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Outline

e Introduction to adaptive signal processing

e Motivation and historical review

* Applications

* Wiener-filtering

e The Levinson-Durbin algorithm

* The Robinson-Monroe stochastic approximation
e The LMS algorithm

e Adaptive-predictive coding

e Radio channel equalization
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Introduction

Digital signal processing 1s becoming more and more important
in various kinds of fields.

Many types of signals, which were processed formerly by analog
techniques, are now usually being processed using VLSI
processors such as digital signal processors.

Digital television and digital mobile communications are
becoming very popular owing to the development of digital
techniques.
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Historical overview (1)
e Theory of linear approximation (Galilei-1632, Gauss-1795)

e Approximation with minimum mean square error (Wiener-
1930, Kolgomorov-1939)

e Levinson-Durbin algorithm (1947)

* Wiener filter (Norbert Wiener, 1949)

e LMS algorithm (Hoff-1960, Widrow-1970)

e Daigital filter (1960 — 19635, J. F. Kaiser 1965)
e Kalman filter (Kalman-1960)

e Minimax criteria (Zames-1981)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Historical overview (2)

e First linear digital filter for solving difference equations in
fifties

e Dagital filter (1960 — 1965, J. F. Kaiser 1965), at first, 1t was
called “numerical filter” or “sampled-data filter”.

e Tapped delay line for equalization 1 the digital
communication technologies in the seventies

e Filters and adaptive architectures implemented on DSP in the
cighties
e Array signal processing in the nineties

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 6
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Practical applications of adaptive signal processing (1)

e Communication technology: equalization, adaptive
modulation, etc.

e Information and computer technology: encoding, decoding,
error correction, data compression, etc.

e Multimedia technology: still and moving image processing,
Image compression, data transmission, human interface, etc.

e Mechanical engineering: vibration control/analysis, noise
control/analysis, mechanical systems control/analysis, etc.

e Control engineering: control of many kinds of dynamical
systems
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Practical applications of adaptive signal processing (2)

e Systems engineering: modeling and optimization of practical
systems

 Image technology: image processing, pattern recognition,
medical imaging, remote sensing

e Architectural engineering: architectural acoustics, vibration
control (for earthquakes), noise control, etc.

e Civil engineering: underwater estimation, flood prediction,
fluild control, environmental, data processing, bridge
engineering, soil engineering, etc.
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Motivation

Based on observed examples (inputs and desired outputs) learn
the desired signal transformation

stochastic prescribed, desired _ error signal
unknown >

input signal transformation output

Optimizing the free
parameters of the
adaptive architecture

adaptive output
architecture

10/5/2011.
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Notations and definitions (1)
e Inputsignal: x, weakly stationary process

* Expected value: E[ X ]: 0
(zero mean process) ‘

e (Correlation function:

R(l) = E[(xk —E[xk])(xk_l — E[xk_l])} = E[xkxk_l]

e Correlation matrix: R(i — ]) = E[xk X, } =
—1"K—]

=R:R, =R(i—j), i,j=0,..,J

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Notations and definitions (2)

Output signal: d, weakly stationary process

* Expected value:
Eld |=M =0
Correlation function:

V(l)=E|dd,]

e (Cross correlation:
r(l):E[dkxk_l]:
=>r:7 :R(l), [=0,..,J

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Notations and definitions (3)
e Adaptive linear architecture (FIR):

X > 1 o T e o T g Adaptation:

y y y changing w

Wy W XRW,1 QW

e QOutput signal:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Notations and definitions (4)

e Error signal: e, =y, —d,

e Error function: E[(dk — ¥, )2} =J(w)
(dk _J’k)

= J (W)

.. 1 &
e Empirical error: —
p K; emp

1

o Offline-algorithm: W, = mwin Iy (W)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Notations and definitions (5)

Online-algorithm (recursive solution):
w(k+1)="(w(k).d,,y,)

Objective (convergence):

limw(k) =W

k—o0 opt

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Main application classes

System 1dentification and modeling

— (E.g.: modeling of unknown channel distortion)

Prediction

— (E.g.: adaptive-predictive coding in speech communication)

— Linear time series prediction (E.g. financial time series)

 Jnverse identification

— (E.g.: equalization of communication channels)

e Noise cancelation

7 lnvzeting in your fieture /,-__;\
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System identification and modeling

Desired output
dy
Xk . .| Unknown . R
System
/ Output signal
) 4 +
Adaptive Ye o — >
filter Error Signal\
ey =dy — Vi

For more details see the results of BAUER, P. - SPAGNUOLO, G.
— BOKOR, J (2007).
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Linear time series prediction

Error signal

€1 = Xt — Xin

Xpes1 I +‘O . :
Delay / ;
X, =Y W.X, .
Adaptive e ]Z_(; Sk
filter

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Inverse 1dentification
. ,| Unknown Vi Adaptive Xy
System filter
+
|
|
€ _
» Delay
-
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Noise cancelation with a reference signal

X, =dk+v,£1) +

4

/ N

Additive Gaussian Noise

Adaptive
filter

e, =d
Cr_ G

\ 4

[
»

Yk

\ 4
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Some other adaptive filter configurations (1)

Training phase
_—— r ————————————— I
I Receiver :
I
I / + I
dk + I X Ad . y ~ :
i R k t —

—** Transmitter " Channel -1 gﬁ;:e k >|
+“ [ :

I -~
I ex=dy — Vi I
vk o e e e e e e e e |

Additive Gaussian Noise

Channel equalization using training sequence (see later)
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Some other adaptive filter configurations (2)

I Recelver :
: / Threshold detector 1
|
X | .
||/ Adaptive J k R _'i_ R ' Vi
: filter I
- I
| !
| ¢ (1) !
1 PN .

Equalization in decision-directed (decision-feedback/IIR)
mode (without training sequence)
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Some other adaptive filter configurations (3)

2 2
WtV ]
7 A,

Additive Gaussian Noise

(1) _ (1) /
x,' =d, +v
£ £ 1/ Adaptive ik

filter

Time-delay estimator: filter cancels the delay between x', and x?,. The
peak in w gives the D delay, which 1s taken as multiple of the sample
interval.
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Wiener filter (1)
J 2 , J o ;g S
J(W) =E [a’k —ijxk]j = E[a’k }—2ZW!E[a’kxk_J+ ZZWJWZE[Xk X l} =
=0 _J_:(_)—____\ JO=0
J g T e
= V(O)—2ijr(])+z ijlR(i—])<é V(O_)_i_2_YVTr +wRw -
= o T 1 constant
e Autocorrelation function:
J :
R=|R(i-j)] . dim(R)=(J+1)x(J +1)
e Cross correlation function: Objective:
r=[r(j ] , dim(r)=(J +1) W, = mwin{wTRw—2wTr}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Wiener filter (2)
e Properties of the correlation matrix (R):
. Toeplitz: R; =R,
. Symmetric: R=R’
. Hermitian: Va,b: a’Rb=b’'Ra

. Positive semi definite: va: a’Ra>0

hnh B~ W N =

. Eigenvectors are orthonormal, Rs, = A1s,

1, if

non-negative eigenvalues: §’s =5 = {0 y
, 1

}, 420, vi

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Wiener filter (3)
* Objective:  w_ = min {WTRW _ szr}
e Global minimum exists because of Property 4.
e Solution: ow'Rw-2w'r

=2Rw—-2r=0

* Wiener-Hopf normal equation: Rw,_, =r

e Problems (why we should go further into adaptive signal
processing) : \

~
~
~

.. . . X - <
1. matrix inversion 1s not cost efficient: W@,AB\ r

2. statistical features are not known: R

7 lnvzting in your fidure —
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The need for recursive and adaptive solutions

In the case of real information processes R(k) and r(k) are not
known, furthermore are changing in time because of only quasi
stationer property of dealt processes (€.g.: voice can be treated as
a stationer process only for a 30 ms time window)

Recursive solution: gradient descent algorithm:

~~~~~~ ~ Speed of convergence

without matrix inversion. e g

Steady state: W=W(k+1)=w(k):Rw=r

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Recursive solution of Wiener filter (1)

w(k+1)= W(k)—A{RW(k)—l’}
Eigenvector basis transformation: Rs, = 1s., Vi=0,..J

W(k):i"j(k)sp v, (k)=w"(k)s,, r(k)zzjlgj(k)sj

=0 j=0

~

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 27
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Recursive solution of Wiener filter (2)
After rewriting the formula without R:

D v (k+1)s, =Y (v, (k)= A4y, (k)+Ag, s,
i=0 i=0
Two vector can be only equal, if each of the
components are equal:
v,(k+1)s, =(1-A4 v, (k)+Ag,
This differential equation has the following

homogeneous solution:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Recursive solution of Wiener filter (3)

After replacing 1t into the original formula:
J J
w(k)=Y ¢ (1-A2)"s, +Z%si
i=0 i=0 7Y

Transient component: ZJ:cl. (1 ~ AL )k J
i=0

Wiener solution: Z Sig

i=0 ﬂ‘l‘ l
What is the optimal step size in order to maximize the speed of
convergence? A ="

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Recursive solution of Wiener filter (5)
A,, =minmax{l—AZ}

P A i
Ayin = min(4,) A =max(4,) A €] Asins Anax |» Vi
| [ ]
L _
0 /Imin ﬂ’max
Relaxation: A, =min max {1-A%]}
A ﬂ’e[/lmin 7ﬂ‘max ]
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 30
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Recursive solution of Wiener filter (6)
1-A2| ¢
] // pa
/
C | _ >
O ﬂ‘min ﬂ’min + )z’max ﬂ‘max
2
The step size can be optimal iff, I=Ad iy = A 1
Ay = mAin max {1 - A/ll.} A, = 2
A +A

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Recursive solution of Wiener filter (7)

w(k)= ZZJO:CZ. (I—Aoptxll. )k s, +ZZJO:%S"
w(k+1)=w(k)-A, {Rw(k)-r}

Problems: 4 A =7 A =7

max

Rs. =As., Vi=0,...J should be solved, but due to the

complexity of eigenvalue decomposition it is 1mpossible to be

done 1n real-time!
det(R—AI)=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Recursive solution of Wiener filter (8)

Estimation of eigenvalues: Gersgorin circles

A R—D|R|.R,+ D IR,
JsJ#i J>J#i
e Z R = ‘RU. A SR Y ‘Rl.j
JsJ#i JsJ#i

R(0) can be observable! A near optimal step size can be
implemented!

A
P+ A 2R, R(0)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Adaptive filter solution

Xk
J T o T o] T

Ww 1s changing in time

\ \
(X)wo (X)w1 (X)M{,_1 (X)WJ P
Z \ w,, =minJ(w)

dk +

7

D

J(W)=E|(d, =)’ |=E|| d; =X wx,, | |=how to minimize this

without the knowledge of R and r

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 34
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Adaptive filtering with unknown statistical
parameters(1)

Problem: R and r are not given!
R:R, = E[xk_l.xk_j}

r:r,=E|d, x|

However a learning set can be known (a set of input-output
pairs):
) = {(xk,dk),k = 1,...,K}
Empirical error function:

k=1

&) 1 K J 2
Wy, =min—D | d, =) wx,_,
w K 0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 35
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Unknown statistical parameters(2)

Does it converge to the analytical solution?

d=(dd,...d; ), x" =0,0,..,0,x,x, ...d,_,

Notations:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Unknown statistical parameters(3)

After re-ordering:

Z [Zxklka :—dekl,Vl 0,..,J

~

Rw r
[t approximates to the optimal solution, in the sense that we use
the consistent estimation of correlation matrix and vector,
respectively!

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 37
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A recursive solution: LD algorithm(1)

R K gy (K+D _ (K+D)
We can decompose the correlation matrix for
consecutive diades 1n time.

-1
-1
wEHD = (R(K+1)) r(1<+1) :(R(K) +X(K+1)X(K+1)T] (r(K) " dK+1X(K+1))

. v
—\

Matrix diade inversion lemma

The matrix diade inversion lemma states:

Y k) (N (RO
(RO () (RO))

(R(KH) )_ B 14 (X(K+1) )T R (K (K+)

, lnvzeting in your fieture T *
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A recursive solution: LD algorithm(2)

By using the decomposition we can write the
optimal recursion, the Levinson-Durbin
algorithm:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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The RM algorithm
The computing complexity of the term 1s high:

(R(K) )—1 L&) (X(KH) )T ((R(K) )le

14 (X(K+1) )T R (K4

Simpler solution with stochastic approximation 1s a substitution
of a monotone decreasing function:

w(k+1)=w (k)=A(k)1d, =D w,(k)x,_, rx,,, 1=0,...J

o J/

10/5/2011. 40
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The solution yielded by the RM algorithm

Solution converges only in mean square, 1.€.:

lim E|[w(k)—w,, [ =0

k—>o0 opt

The proof of this statement 1s based on the Kushner-Clark
theorem (coming later), first we only demonstrate that in

equilibrium indeed the optimal solution 1s obtained.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 41
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Steady state analysis of the RM algorithm (1)

In order to analyze the equilibrium, one must first keep in mind
that this algorithm 1s a stochastic (random) recursion. As result,
no changes will occur 1f the average of is going to be zero. As a
result for reaching the equilibrium the following set of equations
must be satisfied:

{dk — i w, (k)xk—j } X

J
E {dk—ij(k)xkj}xk, =0, /=0,..,J

J=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Steady state solution of the RM algorithm (2)

which condition can be rewritten as follows:

J
E ijxk_jxk_l :E(dkxk_l), [=0,....,J
Jj=0

w.E(xk_jxk_,) =E(d,x,,), [=0,..J

J

.
I M\
(e}

J
ZRIJ.WJ. =7, [=0,..,J
j=0

or 1n vector notation:
Rw=r

which 1s just the solution of the Wiener filtering!
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The LMS algorithm
Least Mean Squares algorithm:  A(k)=A, Vk

J
w, (k+1) = w,(k) —A{dk > w(k)x,_ tx ., 1=0,..,J
=0
LD algorithm: high computatiénal complexity, optimal
convergence

RM algorithm: lower complexity, only asymptotic convergence
can be guaranteed

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 44

F e * F
MNew Hun;aiy DcUZ[onlcmt Flan



Signal processing on digital, neural, and kiloprocessor based
A\ architectures: Adaptive Signal Processing
www.itk.ppke.hu

LMS algorithm(2)

LMS algorithm: very low complexity, no convergence
guaranteed, but mostly 1t works! (compared to the RM algorithm)

Steepest-descent version of RM algorithm.

Performing the LMS recursion only the observed samples of
random processes and are needed and the algorithm converge to
the optimal solution of Wiener filtering without any a priori
knowledge on the correlation properties of the processes.

J
w, (k+1) = w,(k) —A{dk —ij(k)xkj}xkl, [=0,..,J

J=0

, lnvzeting in your fieture T *
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Applications of adaptive filtering

e Open questions:
— What 1s the optimal degree of the model? J=?
— Information theoretical solution (Akaike, Risamen)

— VC dimension (Vapnik Chervonenkis)
e This algorithm has wide spread applications in
— data compression,

— adaptive channel equalization,

— noise cancellation.
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Linear prediction(1)
Past samples of an ergodic and weakly stationary
process are gIven: XX, ;s Xy
Let us predict the future: — x,_,,%, (% = X
o J
Prediction with linear filter: x, =) wx,_,
j=1

. ~ 72
Optimal linear predictive filter: Wopr = fr;m{E |:xk - xk:| }

2
J
Task: W = Ming E {xk - Z ijkj:|
j=1

w
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Linear prediction (2)

This optimization task equals to a special Wiener-filtering
problem, where:

d, =x,
Rij :R(i_j):E[xk—ixk—j] y :r(i):E[dkxk—i]
Rw =r

Note: Model degree 1s only J (not J+1).
If R 1s not known, use the RM algorithm:

w,(k+1)=wl(k)—A(k){dk—iwj(k)xk]}xkl, I=1,.,J

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 48

F e * '
MNew Hun;aiy DcUZ[onlcmt Flan



Signal processing on digital, neural, and kiloprocessor based
VW‘) architectures: Adaptive Signal Processing

T oS

378 www.itk.ppke.hu

Implementation in real-life communication systems

The source 1s not stationary, only in time slots, therefore filter
parameters should be re-optimized all the time:

Optimal filter setting should be resent according to the statistical
feature of the learning set!
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Applications: adaptive-predictive coding(1)
Coding ﬁ Access Channel _J\ Decoding

T J T bscee——s| T
y Sender

Vv

Xk
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Applications: adaptive-predictive coding(2)

X
7 > T T %_ ....... T
W Wi w;
€k l Xy Receiver
Access Channel - *@
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Applications: adaptive-predictive coding(3)

Real-time implementation:

— mi 2 _
W = mv}nE[ek] —>Rw_ =r

w(k+1)=w (k) =A(k)yd, =D w,(k)x,_, ¢x,,, [=1...,J
j=0
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Applications: adaptive-predictive coding (4)
We are interested in data compression rate.

J

B[e7]-E [ zw ] E[x =23 w, B[ T+ 30w v v, ]-

j=1 j=1 i=l

J J J
2> wr(j)+>. > wwR(i—j)=V(0)-2w'r+w'Rw

j=1 i=1

with the optimal filter coefficients this becomes

E[e,?] = V(O) - 2wfptr T WgptRWopt =R (O) - WoTptr =R (O) - ngtRWOpt
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Applications: adaptive-predictive coding (5)
R 1s hermitian, therefore 1t has orthonormal
eigenvectors only positive eigenvalues:
Rs, =As,, s;s, =0,i#j, 4,>0, Vi=1,..J
Optimal filter can be represented 1n the
eigenvector space:

— E[x,f } — ZJ: Zjlvfptv;’p%isisJT.E[xk_jxk_l.} = E[x,f } - Zjl/iivfpt
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Applications: adaptive-predictive coding (6)

The energy of the input signal is much higher than the energy of
the compressed signal, which yields better quantization
possibilities!

ZJ:/Iivfpt <<0— E[e,f] << E[x,f}
T H[¢)<<H[x]

The entropy of the predicted signal i1s smaller than the original

one, thus source coding can be more efficient!
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Applications: adaptive-predictive coding (7)

-

_1
(8]
I

e
.

g
]
e —— :
e

ol
fus]
|
o

)
Fa
I

Probability density function of the signal
— T

10/5/2011. 56




_ Signal processing on digital, neural, and kiloprocessor based
A\ architectures: Adaptive Signal Processing
s www.itk.ppke.hu

Applications: adaptive-predictive coding (8)

* The adaptive-predictive coding (or linear predictive coding) is used as a
form of voice compression by phone companies (e.g.. in the GSM
standard).

— GSM coder uses this approach and achieves 6.5 Kbit/s instead of 64 Kbit/s in
the case of voice!

e Itis also used for secure wireless, where voice must be digitized, encrypted
and sent over a narrow voice channel (e.g.. Navajo I).

e LPC synthesis can be used to construct vocoders where musical instruments
are used as excitation signal to the time-varying filter estimated from a
singer's speech.

e LPC predictors are used in Shorten, MPEG-4 ALS, FLAC, and other
lossless audio codecs.

. lnvzeting in your fieture /,-—_*\
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Applications: channel equalization (1)

Transmuitter
=X :/__'(: - == shadowing
S e e Recewer
T~ <L Recetver
M‘u@;\)arh propagation - ;\% - " :
\ - ”
Pl 1Y “~ - U

Wireless channel impairments:

A
—Shadowing, large-scale path loss |H (f )l
—Multipath Fading, rapid small-scale W

signal variations (ISI)

—Doppler Spread due to motion of f
mobile unit
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Applications: channel equalization (2)

Due to the distortion of fading channel, the signal
propagates in a multipath fashion from the sender to the receiver!
This phenomenon causes severe distortion in the transmission
characteristics of the channel, 1.e. the signals of the past get mixed
with present values (Intersymbol Interference) which introduces
memory in the I'T channel model!

G

Transmitter

N —

Receiver

: : i

: H —|— I Go(f) P A
: :

I I

| |

GH=Gr(HHFYGR()
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Applications: channel equalization (3)

Signal processing on digital, neural, and kiloprocessor based
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The channel impairments can lead to significant distortion or
attenuation of the received signal (SNR) which degrade Bit Error

Rate (BER) of digitally modulated signal.

10°

= eg. 404AM
107"

Fading channel
107
10
e AWGN channel
10"
E /N, [dB]
= 0 2 4 & a8 10 12 14 16 18 20
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Applications: channel equalization (4)

e Two techniques are used to improve received signal quality and
lower BER:

— Diversity (expensive and resource consuming): It requires double
antennas or double spectrum.

— Equalization (a more economical approach): it requires only DSP and
algorithmic developments.

Training phase

1
1
./ gl
dk + |x . ) 4
— |
*| Transmitter * Channel &1/ Adaptive 4 _|9|
1
1
|
1

filter
e 3 /
: 7y AP

Additive Gaussian Noise
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Applications: channel equalization (5)
e Quality of Service (QoS) of a wireless communication system:
Spectral efficiency [(bit/sec)/Hz]

which refers to the maximal data rate that can be transmitted
over a given bandwidth in a specific communication system.
(c.g. In GSM (1991) system R=0.104Mbit/s per -carrier,
B=0.2MHz per carrier SE=R/B=0.52 (bit/sec)/Hz,
or in an LTE (2009)system SE=16.32 (bit/sec)/Hz,
or in 802.11g SE=2.7(bit/sec)/Hz)

e Spectral efficiency 1s determined by the bit error rate!
e The bit error rate is determined by the channel distortion.
e Thus adaptive equalization plays a central role.

. fnu,'_-fﬂ«g i your ficdure ﬁ
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Applications: channel equalization (6)

e Equalization algorithms aim to tackle the ISI by implementing
linear filters to equalize the channel distortions at the receiver
side!

e Challenge: how to develop low complexity adaptive signal
processing algorithms, which are:
— real-time and easily implementable;
— vyield low Bit Error Rate;

— have learning capabilities to equalize unknown channels only based on
input-output samples.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006

63

‘ “ * F
MNew Hun;ag; DcUZ[ontcmt Flan



Signal processing on digital, neural, and kiloprocessor based
architectures: Adaptive Signal Processing

www.itk.ppke.hu
Applications: channel equalization (7)
o Demodulate & Sample |
Received | ! SHIDIILRIE Qo RitiThe , _ Lo Detect ;
S e E Baseband pulse (possibly distored) :Base‘band pulse i
| i — /T ; )
r(2) , | Frequency ] G | Equalizing _}(.E Threshold | : "
| |down-conversionf R | filter + 1 | comparison | ! i
| For bandpass signals Compeg?ation for 1 i E
S —— Gamme oo IBL)
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Ad hoc Sensor Networks: Detection and channel equalization

Applications: channel equalization (8)
e The simplified model and notations:

Vi
H w
Vi i £ X, Vi sy Vi :Sgn(yk)
e n _ w;r »> > »
n=0,..,L J=0..J —
Channel Equalizer Threshold detection

L
X = th—nyn TV
n=0
_ J J L L J J
=2 WX =)W, (thjny n T ijj = Z[Z thkjnJ VWV
j=0 j=0 n=0

Ve = Z%—nyn + 77/:;

ISI ) =490 T Z%—n% N1k

nzk
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Applications: channel equalization (9)
Signal:
Vs :P(yk :+1):P(yk =—1) =0.5

Channel can be represented as a linear filter, which has an

impulse response:
h,j=0,..,L

J

Additive Gaussian noise :

V, ~N(O,\/ﬁo) E[vjvi}zéijNO

Adaptive filter with impulse response:  w,, j =0,...,J

What 1s optimal w?

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Applications: channel equalization (10)

 What 1s optimal w?
— Optimal filter with given channel: Equalization
— Optimal filter with unknown channel: Adaptive equalization

— Optimal filter with unknown channel without learning set: Blind
adaptive equalization

 Tradeoff between noise and ISI cancellation.

Ve = qu—nyn T =40) +qu—nyn 77,

n#k
n, ~ N(o,w/NO ||w||)
1. strategy: Zero Forcing (ZF)
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Applications: channel equalization (11)

The Zero-Forcing strategy: we assume relatively large signal to
noise ratio (the effect of noise can be neglected and focus only
on ISI cancellation):

~ I, 1f k=0
Vi =9V 4, =0, =
’ 0 else
Typical application: wired communication
The optimal weights:
J
Wi Dl w =6, k=0,...J+L+]
j=0
10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006
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Applications: channel equalization (12)

Problem: J+/ free parameters and J+L+2 equations which leads
over determined equation system!

Solution: defining a new goal function
— Peak Distortion (PD): the maximal value of ISI

J+L+1

PD(w)= kZ:; A

The optimal weights:

J+L+1

W, :min PD(w)=min PD(w)=

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 69
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Applications: channel equalization (13)
The Peak Distortion :

J+L+1

PD Zthjwsgnsz]
J=

Extremal point:

J

Y h_w =0,k=1..J) ;

/=0 s > I W, =0, k=0,..,J
J i

Zh W, = k=1,....J ) =

j=0

Hw=3,8"=(1 0 .. 0)
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Applications: channel equalization (14)

In the case of unknown H: adaptive Zero Forcing
Training set: header payload

\ &) 18-229%
J

wl(k+1)=wl(k)—A(k) Ve 2w, ()x_ v 1=0,.,J

J
J=0

The algorithm converges 1f (Kushner Clark theorem):

J

E yk—ij(k)xk_j Vi, |=0, [=0,...J

J=0
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Applications: channel equalization (15)

J
E[ykyk—l ] _ Z(;WjE[xkjykJ =0 E[xk_jyk_l] = E|:(thjnyn + ijjykl:| —
- n

J
jz_(;w,.E[xk_,-yk_l] - ﬁ[ygyk_,] = " + ;[vkg e

= th— j—n5n,k—l =h_ j

A\ 4

J
Z wh_; =0, The algorithm converges to the ZF solution:
=0 .
adaptive ZF!
Hw =0 P
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Applications: channel equalization (16)

Problem: Zero Forcing eliminates ISI, but enhances the effect of
additive noise

Vi = ZQk—nyn 7k

Energy of the noise component:

J 2 J J
2 — — —
Elm |=E|| Xwvi, | [=E| 22 wwvi v |=
j=0 j=0 i=0
J J J 5
. . 2
=2 2 W Evi v, |= 2 Now, =Ny [W]
j=0 i=0 \ ~~ - j=0
Nyd;
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Applications: channel equalization (17)
What happens in low SNR domain ?

1 [Fw|” =[] =1 1
2
B [w THHWHQ =1 Wi j\H 9|
2 1 1 2 R 12 1
| 0 < F| n? N, )
max - |:77k :| : ﬂ“min ‘

Noise energy can be increase too much 1n case of bad channel!
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Applications: channel equalization (18)

Vk \ .
Vi X, - 1 YV
—_— Hi 7= L
@ (=53
Channel ZF equalizer
Information
+Y(F) /\{? N(f) W) \ |f]
f P f
Information C.hamllel Noise ZF Lqm IZGF Intormatlon
! and mlnse
IL Noise enhancement !!! _i
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Applications: channel equalization (19)

Minimum Mean Square Error: Adaptive solution of Wiener-
filtering! - 7

2
J
Wopt :IrivinE[(J/k ~ )2J = mvinE [yk _ijykj]

J=0

W :Rw =r, Rl.j =E[xk_l.xk_j}, v, =E[ykxk_l.]

Applying the Robins-Monroe algorithm:

wl(k+1)=wl(k)—A(k {yk—zjlw (k)x,_ ]}xk,, [=0,..,J
/ %

) = {(ykaxk }
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Applications: channel equalization (20)

The correlation matrix:

Rl.j = X X ]] Kth I VA lj(thjmym +ijﬂ =

=F Zzhk—i—nhk—j—mynym T Vkivkj:| -
—Zzhk . —j- mE[ynym]+E[Vk V- J}

5n,m 5

=> h by 6, + N, > R=HH + NI

—i—-n""k—j-n"n,m

What about the noise in case of MMSE?
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Applications: channel equalization (21)
What happens in low SNR domain ?

Eigenvectors: H>A=>R=HH +NJI—> A1’+N,
Noise energy: N, < E[ﬂz} < N,
ﬂ'rflax +N0 ' ﬂ’riin +NO

The noise can never became infinitely large because of the N,
component in the denominator !
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Applications: channel equalization (22)

Vi
\ :
« Noise
—————— = o
Ve X, w(2) H‘(l/z*) Vi
— Z)= * ¥ —
Hiz) HH (1/2')+N,
Channel MMSE e_qualizer
Information
+Y(H) /\{7{) N(») P% X(F)1t
1 1 =nC
> f Pe— 4 >/ ' : f e F
Information Chanpel Noise MMSE equalizer Informfltion
: and ncl)ise
e Less noise enhancement ;
than ZF!
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Applications: channel equalization (23)
Adaptive version of MMSE: AK) _ {(J’k»xk ),k _ 1,...,K}

i/

w(k+1)= wl(k)—A(k){yk —Zjle(k)xkj}xk,, [=0,..,J

J=0

Problem: Channel condition is changing in time, therefore a lot
of overhead 1s needed because of the learning set. E.g.: In GSM
system 18% of the packet 1s this overhead!

header payload

7 18-22%
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A solution without learning set (Blind signal processing):

w,(k+1) = wl(k)—A(k){f/k —Zjle(k)xkj}xk,, [=0,..,J

Is any guarantee for convergence? If there 1s,

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Applications: channel equalization (25)

E| yx,. i # 9, B = Z
o

=0 |(1=B)+E[ -y,

(1-2P, r—ZRZJw
j=0
CRW:(I—sz)r

which is not the original Wiener solution!

Furthermore the probability of bit error 1s not constant, it depends
on the filter:

B =¥ (w)
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Applications: channel equalization (26)

The service provider 1s interested in the probability of bit error,
because 1t 1s the real QoS subject which should be minimized:

B =¥(w)—>w,, =min¥(w)
What is this ¥(w) function?
L
Recall: X, — Z h,_ y.oo+ v,

. —~ . =0 — = .
received distorted signal ~ " channel distorsion sent symbols ~ WGN noise

J J L
— Z WX, = Z w, (Z hk_j_nyn + ijj
Jj=0 j=0 n=0
Z ZthJ” Vi +Zkaj Zany T 7

n=0\ ;=0

, lnvzeting in your fieture T *
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Applications: channel equalization (27)

i =sgn ()
Y(a)=P(J =) =P =+1|y, :—1)%+P(j/k =-1|y, =+1)%=
=P($, > 0|y, :—1)%+P(j/k <0y, =+1)%:
= %{P(—% +;qk_nyn 17> 0)”’(% +;qk_nyn +17; < OH

sup(q)=L+J+1=M,y is arandom binary vector
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Applications: channel equalization (28)

1 1
P(y :Z) - L+ - M-I

1 1
})b = 2M_1 5 Z |:P(_q0 +ZQk—nzn +77k > Oj"'P(% +qu—nzn +77k < O)j|
ze{—l,l}M_l

nzk nzk

n, ~ N(O,an), o, =N, HWH2

1
})b = 2_M ZMl |:P(77k > qO B qu—nznj-i_ P[nk < _qo B qu—nzn jj| =

nzk nzk
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Applications: channel equalization (29)

1 % _ Z qk—nzn _qO _ Z qk—nzn

})b - Z 1 _ (D nzk + (D nzk
2M Ze{_ljl}M—l (777 O',7

Here @(.) denotes the standard normal cdf. and note that
O(u)=1-D(—u)

1 _qO + Z qk—nzn _% o Z qk—nzn
F, = M Z O . +® =t
2 ze{—l,l}M_1 0-77 077
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Applications: channel equalization (30)
| ~Go + D G-nZ, ~Go = D G-n?s
}?) - Z CD n#k + (I) n#k
2" ze{-1,1""" Oy O
1 _ijhj+zzwjhk—j—nzn
— D J n#k j n
2M M-1 2
S N[l
_Z wih = Z Wil i 2,
+@| — Cast =¥ (w)
N, [wl
oW
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Applications: channel equalization (31)
The new goal function: .
w_ . =mmnY¥Y (W)

op W
w(k+1)=w(k)—Agrad¥(w(k))
Problems: "

1. Channel information is needed!

2. Algorithm is too complex: every step needs O(2M-1)
evaluation!
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Applications: channel equalization (32)

Using Monte Carlo methods can be a solution for reducing
complexity.

Using upper and lower bounds can be an other solution for the
problem of complexity.

Lemma: If a < b <c, then

S S TP
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Applications: channel equalization (33)

1 _ijhj+zzwjhk—j—nzn _ijhjqo +Zzwjhk—j—nzn
- Jj n#k 2 4 CD Jj n#k
? No|wl N,

2
W

The modified goal function:  w(k+1)=w(k)—Agrad F (w (k))
No more complexity problem! "
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Simulation Results(1)

ymnm:;\ v\q& LT

S ? R 5

"1‘::'3:535%"’5’ :\‘\:\‘}‘}‘{@%{:&:‘3& s

wil} filter coclficient L wi(2) filler coelficient
No ISI h=(1,0.3)
wiM) =[0.9018  -0.2440 0.0660]

Surfaces of error probability
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Simulation Results(2)

3 : 5 5 W e N
& -
= P 1 X ¢00:y'0 i
7 ; o (XA
i | . x\ SN o g

w(l} filter coefficient b w(2) filter coefiicient (1) filter coefficient ! W2, et CORTcient
h=(1, -0.5, 0.1) h=(1, 0.5, 0.3)
wl™MSE) 10,8895 0.3996 0.1004] Won ) =[0.888 04047 -0.0521]

Surfaces of error probability
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Simulation Results(3)
h=1,-05,01)
.................................................................... [ IBit error probability
: |:|Mean Square Error

7

2

E

2

0 e 1 0.5 0
_ w(l) filter coefficient
w(2) filter coefficient
Bit error probability vs. Mean square error
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Simulation Results(4)
h=(1, -0.5, 0.1)
Bit error probability Mean square error
Local minimum points are possible!
Bit error probability vs. Mean square error
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Simulation Results(5)
SNR [dB]
1
1 > 3 4 5 8 9 10
0.1
0.01
0.001
—s—no equalizer \
0.0001 —a—m mBER
Zr
BER —x—MMSE h=[10.5 0.1] \
0.00001 A
BER vs. SNR
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Questions(1)
What 1s Wiener filtering ?

What error function the Wiener filter will minimize ?

What are the properties of the correlation matrix ?
Give two practical examples for the use of Wiener filters ?

Summarize the problem of adaptive radio channel
equalization! Give the optimal solution!

A N e

6. Summarize the problem of first order adaptive-predictive
coding! Give the Wiener solution! Show that the solution
increases the speed of data transmission!

. lnvzeting in your fieture T
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Questions(2)

7.  What 1s the problem of adaptive-predictive coding in mobile
communication systems? Give the block diagram of the
solution, and explain the notations! Give the Robinson-
Monroe algorithm and explain the formula!

8.  What kind of optimality i1s guaranteed solving the Wiener-
Hopf equation? Prove it!

9. What 1s the Zero Forcing solution in the case of channel
equalization? What happens with the noise?
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An example of Wiener filtering (1)

Problem:

How can we estimate the correlation matrix R based observation?
Give an example of the correlation matrix R if the dimension 1s 4!
Based on the correlation matrix find the optimal A4 parameter
which guarantees the fastest convergence!

Solution:
By definition, the correlation matrix of a stochastic process 1s
which can be estimated using the observations with

_ 1 K-max(i, )

xi+mxj+m *

i K—max(i,j) —

i lngesting in your fisture /,-—_*\ *
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An example of Wiener filtering (2)

Solution (continued): Let us take the correlation matrix R® from
example 1! The A parameter which guarantees the fastest
convergence can be obtained from the eigenvalues of R. The
eigenvalues of R are

A, =0.191, 4, =0.691, 4, =1.309, A, =1.809
from which the optimal 4 1s:

2 2

A = = =1.
A +A 0.191+1.809
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R(a) —

1
0.6
0.4

0.2

Problems (1)

06 04 0.1]

1
0.1

0.2
1

0.4 0.6

0.4
0.6
1

, R(b)

1
0.5
0
0

Define Rij element of the correlation matrix!

0.5
1
0.5
0

0
0.5
1
0.5

0
0
0.5
1

www.itk.ppke.hu

Are any of the following matrices a valid correlation matrix?:
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Problems (2)

The channel distortion in a wireless communication system 1s to
be equalized by an FIR filter of third degree. We use the LMS
algorithm to set the equalizer coefficients with parameter A=1.
The learning set 1s given as follows:

' ={(1,0.3);(~1,-0.5);(~1,0.1);(1,1.1);(1,0.9)}
While the 1nitial vector 1s

w(0)=[1 0.1 0.1]

Give the filter coefficient vector after the first update cycle !

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




Signal processing on digital, neural, and kiloprocessor based
@\V) architectures: Adaptive Signal Processing

T oS

378 www.itk.ppke.hu

Problems (3)

A random process is to be compressed by a predictor of second
degree. The correlation function 1s given as follows:

R(0)=1 R(1)=0.5 R(2)=0.2

Calculate the optimal predictor coefficients !
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Summary

 Fundamental 1ssues: FIR Wiener-filter, applications of
adaptive signal processing: adaptive-predictive coding,
channel equalization.

 Problem of signal estimation in the presence of undesired
noise or interference can be solved by Wiener filter.

e Adaptivity means real-time re-optimization possibility.

* Theory of Wiener filters can be applied to solve IT problems
such as coding or radio channel equalization.

Next lecture: Introduction to neural processing
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