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Examples of well known transformations:

• DCT  - Discrete Cosine Transformation 
(JPEG,MPEG)

• KLT  - Karhunen-Loève Transformation
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Notation

• Scalars are noted with normal letters

• Vectors are noted with bold face lower case.

• Matrices are noted with bold face upper case.

• Random data vector (e.g. video frame):

• Correlation matrix:

• Vectors are defined to be column vectors:

x( ) ( );T

ij i jE R E x x= =R xx

dim( ) 1N= ×x



• i th element of a vector (scalar): 

• (i,j) th element of a matrix:

• i th row of a matix:

• j th column of a matix:

• Submatrix (eg. first K rows and all columns):

• i th element of a set (eg. a set of eigenvectors)

• Expectation operator, if X is a discrete random 
variable:
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• Dot product:

• Correlation matix: 

• Diagonal extension  operator:
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• eigenvectors and eigenvalues of

• Set of Eigen equations:

• Properties of the eigenvectors:
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Basis transformations back and forth to the 
eigenvectors:

• Coder, transforming to the eigenvectors basis:

• Decoder, transforming from the eigenvector 
basis: 
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PCA

• Suppose we have an element of a data set, 
which is a grayscale image map now.
data frame at time instant k:

• Generate the data vector
from it, by reading it 
column wise: x[k]

www.itk.ppke.hu



• The data usually can be modeled as a random 
vector variable x, because we are dealing with 
processes assuming quasi stationarity and 
ergodicity. E.g. consecutive image frames from 
a video flow are usually „similar”.

• Thus in a time window we examine the corr. 
matrix of the process:
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• The data vector random is assumed to have 0 
mean. 

• Compute the eigenvectors and eigenvalues of 
the correlation matrixR and sort it in an 
decreasing order (by importance):
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• Eigenvectors point 
to orthogonal directions in each 
dimension which tries to capture the 
independent variance directions of 
the distribution

• Eigenvalues are proportional to the 
magnitude of variances

Eigenvalue scaled eigenvectors:
blue arrows

Iso curves of the distribution:
black dashed contours

Sample points of the distribution:
red dots
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• Eigen vectors correspond to the directions of the 
standard deviations of the data understood as a 
sample set of a multidimensional random process.

• Eigen values correspond to the magnitude of the 
standard deviations.

• If we use a hypothesisthat this linear quantity 
(correlation) captures real world “importance” then 
we can sort the dimensions along “importance” and 

• compress by discarding “not really important” 
dimensions.
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• We can transform the data frame to the new 
basis system in a lossless fashion:



• We want to discard the „unimportant” 
components to achieve compression:

• Instead of using all eigenvectors, just use the first M 
to get an approximate of y
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• The approximate of the transformed data:
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PCA compression

Compression algorithm: 

Decompression algorithm:
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Compression 
algorithm

Access Line Decompression
x ŷ ŷ x̂

dim( ) N=x ˆdim( ) M=y ˆdim( ) N=x

N M>>
ˆ ˆ= T ⋅y S x

ˆ ˆ=ˆ ⋅x S y



The PCA is the optimal lossy representation in
the terms of Mean Square Error:
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• The components we discard in the course of compression  
contribute as much as their corresponding eigenvalues.

• The mean square error is the sum of the eigenvalues 
corresponding to the discarded components. We drop the 
minimum contribution due to the monoton decreasing 
order of eigenvalues.
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PCA architecture
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PCA compression overview

We assume that R is given for the process we are dealing 
with and R remains the same over time. (stationarity)

1. Solve the Eigen problem for R to get the first M largest 
eigenvalues and the corresponding eigenvectors based 
on the quality requirement.

2. Assemble the coding/decoding matrix.

3. Use the coder to encode the data (matrix-vector 
multiplication), and send through the access line.

4. Decode the data with the decoding matrix.
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Difficulties of direct implementing the PCA 

for video compression
•Nobody tells us what is R of an underlying video flow.
•R does not remain „still” for the whole time
•Computing eigenvalues and eigenvectors are 
computationally complex
•Practically the normalization of the variances in the 
original data set along each dimension before the PCA 
transformation is useful to get meaningful relative 
importance values after the transformation.
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Difficulties of direct implementing the PCA 

for video compression
•Storage problems:

•N: dim(x)=640x480=307200 per color channel
•NxN: dim(R)=dim(E(x xT))=307200x307200
•If a float (32 bit) used to hold an element of R,
•sizeof(R)~350GBper color channel in memory to 
hold R or an estimate of R
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Estimation of the correlation matrix

• Using the assumed ergodicityof the process 
and estimate in a time window of length K

• From time to time we have to reestimate the 
empirical correlation matrix.

• Note that we still assume quasi stationarity for 
a K length time window
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Overcoming the storage problem -

Introducing the kernel based PCA

• We are using the fact that was constructed 
using K outer products, so

• Using the basis transform:

• We can rewrite:
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Kernel based PCA
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Kernel based PCA
• Storage problems:

•N: dim(x)=640x480=307200 per color channel
•Sizeof(R)~350GBper color channel in memory to 
hold R
•If window length of K=1000 frames used

•Sizeof(G)=4MB per color channel

2011.10.05.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 28

www.itk.ppke.hu

Digital Signal Processing : Principal Component Analysis

[ ][1], , [ ]

1ˆ ˆdim( )

dim

·

, ( )

,

·

T

T

K

N N
K

K K

=
= = ×

×= =
X

G X

X x x

R X R

GX



The Oja algorithm

• The Oja algorithm can be another solution to the 
storage problem and an alternative for the existing 
effective algorithms for the computation of the 
EigenValue Decomposition(EVD), which is to be 
performed from time window to time window

• If we assume that we know           can we 
recursively compute assuming it is 
changing slowly enough?
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The Oja algorithm

• The Oja algorithm is a nonlinear stochastic 
difference equation:

, proof with Kushner Clark theorem
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The Oja algorithm

• Lemma: 

• Proof outline:
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The Oja algorithm

• Using the properties of the Rayleigh quotient, that

• Starting from the Rayleigh quotient and using the 
Newton’s method to find the maximum:
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The Oja algorithm

• We still need the knowledge of R, so we 
substitute:
(Use the simplification discussed at the LMS and 
at the Robins-Monroe algorithm)

• Stability can be proven by the Kushner-Clark thm
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The Oja algorithm

• Extending the algorithm with the Generalized 
Hebbian Algorithm one can design a feed-forward 
neural network to catch all the eigenvectors of the 
correlation matrix.

• Generalized Hebbian Rule:
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The Oja algorithm with the Generalized 

Hebbian Algorithm (GHA)

• No knowledge of R is needed for the iteration

• Can be implemented in a feed-forward neural 
network structure

• For the jth neuron’s ith weight:
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Hebbian PCA

• Hebbian learning:

• Normalization:

• Expanding by Taylor series:
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Experiments

•An eigenvalue distribution of a small video 
stream.
•We experimented on two small video streams

•The first illustrates a calm aquarium.
•The second is an action scene with quick 
changes.

•We will present these sequences with different 
compression ratios using the Kernel and the 
Hebbian PCA
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Experiments

•The video snippet consisted of 57 frames, 
window length of 10 was used.
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Experiments
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Original:

With 
all eigenvectors:

With  
5 eigenvectors:

With 
2 eigenvectors:



Experiments
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Original:

With all eigenvectors:

With  20 eigenvectors:

With  15 eigenvectors:



Experiments

Error function:
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Experiments

•Difference between the approximated and the 
true eigenvectors
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Problems with solutions

1. A simple eigenvalue problem:
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Problems with solutions

2.An information flow, compressed from time 
window to time window (e.g. video flow) has 
the following eigenvalues of the correlation 
matrix:  
If we want the mean square error of the PCA 
compression to be less or equal than 0.01, how 
many neurons should we implement in the 
coder ?
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Problems with solutions

• The mean square error is defined as:

• So at least 11 neurons must be used to achieve 
the desired error level
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Problems with solutions

3. Train the underlying neuron with the Oja 
algorithm with the following parameters:

a) Compute the weights after the 2nd iteration: 

b) Can the following state be stabile? Explain your answer!
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Problems with solutions
a) Compute the weights after the 2nd iteration:
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Problems with solutions
a) Compute the weights after the 2nd iteration:
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Problems with solutions
b) Can the following state be stable ? Explain your answer!

Let us check if it can be an eigenvector: each and every 
eigenvector must have a unit norm and form an 
orthonormal basis with the others. Since this vector has 
the unit norm it passes this check.
Let’s solve the eigen problem to be sure:
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Problems with solutions
4. Let’s assume that the correlation matrix of a weakly stationer 

process has the eigenvalues and vectors shown in the table 
below. We want to compress the process with PCA as such 
that the mean square error must be below the following 
threshold:
a) Give the compressed vector and the restored data , if a 

realization of the process is:
b) Give the mean square error.
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Problems with solutions
• First rearrange the table in descending eigenvalue order.

• Next we compute how many eigenvectors are needed for the 
coder and decoder and construct it.
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Problems with solutions
• Let us check that the eigenvectors are proper eigenvectors:

• Using the coder, we transform the data to the new basis:

• Let us compute the restored data:

• Let us compute the empirical mean square error:
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Problems

5. Design an FFNN for the compression layer 
and use the GHA to train the neurons for two 
iterations for the 4. problem.

6. Show that if the random process is not 
centralized (not zero mean) then the first 
eigenvalue is the mean and that eigenvector 
points to the direction of the mean.

7. Write a computer program that performs the 
PCA
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Summary

• Data compression

• Principal Component analysis (PCA or KLT)
• Notation

• Summary of the algorithm

• Problems, extensions

• Hebbian PCA (The Oja algorithm)

• Experiments

• Problems
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