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Contents
e Data compression

* Principal Component analysis (PCA or KLT)
« Notation
« Summary of the algorithm
* Problems, extensions

 Hebbian PCA (The Oja algorithm)
* Experiments

 Problems
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Prioritized
representation

Only the important

| nformation _ _ _ segment remains
* Transformation » Discarding >

Examples of well known transformations:

e DCT - Discrete Cosine Transformation
(JPEG,MPEG)

e KLT - Karhunen-Loeve Transformation
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Notation
e Scalars are noted with normal letters
e \ectors are noted with bold face lower case.
 Matrices are noted with bold face upper case.
« Random data vector (e.g. video frame):
» Correlation matrix:R = E(xx" );R, = E(xx,)

e \ectors are defined to be column vectors:
dm(x)=Nx1

. lnvzeting in your fieture = *
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" element of a vector (scalak):

* (i,))" element of a matrixR, .

» i""row of a matixR,.

» jMcolumn of a matixR. |

* Submatrix (eg. first K rows and all columnR); . .

e i"element of a set (eg. a set of eigenvectors)
sV € S, ={x: xis an Eigen vector oR }

« Expectation operator, X is a discrete random
variable: E(X) = inp(xi)

. lnvzeting in your fieture ﬁ * X
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wormiticppken
« Dot product<a,b>=a’-b= ZN:ai b
e Correlation matix: -

R=E(xx"), dmR)=NxN

* Diagonal extension operator:
a=[a,a,,...,a,]

a, O --- 0
. 0 a, - 0
A=diag(a)=| . [ .
- O
0 0 0 a
2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 Y G
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e eigenvectors and eigenvalues dR
Rs"” =1s", i=1...,N
« Set of Eigen equationsSR.-§S=S-A
Sz[s(l),s(z),...,s(N)}

A =diag([2s, 25,2 ] )
* Properties of the eigenvectors:

N 1lli=j
<s¥ sV >:{ =7 ~orthonormal bases, 86-S=1

. lnvzeting in your fieture = *
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Basis transformations back and forth to the
elgenvectors:

e Coder, transforming to the eigenvectors basis:
N

y=S''x, y. = (S:’l.)T-X = (s")" x = Zsf)xn
n=1

 Decoder, transforming from the eigenvector
basis:x=S-y

x,=(8,) y=(s" s ... 5" y= ZN:Si(”)yn
n=1

. lnvzeting in your fieture = *
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PCA

e Suppose we have an element of a data set,
which Is a grayscale image map Now.
data frame at time instant [| 7

« Generate the data vector
from it, by reading it
column wise x[k]

1
N NEEE BN BN UEN BEY EEY B NEN BN NN EEEN  EEn
1 & 10 14 20 25 3a 35 40 45 49

2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 10
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 The data usually can be modeled as a randon
vector variablex, because we are dealing with
processes assuming quasi stationarity and
ergodicity. E.g. consecutive image frames fron
a video flow are usually ,similar”.

e Thus In a time window we examine the corr.
matrix of the proces$e{xyx! E{xx,} . Efxx,)
R:E{XXT}: E{xle} E{xzxz} . E{xsz}

dim(R)=N><N _E{x.le} E{x;vxz} E{x].\,xN}

. lneeting in your fature -~ * %
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e The data vector random Is assumed to have O
mean. E(x)=0

 Compute the eigenvectors and eigenvalues of
the correlation matriR and sort it in an
decreasing order (by importance):

Rs"”=4s", i=1...,N
A z2h=2hz2.24 2
7 7 %4

g (2) 3) )

S S

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 12
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e Eigenvectors point
to orthogonal directions in each
dimension which tries to capture t
Independent variance directions c
the distribution '

* Eigenvalues are proportional to tr
magnitude of variances

Eigenvalue scaled eigenvectors:
blue arrows

Iso curves of the distribution:
=

black dashed contours
Sample points of the distribution:
|

o dors -0.7071 -0.707}, A:[1.9 o}

-0.7071 0.707 0 01

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 13
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e Eigen vectors correspond to the directions of the
standard deviations of the data understood as a
sample set of a multidimensional random process.

e Eigen values correspond to the magnitude of the
standard deviations.

 If we use a hypothesibat this linear quantity
(correlation) captures real world “importance” then
we cansort the dimensions along “importance” and

e compress by discarding “not really important”
dimensions.

. lneeting in your fature -~ * %
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e \WWe can transform the data frame to the new

basis system In a lossless fashion:
GivenR, getalli,,s",i=1,...,N

A, sP = y =x"s¥ "y
A, ' =y, =x"s? V.2
: : PR QRO
A, S(.) =y, = .XTS() y V.
A, s = y o =xTsM Vv

J

Transformed dai:y:(xT-S)T =S7 . x
original data:x = Sy

. lnvzeting in your fieture T *
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* \We want to discard the ,unimportant”

components to achieve compression:

Prioritized
representation

Only the important

| nformation _ _ _ segment remains
Transformation Discarding >

42@2@2...2%22%12...2%

gM+D) g")

\ 4
A 4

(1) (2) 3)

S

 Instead of using all eigenvectors, just use the first M
to get an approximate of

S S

. lnvzeting in your fieture = *
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 The approximate of the transformed data:

(1) T.@) ) B ]
A s(z) — yl—sz(Z) )
2:2 s: = yz—xs Ly = y:2 |
A, s =y = T (M)J Y

S = S..,, the first M eigenvectors, arranged In a matrix
raY  ar
compressed, transformed dfgta(ps) S’ =

decompressed, 35/ data recoveryx = ST y

. lnvzeting in your fieture = *
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PCA compression

y

dim(x)= N

Access Line

y

dim@) = M

N> M

X
Decompressiop——

dim&)= N

Compression algorithm: y=S-x
Decompression algorithm: £=S-§

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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The PCA Is the optimal lossy representation In
the terms of Mean Square Error:

~||2 o
E|x—x|, <&: QOS criterion
~l12 _ _Qallt QN (v Q2N | T o2TQT\(v Q3N |
E|x—x], —E‘ —E[(x Sy)” (x Sy)]—E[(x y S)(x Sy)]—
_ Te T QTy vIQRO LT RIQS | = T Ta | 4
=E|x x—y §f§ &T§y+y SISy E|:XX 2y y+y y]
i y y i
- AT A N M N Minimum because
=E| x X]—E': :|: A=Y A = ﬂ, ____,eigenvalues are ordered
o yy Z ! Z Lo in a monotone
i=1 i=1 i=M+1 decreasing sequence
2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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The components we discard in the course of compress
contribute as much as their corresponding eigenvalues

2 N M N
E-5-34-34- 3 4

I=M+1

The mean square error Is the sum of the eigenvalues
corresponding to the discarded components. We drop t
minimum contribution due to the monoton decreasing
order of eigenvalues.

. lnvzeting in your fieture ﬁ * X
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PCA architecture

y y
= Z (e

JUIT SSANVY

2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 21
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PCA compression overview

We assume tha is given for the process we are dealing
with andR remains the same over time. (stationarity)

1. Solve the Eigen problem f®to get the first M largest

eigenvalues and the corresponding eigenvectors based
on the quality requirement.

2. Assemble the coding/decoding matrix.

3. Use the coder to encode the data (matrix-vector
multiplication), and send through the access line.

4. Decode the data with the decoding matrix.

; fnu,'_-ffmgm your fidure ﬁ
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Difficulties of direct implementing the PCA

for video compression
*Nobody tells us what IR of an underlying video flow.
*R does not remain ,still” for the whole time
Computingeigenvalues andeigenvectors are
computationally complex
Practically the normalizatioof the variances in the
original data set along each dimension before the PCA
transformation is useful to get meaningful relative
Importance values after the transformation.

. lnvzeting in your fieture T *
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Difficulties of direct implementing the PCA

for video compression
eStorage problems:
*N: dim(x)=640x480=307200 per color channel
*NXN: dim(R)=dim(E(x x"))=307200x307200
oIf a float (32 bit) used to hold an elementiRaf
sizeofR)~350GBper color channel in memory to
holdR or an estimate dR

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 24
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Estimation of the correlation matrix

e Using the assumed ergodictfthe process
and estimate in a time window of length K

1 ¢ r iK T A
IUanE;X[k]Xm —RZK;?{/HH} =R

 From time to time we have to reestimate the
empirical correlation matrix.

* Note that we still assume quasi stationarity for
a K length time window

. lnvzeting in your fieture = *
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Overcoming the storage problem -
Introducing the kernel based PCA

« We are using the fact th& was constructed
using K outer products, Sorank(R) = K

e Using the basis transform:

zx.g(i) :[x[l],---,x[K]]-g(i)

* \We can rewrite;
Rs? = 1s” dimR)=Nx N

G-V =KA1E"|,dim(G)=KxK << NxN

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 26
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Kernel based PCA
s =x.g" =[x[1]-..x[1<]]-§<">, R %Zx[k]x[k]

(1) /1 S(1)
K . K . ‘
D XA D &A1 = %Z EVE M |» Kx[n]”
k=1 =1 m=1
K K . . K _ .
D& " {KA T =K2,) &k n]" x[m]
=1 k=1 m=1
K K K '
Z gl(l)z Gn,ka,l — Kﬂ’zz gn(al)Gn,m
=1 k=1 m=1
1 .
— GG gV =KkA1GEY
e S /GS
G 'é(i) _ Kﬂuié(i)
2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 27
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Kernel based PCA
e Storage problems:
*N: dim(x)=640x480=307200 per color channel
Sizeof(R)~350GBper color channel in memory to
holdR
oIf window length of K=1000 frames used
X =[x[1],-,x[K]]

R = %x-xf, dim(R)= N x N

G=X"X, dim(G)=KxK

Sizeof(G)=4MB per color channel

. lnvzeting in your fieture T *
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The Oja algorithm

 The Oja algorithm can be another solution to the
storage problem and an alternative for the existin
effective algorithms for the computation of the
EigenValue Decomposition(EVD), which is to be
performed from time window to time window

e |f we assume that we know’[4] can we
recursively compute€’[k+1] assuming it is
changing slowly enough?

; fnu,'_-fﬂ«g i your ficdure —
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The Oja algorithm
X NE
x1 Wa \i j
2 \a y
XN "N

 The OQja algorithm is a nonlinear stochastic
difference equation'

wlk+1]=w[k]+ny[k]| x[k]-w[k]y[k]]

y[k]w(w[kr-x[k]], o (u)=u
lim w [k ]=s", proof with Kushner Clark theorem

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 30
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The Oja algorithm
e Lemma: E‘;%%WTRW — 2, w=s®
st. |wl=1

 Proof outline:
v=S"w, w=Sv, S'S=I=8"=S", RS=SA, S'RS=A

N

w' Rw =v'S'RSv=v'S™RSv=v'Av=> v’}
=1

if we choosew =s® y=8"s"=[10... O

N
w’ Rw‘wzsm = Z"f}% =4
=1

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 31
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The Oja algorithm
« Using the properties of the Rayleigh guotient, tha
if R=R",R ¢ RNxN,maxWT?W =1, ifw=sm
weR” W'W

st |lw]|=1
o Starting from the Rayleigh quotient and using the
Newton’s method to find the maximum:

T
wlk +1] =W[k]+77gmd(w }‘Wj _
W W

W

= wlk] + 17 RWIK] - (w[k]" Rw{ A ) W 1]

. lnvzeting in your fieture T *
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The Oja algorithm

 We still need the knowledge Rf, so we
substitute:y=x'w=w'x
(Use the simplification discussed at the LMS and
at the Robins-Monroe algorithm)
wlk +1] = Wikl + 77| E(xx")W[k] —(wlk]” E(xx") w[ K] )W A] |

—wik]+n| E (XLT:[V}CE"])—E(YV[ET%?T):%F ’iW[kD} -

C=w|k]+ny k][ XA -w A ¥ k]
o Stablility can be proven by the Kushner-Clark thm

; lnvzeting in your fieture —
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The Oja algorithm

 Extending the algorithm with the Generalized
Hebbian Algorithm one can design a feed-forwart
neural network to catch all the eigenvectors of the
correlation matrix.

e Generalized Hebbian Rule:

s D)=, (15 4], 135 w8 ]

. lnvzeting in your fieture T *
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The Oja algorithm with the Generalized
Hebbian Algorithm (GHA)

 No knowledge oR is needed for the iteration

e Can be implemented in a feed-forward neural
network structure

* For the J" neuron’s " weight:
wilk+1]=w; [k]+ny, [k](x;.l. [k]=w;[k]y, [k])

K= 0 (K] £ v K] ]

note thate’, Is a function gf as well

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 35
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Hebbian PCA

e Hebbian learning:
wlk+1=w|k]|+ny|k]x|k]

e Normalization:

wlk+1 N 1
[k+1]:J‘, %k{&H:W[ ]H
. Expandlng by aylor serles
k+1H =|w[% H + 27y [k)W' [k]x[k]+O0(n?) =

= [w[K]f + 20 [k1+o<n>
Wk +1]| " =1-ny*[k]+0(n?)

2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 36
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Experiments
*An eigenvalue distribution of a small video
stream.
*\We experimented on two small video streams
*The first illustrates a calm aguarium.
*The second Is an action scene with quick
changes.
*\We will present these sequences with different
compression ratios using the Kernel and the
Hebbian PCA

. lnvzeting in your fieture = * %
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Experiments
*The video snippet consisted of 57 frames,
window length of 10 was used.

2011.10.05.. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 38
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Experiments

e = \With
5 eigenvectors

® Original:

#  With . o #  With
all eigenvectors @ > cigenvectors:

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 39
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Experiments

# Original: # With 20 eigenvectors:

2011.10.05.. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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Experiments
N
. . A2
Error function: |x-x|"= ) 4 <e
i=M+1
® Agquarium # Star Wars
I‘\I 180!
# eigenvectors # eigenvectors
2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Experiments
Difference between the approximated and the
true eigenvectors

" 1QO i;erations " SQO i;era}tions

1

0.9

0.91 0.8F

0.8
0.7

0.7
0.6

0.6
0.5
0.5
0.4
0.4

0.3
0.3

0.2
0.2

01r 0.1f

I I 0 1 1 -
16 18 20 0 2 4

I I
16 18 20

o 2 4 s 8§ 10 12 14 6 & 10 12 1
# elgenvectors # elgenvectors
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Problems with solutions
1. Asimple eigenvalue problem:

05 05 0.5] Rs, =4s. 1=123
R=/05 1 0 (I/’L_R)S:O
05 0 1
) - det(I1-R)=0
4, =15 A, =1 1, =0

2011.10.05.. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 43
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Problems with solutions

2.An Iinformation flow, compressed from time
window to time window (e.g. video flow) has
the following eigenvalues of the correlation
matrix: 2 =m2™, m=1.., 1000
If we want the mean square error of the PCA
compression to be less or equal than 0.01, ho

many neurons should we implement in the
coder ?

fnu,'_-fﬂ«g i your ficdure —
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Problems with solutions
 The mean square error Is defined as:
2 N M N
B3 =>4-Y 4= > 4
i=1 =1 i=M+1

e So at least 11 neurons must be used to achie\
the desired error level

5 1000 1000 .
001>E|x—X| = > A= > i2" =0.0063766
i=M+1 i=M+1 M=11
2011.10.05.. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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Problems with solutions
3. Train the underlying neuron with the Oja
algorithm with the following parameters:
x=[1 -05 -1
" [sp2.  wlo=[0 0T
Xy 3 n=0.1

a) Compute the weights after th® Reration:w|2]="?

b) Can the following state be stabile? Explain your answer!

w[o]=[2/3 -¥3 -2F
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Problems with solutions
a) Compute the weights after the RBeration:

wlk+1]=wlk]+ny[k](x[k]-w[k]v[¥])

x=[1 -05 -1 w[d=[0 0 1 ;=01
w[1]=w[0]+7y[0](x[0] - w[0] v[0])

T

y[0]=w[0] x[0]=-1
wi]=[0 0 1]"+01(-1([1 -5 -1"-[0 0 1]'(-1))

w[l]=[-01 005 1]
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Problems with solutions
a) Compute the weights after the RBeration:

x=[1 -05 -1 w[1=[-01 005]1 5= 01

w2 =w{ Q[ (x{Z-w{[1)

Y[ =w[1 x[]=-1.125

w[2]=[-0.1 0.05 I + 0.4__5([ 1- 05-]1-[- 01 0.05]Ti§9j

w[2]~[-0.1998 0.0999 8859
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Problems with solutions
b) Can the following state be stable ? Explain your answer!

w(0)=[2/3 -¥3 -2§

Let us check if it can be an eigenvector: each and every
eigenvector must have a unit norm and form an
orthonormal basis with the others. Since this vector has

the unit norm it passes this check.
Let’s solve the eigen problem to be sure:

"1 -05 -1] det(I1-R)=0

R=xx' =|-0.5 0.25 0.5 d
,=225 s =F 2 ——2}
-1 05 1 3 3 3

; lnvzeting in your fieture T
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Problems with solutions
4. Let’'s assume that the corretatimatrix of a weakly stationer
process has the eigenvalues and vectors shown in the table
below. We want to compress the process with PCA as such
that the mean square error must be below the following

threshold:s =0.18
a) Give the compressed vector and the restoreddata , if

realization of the process is:[0.1 1 0 -02 -0}

b) Give the mean square errar.— 5 3 2 5

A 0.1 0.02 0.01 0.15 0.05

I [0.35034] [ 034879 [ -0.28615] -0.8203€ -0.027637

v - . ~024812 | —0.14365 | 0.72782| -0.40495| | -0.4733¢

X [Compress F, E.| Decode X ,

) thannel wey [ [s” || 059339] | —0.79793 | 0.020443 -0.094387 | 0.043279

edoisled E-t -0.20137 |- 0.062407 | 0.34362| -0.26193| | 0.87685
R ; | 065041] | 046601 | 051952| 0.29242] | 0.06629%
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Problems with solutions
 First rearrange the table in descending eigenvalue order.

i 1 2 3 4 5
P 0.15 0.1 0.05 0.02 0.01
[-0.82036] [ 0.35034 [ -0.0276B7] (B35 | [ -0.28617
-0.40495| |- 0.248 047339 | -0.14365| | 0.72781

s” |1-0.094387 | 0.5933 0.043279| -0.79793| | 0.020448
0.26193| |- 0.2013 0.87685 | -0.062407 | 0.34361
| 029242| | 065041 | 0066293 0.46601| | 0.5195]

 Next we compute how many eigenvectors are needed for tht

coder and decoder and construct it. [ -0.82036 0.3503
5
0_18:g>EHX_iH§: Z ﬂi —~M=2 A -0.40495 -0.2481
A S=|-0.094387 0.5933
M 1102 3 4 -0.26193 -0.2013
E|x—3]2 1018/ 0.08 0.03 | 0.01 | 0.29242  0.6504
2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 . 51
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Problems with solutions
* Let us check that the eigenvectors are proper eigenvectors:

sWTs® =1 @73 -1 W@ _7.10"~ 0 (due to truncation errors to 5itsig
* Using the coder, we transform the data to the new basis:

-0.82036  0.3503 x=[01 1 0 -0.2 _o_]gT
-0.40495 -0.2481

S=|-0.094387 0.5933 T {_0_52231
-0.26193 -0.2013 E=S -x=
| 0.29242  0.6504 -0.3679

e Let us compute the restored data:
X =S = [0.29959 0.30281 - 0.16903 .2109 - 0.3920$T
e Let us compute the empirical mean square errotr:

A2 1L ~\
Hx—tzzgz(xi—xi) —0.14636

- lnvzeting in your fieture —
2011.10.05.. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 £ 52

—f—
MNew Hun;aiy DcUZ[onlcmt Flan



Digital Signal Processing : Principal Component Analysis

www.itk.ppke.hu

Problems

5. Design an FFNN for the compression layer
and use the GHA to train the neurons for two
iterations for the 4. problem.

6. Show that if the random process is not
centralized (not zero mean) then the first
eigenvalue is the mean and that eigenvector
points to the direction of the mean.

/. Write a computer program that performs the
PCA

. lneeting in your fature -~ * %
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Summary
e Data compression

* Principal Component analysis (PCA or KLT)
« Notation
« Summary of the algorithm
* Problems, extensions

 Hebbian PCA (The Oja algorithm)
* Experiments

* Problems
. lnvzeting in your fieture T *
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