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Introduction – FFNN

• Multilayer neural network
– Input layer

– Intermediate (hidden) layers

– Output layer

– The outputs are the inputs of the following layer

• Multiple inputs, multiple outputs

• Each layer contains a number of nonlinear 
perceptrons
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Introduction – FFNN

• Feed Forward Neural Networks are used for

• Classification
• Supervised learning for classification

• Given inputs and class labels

• Approximation
• Arbitrary function with arbitrary precision

• Prediction
• „What is the next element in the future of given time 

series?”
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Topology

• Each cell

• Weights
• lth layer

• ith neuron in the lth layer

• From the jth neuron of the (l-1)th layer

• Nonlinear activation function (logistic function, 
biologically motivated)
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Activation functions
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Activation functions

• The parameter of
the sigmoid
function may be
different as it can
be seen on the
figure
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FFNN – mode of operation

• Output of the network

• Where

• Number of layers: L, neurons in lth layer: nl

Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

10

1 1

( ) ( 1) (1)

1 11

( , · ·) ·
L Ln n

L L
i ij km

j

n

m
mi

Net y w xw wφ φ φ−

==
−

=
⎛ ⎞⎛ ⎞… …⎜ ⎟⎜⎛ ⎞= = ⎜ ⎟⎜ ⎟⎝ ⎠⎟⎜ ⎟⎝ ⎠⎝ ⎠∑ ∑ ∑W x

( )(1) (1) (1) (2) (2) ( )
1,0 1,1 1,2 1,0 1,1 1,0,, ,, , , ,Lw w ww w w … …= …W



FFNN – weights

• The free parameters, called weights

• Can be changed in course of adaptation (learning) 
process in order to „tune” the network for 
performing a special task

• This learning procedure will be discussed later

• When solving engineering task by FFNN we are 
faced with the following questions:
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FFNN – questions

1. Representation
– How many different tasks can be represented by an FFNN

2. Learning
– How to set up the weights to solve a specific given task

3. Generalization
– If only limited knowledge is available about the task 

which is to be solved, then how the FFNN is going to 
generalize this knowledge
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FFNN in operation

• The neural network works as follows
• the network should be created by the specification

• the weights of the network are set so the error of the 
network should be minimal

• The weights are set by the training sequence

• The learning is lead through the error function, which 
determines the adaptation of the weights of the neural 
network on the error surface
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FFNN – in operation

• most cases the error function is chosen to be the 
square error

• the adaptation of weights can be done by different 
methods

• usually the gradient descent method is used

• In simple problems the error function is a 
quadratic function

• It has only one minimum, so the convergence to the 
global optima can be assured.
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FFNN – Example of error function

• Possible quadratic error surface
• The learning task is to find the global minimum

Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

15



Representation

• In the following the representation capability of the 
FFNN will be discussed.

• We seek the F function space where the FFNN 
approximation is uniformly dense

• (       symbol denotes the fact that the NN is 
uniformly dense in F.
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Representation

• In this function space every function can be 
arbitrarily approximated with FFNN

• The notation || || defines a norm used in F space

• For example error computed as follows in L
p
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Representation – Theorem 1

Theorem (Harnik, Stinchambe, White 1989)

• The FFNN-s are uniformly dense in the L
p

space

• Recall:
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Representation – Theorem 1

Theorem (Harnik, Stinchambe, White 1989)

• In other words every function in L
p

can be 
represented arbitrarily closely approximation by a 
neural net

• More precisely for each
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Representation – Theorem 1

Theorem (Harnik, Stinchambe, White 1989)

• Since L
p

is a rather large space, the theorem implies 
that almost any engineering task can be solved by a 
one-layer neural network

• The proof of theorem heavily draws from functional 
analysis and is based on the Hahn-Banach theorem.

• Since it is out of the focus of the course this proof 
will not be presented here.
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Representation – Blum and Li theorem

Theorem (Blum and Li)

• The FFNN-s are uniformly dense in the L
2

space

• In other words:
• For each 
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Representation – Blum and Li theorem

• Theorem:

• Proof:
• Using the step functions: S

• From elementary integral theory it is clear that S is 
uniformly dense in L1 , namely every function in L1 can 
be approximated by an appropriate step function (figure)

Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 22

( )2
( ) ( , ) ,( ) , 0 : NF Net xF xε ε−∀ ∈ > → ∃ … <∫ ∫X

x w dx x w d"F

1 2

: ( ) : ( )) (

D D

i
i i

L L

s s a I x

⊆ ⊆
⎧ ⎫= =⎨ ⎬⎩ ⎭∑x x

S

S



www.itk.ppke.hu

Representation – Blum and Li theorem

• This step function
can have arbitrary
narrow steps

• For example each
step could be divided
into two sub-steps

• Therefore 
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Representation – Blum and Li theorem

• These steps partition the domain of the function

• One partition can be easily represented by small 
neural network

• In two dimension the following figure gives an example

• The borders of the partition are hyper planes which could 
represented by one perceptron
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Representation – Blum and Li theorem

• Now since every partition can be represented by a 
corresponding

• Therefore whole F(x) function can be approximated 
by the FFNN

• In the following slides a constructive approximation 
method will be introduced
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Blum and Li construction

• The Blum and Li construction is based on the 
„LEGO” principle

• The approximation of the F function is based on its 
step function
• Let us have a step function with n number of steps
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Blum and Li construction

• This step function partitions the domain of the 
original F function

• For each partition there is a neuron responsible for 
approximation the „step”

• If the input of the FFNN (x) falls into a given range 
the appropriate approximator neuron has to be 
selected

• The output of the network
should be this selected value
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Blum and Li construction

1. Incoming arbitrary x
value

2. The appropriate interval 
will be selected

3. The response of the 
network is the response 
of selected neuron 
(approximator)
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Blum and Li construction

• This construction …
• … has no dimensional limits

• … has no equidistance restrictions on tiles (partitions)

• … can be further fined, and the approximation can be any 
precise

• 2 dimensional example
• The tiles are the top

of the columns for
each approximation
cell
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Blum and Li construction

• Construction
for one 
particular
region

• The output
is I1 if we
are in this
region
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Blum and Li construction

• Construction
for one 
particular
region

• The output
is I2 if we
are in this
region
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Blum and Li construction

• Each region
is being
approximated
by a block
specified
above
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Blum and Li construction

• Third layer
• This neuron has linear 

activation function

• The weights of this neuron are 
the approximation values of 
the F function

• The output of blocks marked 
with different colors is zero or 
one as the input is in the 
specified region, 

• Thus the approximation for the 
whole domain of the original F 
function is done by FFNN
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Blum and Li construction

• Minimizing the number of neurons
• We do not have to represent a hyper plane more 

than once

• size of FFNN ~ max||grad F||

• If F has an input, where F is very sensitive, 
meaning that the changing of F is very fast (the 
derivative is large), than we have to define the 
number of regions according to the derivative.
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Signal processing on digital, neural, and kiloprocessor based 
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Blum and Li examples

• 2D example and 3D example
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Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

Blum and Li examples

• Weights – separator neurons
1. [ -1,875  -1 ]

2. [ -1.875 +1 ], [ -0.625 -1 ]

3. [ -0.625 +1 ], [  0.625 -1 ]

4. [  0.625 +1 ], [  1.875 -1 ]

5. [  1.875 +1 ]

• AND neurons: [ 0.5 1 ] or [ 1.5 1 1 ]

• Linear neuron in output layer:
• Weights: [ 0,  -0.18,  1,   0.24,  0.01]
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Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

Blum and Li in general

• The partitioning of the domain may be arbitrary

• Let us consider the 2D plane as the domain of the F 
function

• The following partitioning is possible to be used:
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Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

Blum and Li – problems

• The Blum and Li construction is a good approximator as 
shown previously, but it has its limitations

• The size of the FFNN constructed via this method is quite 
big

• Consider the task on the picture, where let us have 1000 by 
1000 cell to approximate the function

• Optimal case 3003 neurons are needed

• (non-optimal: ~4 Million)

• Smoother approximation needs more

• We are after to find a less complicated
architecture
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Learning

• The Blum and Li construction is not always 
applicable, therefore we seek a solution which trains 
the neural network for an arbitrary function, then this 
function can be approximated by the neural network
• The F function is partially known

• The F function behaves as a black box

• The task is to find a w which minimize the difference 
between the F and the network:
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Learning

• This minimization task is not possibly done
• Complete information is needed about F(x)

• Weak learning in incomplete environment, instead of 
using F(x)

• A training set is being constructed of observations
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Learning

• The error of the network (the square of difference 
between the output and the desired output) is minimal
• The approximation is the best achievable

• We cannot do this due to the limited information on F, 
instead of we seek:
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Learning
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Learning

• The questions are the following
• What is the relationship of these optimal weights

• How this new objective function should be minimized as 
quickly as possible
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Statistical learning theory

• Empirical error

• Theoretical error

• Let us have xk random variables subject to uniform 
distribution
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Statistical learning theory

• xk random variable, where d=F(x)
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Statistical learning theory

• Therefore

• Where l.i.m. means: lim in mean

• The question is, how to set K to have
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Bias – variance dilemma

• Size of the NN↔ size of training set, K
• The size of the neural network is the number of weights

• K is the size of the training set

• Let us investigate the difference:

• Where            is obtained by minimizing the 
empirical error Remp
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Bias – variance dilemma

• One can write then (adding and subtracting the same 
term)

• Therefore

• This expected value should be zero
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Bias – variance dilemma

• Remarks
• The other terms in the expression above become zero

• The first term in the expression above is the approximation 
error between F(x) and Net(x,w)

• The second term is the error resulting from the finite 
training set

• One can choose between the following options
• either minimizing the first term (which is referred to as bias) with a 

relatively large size network, but in this case with a limited size 
training set the weights cannot be trained correctly by learning, so 
the second term will be large
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Bias – variance dilemma

• Second option
• minimizing the second term (called variance) which needs small 

size network. However the size of the training set the should be 
large, invoking the first term large

• Conclusion
• there is a dilemma between bias and variance

• This gives rise to the question, how to set the size of the 
training set which strikes a good balance between the bias 
and variance.
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VC dimension

• Question: how to set the size of the training set which 
strikes a good balance between the bias and variance.

• We know the theoretical and empirical error
The question is, what is the probability of that the 
difference of these errors are greater than a given 
constant

• Furthermore this probability must be minimized
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VC dimension

• We seek this function

• Replacing the optimal weight vector:

• To have such result, we have to introduce a more 
stronger bound on the convergence, called uniform 
convergence

Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

52

( ), KΨ ε

( )( ) ( )min ( ) min ,empthP KR R− ≤ Ψ>
w w

w w ε ε



VC dimension

• Uniform convergence

• Which enforces that for all other w
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VC dimension

• If this uniform convergence holds then the necessary 
size of learning set can be estimated

• Vapnik and Chervonenkis pioneered the work in 
revealing such bounds and the basic parameter of this 
bound is called VC dimension to honor their 
achievements

• Following slides will discuss this VC dimension
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VC dimension

• Let us assume that we are given by a Net(x,w), what 
we use for binary classification

• VC dimension is related to the classification “power” 
of Net(x,w).

• More precisely, given the set of dichotomies 
expanded by Net(x,w) as
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VC dimension

• The VC dimension of Net(x,w). is defined as the 
number of possible dichotomies expressed by 
Net(x,w)

• For example let us consider the following elementary 
network Net(x,w)= sgn{wTx – b}
• Its VC dimension is N +1

• If N = 2 only 2 + 1 = 3 points can be separated on a 2D 
plane. 

• (As we have seen at the investigation of the capacity of one 
perceptron)
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VC dimension

• VC dimension in general
• Consider the following theoretical and empirical errors, and 

given relations

• We also know
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VC dimension

• Therefore

• Vapnik states the following

• Combining
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VC dimension

• VC dimension result

• To set the constant properly

• Therefore the optimal size of training set is driven by 
the Vc dimension
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VC dimension

• Value of the Vc parameter
• If we apply hard nonlinearity in the neural network

• If we apply soft nonlinearity

• Where the      is the number of weights in the neural 
network
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Learning – in practice

• Learning based on the training set:

• Minimize the empirical error function (Remp)

• Learning is a multivariate optimization task
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Learning – Newton method

• Newton method

• In each step using the learning set we modify the 
weights of the neurons in layers in order to minimize 
the error

• To do this the empirical error of the actual neuron is 
computed and the gradient of this error is used to 
modify the weight
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Learning

• The Rosenblatt algorithm is inapplicable, while we do not know 
the error and desired output in the hidden layers of the FFNN

• Someway the error of the whole network has to be distributed to 
the internal neurons, in a feedback way
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Sequential back propagation

• Adapting the weights of the FFNN

• The weights are modified towards the differential of 
the error function:

• The elements of the training set adapted by the FFNN 
sequentially

Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

64

( ) ( ) ( )

( )

( 1) ( ) ( )

( ) ?

l l l
ij ij ij

l
ij

w k w k w k

w k

+ = + Δ
Δ =

( )
( )

empl
ij l

ij

R
w

w
η ∂Δ = − ∂

( ( ), )emp empR R y d= x



Sequential back propagation

• Consider the following FFNN
• Error function

• Adapting the bias of neuron
in hidden layer

• Where the empirical error is
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Sequential back propagation

• Activation function

• The derivative of this function
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Sequential back propagation

• Using the previous result of the derivative of 
activation function

• Modifying the weight
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Sequential back propagation

• Adapting the weights of the neuron in output layer
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Sequential back propagation

• Adapting the weights of the neuron in hidden layer
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Sequential back propagation

• Adapting the weights of the neuron in hidden layer
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Steps of learning

1. Initialization
• Setting up the initial w weights, usually random numbers

2. Assembling the training set
• The training set has pairs of inputs and desired outputs

3. Propagating the signal
• Compute the outputs for all neurons in the network

4. Back propagating the error and updating the weights

5. Repeating the 3. and 4. steps for a new sample
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Propagation and back propagation
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Numerical example – step 1 & 2

• Consider the following problem, initial states:
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Numerical example – step 3

• Propagating the signal
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Numerical example – step 4

• Back propagating, and updating

• Output layer
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Numerical example – step 4

• Back propagating, and updating

• Output layer - Updating
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Numerical example – step 4

• Back propagating, and updating

• Hidden layer - Updating
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Numerical example – step 4

• Back propagating, and updating

• Hidden layer - Updating
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Numerical example – step 4

• This must be repeated for the other samples in the 
training set, until a pre-defined stopping criteria is 
reached.

• This criteria can be
• A limit of steps

• A pre-defined level of empirical error

• When the weight does not change

• …
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Example of errors

• Consider the following problem, initial states:
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Example of errors

• The structure of back propagated errors:

• Simplified
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Learning issues

• The speed of learning or the quality of approximation 
is not always the best reachable
• It is possible to improve the result with other (better) w 

weights or other neural structure

• The Vc dimension must be considered when the size 
of the network and the training set is planned
• It is very possible that the FFNN is being over trained

• On the elements of the training set the output of the 
network is errorless, but on other inputs the error is huge

• Consider the following figure
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Learning issues

• Example: over trained network
• The error of the

network in case
where the input
is a training point
is almost zero.

• In other cases
the error is much
bigger.

• Therefore not the
goal F function
has been learned
by the network.
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Learning issues

• Example: under trained network
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Improvements of learning

• Preprocessing the input and post processing the 
output
• Normalizing

• Altering the statistical properties of the input
• Type of distribution

• Range of data mapping

• Use of different nonlinearity (even linearity)
• Using different activation functions in different layers

• Use of different learning parameters
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Improvements of learning

• Altering the initialization method
• Not to use random numbers during initialization

• Improved version of learning algorithms
• Resilient Back propagation

• Levenberg Marquadt algorithm

• Momentum methods

• Partition the training set into
• Learning set – to train the network

• Validation set – to validate the learned weights

• Testing set – to evaluate the FFNN
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Comparison of two learning methods

• Resilient back propagation rule

• Convergence time (learning time)
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Applications of FFNN - Introducing

• Pattern (character) recognition
• Given: samples and indices

• Input: noisy sample

• Output: index of stored sample

• Time series prediction
• FFNN is able to predict the new value of time series when 

historical data is available and the FFNN is trained on the 
historical data

• Example: power consumption, currency exchange rates
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Applications of FFNN - Introducing

• Telecommunication
• Signal detection task

• Given channel and noisy symbols arrived through this 
channel

• The task is to decide what symbol has been sent over the 
channel

• Call admission control
• In packet switched networks

• To provide maximal throughput and avoid overflow of the 
network
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Applications of FFNN – Time series prediction

• The task is the following:
• We know the history of a time series till the current time instant

• We would like to estimate the next few element of this time series

• In order to solve this task using the FFNN a training set must 
be assembled
• This training set contains a n length vector containing the values from 

i to i+n from the time series as input and the i+n+1 of the time series 
as desired output 

• Running i from 1 to N-n-1, where N is the length of the time series the 
training set is constructed easily
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Applications of FFNN – Time series prediction

• For example take the following simple function as 
the time series

Testing setTraining set
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Applications of FFNN – Time series prediction

• The predicted time series
• The precision of prediction is very high
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Applications of FFNN – Time series prediction

• Error of prediction and real time series
• This function was learned by the FFNN

• The information if the training set was generalized and the future 
values of the time series was predicted well by the FFNN

x10-8
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Applications of FFNN – Classification

• The classification example task is the following:
• Classification with two classes

• A data set is given with vectors, the two classes are not 
defined explicitly

• The information which vector belongs to the first class and 
which vector belongs to the second class is available

• The training set is constructed from the previous 
information

• Vector as input and +1 or –1 as the classification data
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Applications of FFNN – Classification

• Training set in 2D space with two classes
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Applications of FFNN – Classification

• Training set in 2D space
• The classes may not be

separable with hyper plane

• The edges of classes are soft
edges and there is no explicit
rule

• For example: a circle with center at 0,0 and with radius 7.

• This information (where the edges are between the two 
classes) should be learned and generalized by the FFNN
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Applications of FFNN – Classification

• Real classification by FFNN in a 3D example

Class 1 / 2
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Applications of FFNN – Signal detection

• Signal detection in a wireless network
• Given channel with defined noise

• There is no information about the noise
• No parameters, only observations

• The sender transmits its symbols through this noisy channel

• The receiver detects these symbols with noise

• The task is to determine which symbols has been sent 
through this channel

• To solve this task we can use FFNN as detector



Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

99

Applications of FFNN – Signal detection

• There is no information about the noise

• No parameters, only observations

• This observation may be used as the training set 
for the network

Channel Detector+

ky
H

kν

kx ˆky

Sender Receiver



Signal processing on digital, neural, and kiloprocessor based 
architectures: FNN – Feed forward Neural Network

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 

www.itk.ppke.hu

100

Applications of FFNN – Signal detection, example

• Let us have the following impulse response from the 
channel (after channel identification

• The following training set can constructed from 
observations

• Sent symbols

• Received values 

• Training set (example, using two symbols as input)

[ ]1 0.5
T=h

1, 1,1, 1ky = − −
0.9, 0.1,0.2, 0.7kx = − −

( ) [ ]( ) [ ]( ) [ ]( ){ }3 : 0.7 0.2 , 1 ; 0.2 0.1 ,1 ; 0.1 0.9 , 1τ = − − − − −
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Applications of FFNN – Signal detection, example

• Structure of the FFNN

• Activation function for the output
neuron should be the following

• Because a differentiable function
is needed, but it has to be very similar to the sign 
function in order to obtain –1 or +1 response of the 
neural network
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(2) 1
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2
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Summary

• The architecture of the Feed forward Neural Network has been 
introduced

• The representation capability of the FFNN is the following

• Blum and Li construction – LEGO principle
• Constructive algorithm to approximate arbitrary function

• Back propagation algorithm
• Training set, iterative algorithm to obtain information from the training 

set

• Bias-Variance dilemma, VC dimension

• Applications

p
D L⊆NN
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