
224+151+05=0

_ —15+4/2,25-2
B 2

/11'2 - /11 = _0,5; Az = _1
2.)
Yp=M-u(n) >M+15M+05M=1+0,5
M =05
3)
y(n) - Cl(_O,S)n + Cz(_l)n + 0,5
4.)

y(0) = —1,5y(-1) = 0,5y(—2) + x(0) + 0,5x(-1) = —-15-0,5+1 = —1
y(M)|p=o: ¢ +¢c, +0,5=~-1

y(1) = =1,5y(0) — 0,5y(~1) + x(1) + 0,5x(0) = 1,5 - 05+ 1+ 0,5 = 2,5
y(M)|p=1: —=0,5¢; —c, +0,5=2,5

[—(1),5 —11|2_;] ca=h6=-25

y(n) =[1(-0,5)" - 2,5(-1)" + 0,5]u(n)

Komplexités és kanonikus alak

Valaszjel szamitasa
EQy a és b paraméterivel adott haldzat analizisének feladata a rendszer impulzusvélaszdnak

megadasa. Legyen relaxalt a rendszer, vagyis y(—1) = -+ = y(—N) = 0. Tegyiik fel, hogy
ismerjiik a rendszer differenciacgyenletébdl kiszamithatd A; egyiitthatokat. Ekkor

N

h(n) = Z e AT

i=1
melyre ha |4;| < 1,i = 1,2, ..., n, akkor ebbdl a BIBO stabilitas kovetkezik.

Komplexitas x(n) + > .
Egy rendszer komplexitisa alatt a v
T

Y

(?—»y(n)

benne talalhato késlelteték szamat a b
értjiik. <_®(_¢_,®_,
A 14. oldalon felirt rekurziv architek- ay T b,
tura komplexitasa eszerint ® @
O(M+ N)
ez azonban a kanonikus alakra valo > T 2
attéréssel . ! .
O(max{M, N}) oot Y oot
nagysagrenddé vihetd at, mely joval ay T by
kisebb az el6z6 komplexitasnal. <_®(_L_>®_>
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Z-transzformacid
Definicié6  Egy tetszéleges x(n) digitalis jel Z-transzformaltja alatt a kovetkezd sordsszeget

RoC

értjuk:

o0}

Z{x(n)} = Z x(n)z™™ = X(2)

n=-—oo

Ebbdl az eredeti jel inverz Z-transzformacioval kaphaté meg:
Z7HX ()} =x(n)
Az x(n) jelben szereplé n € Z, mig az X(z) jelben szerepl6 z € C.

A RoC (Region of Convergence) jelentése az a komplex szdmhalmaz, melynek elemeire még
teljesiil, hogy a Z-transzformalt (eldallitasa) véges.

RoC-

RoC ={z€C:|X(2)| < »}

vizsgalat
[e9) [e9) -1 [e9)
X@I=| D xmz < Y [kl = Y x@lp + Y [xlp" =
n=-—co n=-oo n=-co n=0
= ) =l + Y [xlp"
n=1 n=0
p<B p>A

Tehat RoC = {z € C: A < |z| < B}.

Nevezetes Z-transzformaltak

. MLC: '('.%wo z- 'S\JL

Z{6(m)} =1 Rot-irretevans
Z{u(n)} = % RoC={z€C:|z| >1}
Z{a™u(n)} = RoC ={z€C:|z| >a}

Z{—a™u(-n—-1)} =

Z—Qa

RoC ={z€C:|z| <|al}
z—a

Tulajdonsagok

1.) linearitas

Z{ax;(n) + axx,(M)} = a1 Z2{x; (M)} + a,Z{x,(n)} = a1 X, (2) + a,X,(2)

2.) id6beli eltolas

Z{S"{x(n)}} = Z{x(n — k)} = z7¥X(2)

3.) derivalt

dx(z)

Z{n-x(n)} =—z p

4.) konvolucio

Z{x(n) x y(m)} = X(2)Y (2)
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Rendszerek jellemzése a Z-transzformacid segitsegevel

Z¢érus és polus
Definicio  Legyen f(z) analitikus fiiggvény. Ha f(z,) = 0 és f(z) felirhatoé mint
f(@) = (z=2)"f (2)

ahol f (z) # 0 és analitikus valamely n > 1 szamra, akkor azt mondjuk, hogy
Zy n-Szeres zérusa f-nek.

Definicio  Legyen f(z) analitikus fiiggvény. Ha f(z) felirhaté mint
1
f(z) = Z=z)" h(z)

ahol h(z,) # 0 és analitikus valamely n > 1 szamra, akkor azt mondjuk, hogy
zy n-szeres polusa f-nek.

A rendszer impulzusvalasza

Ismeretes, hogy egy LTI rendszert leirhatunk az impulzusvalasszal. A Z-transzformaci6 tulaj-
donsagai kozt pedig lattuk, hogy a konvoluciot szorzéssa alakitja. E két tényt felhasznalva
keressiik a rendszer impulzusvalaszanak megfeleld transzformaltat, az atviteli fliggvényt.

Legyen egy differenciaegyenletével adott rendszer:
N

> awm -k =ib,- x(n - )
=0

k=0

Vegyiik mindkét oldal Z-transzformaltjat! Ekkor azt kapjuk, hogy

N M
Z a,z %Y (2) = Z b; 277 X(2)
k=0 j=0
Innen a keresett Y (z) kirendezhetd, mégpedig
M —7 — —
i=obj 27/ by + byz7t 4+ -4 byz™M
Y@ = o X (@) = ~——— u% —X(2)
k=0 Ak Z ag+az7-+--+ayz

Ha az x(z) gerjesztd jel a Dirac-impulzus, akkor a jobboldalon all6 X (z) ennek transzformalt-
ja, vagyis 1. Ha elnevezziik a fenti kifejezés szamlalojaban allé polinomot B(z)-nek, a neve-
z6ben 1évot pedig A(z)-nek, akkor a H(z) atviteli fiiggvény a kovetkezOképp irhato:

A B(z) = 0 egyenlet megoldésai (zy, ..., zy) zérusok, az A(z) = 0 megoldasai (py, ..., py)
pedig polusok lesznek. Igy tehat az atviteli fliggvény irhaté mint

Z_M@ (z—2)(z —27;) ...(2 — z) _ ZN_Mﬁn%ﬂ(Z — Zm)
z7Nay(z —p1)(z = p3) .. (z — pn) ao [3=1(z = pn)

Ez a polinom per polinom alaku kifejezés tobbnyire egyszertisithetd és igy inverz Z-transzfor-

crer

H(z) =
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Z¢rus-pOlus diagram
A zérus-polus diagram alkalmas egy rendszer leirdsdra azaltal, hogy a komplex szdmsikon

abrazolja a rendszer zérusait és polusait. Ez a leiras a (késobb latott) gyokinvariancia miatt
nem egyértelm, de jellegre azonos rendszereket eredményez.

2
Z3
O %x—%
P1 D2
Zy

BIBO stabilitas

A BIBO stabilitas feltétele a Z-transzformalt tartomanyon az, hogy a polusok az egységkor
belsejébe essenek, azaz hogy p; < 1, Vi.

Gydkinverzio, minimalfazis
Definicio A z; gyok inverze alatt a (z;)~! komplex szamot értjiik, ahol a feliilvonéas a
komplex konjugalast jelenti.

Allitas Egy rendszer amplitudo-karakterisztikdja a gyokinverziora (egy konstans szorzo-
tol eltekintve) invarians.

Ez azt jelenti, hogy a sziird karakterisztikdja nem valtozik, akar polusokat, akar zérusokat
invertalunk. Ennek haszna abban mutatkozik meg, hogy egy nem BIBO stabil rendszerbdl
gyokinverzioval, a polusok egységkoron beliilre vitelével a rendszer BIBO stabillé tehetd.

Definici6 Azt mondjuk, hogy a H(z) atviteli fliggvénnyel adott szliré minimalfazisu, ha a
szurd és inverze is kauzalis és stabil.

H(z) stabilitasa és kauzalitasa azt jelenti, hogy polusai (az A(z) gyokei) az egységkoron beliil
vannak. H(z) inverzének stabilitisa és kauzalitisa azt jelenti, hogy ennek poélusai (a B(z)
gyokei) is az egységkoron beliilre esnek. Ez azt jelenti, hogy a minimalfazisu sziird polusai is
¢€s z€rusai is az egységkoron beliil vannak.
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Spektralis analizis

A spektralis analizis célja, hogy az idében valtozo jelet a transzformalt tartoméanyban ismerje
meg, ¢s a kiilonbozo iddpillanatokban tett megfigyelésekbdl képes legyen szamos koltség-
csokkentd, hatékonysagndveld vagy eldrejelzd funkeidt megvaldsitani.

Jelentdség

Tobb teriileten is jelends haszon merithetd:
Kommunikacios technologia: savszélesség és adatatviteli sebesség optimalizalasa
Szeizmologia: toldrengés-eldrejelzés
Orvosi alkalmazadsok: epilepszia-elérejelzés
Rezgésanalizis: hibas gépelem mechanikai diagnosztikéja

Spektrum megismerése

A spektrum megismerése a digitalis jelfeldolgozas eszkozeivel a kdvetkezd titvonalon zajlik:
a bejovo x(t) jelbdl mintavételezés és kvantalas Gtjan elballitjuk az x(n) digitalis jelet. Ebbol
diszkrét Fourier-transzformacioval megkapjuk az X (w) diszkrét Fourier-transzformaltat.
Ebbdél az analog frekvenciatartomanybeli X (w) jel sziiréssel kaphato.

DFT

Az x(n) jel diszkrét Fourier-transzformaltjahoz (DFT) a kovetkezé tGton juthatunk:

Xs(w) = F{x(m)é(t —nT)} = Z x(n) e~in@

n=-oo

k2m 0 e ot N-1 oo 2_71_

Xs(w) =X(T)=Zx(n)e]n Z x(n+IN) - e 7*N
wzsz” n=-oo n=0l=-

perlodlkus: xp(n)

Ha a digitalis jel végsé tartoju, akkor x,(n) = x(n), és igy a DFT:

N-1

21 _.kZ_TL'
X(kW>::X(k):Zx(n)'ej N; k:()""IN_l

n=0
vagyis egy linearis egyenletrendszert kaptunk, melynek alakja
X=Wx

ahol X = [X(0),X(1), ..., X(N — 1)], x = [x(0), x(1), ..., x(N — 1)], a W matrix pedig

., 2T
. —Jjkn—
W = [Winlk=0,..N-1, Wiy = e "N

n=0,..,.N—-1

Ha pedig ismerjiik X (k)-t akkor innen

11— Jnw

X, (o) = kz;oX(k)P (w + k%”) P0) = 3

szobeli vizsga 1503 20/28 2015. junius 3.



Digitalis jelfeldolgozas — PPKE ITK

Inverz DFT
Az inverz DFT végrehajtasa a matrixegyenletbdl trividlisan lathato:

x =W X
A W matrix tulajdonsagai

2T
Legyen Wy = e /. Ekkor igazak az alabbiak:

N
K4+~
W, ? = —Wk WEN = W, Ha N = ML, akkor Wj™ = W}k

-1 1T oz
W™ = EW , azaz unitér
Komplexitas

A DFT komplexitasa (az 0sszeadasok €s szorzasok szdma) a kovetkezo:
SZOTZAs: NZ db
Osszeadas: N(N —1) db

FFT

A DFT komplexitasanak csokkentésére szolgéal az FFT modszer. Lényege, hogy az adatokat
tobb dimenzidban reprezentalja. Példaul:

Legyen N = LM. Sorvektor helyett torténjék az dbrazolas egy L X M-es matrixban, X esetén
oszlop-, X esetén sorfolytonosan.

x(0,0) -+ x(0,M)

X = [...] helyett : : ‘, x(n) » x(L,Lm) :n=mL+1
x(L,0) - x(L,M)
1X(0,00 - X(0,M) oM

X = [...] helyett : : ], X(k)HX(p,q):kz/PK+q
X(L,0) - X(L M)

Ekkor a DFT igy szamolhato:

L-1M-1 L-1 M-1
X(p‘ q) e Z Z x(mL + Z)WI\EPM'f'q)(mL%—l) — Z [(Z X(m, Z)Wﬂjm> Wqu] M/Lpl
=0 m=0 =0 m=0

Bar a kifejezés latszolag bonyolultabb lett, komplexitasa sokkal kedvezdbb:
Radix-2 pontos FFT esetén:

Ldb . M db ;
‘ M-dim DET LM db szorzas L-dim DET ‘ 0sszesen
SZOTZAs: LM? LM L*M NM+L+1)
Osszeadas: | LM(M — 1) 0 LM(L—-1) NM+L-2)
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Szurotervezés

Digitalis szlirétervezeés
A szilirétervezés feladata egy olyan h koefficiensvektor megadasa, mely paraméterekkel egy
kivant H,; (w) karakterisztikaja szlirét valdsithatunk meg.

Adott H; (w) esetén a h;(n) impulzusvalasz integralassal kaphato:

T

1 .
hys(n) = E.f H;(w)e!*™" dw =
—TT

W, sin(n - w,)
T n-w

Ezzel két baj van: nem FIR és nem kauzalis (tehat megvalosithatatlan és hasznalhatatlan).

Kauzalitas és FIR mivolt megvalositasa

Egyrészt olyan H,;(w) karakterisztikabol kell kiindulni, melybdl el6allithatd kauzalis sziir.
Ennek megallapitasara szolgal a Paley—Wiener-tétel.

Paley—Wiener-tétel

Tétel (Paley—Wiener-tétel a kauzalitasrol) Legyen adott egy kivant atviteli karakterisz-
tika Hy(w). A hy(n) akkor stabil Vn-re, ha

f In(|Hyg (@)])] dw < o0

Masrészt sziikséges, hogy az impulzusvalasz véges legyen. Ezt legegyszeriibben a
_ (hg(n), n=0,..,.M—-1
h(n) = { 0, egyébként
levagassal tehetjiik meg. Ha ezt ugy valositjuk meg, hogy a h;(n) fiiggvényt valamilyen
w(n) fiiggvénnyel szorozzuk meg, mely w(n) fiiggvény az el6z6 esetben példaul
()_{1, n=0..M—-1
WAV =10, egyébként
akkor ablakolasrol beszéliink.

Nem minden ,,evidensnek 1atsz6” ablakolofiiggvény képes a H; (w) karakterisztikdhoz hason-
16 szlird eldallitasara, a levagas miatt elveszd egyes felharmonikusok a végsd karakterisztikat
jelentdsen befolyasolo, un. side lobes révén tonkreteszik a sziirot.

Néhany szokasos ablakolofiiggvény

négyszogletes Bartlett
M-1
2 i ——
wn) = 1 (=]
=1-
w(n) M —1
Hanning Hamming
(m =05(1 (2”")) (n) = 0,54 — 0,46 (2”")
w(n) =0, cosM_1 w(n) =0, , cosM_1
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Adaptiv jelfeldolgozas

Az adaptiv jelfeldolgozas célja, hogy valamilyen ismeretlen rendszer hatasat, viselkedését
modellezni tudjuk, illetve ennek ismeretében a rendszer kimenetét megfeleléen vegyiik figye-
lembe. Ilyen ismeretlen rendszerre lehet példa egy idegrendszer vagy akar a komplexitasa
miatt megbecsiilhetetlen internet. Ezt a feladatot latja el az ASP. Két lehetséges felépités:

/7
— —c@ ASP —
+
20

ASP

Wiener-sziirés
Legyen az ismeretlen rendszerbe belépb jel xj, a kilép6 jel d. Legyen ugyanez az x;, jel az
ASP bemenete is, melyre a kimenet y,.. Végiil képezziik a két kilépd jel kiilonbségét:

ex = di = Yk

]
Yk = Z WjXg—j
j=0

Legyen x; gyengén stacionarius sztochasztikus jel: E(x,) = 0 Vk, és az autokorrelacid
R(1) = E(xpxx—;). Tegyiik fel, hogy az ismeretlen rendszerbdl kilépé dj, jel is ugyanilyen
tulajdonsagu. E két jel figyelembevételével a keresztkorrelacios fiiggvény: (1) = E(dyxi_;).
Definialjuk az autokorrelacios matrixot

R = [Rjjlizo..;,  Rij = R(i—)) = E(xpe—ixy—)
Jj=0,..J

¢és a keresztkorrelacios vektort

Az ASP a kovetkez6t valositja meg:

r = [r]i=o,..; 1 =r(0) = E(dyxk—;)

Az autokorrelacios matrix tulajdonsagai
1.) Szimmetrikus
R=RT
2.) Hermitikus
va,b € R/*1: aRb = b"Ra
3.) Pozitiv szemidefinit
va,be R/*1:a"TRa> 0
4.) Sajatvektorai teljes ortonormalt rendszert alkotnak
Rs; =A;5;i=0,..,J, s/s;=06;;
5.) Sajatértékei nemnegativak
A =0 Vi

6.) A matrix nyoma a sajatértékeinek 0sszege

]
trace(R) = Z A
i=0
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A Wiener-sziirés alapfeladata

A Wiener-sziir§ olyan w,,. optimalis egyiitthatovektort ad, melyre az ey, jel négyzetes varha-
to értéke a lehetd legkisebb:
Wopt ¢ min E(ef)
w

Ez a fent bevezetett korrelacios vektor és matrix felhasznalasaval:
Wopt : min{w’'Rw — 2r'w}
w

Ez egy minimumkeresési feladat. A megfeleld derivalasok utan a feladat az alabbi roppant
egyszerl matrixegyenletre redukalodik:

Rwy, =T

Felvetddnek azonban a praktikus megvalositas problémai, nevezetesen a real-time megoldha-
tosag €s a megoldas menete ismeretlen R és r esetén.

Algoritmikus megoldas

Real-time megoldhatosag
Bizonyithato, hogy a
w(k +1) = w(k) — A{Rw(k) — r}
rekurzido megtalélja a w koefficiensvektort. A konvergencia sebessége A helyes megvalaszta-
satol fiigg.
A 2
opt Amin + Amax

Aopt eseten a rekurzid a lehet6 leggyorsabban konvergal. Ez azonban nem tokeéletes megoldas,

mivel a A sajatértékek meghatarozasa nem konnyii feladat (és plane nem gyorsabb, mint a
matrixinverzios megoldas). Matrixinverzid nélkiil is belathat6é azonban, hogy

2

fort = R0y

¢és ezzel a becsléssel a

2
wk+1) =w(k) — W{Rw(k) —r}

rekurzid real-time megoldasa a feladatnak.

Megoldas ismeretlen R és r esetén: Robbins-Monroe

Legyen ¢ = {(x,dy), k = 1, ..., K} K méretii tanuldhalmaz. Ekkor az algoritmus a kdvet-
kezdére modositva képes az R és r nélkiili megoldasra:

J
Wl(k + 1) = Wl(k) - A(k) dk - z ijk—j Xk—1r l= 0, ,]
Jj=0

Megjegyzendd, hogy itt A ,,visszatérése” nem jelent gondot, A tobbnyire a becslési mddszer
altal elére meghatarozott konstans.
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Linearis prediktiv kodolas
Predikcid esetén is mitkodik mind a rekurziv médszer, mind pedig a Robbins-Monroe algo-
ritmus. A tanulohalmaz hossza ez esetben a megfigyelt idésor hossza minusz a fokszam:

K=L-]

Mar korabban lattuk, hogy ha a kvantalasi jelszintekhez rendelt azonos hosszusagi kodok
helyett a gyakoribb jelszintekhez rovidebb, a ritkdbbakhoz pedig hosszabb kodot rendeliink,
akkor jelentds megtakaritas érhetd el. Ezt valositja meg a linearis prediktiv kodolas (LPC)
mind az ad6é mind pedig a vevo oldalan.

A spektralis hatékonysag novelése adaptiv jelfeldolgozassal
Definici6 A spektralis hatékonysdg mérészama megmutatja, hogy mekkora az adatatviteli

e/
értéket.
Hz

sebesség frekvenciankénti hanyadosa, vagyis megadja a

A spektralis hatékonysag jelenleg a mobilszolgaltatasok terén 0,52 ami messze elmarad az
elméletileg lehetséges 5,6-es értéktol.

Multipath propagation

Kulcskérdés a radiotavkozlés esetén az, hogy a kisugarzott jel nemcsak egyenes vonalban
terjed az ado és a vevo kozott, hanem visszaverddéseket €s igy késleltetést is szenved. Igy az
atvitel az idealishoz képest egy reflexiobdl ered6 tényezdvel egésziil ki.

H(f) = 1+ pe J2™"
N———m—/
reflektalt

A szolgéltatas csak azon a teriileten nyujthatdé megfeleld mindséggel, ahol a bithiba-
valdsziniiség a szolgaltatasi kiiszob alatt marad.

A szolgéltatasi teriilet megndvelésére kiilonféle modok allnak rendelkezésre:

Space diversity

Két antenna alkalmazasaval a sugarzott jel még akkor is megfelel6 mindségben foghato, ha az
egyik antennara a reflexiok miatt hasznalhatatlan jelsorozat érkezik. Ekkor a masik antennan
fogott jel értelmes.

Hatalmas hatranya az antenndk épitési, lizemeltetési, karbantartasi koltségeinek megkétszere-
zbdése.

Frequency diversity

Két (megfeleléen megvalasztott) frekvenciasav alkalmazasa esetén az egyik savban jelentkezd
leszivas a masikban nem jelentkezik, igy szintén megfeleld az atvitel.

Hatalmas hatranya hogy az amugy is telitett rddidspektrumban két frekvenciasavot kell birto-
kolni, mely hatalmas koltségekbe keriil.

ASP
Jo algoritmus talalasa esetén a hibak helyreallitasa gyors, és mivel a DSP processzorok olcson
beszerezhetdek, a koltségek nem szamottevoek.

Kommunikaciés modell
v A modell a valésagban fellépd torzitd hatdsokat hivatott
é X,  szemléltetni: az eredeti y; binaris jelsorozat az id6figgo,
ismeretlen csatornatorzitas (hj) ¢és az additiv v zaj miatt
modosul, az antennan az x;, jelet vessziik.

Yk n
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Ez a kovetkezo:
Xk = hoyi + z Ri—nYn + Vi
nn#k

Ebbdl az eredeti y, jel visszaallitott y, formaja Wiener-szlrés és kvantalds utdn nyerhetd
vissza. A szlrt jel:

]
Vi = z WjXg—j = qoYir + Z Qr—nYn T Nk

Jj=0 nn+k

Ez Wiener sziliréssel kaphato, mely ismeretlen csatorna esetén a kdvetkezoképp alakul:

Tk = {(xk, dk), k= 1, ,K}

J

Wl(k + 1) = Wl(k) - A(k) Yk — z ijk—j Xk—1) l= O, ,]
j=0

Mivel y, ismeretlen, tanulohalmaz nélkiil két lehetséges modon tehetjiik teljessé az algorit-
must:

1. Iddészakonként (csomagkapcsolt adatatvitelrdl 1évén szd, a csomagok elején) meg-
egyezés szerinti yy, jelet kiildiink, melynek torzuldsabol az algoritmus a tanuld perio-
dus alatt kalibraciot végez.

2. Az y, jelet az algoritmusban y,-val becsiiljiik.
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Jegyzetek
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Evkozi eredmény

max. kapott
jegy jegy
1. Kis zarthelyi dolgozat 5
2. Kis zarthelyi dolgozat 5
3. Kis zarthelyi dolgozat 5
Kis zarthelyik | 4. Kis zarthelyi dolgozat 5
5. Kis zarthelyi dolgozat 5
Osszesen 25
l. Elért jegyosszeg
1. Hazi feladat 3
2. Hazi feladat 3
Hazi feladat | 3. Hazi feladat 3
Osszesen 9
I1. Elért jegyosszeg
Nagy zarthelyi dolgozat 5
Osszesen 5
I11. Elért érdemjegy
(1. + 11.)/50 + 111./2 5
Féléves érdemjegy

Ha a kis zarthelyi dolgozatok atlaga és a nagy zarthelyi dolgozat eredménye legaldbb 4-es,
akkor a hallgatd mentesiil a vizsgadolgozat megirasa aldl, és csak szobeli vizsgat kell tennie.
Ez esetben a vizsga jegye meg van ajanlva a gyakorlati jegyére.

A vizsga jegyét fele részben a féléves érdemjegy, fele részben pedig a vizsgadolgozatra kapott
jegy alkotja, melyhez kerekitési tényez6ként hozza jon a vizsga szobeli részén nyujtott telje-

sitmény alapjdn megitélt pontszam.
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