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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Introduction (1)
Hopfield neural network is a 

• Recurrent artificial neural network,

• Invented by John Hopfield,

• Serve as an associative memory system

• Or operate as a combinatorial optimizer (quadratic 
programming)

• A stable dynamic system, guaranteed to converge to a local 
minimum

• Convergence to one of the stored patterns is not guaranteed.

www.itk.ppke.hu

Guaranteed to … ? – értem, hogy mit akar, de nem jó ez valahogy
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Introduction (2)

• Topology of Hopfield Neural Network

www.itk.ppke.hu

2N

Number of 
connections:

Implementation
difficulty!
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Structure and operation (1)
Notations (1)

• Weight matrix contains the Wij synaptic weight strength 
feedback from neuron i to neuron j:

• where

www.itk.ppke.hu
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Signal processing on digital, neural, and kiloprocessor based 
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Structure and operation (2)
Notations (2)

• Bias vector contains the threshold values of each neuron:

• Let state vector of the system be

• where

www.itk.ppke.hu
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Signal processing on digital, neural, and kiloprocessor based 
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Structure and operation (3)
• The discrete Hopfield Neural Network can be regarded as a 

nonlinear recursion given in the form of

for every neuron.

• If we reduce our attention only to the sequential updating rule, 
the neuron selection rule becomes:

www.itk.ppke.hu

( ) ( )
1

1 sgn ,
=

⎧ ⎫+ = −⎨ ⎬⎩ ⎭∑Nl lj j l

j

y k W y k b

mod .= nl k

Na most ez azt jelenti, hogy csak a szekv update-tel foglalkozunk. Nem lenne hasznos legalább megemlíteni a többit?
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Signal processing on digital, neural, and kiloprocessor based 
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Structure and operation (4)
• When investigating such a nonlinear recursion as an 

associative mapping, the following questions can arise:

1. How to construct matrix W if one wants to store a set of 
patterns 

as the fix points of algorithm 

such as that      

holds.

www.itk.ppke.hu
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Signal processing on digital, neural, and kiloprocessor based 
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Structure and operation (5)
2. What is the number of those fix points M as a function of the 

dimension (number of neurons in the Hopfield net) ?

In other words we want to reveal the storage capacity of the 
Hopfield net as a function of the number of neurons N.

www.itk.ppke.hu
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Signal processing on digital, neural, and kiloprocessor based 
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Structure and operation (6)
3. Is recursion 

stable and if yes then what are the its convergence properties?

• Next we will thoroughly discuss these questions. Before 
getting down to a detailed analysis, we need some tools rooted 
in the classical stability theory called Lyapunov technique.
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (1)

• Lyapunov1 functions are widely used in the study of dynamical 
systems in order to prove the stability of a system. T

• This technique can be used to analyze the stability properties 
of the Hopfield Neural Networks.

1 Aleksandr Mikhailovich Lyapunov (June 6, 1857 - November 3, 1928) was a 
Russian mathematician, mechanician and physicist.

Hm, ez a dia lehet, hogy kevés. (valami 8-10 sort emlegettek annak idején.)
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Stability and convergence properties (2)

• One possible Lyapunov function

Kicsi az ábra
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Stability and convergence properties (3)
Lyapunov’s weak theorem (1)

• Let us assume that there is a nonlinear recursion given in the 
following general form  

• If one can define a function (the so-called Lyapunov function)  

• over the state space Y, for which

( )( 1) ( )     ( ) .k k k Yϕ+ = ∈y y y

( )   L y y Y∈
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (4)
Lyapunov’s weak theorem (2)

1. L(y) has a global upper bound over the state space:

2. the change of L(y) denoted by  

in each step of the recursion;

Then the recursion

is stable and converges one of the local maxima of L(y).

( )    ;L B Y≤ ∀ ∈y y

( ) ( )( ) : ( 1) ( ) 0L k L y k L y kΔ = + − >

( )( 1) ( )     k kϕ+ =y y
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Stability and convergence properties (5)
Lyapunov’s weak theorem (3)

• The exact proof, which can be found in numerous books 
dealing with control and stability theory, is omitted here. 

• However, it is easy to see if in each step the L(y) can only 
increase and at the same time there exist a global lower bound 
then the recursion cannot go on indefinitely but it will 
converge to one of the local minima.
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (6)
Lyapunov’s strong theorem (1)

• Let us assume that there is a nonlinear recursion given in the 
following general form  

• If one can define a function (the so-called Lyapunov function)  

• over the state space Y, for which

( )( 1) ( )     ( ) .k k k Yϕ+ = ∈y y y

( )   L y y Y∈
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (7)
Lyapunov’s strong theorem (2)

1. L(y) has a global lower and upper bound over the state space: 

2. the change of L(y) denoted by  

in each step of the recursion;

Then the recursion

is stable and converges one of the local maxima of L(y) .

( )    ;B L A Y≥ ≥ ∀ ∈y y

( ) ( )( ) : ( 1) ( )L k L y k L y k χΔ = + − ≥

( )( 1) ( )     k kϕ+ =y y
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (8)
Lyapunov’s strong theorem (3)

and its transient time can be upper bounded as .

• Again the proof omitted, however it is easy to interpret the 
result as follows: in each step L(y) increases at least by κ and 
in the worst case the maximum number of steps needed to 
cover the distance B − A is

• With this tools at our disposal we can embark on ascertaining 
the stability and convergence properties of the Hopfield net.

B A
TR χ

−≤

.
B A

TR χ
−≤
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (9)
• To use the Lyapunov technique we have to assume a Lyapunov 

function associated to recursion 

• According to Hopfield, Cohen and Grossberg, we define the 
corresponding Lyapunov function as follows:

( ) 2 .i ij j i i

i j i

L y W y b y= − = −∑∑ ∑T T
y y Wy 2b y

( )( 1) ( )     ( ) .k k k Yϕ+ = ∈y y y

Based on helyett according to-t írnék.
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Stability and convergence properties (10)
• Now we want to apply Lyapunov’s strong theorem, therefore 

we have to check the following three conditions:

1. existence of global upper bound;

2. existence of global lower bound;

3. it is true, that L(y) ≤ κ.
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (11)
The existence of global upper bound

• To derive an upper bound we can use the Cauchy-Schwartz 
inequality as follows:

• taking into account that we are dealing with binary state 
vectors, elements of {-1,1}N for which

( ) 2L = − ≤ + ≤T T
y y Wy 2b y y Wy b y

2
2 2 ,≤ + = +y Wy b y W y b y

2 2

1

N

i

i

y N
=

= =∑y ( ) 2 .L N N≤ +y W b



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23

Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (12)
The existence of global lower bound (1)

• To derive a global lower upper for L(y) let us first broaden the 
state space from Y= {-1,1}N to the space of N dimensional real 
numbers and define

• over this broadened state space. Therefore

( ) ,   NL ∈ℜx x

min ( ) min ( ).
ny Y x R

L y L x∈ ∈≥
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Stability and convergence properties (13)
The existence of global lower bound (2)

• The minimum  

• can be easily calculated considering that 

• is continuum therefore the gradient of

• exists and form the well known results related to quadratic 
forms the location of this maximum is given as xopt=W-1b.

Nℜ

min ( )
nx R

L x∈

( ) 2i ij j i i

i j i

L xW x b x= − = −∑∑ ∑T T
x x Wx 2b x
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (14)
The existence of global lower bound (3)

• Substituting xopt into 

• one obtains that 
1 2

1 2

( ) min ( ) min ( ) .

( )

ny Y x R
L L L

L

− −
∈ ∈

−
≥ ≥ = − ≥ −
≥ −

T 1
y y x b W b W b

y W b

( ) 2 ,i ij j i i

i j i

L xW x b x= − = −∑∑ ∑T T
x x Wx 2b x

Ez és a következő kicsit hézagos, nehogy belekössenek.
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (15)
The change of the Lyapunov function (1)

• Let us define the change of the Lyapunov function as follows

( ) : ( ( 1)) ( ( ))

( 1) ( 1) 2 ( 1)

( ) ( ) 2 ( ).

i ij j i i

i j i

i ij j i i

i j i

L k L y k L y k

y k W y k b y k

y k W y k b y k

Δ = + − =
= + + − +
− +
∑∑ ∑
∑∑ ∑
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Stability and convergence properties (16)
The change of the Lyapunov function (2)

• We apply the sequential update rule, which means that only the 
component 

• in the state vector y(k) changes, we can write

modNl k=

( )
( )( )
( )
( )

1

2

l

N

y k

y k

k
y k

y k

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

y
#

#

( )
( )( )

( )
( )

1

2

1 .
1l

N

y k

y k

k
y k

y k

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥+ = ⎢ ⎥+⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

y
#

#
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (17)
The change of the Lyapunov function (3)

• Taking this into consideration ΔL(k) takes the following form

• where

2( ) : ( ) 2 ( ) ( ) ,ll l l lj j l

j

L k W y k y k W y k b
⎛ ⎞Δ = Δ + Δ −⎜ ⎟⎝ ⎠∑

( ) ( 1) ( ).l l ly k y k y kΔ = + −
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (18)
The change of the Lyapunov function (4)

• Let us introduce quantity κ as

• To calculate the values of this expression we can create the 
following table:

yl(k) yl(k+1) Δyl(k) WllΔyl
2 (k) 2Δyl (k) ∑jWljΔyj (k)-bl ΔL(k) 

-1 +1 +2 4Wll +4 κ>0 4(Wll+κ)>0

+1 -1 -2 4Wll -4 -κ<0 4(Wll+κ)>0

{ }1,1 , 1,..,
min .

n ij j i
y i n j

W y bκ ∈ − == −∑
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Signal processing on digital, neural, and kiloprocessor based 
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Stability and convergence properties (19)
The change of the Lyapunov function (5)

• From this table it can be seen that whenever a state transition 
occurs, then 

• This means that for each step when a state transition occurs the 
energy function increases.

• Given a global upper and lower bound it follows that there 
exist a time step where the algorithm must stop in a local 
maxima.

( ) 4( )llL k W χΔ ≥ +

Nem üres ez nagyon?
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Stability and convergence properties (20)
• Theorem 3. The Hopfield type of recursion

1. is stable;

2. it converges to the local maxima of the function

3. the transient time can be upper-bounded as

( )21

2
2

.
4( )ll

N N
TR N O N

W χ
−+ +≤ ≈+

W b W b

( ) 2 ;i ij j i i

i j i

L y W y b y= − = −∑∑ ∑T T
y y Wy 2b y
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Hopfield Neural Network as an AM (1)
• Analyzing the non-linear state recursion of the Hopfield 

Neural Network we have come to the conclusion that this is a 
finite state automata with binary state vectors, which gave rise 
to a new application of this network: Associative Mapping 
(AM).

• We start the HNN from an initial state vector x, which 
corresponds to a corrupted version of a stored memory item, 
we call this vector clue. 
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Hopfield Neural Network as an AM (2)
• Then we start the iteration 

• of the network, and if the network gets stuck in one of its 
steady-states then we call this vector as recalled memory item. 

• This mapping is the so-called Associative Mapping.

( ) ( )
1

1 sgn
=

⎧ ⎫+ = −⎨ ⎬⎩ ⎭∑Nl lj j l

j

y k W y k b
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Hopfield Neural Network as an AM (3)
• This new computational gives rise to the model in Figure 

where the N dimensional binary vectors are mapped into two 
dimensions. The box represents the state space Y {−1, 1}N, 
there are a couple of fix points of the HNN s(1), s(2), s(3), s(4).

• An Associative Mapping is a partitioning of the space              
Y {−1, 1}N.

Kicsi az ábra
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Hopfield Neural Network as an AM (4)

• There is a separation of this state space, in terms if we start the 
network from a state x, which falls into the basin of 
convergence of the memory pattern s(4), then finally the 
network will stuck in this steady state.

• In general this also holds for the other memory patterns, and 
their basin of attraction.
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Hopfield Neural Network as an AM (5)
• A pretty general demonstration of the working of an 

Associative Mapping is depicted in figure.

Az alsó sornak mi a szerepe?
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Hopfield Neural Network as an AM (6)
• Lets assume that there are some stored memory items, for 

example a picture of a vase, a cat and a lorry, these are the 
three patterns. 

• An Associative Mapping means that if we have a corrupted 
and incomplete version of one of the memory patterns then it 
will be mapped to one of the stored items, which is the closest.

A demonstration how Associative Mapping works.

Itt is kicsit félmondat az utolsó. Vagy ha az az ábrafelirat. Akkor kerüljön középre, stb.
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Hopfield Neural Network as an AM (7)
• In order to use the Hopfield Neural Network to implement this 

new computational paradigm, we have to make sure that the 
network is stable, meaning the network will converge to a 
steady state. 

• However when we started to investigate the stability, we came 
up with the Lyapunov concept of stability, and there is a 
quadratic form 

• which is the Lyapunov function of the HNN, and we have 
proven that the Hopfield Network is stable.

( ) 2 ,i ij j i i

i j i

L y W y b y= − = −∑∑ ∑T T
y y Wy 2b y
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Hopfield Neural Network as an AM (8)
• Furthermore we have come to the conclusion that the transient 

time of this network is O(N2), which is must faster than 
exhaustive search O(2N).

• When one implements an Associative Memory, there is a given 
set of items, which are to be stored, this is called the set of 
stored memory items, and noted by S,

• here the number of the stored memory items is M, which items 
are binary vectors, with dimension N,

( ){ }, 1,...,S M
α α= =s

( )( )dim , 1,..., .N M
α α= =s



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 40

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Hopfield Neural Network as an AM (9)
• These binary vectors can refer to images, speech patterns or 

bank account numbers, depending on the actual application. 

• The set X represents the observation space, this can be any 
possible N dimensional binary vector,

• We can see that S X, because s(α) is also N dimensional 
binary vector.

{ }1,1 .
N

X = −
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Hopfield Neural Network as an AM (10)
• Definition 1. An Associative Mapping  ψ is defined as a 

mapping from the observation space X to the set of stored 
memory items S, in such a way that it maps any specific 
observation vector x into a stored memory item s(β) for which it 
holds, that this stored memory item is the closest to the 
observation vector, according to a certain distance criterion 
d().

• Formally AM is a 

( ) ( )( ) ( )( ),  for which , , ,  1,..., .s d d M
β αβψ α= ≤ ∀ =x s x s x

: X Sψ →
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Hopfield Neural Network as an AM (11)
• We can define distance in any arbitrary way, which suits our 

application. However when we deal with binary vectors it is 
rather plausible that this distance is the Hamming distance, 
which measures in how many bits two vectors differ from each 
other.

• There are two fundamental attributes of an Associative 
Memory: 1) stability, 2) capacity.

• Where capacity boils down to that what is the size of the 
stored memory items, in our notation M = |S|. When we speak 
of the analysis of Hopfield Neural Network as an Associative 
Mapping we are trying to reveal these two properties.
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Capacity Analysis (1)
• When we use the Hopfield Neural Network as an Associative 

Memory the threshold vector b is set to the all zero vector 0, 
and if we want to store in the network a predefined set of 
memory items then the components of the weight matrix is as 
follows:

• which can be written with vector notations using the outer 
product operation:

( ) ( )
1

1
if

,

0 if

M

l j

lj

s s l j
W N

l j

α α
α=

⎧ ≠⎪= ⎨⎪ =⎩
∑

( ) ( )( )T

1

1
.

M

s s
N

α α
α=

= ∑W
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Capacity Analysis (2)
• This rule was discovered and fully elaborated on in the work 

of D. O. Hebb3, a Canadian born psychologist. 

• That’s why it is named as Hebbian Learning Rule. He 
described this rule as a psychologist in a textual way and from 
this description it was mathematically inferred that 

is the learning rule.
3Donald Olding Hebb (July 22, 1904 - August 10, 1985) was a psychologist who 
was influential in the area of neuropsychology, where he sought to understand how 
the function of neurons contributed to psychological processes such as learning. He 
has been described as the father of neuropsychology and neural networks.

( ) ( )
1

1 M
T

N

α α

α=
= ∑W s s

A képlet logikailag szétcsúszott. A T túl fent van.
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Capacity Analysis (3)
• By capacity we mean that how many stored memory items can 

be recalled from the Hopfield Neural Network. 

• In order to do that we start with a very elementary 
investigation and then are going to penetrate deeper and deeper 
into the capacity analysis, until we arrive at the stage of

1. Statistical Neurodynamics and 

2. the Informational Theoretical Capacity.



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 46

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (4)
Static Capacity (1)

• The first issue is the so called Static Capacity Analysis and Fix 
point Analysis. Recall that there is a set of stored memory 
items, which are represented by binary vectors:

• and the Wlj element of the weight matrix is set according to the 
Hebbian Learning Rule

( ){ }, 1,...,S M
α α= =s

( ) ( )
1

1
if

.

0 if

M

l j

lj

s s l j
W N

l j

α α
α=

⎧ ≠⎪= ⎨⎪ =⎩
∑
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Capacity Analysis (5)
Static Capacity (2)

• What we are going to investigate now is that if we pick up any 
stored memory vector s(β) S in order to recall this vector 
what we have to make sure that this vector is a fix point of the 
Hopfield Network, which means that the recursion

• exhibits an equilibrium behavior, in terms of once we have 
reached s(β) we can not get out of this state. This can be 
written with vector notations as follows:

( ) ( )
1

1 sgn ,
N

l lj j l

j

y k W y k b
=

⎧ ⎫+ = −⎨ ⎬⎩ ⎭∑

( ) ( )( )sgn .β β=s Ws
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Capacity Analysis (6)
Static Capacity (3)

• One can see, that what we have spelled out here is the so 
called fix point of this non-linear recursion, which is a 
necessary condition for s(β) being a stored memory item.

• The question is whether under what condition we can enforce 
this equality, meaning that what is the upper limit on the 
capacity which enforces that equation

• holds. Since we investigate this equation with respect to the 
number of stored memory items M, we are going to draw a 
condition under which this equation will hold.

( ) ( )( )sgnβ β=s Ws
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Capacity Analysis (7)
Static Capacity (4)

• In order to simplify the analysis let us analyze

• which should hold for all components in order to obtain a 
steady state. We can replace Wlj with its definition and write

( ) ( )
1

sgn ,  1,..., ,
N

l lj j

j

s W s l N
β β

=
⎛ ⎞= ∀ =⎜ ⎟⎝ ⎠∑

( ) ( ) ( ) ( )
1 1

1
sgn .

N M

l l j j

j

s s s s
N

β α α β
α= =

⎛ ⎞= ⎜ ⎟⎝ ⎠∑ ∑
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Capacity Analysis (8)
Static Capacity (5)

• However these are finite sum, as a result we can exchange the 
sequence of these summations, and we can rewrite this

• From the outer summation where α sweeps from 1 to M we 
can single out one term, where α equals to β, as s(β) is an 
element of the set S, once α will hit the value of β, as a result 
we can rewrite the previous expression as follows

( ) ( ) ( ) ( )
1 1

1
sgn .

M N

l l j j

j

s s s s
N

β α α β
α= =
⎛ ⎞= ⎜ ⎟⎝ ⎠∑ ∑

( ) ( ) ( )( ) ( ) ( ) ( )2

1 1, 1

1 1
sgn .

N M N

l l j l j j

j j

s s s s s s
N N

β β β α α β
α α β= = ≠ =

⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ ∑
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Capacity Analysis (9)
Static Capacity (6)

• Where in the first part of the expression we have the square of 
s(β)

j which is always 1, because s(β)  {−1, 1}N, and adding up 
N times 1 gives N, which is divided by N yields 1. Let us 
denote the second part of the previous expression by νl, which 
gives the following

• Now what we are investigating is that under what condition 
the above equation holds. We can see that if νl is zero then 
indeed this equation will be satisfied. This criterion can be 
satisfied if the capacity is smaller than N

( ) ( )( )sgn .l l ls s v
β β= +

.M N≤
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Capacity Analysis (10)
Static Capacity (7)

• If we investigate the expression of νl

• what we see is the inner product of the memory vectors. If 

• This entails that the memory items must be orthogonal to each 
other because their inner product should be 0. However we 
have N dimensional memory items, and in an N dimensional 
space the maximum number of orthogonal vectors is N.

( ) ( ) ( ) ( ) ( )( ) ( )T

1, 1 1,

1 1
,

M N M

l l j j l

j

v s s s s
N N

α α β α α β
α α β α α β= ≠ = = ≠

= =∑ ∑ ∑ s s

( )( ) ( )T

0,  , 1,..., ,  ,  then 0.lM v
α β α β α β= ∀ = ≠ =s s
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Capacity Analysis (11)
Dynamic Capacity (1)

• What we have investigated so far was a fix point analysis, but 
it does not necessarily entails that the Hopfield Network will 
converge to this fix point. Now we are going to pursue further 
investigation into this capacity matter, and the second stage of 
this investigation is that we are going to evaluate the Dynamic 
Capacity of the Hopfield Network, where the notion of 
Dynamic Capacity implies that we are investigating the steady 
states.
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Capacity Analysis (12)
Dynamic Capacity (2)

• Definition 2 (Steady state). Steady states are a subset of fix 
points, into which the Hopfield Network converges.

• The stability of the Hopfield Network was proven by using the 
Lyapunov concept of stability, where the center point of the 
concept was that there is a Lyapunov function associated with 
the Hopfield Network.

• Since in the case of applying the HNN as an Associative 
Mapping vector b is zero what remains is as follows:

( ) .i ij j

i j

L y W y= =∑∑T
y y Wy
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Capacity Analysis (13)
Dynamic Capacity (3)

• We have proven that the Hopfield Network is stable and 
converges one of the local maxima oft his Lyapunov function.

• As a result if we want to make sure that an s(β) vector, taken out 
of the set of stored memory items S, is a steady state then it is 
not enough to have it as a fix point, but we also have to make 
sure that the Lyapunov function has a local maxima over s(β) , 
meaning 

( )( ) ( ),  .L L S
β > ∉s y y
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Capacity Analysis (14)
Dynamic Capacity (4)

• First we deal with the Lyapunov function at the place s(β)

• which can be fully spelt out as follows

• We can put instead of Wij its definition,

( )( ) ( )( ) ( )T

,L
β β β=s s Ws

( )( ) ( ) ( )
1 1

,
N N

ij i j

i j

L W s s
β β β

= =
=∑∑s

( )( ) ( ) ( ) ( ) ( )
1 1 1

1
.

N N M

i j i j

i j

L s s s s
N

β β β α α
α= = =

=∑∑ ∑s
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Capacity Analysis (15)
Dynamic Capacity (5)

• However these finite summations can be rearranged in the 
following way, if we collect the terms which depend on index i
and j

• what one has to note that the summation with respect to i is the 
same as the summation with respect to j, as a result we can 
write this in a more compact form:

( )( ) ( ) ( ) ( ) ( )
1 1 1

1 M N N

i i j j

i j

L s s s s
N

β β α β α
α= = =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∑ ∑ ∑s

( )( ) ( ) ( ) 2

1 1

1
.

M N

i i

i

L s s
N

β α β
α= =

⎛ ⎞= ⎜ ⎟⎝ ⎠∑ ∑s
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Capacity Analysis (16)
Dynamic Capacity (6)

• It gives rise to the following formula, if we notice that there is 
the inner product between two memory items

• However in the very first investigation we pointed out that the 
stored memory items should be orthogonal to each other. As a 
result when α sweeps through 1 to M, once α will hit β which 
can be singled out, giving the following expression

( )( ) ( )( ) ( ) 2
T

1

1
.

M

L
N

β α β
α=

⎛ ⎞= ⎜ ⎟⎝ ⎠∑s s s

( )( ) ( )( ) ( ) ( )( ) ( ) 22T T

1,

1 1
.

M

L
N N

β β β α β
α α β= ≠

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑s s s s s
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Capacity Analysis (17)
Dynamic Capacity (7)

• Due to the orthogonality the second term is going to be zero, 
giving

• We have evaluated the left hand side of the inequality

• and now we are going to evaluate the right hand side, in a very 
similar manner:

( )( ) ( ),  ,L L S
β > ∉s y y

( )( ) ( )( ) 2 2
2

2

1 1

1 1 1
1 .

N N

i

i i

L s N N
N N N

β β
= =

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑s



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 60

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (18)
Dynamic Capacity (8)

( ) i j ij

i j

L y y W= = =∑∑T
y y Wy

( ) ( )
1

1 M

i i j j

i j

s y s y
N

α α
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1 M
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Capacity Analysis (19)
Dynamic Capacity (9)

• However we can say that if we have two binary vectors of 
dimension N and components −1 and 1 it can be verified that 
the inner product of two vectors a, b {−1, 1}N  can be 
expressed by the means of Hamming distance as

• where the Hamming distance d() are the number of 
components in which the two binary vectors differ from each 
other. Using this equation we can rewrite L(y) as follows

( )2 , ,T N d= −a b a b

( )( )( ) ( )( )( )2 2
T

1 1

1 1
( ) 2 , .

M M

L N d
N N

α α
α α= =

= = −∑ ∑y s y s y
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Capacity Analysis (20)
Dynamic Capacity (10)

• And now we are going to provide an upper-bound on this 
expression, taking into account that the minimum Hamming 
distance in which the state vector can differ from any stored 
memory items is 1. As a result we can write

• And then we are done with because what we have obtained is 
the following

( ) ( )2
2

1

21
( ) 2 .

M N
L N M

N Nα=
−≤ − =∑y

( )( ) ( )L L
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Capacity Analysis (21)
Dynamic Capacity (10)

• If this is fulfilled and indeed the stored memory items are 
going to be steady states, because this inequality holds and the 
Hopfield Network will converge to one of the local maxima of 
the Lyapunov function, and this local maxima is at the place of 
the stored memory item, as a result this is going to be a steady 
state.

• However this result is devastating because this capacity is very 
small, the number of stored memory items is very limited by 
this expression, asymptotically it converges to 1, giving an 
unusable associative mapping, capable of storing one memory 
item.
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Capacity Analysis (22)
Dynamic Capacity (11)

• The Dynamic Capacity of the Hopfield Network.
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Capacity Analysis (23)
Information Theoretical Capacity (1)

• As we have seen, the Dynamic Capacity of the Hopfield 
Neural Network tends to be one as N (the dimension of stored 
patterns) increases to infinity. This strongly discourages us in 
using these networks as associative memory. 

• In this section we describe the solution to get out of this dead-
lock. However this result is devastating because this capacity 
is very small, the number of stored memory items is very 
limited by this expression, asymptotically it converges to 1, 
giving an unusable associative mapping, capable of storing one 
memory item.



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 66

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (24)
Information Theoretical Capacity (2)

• The underlying assumption when we investigate the IT 
capacity of the HNN is that we choose the stored memory 
patterns as random variables. As a result 

• is independent identically distributed Bernoulli random 
variable, with properties

( ) ,  1,...,is M
α α =

( )( ) ( )( )1 1 0.5,  1,..., ,  1,..., .i iP s P s M i N
α α α= = = − = ∀ = ∀ =
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Capacity Analysis (25)
Information Theoretical Capacity (3)

• Which entails that the stored memory patterns are chosen as 
random series of coin flipping.

• Orthogonal and random patterns.
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Capacity Analysis (26)
Information Theoretical Capacity (4)

• What we are going to investigate is that if we take a memory 
vector s(β)  then is it a fix point of the HNN or not. This is a 
random event, because the components of s(β)  are chosen 
randomly. 

• Furthermore applying the Hebbian Learning rule, the weight 
matrix is a random event as well. 

• So we can investigate the probability of s(β)  being a fix point:

( ) ( )( )( )sgn .P
β β=s Ws
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Capacity Analysis (27)
Information Theoretical Capacity (5)

• Definition 3. Information Theoretical Capacity means, that 
what is the number of possible stored memory items M which 
guarantee that probability 

• asymptotically is going to be one, when N tends to be infinity.:

( ) ( )( )( )sgn .P
β β=s Ws

( ) ( )( )( ):  lim sgn 1
N

M P
β β

→∞ = =s Ws
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Capacity Analysis (28)
Information Theoretical Capacity (6)

• In order to evaluate this equation we have to perform some 
calculations with 

• which can be rewritten into the following form,

• because being a vector valued equation, and the starting 
probability holds if the equation holds for every components 
of the vector.

( ) ( )( )( )sgn .P
β β=s Ws

( ) ( )( )( ) ( ) ( )( )
1

sgn sgn ,
N

i

i

P P s
β β β β

=
⎛ ⎞= = =⎜ ⎟⎝ ⎠s Ws Ws∩
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Capacity Analysis (29)
Information Theoretical Capacity (7)

• holds due to the fact, that the components of s(β) are 
independent random variables, and we have replaced Wij with 
its definition, which is coming from the Hebbian Learning 
Rule. 

• Restructuring this double summation we get to the following:

( ) ( )( )( ) ( ) ( ) ( ) ( )
1 11

1
sgn sgn ,

N N M

i i j j

ji

P P s s s s
N

β β β α α β
α= ==
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1
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Capacity Analysis (30)
Information Theoretical Capacity (8)

• Since s(β)  is among the stored memory patterns once α is going 
to hit β and we can single out that case in the summation, 
which results in

• where

• because we are dealing with binary vectors with values 
{+1,−1}, and raising these values to the square we always get 
+1, which added up N times gives N.

( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )2

1 1, 11

1 1
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Capacity Analysis (31)
Information Theoretical Capacity (9)

• Let us introduce a new variable

• νi is a random variable as well, because the multiplication of 
Bernoulli random variables results in a Bernoulli random 
variable. What is in this expression is a double summation of 
Bernoulli random variables. 

( ) ( ) ( )
1, 1

1
.

M N

i i j j

j

v s s s
N

α α β
α α β= ≠ =

= ∑ ∑
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Capacity Analysis (32)
Information Theoretical Capacity (10)

• Due to the Central Limit Theorem, this approximates a 
Gaussian random variable

• since the mean of each Bernoulli random variable is zero, the 
mean of the Gaussian random variable is zero as well, and 
because of the standard deviation of the Bernoulli random 
variables is one, and we add it up M − 1 times and normalize it 
with N the standard deviation of the Gaussian random variable 
is going to be

1
~ 0, ,i

M
v N

N

⎛ ⎞−⎜ ⎟⎝ ⎠

1
.

M

N

−
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Capacity Analysis (33)
Information Theoretical Capacity (11)

• Furthermore since we have delved into an asymptotic 
investigation when N tends to be infinity if we replace M − 1 
with M it does not make any difference, so finally we get

• What we have arrived at is:

~ 0, .i

M
v N

N

⎛ ⎞⎜ ⎟⎝ ⎠

( ) ( )( )( ) ( ) ( )( )( )
1

sgn sgn .
N

i i i

i

P P s s v
β β β β

=
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Capacity Analysis (34)
Information Theoretical Capacity (12)

• It can be expressed by the means of conditional probabilities, 
namely

where we know, that

( ) ( )( )( ) ( ) ( )( ){ ( )( )
1

sgn 1 sgn 1 | 1 1
N

i i i

i

P P v s P s
β β β β

=
= = = + = = +∏s Ws

( ) ( )( ) ( )( )}1 sgn 1 | 1 1 ,i i iP v s P s
β β+ − = − + = − = −

( )( ) ( )( )1 1 0.5.i iP s P s
β β= = = − =
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Capacity Analysis (35)
Information Theoretical Capacity (13)

• We can rewrite these probabilities taking into account, that the 
sgn() function gives +1 for (1 + νi) if (1 + νi) > 0 holds, which 
results in

• Now we can take advantage of that fact that νi is Gaussian:

( ) ( )( )( ) ( ) ( ){ }
1

sgn 1 0 1 0
N

i i

i
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= = + > + − + < =∏s Ws

( ) ( ){ }
1

0.5 P 1 P 1 .
N

i i

i

ν ν
=

= ⋅ < + > −∏
( ) ( )( )( )

1 1

sgn 0.5 1 .
N N

N

i i

N N N N
P

M M M M

β β
= =

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= = −Φ +Φ = Φ = Φ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭∏ ∏s Ws



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 78

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (36)
Information Theoretical Capacity (14)

• Φ(u) is the cumulative distribution function of the random 
variable νi, with point symmetry property 1 − Φ(-u) = Φ(u) .

• What we have arrived to is the following

• which is a simple formula to investigate this probability.

( ) 21
.

22

u
u

u expπ −∞
⎛ ⎞−Φ = ⎜ ⎟⎝ ⎠∫

( ) ( )( )( )sgn ,N N
P

M

β β ⎛ ⎞= = Φ ⎜ ⎟⎝ ⎠s Ws
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Signal processing on digital, neural, and kiloprocessor based 
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Capacity Analysis (37)
Information Theoretical Capacity (15)

• In Definition 3. we are investigating that under what condition 
this probability tends to be one. However this is equivalent 
with investigating the logarithm of this probability when tends 
to zero:

• which is equivalent with

( ) ( )( )( ){ }ln sgn 0P
β β= =s Ws

ln 0.
N

N
M

⎧ ⎫⎛ ⎞⎪ ⎪Φ =⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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Capacity Analysis (38)
Information Theoretical Capacity (16)

• Remind the following facts from asymptotic analysis:

• Having these approximations at hand we can see that if N
tends to be infinity and we reverse the fraction in the argument 
of Φ(u) then Φ(u) tends to have a very large argument, as a 
result we can approximate with formula above, which gives

( ) ( )21 1
lim 1 exp  and limln 1 .

2u u
u u u u

u→∞ →∞
⎛ ⎞Φ ≈ − − ≈ −⎜ ⎟⎝ ⎠

2

1
ln ln 1 exp .

2

N M M
N N

M N N

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟Φ = − −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎝ ⎠⎩ ⎭
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Signal processing on digital, neural, and kiloprocessor based 
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Capacity Analysis (39)
Information Theoretical Capacity (17)

• Now the argument of the logarithm function tends to zero 
when N goes to infinity, and because of this we can use 

• to further rewrite this expression

( ) 1
ln exp exp ln ln .

2 2 2

N M N N N
N N N

M N M M M

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎛ ⎞ ⎛ ⎞Φ = − = − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
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Capacity Analysis (40)
Information Theoretical Capacity (18)

• Having this result, we have to find M for which this expression 
tends to zero, because we have evaluated the logarithm of the 
initial probability, and this logarithmic probability should tend 
to zero, if we want the probability to tend to one. 

• We can see that we are not in trouble to make this zero, if we 
choose

( )ln
2

N
N

M
= ( ) .

2ln

N
M

N
=
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Capacity Analysis (41)
Statistical Neurodynamics (1)

• When deriving the IT capacity of the HNN we used only a fix-
point analysis, we did not pay attention of the dynamics of the 
network. Still we have to investigate the dynamics of the 
HNN, whether we really will converge to the stored memory 
items if they are chosen to be Bernoulli random variables.

• Statistical Neurodynamics relies on the theory of Statistical 
Physics where we investigate very huge systems, containing a 
lot of particles (for example the Oxygen atoms in a room).
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (42)
Statistical Neurodynamics (2)

• Then we can characterize the state of the system by micro-
states y(k), but this description is meaningless, because it 
contains too much information, does not reveal any important 
property of the system. 

• However in order to really characterize the statistical system 
the concept of macro-states can be developed, where the 
macro-state

( ) ( )( )( )average .a k kϕ= y
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Capacity Analysis (43)
Statistical Neurodynamics (3)

• And now we can investigate that if we know the state 
transition rule between the micro-states, Statistical Physics 
wants to derive the state transition rule for the macro-states.

• For example if we take a room, we can observe the position of 
Oxygen atoms in there. A micro-state of this system would be 
characterized by giving the coordinates of each Oxygen atoms, 
which would be so much data that we could not retrieve any 
meaningful information from it.

( ) ( )( )( )average .a k kϕ= y
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Capacity Analysis (44)
Statistical Neurodynamics (4)

• However defining macro-states as what is the average 
distribution of Oxygen atoms, then this is a meaningful 
information. 

• And when we are investigating the state-transmission, then for 
example if we turn up the heating at one corner, then we know 
from the basic rules of physics how the micro-states will 
change and then we are investigating how the macro-state will 
change, how the temperature will effect the average 
distribution of the Oxygen atoms.
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Capacity Analysis (45)
Statistical Neurodynamics (5)

• We define the macro state of the network as

• The meaning of this macro state can be graphically represented 
in next Figure.

Representation of the macro state. 

Ábraaláírást meg kellene formázni
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Capacity Analysis (46)
Statistical Neurodynamics (6)

• Here the macro state a(k) corresponds to cos(α(k)). If we can 
prove that for a given (u) a(k + 1) > a(k) and a(k) converges to 
1, than it means that the cosine of α(k) converges to 1, which 
means that α(k) converges to 0. Consequently if α(k) tends to 
0, this means that the micro state y(k) converges to s().
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Capacity Analysis (47)
Statistical Neurodynamics (7)

• Throughout these discussions we restrict ourselves to s() = (1, 
1, . . . , 1), for the sake of easier formulas, but these results can 
be also derived for any arbitrary  patterns. In this case if we 
consider

• when s() is this special vector, we get
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Capacity Analysis (48)
Statistical Neurodynamics (8)

• It is an empirical average of the random variable yi(k), which 
approximates the expected value E{yi(k)} of this random 
variable, due to the Law of Large Numbers.

• We would like to derive the macro state transition rule, and for 
this we start by writing down the 0th macro state:

• after this we take the 1st macro state, which is as follows:
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Capacity Analysis (49)
Statistical Neurodynamics (9)

• It is an empirical average of random variables, because Wij is 
chosen according to the Hebbian Learning Rule, and s() i is 
subject to Bernoulli distribution, that is why yi(1) is a 
Bernoulli random variable. When we further elaborate on this 
expected value we can write
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Capacity Analysis (50)
Statistical Neurodynamics (10)

• After this we can substitute the definition of Wij , which 
comes from the Hebbian Learning Rule we applied

• the two summations can be reordered, which yields
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Capacity Analysis (51)
Statistical Neurodynamics (11)

• The first summation here sweeps through all the possible 
values of , which contains as well, and because of this we 
can single this term out, and write

• and because we have chosen      in a special way, namely 
we can write

( )i
s

( )β
s

( )β
s

( ) ( )1,1, ,, 11β = …s

Át kell rendezni
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Capacity Analysis (52)
Statistical Neurodynamics (12)

• It was the value of the macro state at the 0th time instance.

• Elaborating on the second term of the summation we can see 
that it is a normalized summation of Bernoulli random 
variables, and due to the Central Limit Theorem this will 
approximate a Gaussian random variable νi in the following 
way



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 95

Signal processing on digital, neural, and kiloprocessor based 
architectures: Hopfield Neural Network

Capacity Analysis (53)
Statistical Neurodynamics (13)

• Considering the fact, that we are interested in the asymptotic 
behavior of the Hopfield Network, when N tends to infinity, 
then writing M instead of M −1 does not make any difference, 
which gives us
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Capacity Analysis (54)
Summary of the capacity

Capacity limits of Hopfield net.

statCap M N= =

statistical dynamic 2
Cap M Nπ= <

( )Inf.theoCap
2 log

N
M

N
= =

( )
2

din
2Cap

2

N
M

N
= ≤ −

Ábrafelirat igazítása
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Outline of applying the HNN as a combinatorial optimizer

• Defining the problem set of combinatorial optimization

• Binary Quadratic programming as a combinatorial 
optimization problem

• HNN as a combinatorial optimizer
• Philosophy

• Minimization modification

• Constraint mapping

• Travelling salesman problem
• Problem formulation

• Cost function as a quadratic function

• Constraints as linear combination of penalty functions

Namost ez így nem jó, hogy hirtelen jön egy contents. Ezzel valamit kell kezdeni. Vagy az elejére, vagy egy újabb címdia és akkor külön ppt, … stb.
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Outline of applying the HNN as a combinatorial optimizer

• TSP problem mapped into a quadratic form

• Solution with HNN

• HNN for ISI corrupted signal detection
• Problem formulation

• Mapping the problem into a quadratic form

• Solution with HNN

• Performance analysis

• Examples

• Summary



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 99

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Combinatorial optimization task

• A discrete optimization task is an optimization task:

where the domain of the objective function and the constraints 
are from a discrete set e.g.

( )
( )

{ }
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subject to 0 ,
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Combinatorial optimization task

• A combinatorial optimization problem COP is a discrete 
optimization task where the domain of the functions is also a 
discrete set, but the elements are combinations of simpler 
elements. E.g.

• The trivial solution for a discrete optimization problem is the 
exhaustive search.

• Usually the combinatorial optimization tasks are NP problems, 
so for a large size the exhaustive search is intractable.

group of vertices in a graph or

group of edges in a graph, like a tree or a cycle

 vector with poz. integer elements

etc.

n

x

x

x

∈
∈
∈`

Az a négyzet mit is jelent?!
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combinatorial optimizer

Hopfield network as a combinatorial optimizer

• We have learned that the HNN minimizes it’s energy function 
which is:

• Note that if we don’t assume any constraints or incorporate the 
constraints in the energy function and choose the objective 
function to be the energy function, then the HNN can perform 
the combinatorial optimization.

• So if we can address a combinatorial optimization problem as 
a quadratic function minimization, then a HNN can be used.

( ) { }2 1,1,T T N
L = − ∈ −y y Wy y b y

{ } ( )
1, 1

min
N

L∈ − +y

y
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – philosophy

• We can approximate the solution of a traditionally NP problem

Data
representation

Quadratic 
optimization

problem

Combinatorial
optimization

problem

Binary 
representation

HNN
De-

representation

Optimal 
Solution

Quadratic
form

Global
minimum
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

• We have used the HNN for maximizing the energy function, 
we will prove that with a modification it can be used for 
minimization.

• Modify the weight matrix as:

• The new energy function is:

• It can be proven that: 

,  if 

0,  if 
ij

ij

W i j
W

i j

◊ ≠⎧= ⎨ =⎩
{ }1,1
min 2

N

T T

opt

◊ ◊
∈ −=

y

y y W y - b y

opt opt

◊ =y y

A dagger könnyen összetéveszthető lehet a transzponálttal
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Hopfield network, Hopfield net as associative memory and 
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HNN as a combinatorial optimizer – minimization

• The two energy functions only differ in a constant term so the 
minimum is the same location: 

( )( )
( ) ( )
N

1 1
0 if 

 

1 11
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2 2
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

• The modified energy function does not alter the place of the 
minimum, so we can define a state transition rule which 
minimizes the new energy function:

• The Modified HNN is capable of minimizing the quadratic 
form and the number of steps needed for this minimization is a 
polynomial function of the dimension of the network.

( ) ( ) ( )
1

1 sgn , mod
N

i ij j i N

j

y k W y k b i k◊
=

⎧ ⎫+ = − − =⎨ ⎬⎩ ⎭∑

( ) ( )2 2NO N O�
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HNN as a combinatorial optimizer – minimization

• To prove this we have to ensure 3 properties for this structure:

1. there exists a global upper-bound B;

2. there exists a global lower-bound A;

3. the change in the Lyapunov function is always larger than κ

( ) ( )( ) ( )( ): 1L k L k L k κ◊ ◊ ◊Δ = + − < −y y

( )†L y

y

Ebben a diasorban ezek már tárgyalt információk
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combinatorial optimizer

HNN as a combinatorial optimizer – minimization

• If properties shown we can state that the transient time is:

• Following the methods shown at the maximization the lower 
and upper bounds can be derived similarly:

• We have to elaborate on the change of the energy function to 
prove property 3.

TR
B A

κ
−≤
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( ) 1

2

T
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

• Rewriting the change of the energy function:

• To show that the change is bounded we introduce a table with 
the possible events:

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

• Table of the possible changes in the energy function:

• So the energy function always decreases which yields to a 
minimum point.

• We can give a bound on a transition time:

( ) ( ) ( ) ( ) ( )
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

Local vs. global optima

• The Hopfield network acts along the energy “surface” function 
and in every step decreases it. However if a valley other than 
the basin of the desired solution (marked with blue) exist in the 
energy function, it can stuck in a suboptimal answer if started 
from a “wrong” basin.

• In the energy function we call the bottom of such valleys local 
minima. Local minima usually have 
higher value than the global minimum.

{ 1,1}
min 2

N

T T

∈ − −
y

y Wy b y
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – minimization

Strategies overcoming staying in local minima

• There are a lot of different strategies to overcome stucking in a 
local minima. A lot of them are heuristics or combined with 
other combinatorial optimizer strategies.

• A few examples:
• If stuck, “shake” ~ add noise to the state, maybe it shakes into a 

“better” valley – Noisy Hopfield Network

• Chaotic Hopfield Network

• Taboo search combined HNN

• EDA+HNN

• Hysteretic HNN

• Multi stage, multi init. HNN, etc.
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – constraint 

mapping

• We have seen that the HNN is capable to minimize a quadratic 
function

• But we cannot deal with the constraints in a straightforward 
manner.

• The most common way to deal with the constraints is to 
incorporate them into the energy function as penalizing terms

( )
( )

{ }
( ) ( )

,

min

subject to 0,
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

HNN as a combinatorial optimizer – constraint 

mapping

• Constructing an objective function as a linear combination of 
the original cost function and the penalizing terms

• Although other construction could be used due to the linearity 
property the linear combination is the most commonly used 
choice.
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( ) ( ) { }

0
1

min

0,  if 0 constraint not met
where :

0,  if 0 satisfied 

2 , 1, 1

M

i

i i

i

i

i

NT T

i

i

g x
p x

g x

f x p x

f x L

α α
=
>⎧⎪= ⎨⎪⎩

+

= = − ∈ − +

∑

y y yWy y b

�
�



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11
4

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• One of the most important COPs is the Travelling Salesman 
Problem (TSP).

• We have K cities. The TSP is that we have an agent at city 1 
and we want him to visit all the cities exactly only once and 
arrive back to city 1 while we require him to travel the least 
(on the possible shortest route)
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• We have an edge weighted graph G(V,E) where the vertices 
are representing the cities the edges are the possible travelling 
connections between the cities and the distance between the 
cities (travelling costs) are the weights of the edges.

• The TSP problem is the same as finding the shortest 
Hamiltonian cycle in an edge weighted graph

• http://imgs.xkcd.com/comics/travelling_salesman_problem.png

http://imgs.xkcd.com/comics/travelling_salesman_problem.png
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• Let us follow the steps of

• Let’s transform the TSP into a quadratic optimization problem 
tractable by HNN

Data
representation

Quadratic 
optimization

problem

Combinatorial
optimization

problem

Binary 
representation

HNN
De-

representation

Optimal 
Solution

Quadratic
form

Global
minimum

O(2N) or O(N!) O(N2){ } yb-Wyyy
y

TT

opt N
2min

1,1−∈=
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• Given a distance matrix D for the graph we can represent a trip 
by a matrix V having

• For example the shown route can be described by the 
following route matrix:

: distance between city  and 

1,  if we are at city  at stage 
:

0,  otherwise

ij

ij

D i j

j i
V

=
⎧= ⎨⎩

{ }
A B C D E

1 0 0 0 0 1

0 0 0 1 0 2
,

0 0 1 0 0 3

0 1 0 0 0 4

0 0 0 0

0 1

5

,

1

K K×∈=V V
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• Note that V could be arbitrarily chosen, but for V to describe a 
valid tour for the agent V must satisfy several constraints:

a) Each row in V must contain exactly one 1-s, because the 
agent cannot be in two or more cities at the same time

b) Each column in V must contain exactly one 1-s because we 
must visit all the cities and we must visit them only once.

• We can describe mathematically these constraints as

1. Row orthogonality:

2. Column orthogonality:

3. Sum of the elements of V must be K:
1

1,  if 

0,  if 

K

ki kj

k

i j
V V

i j= ≠
=⎧= ⎨⎩∑

1
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0,  if 

K

ik jk

k

i j
V V

i j= ≠
=⎧= ⎨⎩∑

1 1

K K

ij

i j

V K
= =
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• For V to describe a valid tour (be a feasible solution) V has to 
be a permutation matrix

• Having this notation we can formulate the cost of a route:

• The objective function to be minimized is:

• Note that the HNN works with state vectors of

( )1
1 1 1

K K K

ij jk i k
i k j

V D V += = =∑∑∑
( ) { }1

1 1 1

min , :  is a permutation matrix
K K K

opt ij jk i k
i k

P
j

V D V P+= = =∈= =∑∑∑
V

V A A

{ }1, 1
N∈ − +y
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• We have to transform V to the domain of y

• After this we can write the objective function as:

• is this a quadratic form?

( ) ( )1

1

1
, 2 1

2
i K j

ij iji K j

y
V y V

− +
− +

+= = −

{ }
( ) ( )

2
1 1 11, 1

1 1 1
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2 2K
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• This is a quadratic form which we will write in the traditional 
matrix-vector notation. Thus giving W and b

V y
( )1 2 1iji K j

y V− + = −

matrix

vector

{ }
( ) ( )1

opt
1,1 1 1 1

1 1
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2 2N
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i K j i K m

jm

m j i

y y
D

− + +
∈ − = = =

+ += ∑∑∑
y

y
???

{ } { }opt
1,1 1,1 1 1 1

min 2 min 2
N N

N N N
T T

i j ij i i

i j i

y y W b y∈ − ∈ − = = =
= − = −∑∑ ∑

y y

y y Wy b y

W, b

Transformation

{ }0,1ijV ∈ { } 21,1 ,
N

N K∈ − =y



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 12
2

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• We perform an index change:

• From the original cost function

• We come to:

( ) ( ): 1 :k i K j h i K m= − + = +

{ }
*

opt
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*
mod ,mod
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

{ }
( )

{ }
( ) ( ) ( )

{ }
( ) ( )

{ }

*

1,1 1 1

* * *

1,1 1 1 1 1 1 1

* *

1,1 1,11 1 1 1

1 1
min

2 2

1 1 1
min

4 4 4

1 1
min min 2

4 2

N

N

N N

N KN
h k

opt hk

h k

N K N K N KN N N

h k hk h hk hk k

h k h k h k

N K N KN N
T T

h k hk h hk

h k h k

y y
D

y y D y D D y

y y D y D

−

∈ − = =
− − −

∈ − = = = = = =
− −

∈ − ∈ −= = = =

+ += =

= + + =
= + = −

∑ ∑
∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

y

y

y y

y

y Wy b y

De-representationyopt

Weight matrix Bias vector

We need a modified goal function to ensure a permutation matrix

Vopt

Is it a 
permutation 
matrix ???

Nem biztos, hogy mindenki számára következik, hogy a felhő miatt van a modified gf.



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 12
4

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• This energy function does not guarantee us to find a feasible 
solution (valid tour along the cities), so we have to 
incorporate the constraints for V into the energy function in 
such a way that the energy function has to be minimal if all 
the constraints are satisfied and the cost function is minimal.

• We choose a weighted linear combination of the cost function 
and the constraint terms so that if any of the constraints are 
not satisfied then the energy function is penalized thus 
pressing it farther from the minimum.
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• We have the new energy function as

• Substituting

into all terms, we get
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• This is a quadratic form again which we will write in the 
traditional matrix-vector notation. Thus giving W and b.

• Let us first separate the quadratic terms the linear terms and 
the constant terms the same way as we did for only the cost 
term.

( ) ( ) ( ) ( ) ( )
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Travelling salesman COP

• After substituting and evaluating the parameters we get 
independent matrices and vectors to form the overall 
quadratic function:

• Where the matrices and vectors correspond properties of the 
row, column orthogonality, the permutation matrix property 
and the press of the cost term.

• The weights of the linear combinations can be adjusted over 
the solution process in each stage to emphasize one property 
over another. Usually heuristics are applied to change them.

( ) ( ) ( )· · · · · · · · · · ·2T TL α β γ δ α β γ δ+ + + + += − +
W b
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• One other example for a COP is a multipath propagated radio 
wave compensation and detection in communication.

• We send a block of symbols but the receiver gets a noisy linear 
combination of them due to ISI and additive noise

y xInter Symbol Interference
&
Additive Gaussian Noise

Sent signal Received signal

Channel
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• We send a block of symbols

• But due to the channel acts like a linear filter, we receive a
noise added convolution of the sent symbols with the
channel’s impulse response function

[ ]T1 2 ... ...L Ny y y y=y

[ ]T1 2 ... L Nx x x x=x

ISI

0 1 1 2 2

0

...k k k k L k L k

L

j k j k
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ν
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• We want to make a decision based on the knowledge of H (the 
channel matrix) and the received message x, what was the 
most probable sent information vector y

y ŷx

νGaussian noise

H νHyx +=

Received signalSent signal Detected signalISI

1
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y

y

y
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• We can use a simple decision rule, taking the sign of the 
received signal.

• Threshold detector:

y ŷx

ν

νHyx +=H
Received signal

Sent signal Detected signalISI

{ } { }νHyxy +== sgnsgnˆ

{ } 0
0 1

ˆ sgn sgn sgn
L L

k k j k j k k j k j k

j j

y x h y h y h yν ν− −= =
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• But we know more information of the underlying phenomenon 
(we know H and that a noise is added). So applying the 
Bayesian decision rule:

• We know that the received signal is constructed by the channel 
as:

• And that the noise is an additive white Gaussian noise

• So the observed signal can be treated as a random variable:

{ } ( ) { }
( ) ( )( ) { } ( )opt

1,1 1,1 1,1

p | p
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x
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• We can describe the optimal decision based on the Bayesian 
rule:

• We will show that this is a quadratic form indeed.
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Signal detection as combinatorial optimization

• Expanding the expression:
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• So we have constructed a quadratic energy function that can be 
used as the energy function of the HNN.
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Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Signal detection as combinatorial optimization

• The HNN with the given parameters can approximate the 
optimal detection.

y optŷx
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Signal detection as combinatorial optimization

• Performance analysis for an example:

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5 6 7 8

SUD

MMSE

HNN

SHNN

Bayes

[ ]T1 0.4 0.1 0.3 0.2=h

SNR vs. BER

Érdemesnek tartanám átszínezni az ábrát, főleg a cián hátteret.



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 13
9

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Analog circuit implementation of the HNN

• There are several types of implementation of the HNN. 
Software like Matlab or Labview contain packages of different 
neural networks. 

• On a DSP one can exploit the fast matrix vector multiplication 
capabilities. 

• The optical implementation gives us a very fast architecture. 

• However the available software are very slow in contrast to the 
hardware implementations, while the DSP and optical 
implementation is not cut out for large scale. Due to the 
quadratically growing interconnections between neurons.
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Analog circuit implementation of the HNN

• The first step in implementing Hopfield Neural Network as an 
analog circuit is to analyze the nonlinear state transition rule of 
the network:

where we have set b = 0 for the ease of simpler formulas. 

• This is a discrete time state transition rule, in terms k=1,2,…

• When we are implementing Hopfield Neural Networks as an 
analog circuit then this circuit can not handle discrete time but 
continuous time. This gives rise to the first question, namely 
how to change this network from discrete to continuous time?
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1

1 sgn
N

i ij j

j

y k W y k
=

⎧ ⎫+ = ⎨ ⎬⎩ ⎭∑



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 14
1

Hopfield network, Hopfield net as associative memory and 

combinatorial optimizer

Analog circuit implementation of the HNN

• We need to modify the state transition from a discrete time 
step to an infinitesimally small time step (difference) and use a 
differentiable activation function instead of the sign function.

• If we choose an arbitrary small time step
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Exercises – example 1

Given a DHNN by it’s weight matrix and bias vector.

a) Determine and draw to the figure the state transitions and the 
stable point using the given values of the Lyapunov function 
if we use the network for minimization, and the initial state is:

b) Verify the solution applying and computing the states 
according to the state transition rule.

1 0.5 0.1 0.2

0.5 1 0.2 0.8

0.1 0.2 1 0.3

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
W b

( ) [ ]T0 1 1 1= − −y

Ez üres!
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Exercises – example 1 solution

a)

( )( ) [ ] [ ]3

1 0.5 0.1 1 1

1 1 1 0.5 1 0.2 1 2 0.2 0.8 0.3 1 4

0.1 0.2 1 1 1

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
yL

4
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Exercises – example 1 solution

b)

( ) ( )
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Exercises – example 2

Give the stable point of the following HNN:

Ez üres!
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Exercises – example 3

We want to store the following samples in a HNN used as an 
associative memory:

• Give the weight matrix and the bias vector of the network!

• Are the samples orthogonal?

• Show a stable point beside the stored sample points!

• Mark the states in the figure from where the net converges to 
the stored samples:

[ ]1 1 1 1 1
T= − −s [ ]2 1 1 1 1

T= −s

Ez üres!
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Exercises – example 4

We want to solve the following optimization problem with a 
Hopfield net:

• Give the concrete recursive state update formula of this 
Hopfield net used for minimization!

{ }3

T T
opt

1,1

4 0.5 0.1 0.6

: min 2 ,    0.5 4 0.2  ,   1.4

0.1 0.2 4 5.2
∈ −

−⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟− = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠y

y y Wy b y W b

Ez üres!
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Exercises – example 5

We want to use a Hopfield net in a digital communication system 
for detection. The state of the linear channel distortion with an 
AWGN noise is assumed to be known and to be stationer. 

The impulse response of the channel is: and the SNR 
is 0dB. The block representation of the system model is:

• Show that the HNN is the optimal detector for this problem.

[ ]1 0.5 0.1
T=h

Ez üres!
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Exercises – example 5

• Give the weight matrix and the bias vector of the Hopfield net 
for the given channel impulse response and noise power if the 
received signal is:

• What will be the decoded message (   )? 

• What would be the decoded message if a threshold detector 
would have been used instead of the HNN detector?

Note: the initial state of the HNN is random. In the example use 

[ ]T2232.01490.14435.2=x

( ) [ ]T1110 −−=y

ŷ

Ez üres!



10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 15
0

Hopfield network, Hopfield net as associative memory and 
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Summary

• A method was shown how to use the HNN to minimize a 
quadratic cost function

• This construction was used for solving combinatorial 
optimization problems which are traditionally NP problems, 
but with the HNN polynomial complexity approximation is 
given for the solution.

• Examples have been shown of mapping combinatorial 
optimization problems into quadratic programming tasks

• Possible analog circuit implementation was shown for the 
HNN
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