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Digital- and Neural Based Signal Processing &
Kiloprocessor Arrays

Digitalis- neuralis-, és Kiloprocesszoros architekturakon alapulo jelfeldolgozas

Hopfield network, Hopfield net as associative
memory and combinatorial optimizer

Hopfield haléozat, Hopfield, mint asszociativ memoria és kombinatorikus
optimalizalo

J. Levendovszky, A. Olah, G. Treplan, D. Tisza
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* Hopfield net as combinatorial optimizers

e The way towards CNN
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Introduction (1)
Hopfield neural network is a
e Recurrent artificial neural network,
e Invented by John Hopfield,
e Serve as an associative memory system

e Or operate as a combinatorial optimizer (quadratic
programming)

e A stable dynamic system, guaranteed to converge to a local
minimum

e Convergence to one of the stored patterns 1s not guaranteed.
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e Topology of Hopfield Neural Network
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Structure and operation (1)
Notations (1)

* Weight matrix contains the 7, synaptic weight strength
feedback from neuron i to neuron j:

W W, W Win

Wy Wy Wy o Wy

W=\ W, W, Wy SR b
_WNl cee e ) WNN_
e where
W,=W,, i,j=L...N.
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Structure and operation (2)
Notations (2)

e Bias vector contains the threshold values of each neuron:

b=[s b .. b].

e Let state vector of the system be

v=[» » - nl,

e where

ye{-1+1}".
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Structure and operation (3)

e The discrete Hopfield Neural Network can be regarded as a
nonlinear recursion given in the form of

y,(k+1):sgn{ﬁ%yj(k)_bl},

j=1
for every neuron.

e If we reduce our attention only to the sequential updating rule,
the neuron selection rule becomes:

[ =mod k.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Structure and operation (4)

 When investigating such a nonlinear recursion as an
associative mapping, the following questions can arise:

1. How to construct matrix W 1if one wants to store a set of

patterns
S={s".a=1,...M}

as the fix points of algorithm

yl(k+1)=sgn{jﬁ;%yj(k)_b},

such as that

s = sgn{Zlesja —bl} Va=1,...M
=1
holds. ]
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Structure and operation (5)

2. What 1s the number of those fix points M as a function of the
dimension (number of neurons in the Hopfield net) ?

In other words we want to reveal the storage capacity of the
Hopfield net as a function of the number of neurons M.
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Structure and operation (6)
3. Isrecursion

N
y(k+1)= sgn{ZW}jyj (k)—b,}
j=1
stable and 1f yes then what are the 1ts convergence properties?

e Next we will thoroughly discuss these questions. Before
getting down to a detailed analysis, we need some tools rooted
in the classical stability theory called Lyapunov technique.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (1)

e Lyapunov! functions are widely used in the study of dynamical
systems 1n order to prove the stability of a system. T

e This technique can be used to analyze the stability properties
of the Hopfield Neural Networks.

I Aleksandr Mikhailovich Lyapunov (June 6, 1857 - November 3, 1928) was a
Russian mathematician, mechanician and physicist.
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Stability and convergence properties (2)

e One possible Lyapunov function
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Stability and convergence properties (3)
Lyapunov’s weak theorem (1)

e Let us assume that there 1s a nonlinear recursion given in the
following general form

yk+D)=p(y(k)) yk)eY.
e If one can define a function (the so-called Lyapunov function)

L(y) yeY

» over the state space Y, for which

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (4)
Lyapunov’s weak theorem (2)
1. L(y) has a global upper bound over the state space:
L(y)XB VyeY,;
2. the change of L(y) denoted by

AL(k) = L(y(k +1)) = L(y(k)) >0

in each step of the recursion;

Then the recursion
y(k+1) = p(y(k))

1s stable and converges one of the local maxima of L(y).

7 lnvzeting in your fieture /,-__;\
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Stability and convergence properties (5)
Lyapunov’s weak theorem (3)

e The exact proof, which can be found in numerous books
dealing with control and stability theory, i1s omitted here.

 However, it 1s easy to see 1f 1n each step the L(y) can only
increase and at the same time there exist a global lower bound
then the recursion cannot go on indefinitely but 1t will
converge to one of the local minima.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 16

‘ “ * F
MNew Hun;ag; DcUZ[ontcmt Flan



Signal processing on digital, neural, and kiloprocessor based
s architectures: Hopfield Neural Network

K www.itk.ppke.hu

Stability and convergence properties (6)
Lyapunov’s strong theorem (1)

e Let us assume that there 1s a nonlinear recursion given in the
following general form

yk+D)=p(y(k)) yk)eY.
e If one can define a function (the so-called Lyapunov function)

L(y) yeY

» over the state space Y, for which

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




. Signal processing on digital, neural, and kiloprocessor based
VW‘) architectures: Hopfield Neural Network

s of vV
375

www.itk.ppke.hu

Stability and convergence properties (7)
Lyapunov’s strong theorem (2)
1. L(y) has a global lower and upper bound over the state space:
B>L(y)2A VyeY;
2. the change of L(y) denoted by

AL(k) = L(y(k +1)) = L(y(k)) > »

in each step of the recursion;

Then the recursion
y(k+1) = p(y(k))

1s stable and converges one of the local maxima of L(y) .
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Stability and convergence properties (8)
Lyapunov’s strong theorem (3)
and 1ts transient time can be upper bounded as .
B—-A4
X

e Again the proof omitted, however it 1s easy to interpret the
result as follows: 1n each step L(y) increases at least by k and
in the worst case the maximum number of steps needed to

cover the distance B — A4 1s B— A
TR < :

Ve

e With this tools at our disposal we can embark on ascertaining
the stability and convergence properties of the Hopfield net.

IR <

, lnvzeting in your fieture T *
10/5/2011. TAMOP — 4.1.2-08/2/ A/KMR-2009-0006 £ = 19
* *

‘ +* * F
New Hun;ag, Developmaent Flan



Signal processing on digital, neural, and kiloprocessor based
s architectures: Hopfield Neural Network

K www.itk.ppke.hu

Stability and convergence properties (9)

e To use the Lyapunov technique we have to assume a Lyapunov
function associated to recursion

y(k+D)=p(y(k)) yk)eY.

e According to Hopfield, Cohen and Grossberg, we define the
corresponding Lyapunov function as follows:

L(y)=y"Wy-2b"y=>> y W,y -2> by,
) j i

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (10)

 Now we want to apply Lyapunov’s strong theorem, therefore
we have to check the following three conditions:

1. existence of global upper bound;
2. existence of global lower bound;
3. itis true, that L(y) <.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (11)
The existence of global upper bound

e To derive an upper bound we can use the Cauchy-Schwartz
inequality as follows:

L(y)=y Wy -2b"y <|y[[Wy]+2b]]y] <

< [lIws ]+ 2[ollly] = [WHlyl” + 2[blv].

 taking into account that we are dealing with binary state
vectors, elements of {-1,1}" for which

N
=7 = > L) NI 20N b
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Stability and convergence properties (12)
The existence of global lower bound (1)

e To derive a global lower upper for L(y) let us first broaden the
state space from Y= {-1,1}" to the space of N dimensional real
numbers and define

L(x), xeR"

» over this broadened state space. Therefore

min L(y) = min L(x).
yey xeR"
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Stability and convergence properties (13)
The existence of global lower bound (2)
e The minimum

min L(x)

xeR”
e can be easily calculated considering that
SRN
 1s continuum therefore the gradient of

L(x)=x Wx-2b'x= Zinlexj - ZZbl.xl.
i [

e exists and form the well known results related to quadratic

forms the location of this maximum is given as x,,=W-'b.
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Stability and convergence properties (14)

The existence of global lower bound (3)
* Substituting X, into

y-J

L(x)=x Wx-2b'x= ZinW..x. — 22 b.x,,
J i

i

e one obtains that
L(y) 2 min L(y) 2 min L(x) =~b"W'b > —[w{[p?].
e e

L(y) =~

W]

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (15)
The change of the Lyapunov function (1)
e Let us define the change of the Lyapunov function as follows

AL(k) = L(y(k +1)) = L(y(k)) =
=D D v (k+ DWW,y (k+1)-2) by, (k+1)

=22 Wy, (k) 42) by, (k)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 26
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Stability and convergence properties (16)
The change of the Lyapunov function (2)
* We apply the sequential update rule, which means that only the

component | = mo dN &

* 1n the state vector y(k) changes, we can write

_yl(k) yl(k)

)b(k) y2(k)
(k)= yztk) > ylk)= J’z(k:+1)

_yN.(k)_ '

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (17)
The change of the Lyapunov function (3)
e Taking this into consideration AL(k) takes the following form

AL(k) =W, Ay; (k) +2Ay, (k)(z W,y (k)= sz=

e where

Ay, (k) =y, (k+1)—y, (k).

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Stability and convergence properties (18)
The change of the Lyapunov function (4)

e Let us introduce quantity x as

= mIIl
{ zl N

38|

e To calculate the values of this expression we can create the
following table:

4w, 4(W)t)>0
+1 -1 -2 4w, -4 k<0 4(W, x>0
10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 29
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Stability and convergence properties (19)
The change of the Lyapunov function (5)

 From this table 1t can be seen that whenever a state transition
occurs, then

AL(k) = 4(W, + x)

e This means that for each step when a state transition occurs the
energy function increases.

e Given a global upper and lower bound it follows that there
exist a time step where the algorithm must stop 1n a local
maxima.
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Stability and convergence properties (20)
 Theorem 3. The Hopfield type of recursion
1. 1s stable;

2. 1t converges to the local maxima of the function
L(y)=y 'Wy-2b'y=> > yW,y,-2> by;
I J I

3. the transient time can be upper-bounded as

oy MW 29N ]+ [Wb]”

TR < O(Nz).
4w, +x)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Hopfield Neural Network as an AM (1)

e Analyzing the non-linear state recursion of the Hopfield
Neural Network we have come to the conclusion that this is a
finite state automata with binary state vectors, which gave rise

to a new application of this network: Associative Mapping
(AM).

e We start the HNN from an 1nitial state vector x, which
corresponds to a corrupted version of a stored memory item,
we call this vector clue.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Hopfield Neural Network as an AM (2)

* Then we start the iteration

N
v, (k+1)=sgn Zleyj (k)-b,
=1

e of the network, and if the network gets stuck in one of its
steady-states then we call this vector as recalled memory item.

e This mapping is the so-called Associative Mapping.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Hopfield Neural Network as an AM (3)

e This new computational gives rise to the model in Figure
where the N dimensional binary vectors are mapped into two
dimensions. The box represents the state space Y € {—1, 1}¥,
there are a couple of fix points of the HNN s, §@)_ §G) §*)

e An Associative Mapping is a partitioning of the space
Ye {-1, 1}~
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Hopfield Neural Network as an AM (4)

* There 1s a separation of this state space, in terms if we start the
network from a state x, which falls into the basin of
convergence of the memory pattern s, then finally the
network will stuck 1in this steady state.

e In general this also holds for the other memory patterns, and
their basin of attraction.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 35
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Hopfield Neural Network as an AM (5)

e A pretty general demonstration of the working of an
Associative Mapping 1s depicted in figure.

AlO
1 Storage phasc

i) | ASSOCIANVE | jjpmm>
L Memory A

Retrieval phase
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e Lets assume that there are some stored memory items, for
example a picture of a vase, a cat and a lorry, these are the

three patterns.

* An Associative Mapping means that 1f we have a corrupted
and incomplete version of one of the memory patterns then it
will be mapped to one of the stored items, which 1s the closest.

B
Nl

==

5(1)

3(2)

E(S)

A demonstration how Associative Mapping works.
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Hopfield Neural Network as an AM (7)

e In order to use the Hopfield Neural Network to implement this
new computational paradigm, we have to make sure that the
network 1s stable, meaning the network will converge to a
steady state.

 However when we started to investigate the stability, we came
up with the Lyapunov concept of stability, and there 1s a
quadratic form

L(y)=y'"Wy-2b"y=> > yW,y -2> by,
) J i

e which 1s the Lyapunov function of the HNN, and we have
proven that the Hopfield Network 1s stable.
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Hopfield Neural Network as an AM (8)

e Furthermore we have come to the conclusion that the transient
time of this network is O(N?), which is must faster than
exhaustive search O(2V).

 When one implements an Associative Memory, there 1s a given
set of 1items, which are to be stored, this 1s called the set of
stored memory items, and noted by S,

S = {s(“),a = 1,...,M}

* here the number of the stored memory items 1s M, which items
are binary vectors, with dimension ¥,

dim(s(“)) =N,a=1,...M.
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Hopfield Neural Network as an AM (9)

e These binary vectors can refer to images, speech patterns or

bank account numbers, depending on the actual application.

e The set X represents the observation space, this can be any

possible N dimensional binary vector,

X ={-11}".

e We can see that S € X, because s is also N dimensional

binary vector.
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Hopfield Neural Network as an AM (10)

e Definition 1. An Associative Mapping  is defined as a
mapping from the observation space X to the set of stored
memory items S, in such a way that 1t maps any specific
observation vector x into a stored memory item s%) for which it
holds, that this stored memory item is the closest to the
observation vector, according to a certain distance criterion

d().
e Formally AM is a

wv.X —>S

w(x)=s", for which d(s(ﬂ),x)ﬁ d(s(“),x), Va=1,.,M.
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Hopfield Neural Network as an AM (11)

* We can define distance in any arbitrary way, which suits our
application. However when we deal with binary vectors it 1s
rather plausible that this distance 1s the Hamming distance,
which measures in how many bits two vectors differ from each
other.

e There are two fundamental attributes of an Associative
Memory: 1) stability, 2) capacity.

e Where capacity boils down to that what is the size of the
stored memory items, in our notation M = |S|. When we speak
of the analysis of Hopfield Neural Network as an Associative
Mapping we are trying to reveal these two properties.
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Capacity Analysis (1)

 When we use the Hopfield Neural Network as an Associative
Memory the threshold vector b 1s set to the all zero vector 0,
and 1f we want to store in the network a predefined set of
memory items then the components of the weight matrix 1s as
follows: (1 M
I '
Na=1 ’ ’

0 if [=

W, =

Ij

e which can be written with vector notations using the outer
product operation:
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Capacity Analysis (2)
e This rule was discovered and fully elaborated on in the work
of D. O. Hebb?, a Canadian born psychologist.

e That’s why it is named as Hebbian Learning Rule. He
described this rule as a psychologist in a textual way and from

this description 1t was mathematically inferred that
1 i r
W= — 3§ g@g
N a=1
1s the learning rule.

3Donald Olding Hebb (July 22, 1904 - August 10, 1985) was a psychologist who
was influential in the area of neuropsychology, where he sought to understand how
the function of neurons contributed to psychological processes such as learning. He
has been described as the father of neuropsychology and neural networks.
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Capacity Analysis (3)

e By capacity we mean that how many stored memory items can
be recalled from the Hopfield Neural Network.

e In order to do that we start with a very elementary
investigation and then are going to penetrate deeper and deeper
into the capacity analysis, until we arrive at the stage of

1. Statistical Neurodynamics and
2. the Informational Theoretical Capacity.
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Capacity Analysis (4)
Static Capacity (1)
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e The first 1ssue 1s the so called Static Capacity Analysis and Fix

S = {s(“),a = 1,...,M}

point Analysis. Recall that there 1s a set of stored memory
items, which are represented by binary vectors:

* and the W, element of the weight matrix is set according to the

Hebbian Learning Rule

1 M
I Y
VVZj =9 N a=l1 ’ y
0 if /=]
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Capacity Analysis (5)
Static Capacity (2)

 What we are going to investigate now is that if we pick up any
stored memory vector s%) € S in order to recall this vector
what we have to make sure that this vector 1s a fix point of the
Hopfield Network, which means that the recursion

k) s S0, (6) -

J=1

e e¢xhibits an equilibrium behavior, in terms of once we have
reached s we can not get out of this state. This can be

written with vector notations as follows:
s¥) = sgn(Ws(ﬁ)).
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Capacity Analysis (6)
Static Capacity (3)

e One can see, that what we have spelled out here 1s the so
called fix point of this non-linear recursion, which 1s a
necessary condition for s¥) being a stored memory item.

e The question 1s whether under what condition we can enforce
this equality, meaning that what is the upper limit on the
capacity which enforces that equation

S(ﬂ) _ sgn(Ws(ﬁ))
* holds. Since we investigate this equation with respect to the

number of stored memory items M, we are going to draw a
condition under which this equation will hold.
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Capacity Analysis (7)
Static Capacity (4)

e In order to simplify the analysis let us analyze

N
Sl(ﬂ) = sgn[Zlesﬁ.ﬂ)j, vVi=1,...,N,
j=1

e which should hold for all components in order to obtain a
steady state. We can replace W, with its detinition and write

() SR SNORORT
s,”) =sgn Zﬁzsl ;080
j=1 a=1
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Capacity Analysis (8)
Static Capacity (5)

 However these are finite sum, as a result we can exchange the
sequence of these summations, and we can rewrite this

() SEORRSRORE
s,”) =sgn ZSZ FZS]. s |-
a=1 j=1

e From the outer summation where a sweeps from 1 to M we
can single out one term, where a equals to S, as s is an
clement of the set S, once a will hit the value of f, as a result
we can rewrite the previous expression as follows

2

() » L[ N
s,” =sgn| s, WZ(S]. )—l— Z s

j=1 a=l,a#f
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Capacity Analysis (9)
Static Capacity (6)

* Where 1n the first part of the expression we have the square of
s¥); which is always 1, because s) € {1, 1}, and adding up
N times 1 gives N, which 1s divided by N yields 1. Let us
denote the second part of the previous expression by v,, which

gives the following ) )

s, = sgn(sl +vl).

 Now what we are investigating 1s that under what condition
the above equation holds. We can see that 1f v, 1s zero then
indeed this equation will be satisfied. This criterion can be
satisfied if the capacity is smaller than N M <N.
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Capacity Analysis (10)
Static Capacity (7)

* If we investigate the expression of v,

b= 3 Ly g S(a)L(Sw))TS(ﬂ)
l a=la#p I Nj:l o a=l,a#p l N ,

e what we see 1s the inner product of the memory vectors. If
T
(s(“)) s =0, Va,f=1,...,M, a+ [, thenv, =0.

e This entails that the memory items must be orthogonal to each
other because their inner product should be 0. However we
have N dimensional memory items, and in an N dimensional
space the maximum number of orthogonal vectors is V.
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Capacity Analysis (11)
Dynamic Capacity (1)

 What we have investigated so far was a fix point analysis, but
it does not necessarily entails that the Hopfield Network will
converge to this fix point. Now we are going to pursue further
investigation into this capacity matter, and the second stage of
this investigation 1s that we are going to evaluate the Dynamic

Capacity of the Hopfield Network, where the notion of

Dynamic Capacity implies that we are investigating the steady
states.
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Capacity Analysis (12)
Dynamic Capacity (2)

* Definition 2 (Steady state). Steady states are a subset of fix
points, into which the Hopfield Network converges.

* The stability of the Hopfield Network was proven by using the
Lyapunov concept of stability, where the center point of the
concept was that there 1s a Lyapunov function associated with
the Hopfield Network.

e Since 1n the case of applying the HNN as an Associative
Mapping vector b 1s zero what remains 1s as follows:

Ly)=y'Wy=2 > yW,»,
i
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Capacity Analysis (13)
Dynamic Capacity (3)

* We have proven that the Hopfield Network 1s stable and
converges one of the local maxima oft his Lyapunov function.

e As aresult if we want to make sure that an s¥) vector, taken out
of the set of stored memory items S, 1s a steady state then it 1s
not enough to have 1t as a fix point, but we also have to make
sure that the Lyapunov function has a local maxima over s¥) ,
meaning

L(s(ﬂ)) >L(y), yeS.
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Capacity Analysis (14)
Dynamic Capacity (4)

 First we deal with the Lyapunov function at the place s%
L(s(ﬁ)) = (s(ﬂ) )T Ws(ﬁ),

e which can be fully spelt out as follows

L) =22 s,

i=1 j=I

* We can put instead of ¥, its definition,

O\ L (@) ()
o o
L(s )—ZZSZ. s I S; 'S,
i=1 j=I1 o=l
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Capacity Analysis (15)
Dynamic Capacity (5)

 However these finite summations can be rearranged in the
following way, 1f we collect the terms which depend on index i

and j L(S(,B)) _ ii(i sl j(i s Sg_a)j
N =\'3 j=1
e what one has to note that the summation with respect to 1 1s the

same as the summation with respect to j, as a result we can
write this in a more compact form:
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Capacity Analysis (16)
Dynamic Capacity (6)

e It gives rise to the following formula, if we notice that there 1s
the inner product between two memory items

L(s(ﬂ)) _ %i((s(cx) )T S(ﬁ)j .

a=1

 However 1n the very first investigation we pointed out that the
stored memory items should be orthogonal to each other. As a
result when a sweeps through 1 to M, once a will hit 5 which
can be singled out, giving the following expression

2 M 2
1 T 1 T
L(S(ﬂ)):_ (S(ﬂ)) A L D (s(“)) A
N Nazl,a¢,8
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Capacity Analysis (17)
Dynamic Capacity (7)

e Due to the orthogonality the second term 1s going to be zero,
giving

L) =S | = Z] 2w =

i=1

 We have evaluated the left hand side of the inequality

LYY > L(y), y S,

e and now we are going to evaluate the right hand side, in a very
similar manner:
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Capacity Analysis (18)
Dynamic Capacity (8)

Li)=y'Wy=> > yyW, =
i J

=ZZyiyjiisi(“)s§“) -
i a=1

1 M o (24
= WZ(ZSS )y,-j(ZSE- )yjj -
a=1 i J
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Capacity Analysis (19)
Dynamic Capacity (9)

 However we can say that i1f we have two binary vectors of
dimension N and components —1 and 1 it can be verified that
the inner product of two vectors a, b € {—1, 1}V can be
expressed by the means of Hamming distance as

a'b=N-2d(ab),
e where the Hamming distance d() are the number of

components in which the two binary vectors differ from each
other. Using this equation we can rewrite L(y) as follows

LS (g Ty) 2 LS @ )
L =5 2{(+)"y) =5 2V -24(s"v))
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Capacity Analysis (20)
Dynamic Capacity (10)

And now we are going to provide an upper-bound on this
expression, taking into account that the minimum Hamming
distance 1in which the state vector can differ from any stored

memory items 1s 1. As a result we can write
1 ¥ 2 (N —2)2
Ly)) X— ) (N=-2) =—FM.
W<~ ;( ) ~
And then we are done with because what we have obtained 1s
the following
—2Y) N -2)
(v-2) (v-2)

L) > L(y) =—> N> =

— M <
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Capacity Analysis (21)

Dynamic Capacity (10)

e [f this 1s fulfilled and indeed the stored memory items are
going to be steady states, because this inequality holds and the
Hopfield Network will converge to one of the local maxima of
the Lyapunov function, and this local maxima 1s at the place of

the stored memory item, as a result this 1s going to be a steady
state.

 However this result 1s devastating because this capacity is very
small, the number of stored memory items 1s very limited by
this expression, asymptotically it converges to 1, giving an
unusable associative mapping, capable of storing one memory
item.
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Capacity Analysis (22)
Dynamlc Capacity (11)

30 T I I
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Capacity Analysis (23)
Information Theoretical Capacity (1)

e As we have seen, the Dynamic Capacity of the Hopfield
Neural Network tends to be one as N (the dimension of stored
patterns) increases to infinity. This strongly discourages us in
using these networks as associative memory.

e In this section we describe the solution to get out of this dead-
lock. However this result 1s devastating because this capacity
1s very small, the number of stored memory items is very
limited by this expression, asymptotically it converges to 1,
giving an unusable associative mapping, capable of storing one
memory item.
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Capacity Analysis (24)

Information Theoretical Capacity (2)

e The underlying assumption when we investigate the I'T
capacity of the HNN i1s that we choose the stored memory
patterns as random variables. As a result

sl.(“), a=1,..M

 is independent identically distributed Bernoulli random
variable, with properties

P(S.(“> _ 1) - P(S.(“> _ —1) - 0.5, Va=1,..M, Yi=1,...N.

1 1
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Capacity Analysis (25)
Information Theoretical Capacity (3)

* Which entails that the stored memory patterns are chosen as
random series of coin flipping.

) pls"s”))
li azp 1T o p
.ol
> oo o * . T o ¢ ? 1
101 2 s@ gl) 101 2 s\@) gl#)

e Orthogonal and random patterns.
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Capacity Analysis (26)

Information Theoretical Capacity (4)

 What we are going to investigate 1s that 1f we take a memory
vector s then is it a fix point of the HNN or not. This is a
random event, because the components of s are chosen
randomly.

e Furthermore applying the Hebbian Learning rule, the weight
matrix 1s a random event as well.

e So we can investigate the probability of s¢¥) being a fix point:

P(s(ﬂ) = sgn(Ws(ﬂ))).
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Capacity Analysis (27)

Information Theoretical Capacity (5)

e Definition 3. Information Theoretical Capacity means, that
what 1s the number of possible stored memory items M which
guarantee that probability

P(s(ﬂ) = sgn(Ws(ﬂ))).

e asymptotically is going to be one, when N tends to be infinity.:

M : lim P(s(ﬂ) = sgn(Ws(ﬁ)))zl

N—>w
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Capacity Analysis (28)

Information Theoretical Capacity (6)

e In order to evaluate this equation we have to perform some

calculations with
P(s(ﬁ) = sgn(Ws(ﬂ))).

e which can be rewritten into the following form,

P(s(ﬂ) = sgn(Ws(ﬂ))) = P(ﬁ sl.(ﬁ) = sgn(Ws(ﬂ))j,
i=1

e because being a vector valued equation, and the starting
probability holds if the equation holds for every components
of the vector.
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Capacity Analysis (29)

Information Theoretical Capacity (7)

P( (#) _ sgn(Ws )) HP[ = sgn[ZN:Li Sfa)sﬁa)sgﬂ)jJ’
i=1 AN o

 holds due to the fact, that the components of s are
independent random variables, and we have replaced ; with

its definition, which is coming from the Hebbian Learning
Rule.

e Restructuring this double summation we get to the following;:

P(<)_sgn(Ws )) HP[ :sgn(
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Capacity Analysis (30)

Information Theoretical Capacity (8)

 Since s is among the stored memory patterns once « is going
to hit f and we can single out that case in the summation,
which results 1n

P(s(ﬂ) = sgn(Ws(ﬂ))) = ﬁP sl.(ﬂ) = sgn[sfﬁ)LZN:(sgﬂ) )2 + i sl.(“)LZN: SE.“)SE.ﬂ)] )
i=1 N j=1 a=l,a#pf N j=1

 where | & .
—Z(sﬁ.ﬂ)) =—N =1.
N < N
e because we are dealing with binary vectors with values

{+1,—1}, and raising these values to the square we always get
+1, which added up N times gives N.
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Capacity Analysis (31)

Information Theoretical Capacity (9)

e Let us introduce a new variable

* v;1s arandom variable as well, because the multiplication of
Bernoulli random variables results in a Bernoulli random
variable. What is in this expression is a double summation of
Bernoulli random variables.
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Capacity Analysis (32)
Information Theoretical Capacity (10)

e Due to the Central Limit Theorem, this approximates a
Gaussian random variable 7 —1
. N(o, _j

N

e since the mean of each Bernoulli random variable is zero, the
mean of the Gaussian random variable is zero as well, and
because of the standard deviation of the Bernoulli random
variables 1s one, and we add 1t up M — 1 times and normalize 1t
with N the standard deviation of the Gaussian random variable

is going to be M1
N
, fnu,'_-ffmg i your fisture T *
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Capacity Analysis (33)

Information Theoretical Capacity (11)

e Furthermore since we have delved into an asymptotic
investigation when N tends to be infinity if we replace M — 1
with M 1t does not make any difference, so finally we get

v, ~ N[O, M]
N

* What we have arrived at 1s:

i=1
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Capacity Analysis (34)

Information Theoretical Capacity (12)

* [t can be expressed by the means of conditional probabilities,
namely

P(s(ﬂ):sgn(Ws(ﬂ )) ﬁ{ (l—sgn 1+v)| (#) = I)P(sl.(ﬂ)zl)+

+P(—1 =sgn(-1+v,)| s/ = ‘I)P(Sf(ﬁ) B _1)}’

where we know, that
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Capacity Analysis (35)

Information Theoretical Capacity (13)

* We can rewrite these probabilities taking into account, that the
sgn() function gives +1 for (1 +v,) 1f (1 +v,) > 0 holds, which
results in

P(Sw) _ Sgn(wsw)))

ﬁ[{P(l-FVi >0)+P(—1+v,<0)} =

i=1

=1j0.5-{1>(v,. <1)+P(v, >-1)}.

* Now we can take advantage of that fact that v, 1s Gaussian:
") _ O\ =TT0.501-| [N N_110l [N o] |
P(s = sgn(Ws ))_1:[0.5{1 cp[\/;}rcb[ M]}_]:[cp[ Mj_cb [ M}.
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Capacity Analysis (36)

Information Theoretical Capacity (14)

e @(u) is the cumulative distribution function of the random
variable v, with point symmetry property 1 — @(-u) = D(u) .

@(u)zﬁiexp(_;z).

 What we have arrived to 1s the following

P(s(ﬂ) = sgn(Ws(ﬂ))) = (I)N( %j,

e which 1s a simple formula to investigate this probability.
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Capacity Analysis (37)

Information Theoretical Capacity (15)

e In Definition 3. we are investigating that under what condition
this probability tends to be one. However this 1s equivalent
with investigating the logarithm of this probability when tends
to zero:

ln{P(s(m _ sgn(wS<ﬂ>))} _0

e which 1s equivalent with

)
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Capacity Analysis (38)
Information Theoretical Capacity (16)
 Remind the following facts from asymptotic analysis:

limCD(u) ~ 1 —lexp(—%uzj and limln(u) ~1—u.

U—>0 u U—>0

* Having these approximations at hand we can see that 1if N
tends to be infinity and we reverse the fraction in the argument
of @(u) then d(u) tends to have a very large argument, as a
result we can approximate with formula above, which gives

ol 1)
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Capacity Analysis (39)
Information Theoretical Capacity (17)

 Now the argument of the logarithm function tends to zero
when N goes to infinity, and because of this we can use
limln(u) ~1—u.

U—>0

e to further rewrite this expression

Nm{@[ %}:Ngexp(_%):exp(_%ﬂnw)_;m(%jj_
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Capacity Analysis (40)
Information Theoretical Capacity (18)
e Having this result, we have to find M for which this expression
tends to zero, because we have evaluated the logarithm of the

initial probability, and this logarithmic probability should tend
to zero, 1f we want the probability to tend to one.

e We can see that we are not in trouble to make this zero, if we
choose
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Capacity Analysis (41)

Statistical Neurodynamics (1)

 When deriving the IT capacity of the HNN we used only a fix-
point analysis, we did not pay attention of the dynamics of the
network. Still we have to investigate the dynamics of the
HNN, whether we really will converge to the stored memory
items 1f they are chosen to be Bernoulli random variables.

» Statistical Neurodynamics relies on the theory of Statistical
Physics where we investigate very huge systems, containing a
lot of particles (for example the Oxygen atoms in a room).
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Capacity Analysis (42)
Statistical Neurodynamics (2)
 Then we can characterize the state of the system by micro-
states y(k), but this description 1s meaningless, because 1t

contains too much information, does not reveal any important
property of the system.

 However in order to really characterize the statistical system
the concept of macro-states can be developed, where the
macro-state

a(k)= average((o(y(k))).
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Capacity Analysis (43)

Statistical Neurodynamics (3)

 And now we can investigate that if we know the state
transition rule between the micro-states, Statistical Physics
wants to derive the state transition rule for the macro-states.

ﬂ(fl.-+1)=sgn{fmf)} = a(k+1) =¥ (a(k))

* For example if we take a room, we can observe the position of
Oxygen atoms 1n there. A micro-state of this system would be
characterized by giving the coordinates of each Oxygen atoms,
which would be so much data that we could not retrieve any
meaningful information from it.
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Capacity Analysis (44)
Statistical Neurodynamics (4)

 However defining macro-states as what 1s the average
distribution of Oxygen atoms, then this 1s a meaningful
information.

 And when we are investigating the state-transmission, then for
example if we turn up the heating at one corner, then we know
from the basic rules of physics how the micro-states will
change and then we are investigating how the macro-state will
change, how the temperature will effect the average
distribution of the Oxygen atoms.

, lnvzeting in your fieture = * ok
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Capacity Analysis (45)

Statistical Neurodynamics (5)

* We define the macro state of the network as
N

L o 1 .
a(k) = T,;.If_-ih_y(;,.) = _rzlﬁfg'd}!ﬁ(k)

i=1
* The meaning of this macro state can be graphically represented
in next Figure.
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Capacity Analysis (46)

Statistical Neurodynamics (6)

e Here the macro state a(k) corresponds to cos(a(k)). If we can
prove that for a given (u) a(k + 1) > a(k) and a(k) converges to
1, than i1t means that the cosine of a(k) converges to 1, which
means that a(k) converges to 0. Consequently 1f a(k) tends to
0, this means that the micro state y(k) converges to s().
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Capacity Analysis (47)
Statistical Neurodynamics (7)

Throughout these discussions we restrict ourselves to s() = (1,
1,..., 1), for the sake of easier formulas, but these results can
be also derived for any arbitrary patterns. In this case 1f we

consider

1

N

Ay 1 |'3

a(k) = ﬁs[-ﬁy(f-‘) - N E :*‘i }-{H““)
- = i=1

when s() 1s this special vector, we get

N
1
a(k) = N E .‘-'fi.(r‘!f).
=1
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Capacity Analysis (48)
Statistical Neurodynamics (8)

e Itis an empirical average of the random variable yi(k), which
approximates the expected value E{yi(k)} of this random
variable, due to the Law of Large Numbers.

e We would like to derive the macro state transition rule, and for
this we start by writing down the Oth macro state:

1\ ZUE

e after this we take the 1st macro state which 1s as follows:

,\ ZUI ™~ E‘Ur
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Capacity Analysis (49)

Statistical Neurodynamics (9)

e [t 1s an empirical average of random variables, because Wij is
chosen according to the Hebbian Learning Rule, and s() 1 1s
subject to Bernoulli distribution, that 1s why yi1(1) is a
Bernoulli random variable. When we further elaborate on this
expected value we can write

Ey;(1) =1-P(y(1) =1) +(=1) - P (1:(1) = =1) =

N N
=P { sgn {Z H}jyj([})} =1 sgn {Z /iy (1 } —-1| =

=1
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Capacity Analysis (50)
Statistical Neurodynamics (10)

e After this we can substitute the definition of W1y, which
comes from the Hebbian Learning Rule we applied

'\."

1 a
P(scrn{ \ZHE }.t..- y;(0 }1)
P | sgn Z (o‘ .c_,-_,a).yj =1 =

j=1"" a=1

e the two summations can be reordered, which yields

@ 1N~ (@

=P | sgn 55 IZ“JQ yi(0)p =1 —
a=1 7=1

P (sgn{
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Capacity Analysis (51)
Statistical Neurodynamics (11)

* The first summation here sweeps through all the possible
values of s(’), which contains s*”as well, and because of this we

can single this term out, and write

N N
I3 1 v (B o 1 I ;
== (sgn {af )T E <~§ )yj([]) + E "E )T E sg )y}([])} = 1) _

(8).
in a special way, namely

e and because we have chosen S
) we can write

s =(1,1,1,...
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Capacity Analysis (52)

Statistical Neurodynamics (12)
e It was the value of the macro state at the Ot time instance.

e Elaborating on the second term of the summation we can see
that 1t 1s a normalized summation of Bernoulli random
variables, and due to the Central Limit Theorem this will
approximate a Gaussian random variable vi in the following
way
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Capacity Analysis (53)

Statistical Neurodynamics (13)

e Considering the fact, that we are interested in the asymptotic
behavior of the Hopfield Network, when N tends to infinity,
then writing M 1nstead of M —1 does not make any difference,

which gives us T
v; ~ N (U. N)
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Capacity Analysis (54)

Summary of the capacity
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Outline of applying the HNN as a combinatorial optimizer

e Defining the problem set of combinatorial optimization

e Binary Quadratic programming as a combinatorial
optimization problem

 HNN as a combinatorial optimizer
* Philosophy
e Minimization modification

e (Constraint mapping
e Travelling salesman problem
e Problem formulation

e Cost function as a quadratic function

e Constraints as linear combination of penalty functions
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Outline of applying the HNN as a combinatorial optimizer

e TSP problem mapped into a quadratic form
e Solution with HNN

e HNN for ISI corrupted signal detection
e Problem formulation
e Mapping the problem into a quadratic form
e Solution with HNN

e Performance analysis
e Examples

e Summary
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Combinatorial optimization task
e A discrete optimization task 1s an optimization task:
min f (x)
subject to g, (x) <, 0,i=1,...,M

qe{=52,<>}

where the domain of the objective function and the constraints

are from a discrete set €.8. . ¢ discrete points in space or

x € vertices of a graph or
x € edges of a graph or
xeN

etc.
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Combinatorial optimization task

e A combinatorial optimization problem COP i1s a discrete
optimization task where the domain of the functions is also a
discrete set, but the elements are combinations of simpler

clements. E.g.
x € group of vertices in a graph or

x € group of edges in a graph, like a tree or a cycle

x € N" vector with poz. integer elements

ete.
e The trivial solution for a discrete optimization problem 1s the

exhaustive search.

e Usually the combinatorial optimization tasks are NP problems,
so for a large size the exhaustive search 1s intractable.
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Hopfield network as a combinatorial optimizer

 We have learned that the HNN minimizes 1t’s energy function
which 1is:
L(y)=y'Wy-2y'b, ye {—I,I}N
e Note that if we don’t assume any constraints or incorporate the
constraints in the energy function and choose the objective

function to be the energy function, then the HNN can perform

the combinatorial optimization.
min L (y)

ye{-1+1}"
e So if we can address a combinatorial optimization problem as
a quadratic function minimization, then a HNN can be used.
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HNN as a combinatorial optimizer — philosophy

e We can approximate the solution of a traditionally NP problem

Combinatorial

e Binary Quadratic Global Optimal
Culazat ol representation form minimum Solution

problem

Data andratl.c A Y op De-
—_— : > optimization —> HNN — : >
representation problem b representation
: T T
O2Mor O(NY) vy, = min |y Wy-2b'y O(N?)
yer-l,

10/5/2011.

TAMOP — 4.1.2-08/2/A/KMR-2009-0006

lnvzeting in

—f—
MNew Hun;aiy DcUZ[onlcmt Flan

pour fiture ~
& *




E

Hopfield network, Hopfield net as associative memory and
\J combinatorial optimizer

T oS

s of vV
375

HNN as a combinatorial optimizer — minimization

 We have used the HNN for maximizing the energy function,
we will prove that with a modification 1t can be used for
minimization.
e Modify the weight matrix as:
o _ W, ifi+j
! 0, 1fi=7
 The new energy function is: yoopt = min_ y' W'y-2b"y

ye{—l,l}

0
e It can be proven that: Y opr = Yopr
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HNN as a combinatorial optimizer — minimization

e The two energy functions only differ in a constant term so the

minimum 1s the same location:
vy Woy-2b'y+C=y"Wy-2b"y

y Wy-2b"y+C=y" (W +W-W')y-2b"y
Y Wy-2b"'y+C=y"W'y-2b"y+y’ (W—Wo)y

C=yT(W—W°)y=ﬁﬁ(VV,,-—VVf)yjyi

i=1 j=1

-~
0 ifi#j
W, ifi=j
N N
C= ZVVu YViVi= ZVVu
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 10

‘ “ * '
MNew Hun;aiy DcUZ[onlcmt Flan



Hopfield network, Hopfield net as associative memory and
\J combinatorial optimizer

5 ef 7OV
375

HNN as a combinatorial optimizer — minimization

 The modified energy function does not alter the place of the
minimum, so we can define a state transition rule which
minimizes the new energy function:

v, (k+1) —sgn{z } i =mod, (k)

 The Modified HNN is capable of minimizing the quadratic
form and the number of steps needed for this minimization is a
polynomial function of the dimension of the network.

O(N*)<0(2")
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HNN as a combinatorial optimizer — minimization

e To prove this we have to ensure 3 properties for this structure:
there exists a global upper-bound B;

there exists a global lower-bound A;

el A A

the change 1n the Lyapunov function 1s always larger than k

AL ()= (3 (441) - () <

B -
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HNN as a combinatorial optimizer — minimization

e If properties shown we can state that the transient time 1s:
B—-A4
K

TR <

e Following the methods shown at the maximization the lower
and upper bounds can be derived similarly:

L' (y)<N|W°|+2JN|pb| =B
L(y)>-b"W’ b=4

* We have to elaborate on the change of the energy function to
prove property 3.
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HNN as a combinatorial optimizer — minimization

e Rewriting the change of the energy function:

AL ()= (3 41) 2 3 (00) = 25, ()] 307 (8) -
where Ay, (k) =y, (k+1)—y,(k) and i =mod,, (k)

due to W) =0

AL (k)=2Ay, (k {Z }

e To show that the change 1s bounded we introduce a table with
the possible events:
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HNN as a combinatorial optimizer — minimization

e Table of the possible changes in the energy function:
N

v (k) | v, (k+1) | Ay, (k) ZW;J’J' (k)=b, | AL’ (k)
j=1

-1 |1 2 <-B<0 4
1 1 -2 > >0 —43

* So the energy function always decreases which yields to a
minimum point.

 We can give a bound on a transition time:
) N|W°|+2VN [b]+b W b
< v

TR N
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Hopfield network, Hopfield net as associative memory and
\J combinatorial optimizer

HNN as a combinatorial optimizer — minimization

Local vs. global optima

* The Hopfield network acts along the energy “surface” function
and 1n every step decreases it. However if a valley other than
the basin of the desired solution (marked with blue) exist in the
energy function, it can stuck in a suboptimal answer if started
from a “wrong” basin.

e In the energy function we call the bottom of such valleys local

minima. Local minima usually have [
higher value than the global mimnimum.
min y' Wy -2b’y

ye{-1,}"
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HNN as a combinatorial optimizer — minimization

Strategies overcoming staying in local minima

e There are a lot of different strategies to overcome stucking in a
local minima. A lot of them are heuristics or combined with
other combinatorial optimizer strategies.

e A few examples:

o If stuck, “shake” ~ add noise to the state, maybe it shakes into a
“better” valley — Noisy Hopfield Network @)

e Chaotic Hopfield Network
e Taboo search combined HNN
e EDA+HNN

e Hysteretic HNN
e Multi stage, multi init. HNN, etc
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HNN as a combinatorial optimizer — constraint
mapping
* We have seen that the HNN is capable to minimize a quadratic
function min f( x)
subject to g, (x) <, 0,i=1,..., M
<€ {:, S,Z,<,>}
f(x)=L(y)=y Wy-2y'b
e But we cannot deal with the constraints in a straightforward
manner.

e The most common way to deal with the constraints 1s to
incorporate them 1nto the energy function as penalizing terms

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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HNN as a combinatorial optimizer — constraint
mapping

e Constructing an objective function as a linear combination of
the original cost functjon and the penalizing terms

min a, f (x)+ Z a,p,(x)

h ( )._ >0, ifgl-(x) <, 0 constraint not met
TR 0, ifg,-(x) <, 0 satisfied

f(x)=L(y)=y' Wy-2y'b, ye {—1,+1}N
e Although other construction could be used due to the linearity
property the linear combination is the most commonly used

choice.
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Travelling salesman COP

* One of the most important COPs is the Travelling Salesman
Problem (TSP).

 We have K cities. The TSP 1s that we have an agent at city 1
and we want him to visit all the cities exactly only once and
arrive back to city 1 while we require him to travel the least
(on the possible shortest route)

On the road

10/5/2011.
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Travelling salesman COP

 We have an edge weighted graph G(V,E) where the vertices
are representing the cities the edges are the possible travelling
connections between the cities and the distance between the
cities (travelling costs) are the weights of the edges.

e The TSP problem is the same as finding the shortest
Hamiltonian cycle in an edge weighted graph

http://imgs.xkcd.com/comics/travelling_salesman problem.pn

BRUTE-FORCE DYNAMIC »
SOLUTTON: PROGRAMMING SELUNG ON ERAY:
O(ﬂ') ALGORITHMS: O(I)
. O (n'l zﬂ)
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW VP
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Travelling salesman COP
e Let us follow the steps of

Combinatorial Binary Quadratic Global Optimal
Sliizaion representation form minimum Solution
problem
Data andratl.c A Yop De-
— . | optimization —> HNN — N
representation problem b representation
- T T
O2M or O(NY vy, = min 'y Wy-2b'y O(N?)
yei-1,
e Let’s transform the TSP into a quadratic optimization problem
tractable by HNN
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 D S 11
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Travelling salesman COP

e Given a distance matrix D for the graph we can represent a trip

by a matrix V having
D, = distance between city i and j

U- .

_ {1, if we are at city j at stage i

0, otherwise

e For example the shown route can be described by the

following route matrix: A B CDE
1 0 0 0 01
vo|0 00 102 Ve (o™
00 1 0 0[3
0 1 0 0 0|4
00 0 0 1[5

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP

e Note that V could be arbitrarily chosen, but for V to describe a
valid tour for the agent V must satisfy several constraints:

a) Each row in V must contain exactly one 1-s, because the
agent cannot be 1n two or more cities at the same time

b) Each column in V must contain exactly one 1-s because we
must visit all the cities and we must visit them only once.

 We can describe mathematically these constraints as
|, ifi=j

K
1. Row orthogonality: 2.V = {0, i
2. Column orthogonahty ZVV - é i’,z{
VR
3. Sum of the elements of V must be K: MM, =K
i=1 j=1
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 a5 ST 11
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Travelling salesman COP

 For V to describe a valid tour (be a feasible solution) V has to
be a permutation matrix

e Having this notation we can formulate the cost of a route:
>y
i=1 k=1 j

e The obj ective functlon to be minimized is:

= min Z Z Z ViDiViyr P= {A:A is a permutation matrix |

i=1 k=1 j=I1

Mw

VD]kV

I z+1

Il
—_

e Note that the HNN works with state vectors of
N
y € {—1, +1}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP

 We have to transform V to the domain of y

Vings; +1
Vi = 7 > Y-k = 2V, —1

e After this we can write the objective function as:

K
y DK+ +1 y(z‘)K+k +1
yopt = Z 'k 2 ’

yE{—1,+1} i=l k=1 j=1

e 1s this a quadratic form?

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP

e This is a quadratic form which we will write in the traditional
matrix-vector notation. Thus giving W and b

matrix
Transformation vector
V | > VA S e —
Yinks) = ij_l ye{—l,l}N, N=K"’
NN Ny +1 Yirkan T1
Yopr = HUDL ZZZ e o W, b

10/5/2011.
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Travelling salesman COP
 We perform an index change: k=(i-1)K+;  h=(i)K+m

i=1,2..K, m=12...,K, j=12..K
k=1,2..N-K, h=12.,N

e From the original cost function

. +1 . 1

e  We come to:

: v+l .y, +1
= min D
YOpt ye{—l,l}N hzz; — 2 kh 2

N-K

D, =

*
jm D mod i,mody k

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP

N (N-K)
yv,+1 « vy +1
YOpt = min Z Z : th : o
vel-u i = 2 2
1 & (N-K) . 1 & (N-K) . 1 & (N-K .
= mlnN—Z YhYthk"'_Z Z thhk+_Z Dy, =
vel-L}" 495 43 453 3 453 3
1 N (N-K) 1 N (N-K) . .
= min —) ) D, t— D, E min_ y'Wy-2b"y
Y L ViV P ni 2;)’;. £ hk ye{_u}Ny
' Weight matrix ~ Bias vector .
permutation

matrix 7?79

Yopt ‘ De-representation ﬂ V0p<t’ 0O

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006



Nem biztos, hogy mindenki számára következik, hogy a felhő miatt van a modified gf.
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Travelling salesman COP

e This energy function does not guarantee us to find a feasible
solution (valid tour along the cities), so we have to
incorporate the constraints for V into the energy function in
such a way that the energy function has to be minimal 1f all
the constraints are satisfied and the cost function 1s minimal.

 We choose a weighted linear combination of the cost function
and the constraint terms so that if any of the constraints are
not satisfied then the energy function is penalized thus
pressing it farther from the minimum.

, lnvzeting in your fieture T *
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Travelling salesman COP

 We have the new energy function as
o o Y(i-1)K 4 +1D Yk T1
i=1 k=1 j=I 2 i 2

~
route cost

K K K K K K K K 2
D DNARTID NI K]

1 i=l j=I i=1 j
i

=1
/ SV

K city visit penalty

% -

~.~

J/ . J/

Z

row orthogonality column orthogonality

e Substituting
_ y(i—l)K+j +1

/ 2
into all terms, we get

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP

+1 41 S R
+7iii)’(1f-l);+l+ Y(k_1)1;+,+ N 5[§:ZK:y(zl)K+J+ B Kj

e This 1s a quadratic form again which we will write 1n the
traditional matrix-vector notation. Thus giving W and b.

e Let us first separate the quadratic terms the linear terms and
the constant terms the same way as we did for only the cost
term.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Travelling salesman COP
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Travelling salesman COP

e After substituting and evaluating the parameters we get
independent matrices and vectors to form the overall
quadratic function:

L(y)=y (aA+pB+yC+6Dyy -2y (aa+fg+yc+dd)

o v o J/

W b

e Where the matrices and vectors correspond properties of the
row, column orthogonality, the permutation matrix property
and the press of the cost term.

e The weights of the linear combinations can be adjusted over
the solution process in each stage to emphasize one property
over another. Usually heuristics are applied to change them.

, lnvzeting in your fieture T *
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Signal detection as combinatorial optimization
* One other example for a COP 1s a multipath propagated radio

wave compensation and detection in communication.

 We send a block of symbols but the receiver gets a noisy linear

combination of them due to ISI and additive noise

h :[ho hl

y Inter Symbol Interference X

Sent signal & _ _ Received signal
Additive Gaussian Noise

r lnvzeting in your fieture /,-__;\
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Signal detection as combinatorial optimization
e We send a block of symbols
y=[» ¥ o v Yy

J l lvljm

T
X:[x1 Xy e Xp xN]

T

« But due to the channel acts like a linear filter, we receive a
noise added convolution of the sent symbols with the
channel’s impulse response function

X, =hy, thy  +hy ,+t.+hy_, +v, =

L
=2 RV +Vi
=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Signal detection as combinatorial optimization

 We want to make a decision based on the knowledge of H (the

channel matrix) and the received message x, what was the

most probable sent information vector y
Gaussian noise v

Sent signal S|
y
Channel
H
Y1 ‘hy, 0O 0 O
¥, h, h, 0 0
: . hy hy O
y=| H=|h . h h
Vi 0o h . .
' O 0 0 h, .
L VN }

Received signal

X
_|_
Xx = Hy +v
_Xl
0 X,
. X = '
. xL
hO
_ _xN

s
———

Detection

y

» Detector —m

Detected signal

>

10/5/2011.
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Signal detection as combinatorial optimization

* We can use a simple decision rule, taking the sign of the
received signal.

e Threshold detector:

Sent signal ISI Iradiional Detector Detected signal
y X y
— Channel Threshold ———
H

X = Hy + Vv Received signal

§ =sgn{x}=sgn{Hy + v}

L

L
P, =sgni{x,}= sgn{z hy; +Vk} = sgn{hoyk + Zhjyk_j +Vk}
j=1

j=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Signal detection as combinatorial optimization

e But we know more information of the underlying phenomenon
(we know H and that a noise 1s added). So applying the
Bayesian decision rule:

. X
Yopt - maXNp(y|x): maXNp( I|))(’))(I))(Y): maXNp(x|y)

ye{—l,l} ye{—l,l} ye{—l,l}

e We know that the received signal 1s constructed by the channel
as: X= Hy +V

 And that the noise 1s an additive white Gaussian noise

e So the observed signal can be treated as a random variable:

v~N(0,K) x~N(Hy,K)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Signal detection as combinatorial optimization

e We can describe the optimal decision based on the Bayesian

rule: ¢ - max 1 e_%(x_ny)rK-l(x_Hy) _
opt ° N
el J(27)" det(K)
= max —(x—Hy)T K™ (x—Hy) =

ye{-11}"

= min (x—Hy)T K™ (x—Hy)

ye{—l,l}N

* We will show that this 1s a quadratic form indeed.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 o e W T 3
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Signal detection as combinatorial optimization
* Expanding the expression:
A . T _
Vop: min, (x—Hy) K™ (x—Hy)=
yei-1,
= mn xK'x -yHK'x-xXK'Hy+y H' K 'Hy =

~ N ——
ye{ 1’1} constant respect to 'y

= min_y' Wy-2b'y

ye{—l,l}
where (note that K =K' so K'=K™)
W=H'K'H and b=H'K'x

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Signal detection as combinatorial optimization

* So we have constructed a quadratic energy function that can be
used as the energy function of the HNN.

Yope - MIN_ y' Wy-2b'y

ye{—l,l}

W=H'K'H and b=HK'x

yl.(k+1)=—sgn{§;@yj(k)—bi}

13
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Signal detection as combinatorial optimization

 The HNN with the given parameters can approximate the
optimal detection.

v~ N(0,K)
Optimal Detector
y Yo
e Chaﬁnel X HNN —27

W=H'K'H and b=H'K'x

yi(k+1):—sgn{kﬁ;VIijj(k)—bl}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Signal detection as combinatorial optimization

* Performance analysis for an example: h=[1 04 0.1 03 0.2]T

5 4 -3 -2-101 2 3 45 6 7 8

1

0,1

0,01

0,001 SNR vs. BER

0,0001

0,00001

0,000001

10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 i O (R
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Analog circuit implementation of the HNN

e There are several types of implementation of the HNN.
Software like Matlab or Labview contain packages of different
neural networks.

* On a DSP one can exploit the fast matrix vector multiplication
capabilities.

e The optical implementation gives us a very fast architecture.

 However the available software are very slow 1n contrast to the
hardware implementations, while the DSP and optical

implementation 1s not cut out for large scale. Due to the
quadratically growing interconnections between neurons.

, fnu,'_-ffmg i your fisture T * ~
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Analog circuit implementation of the HNN

e The first step in implementing Hopfield Neural Network as an
analog circuit 1s to analyze the nonlinear state transition rule of
the network: v

ket =sen{ S, (0

J=1

where we have set b = 0 for the ease of simpler formulas.
e This 1s a discrete time state transition rule, in terms k=1,2,...

 When we are implementing Hopfield Neural Networks as an
analog circuit then this circuit can not handle discrete time but
continuous time. This gives rise to the first question, namely
how to change this network from discrete to continuous time?

, lnvzeting in your fieture T *
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Analog circuit implementation of the HNN

* We need to modify the state transition from a discrete time
step to an infinitesimally small time step (difference) and use a
differentiable activation function instead of the sign function.

v, (k+1)—y, (k) =—y,~(k)+§9{jZN;Vszyj (k)}

e If we choose an arbitrary small time step

At j=1

v, (t+Ar)—y, (1) =y',-(t)=—yl-(f)+<”{i%y"(t)}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Exercises — example 1
Given a DHNN by it’s weight matrix and bias vector.

1 05 —0.1] 0.2
W=[05 1 02| b=|-08
-0.1 02 1 | 0.3 | -

a) Determine and draw to the figure the state transitions and the
stable point using the given values of the Lyapunov function
1f we use the network for minimization, and the initial state 1s:

y(0)=[1 1 1]
b) Verify the solution applying and computing the states
according to the state transition rule.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Exercises — example 1 solution

105 -0.17[-1 1
c(y?)=[-1 1 1] 05 1 02 1 |-2[02 08 03] 1 (=4
—0.1 02 1 ||-1 1
1Y

h 4

Y
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Exercises — example 1 solution
b)

W. i#]
(k+1 —sgn{z }aholW {OU l ]_, [=mod, k
J

"0 05 o1 —1][E] -1 -1 L1

05 0 02 |1 1 =1 || =1 =L|[=1] || =1} -1

—0.1 02 0 ||-1]| -1 || -1 ! 1

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Exercises — example 2
Give the stable point of the following HNN:

11 |-los|-]

LN N

NNT -
Y Yo Y3 T
| T
| T

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006



Ez üres!


E

Hopfield network, Hopfield net as associative memory and
A\ combinatorial optimizer

il

Exercises — example 3

We want to store the following samples in a HNN used as an
associative memory: -1 ] s,=[ 1 -1 ]

e Give the weight matrix and the bias vector of the network!
e Are the samples orthogonal?
e Show a stable point beside the stored sample points!

e Mark the states in the figure from where the net converges to
the stored samples:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Exercises — example 4

We want to solve the following optimization problem with a

Hopfield net:
4 05 0.1 0.6
Yo, 0 min y'Wy-2b"y, W={-05 4 02|, b=| 14

el-1,1
. 0.1 02 4 52

e Give the concrete recursive state update formula of this
Hopfield net used for minimization!

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006



Ez üres!


Hopfield network, Hopfield net as associative memory and
\J combinatorial optimizer

€5 et TN
375

Exercises — example 5

We want to use a Hopfield net in a digital communication system
for detection. The state of the linear channel distortion with an
AWGN noise 1s assumed to be known and to be stationer.

The impulse response of the channel is: h=[1 0.5 0.1] and the SNR

is 0dB. The block representation of the system model is:
AWGN
y(0)

v l
y Csaﬁ)rna ;L/ X b - K-H b . HNN | y

Optimalis Detekcio
W=HK'H

e Show that the HNN 1s the optimal detector for this problem.
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Exercises — example 5

AWGN
y(0)

\ |
y | Csaﬁ)ma | *é)_x . b | HNN _L

Optimalis Detekcid

T

wW=H'K'H
* Give the weight matrix and the bias vector of the Hopfield net
for the given channel impulse response and noise power 1f the
received signal is: x =[2.4435 1.1490 0.2232]

 What will be the decoded message (y)?

 What would be the decoded message 1f a threshold detector
would have been used instead of the HNN detector?
Note: the initial state of the HNN is random. In the example use y(0)=[-1 -1 1]

, lnvzeting in your fieture T *
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Summary

e A method was shown how to use the HNN to minimize a
quadratic cost function

e This construction was used for solving combinatorial
optimization problems which are traditionally NP problems,
but with the HNN polynomial complexity approximation 1s
given for the solution.

e Examples have been shown of mapping combinatorial
optimization problems into quadratic programming tasks

e Possible analog circuit implementation was shown for the
HNN
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