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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Outline
• Introduction to adaptive signal processing

• Motivation and historical review

• Applications

• Wiener-filtering

• The Levinson-Durbin algorithm

• The Robinson-Monroe stochastic approximation

• The LMS algorithm

• Adaptive-predictive coding

• Radio channel equalization
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Introduction

Digital signal processing is becoming more and more important
in various kinds of fields.

Many types of signals, which were processed formerly by analog
techniques, are now usually being processed using VLSI
processors such as digital signal processors.

Digital television and digital mobile communications are
becoming very popular owing to the development of digital
techniques.
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Historical overview (1)
• Theory of linear approximation (Galilei-1632, Gauss-1795)

• Approximation with minimum mean square error (Wiener-
1930, Kolgomorov-1939)

• Levinson-Durbin algorithm (1947)

• Wiener filter (Norbert Wiener, 1949)

• LMS algorithm (Hoff-1960, Widrow-1970)

• Digital filter (1960 – 1965, J. F. Kaiser 1965)

• Kalman filter (Kalman-1960)

• Minimax criteria (Zames-1981)
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Historical overview (2)
• First linear digital filter for solving difference equations in

fifties
• Digital filter (1960 – 1965, J. F. Kaiser 1965), at first, it was 

called “numerical filter” or “sampled-data filter”.
• Tapped delay line for equalization in the digital

communication technologies in the seventies
• Filters and adaptive architectures implemented on DSP in the

eighties
• Array signal processing in the nineties
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Practical applications of adaptive signal processing (1)

• Communication technology: equalization, adaptive
modulation, etc.

• Information and computer technology: encoding, decoding,
error correction, data compression, etc.

• Multimedia technology: still and moving image processing,
image compression, data transmission, human interface, etc.

• Mechanical engineering: vibration control/analysis, noise
control/analysis, mechanical systems control/analysis, etc.

• Control engineering: control of many kinds of dynamical
systems
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Practical applications of adaptive signal processing (2)

• Systems engineering: modeling and optimization of practical
systems

• Image technology: image processing, pattern recognition,
medical imaging, remote sensing

• Architectural engineering: architectural acoustics, vibration
control (for earthquakes), noise control, etc.

• Civil engineering: underwater estimation, flood prediction,
fluid control, environmental, data processing, bridge
engineering, soil engineering, etc.
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Wiener filtering 

Motivation
Based on observed examples (inputs and desired outputs) learn
the desired signal transformation
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Notations and definitions (1)
• Input signal:  xk weakly stationary process

• Expected value:
(zero mean process)

• Correlation function:

• Correlation matrix:

( ) [ ]( ) [ ]( ) [ ]k k k l k l k k lR l E x E x x E x E x x− − −⎡ ⎤= − − =⎣ ⎦
( ) − −⎡ ⎤− = ⇒⎣ ⎦k i k jR i j E x x

( ): ,  , 0,...,⇒ = − =ijR R i j i j JR

[ ] 0kE x =
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Notations and definitions (2)
• Output signal: dk weakly stationary process

• Expected value:

• Correlation function:

• Cross correlation:

[ ] 0= =kE d M

( ) [ ]−= ⇒k k lr l E d x

( ): ,  0,...,⇒ = =lr R l l Jr

( ) [ ]−= k k lV l E d d
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Notations and definitions (3)
• Adaptive linear architecture (FIR):

• Output signal:

T T Tkx

0

J

k j k j

j

y w x −=
=∑

0w 1w 1Jw − Jw

∑
Adaptation:
changing w
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Notations and definitions (4)

• Error signal:

• Error function:

• Empirical error:

• Offline-algorithm:

k k ke y d= −

( ) ( )2

k kd y J⎡ ⎤Ε − =⎣ ⎦ w

( ) ( )2

1

1 K

k k emp

k

d y J
K =

− =∑ w

( )opt emp: min J=
w

w w
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Notations and definitions (5)

• Online-algorithm (recursive solution):

• Objective (convergence): 

( ) ( )( )1 , ,k kk k d y+ = Ψw w

( ) optlim
k

k→∞ =w w
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Wiener filtering 

Main application classes
• System identification and modeling 

– (E.g.: modeling of unknown channel distortion)

• Prediction 
– (E.g.: adaptive-predictive coding in speech communication)

– Linear time series prediction (E.g. financial time series)

• Inverse identification 
– (E.g.: equalization of communication channels)

• Noise cancelation
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

System identification and modeling

Unknown
System

Adaptive 
filter

Desired output

xk

dk

yk

Output signal

ek=dk − yk

−
+

Error signal

For more details see the results of BAUER, P. – SPAGNUOLO, G. 
– BOKOR, J (2007).
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Linear time series prediction

Adaptive 
filter

−

+

Error signal

1
0

J

k j k j

j

x w x+ −=
=∑�

Delay

1 1 1k k ke x x+ + += − �

kx

1kx +



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 18

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Inverse identification

Unknown
System

Adaptive 
filter

System input

−

+

Delay

kx ky
k lx −�

k le −

k lx −
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Noise cancelation with a reference signal

Adaptive 
filter

yk

−

+
ek=dk

( )2
kν

( )1
k k kx d ν= +

Additive Gaussian Noise
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Some other adaptive filter configurations (1)

Channel equalization using training sequence (see later)

Transmitter
Adaptive 

filter

yk

Additive Gaussian Noise

−

+

Channel
+

+

xk
dk

νk

Training phase

ek=dk − yk

Receiver
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Some other adaptive filter configurations (2)

Equalization in decision-directed (decision-feedback/IIR) 
mode (without training sequence)

Adaptive 
filter

yk

−
+

xk

ek

Threshold detector
Receiver

ˆ
ky
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Some other adaptive filter configurations (3)

Time-delay estimator: filter cancels the delay between x1
k and x2

k. The
peak in w gives the D delay, which is taken as multiple of the sample
interval.

Adaptive 
filter

yk

−

+
ek

( ) ( )1 1
k k kx d ν= +

( ) ( )2 2
k k D kx d ν−= +

Additive Gaussian Noise
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Wiener filter (1)

• Autocorrelation function:

• Cross correlation function:        Objective:

( )
( ) ( ) ( ) ( )

2

2

0 0 0 0

0 0 0

2

0 2 0 2

J J J J

k j k j k j k k j j i k j k i

j j j i

J J J
T T

j j i

j j i

J d w x d w d x w w x x

V w r j w w R i j V

− − − −= = = =

= = =

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= Ε − = Ε − Ε + Ε =⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
= − + − = − +

∑ ∑ ∑∑
∑ ∑∑

w

w r w Rw

( ) ( ) ( )
0
,  dim 1=⎡ ⎤= = +⎣ ⎦ J

j
r j Jr r

( ) ( ) ( ) ( )
, 0

,  dim 1 x 1=⎡ ⎤= − = + +⎣ ⎦ J

i j
R i j J JR R

constant

{ }: min 2T T

opt = −
w

w w Rw w r
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Wiener filter (2)
• Properties of the correlation matrix (R):

1. Toeplitz:

2. Symmetric:

3. Hermitian: 

4. Positive semi definite:

5. Eigenvectors are orthonormal, 

non-negative eigenvalues:

−=ij i jR R

= T
R R

, :  ∀ =T T
a b a Rb b Ra

:  0∀ ≥T
a a Ra

1,  if  
,  0,  i 

0,  if  

⎧ ⎫= = ≥ ∀⎨ ⎬⎩ ⎭
T

i j ij iδ λs s

= iλi iRs s
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Wiener filter (3)
• Objective:
• Global minimum exists because of Property 4. 
• Solution:

• Wiener-Hopf normal equation:                        
• Problems (why we should go further into adaptive signal 

processing) : 
1. matrix inversion is not cost efficient:

2. statistical features are not known:

{ }: min 2T T

opt = −
w

w w Rw w r

2
2 2 0

T T∂ − = − =∂
w Rw w r

Rw r
w

opt =Rw r

1
opt

−=w R r

,R r
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

The need for recursive and adaptive solutions
In the case of real information processes R(k) and r(k) are not
known, furthermore are changing in time because of only quasi
stationer property of dealt processes (e.g.: voice can be treated as
a stationer process only for a 30 ms time window)

Recursive solution: gradient descent algorithm:

without matrix inversion.

Steady state:

( ) ( ) ( ){ }1k k k+ = −Δ −w w Rw r
Speed of convergence

( ) ( )1 :k k= + = =w w w Rw r

opt
min max

2

λ λΔ = +
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (1)

Eigenvector basis transformation:
( ) ( ) ( ){ }1k k k+ = −Δ −w w Rw r

( ) ( )
0

,
J

j j

j

k v k
=

=∑w s

( ) ( ) ( ){ }1k k k+ = −Δ −w w Rw r

( ) ( ) ( ) ( )
0 0 0 0

1 i

J J J J

i i i

i i i i

v k v k v k kς
= = = =

⎧ ⎫⎛ ⎞+ = − Δ −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭∑ ∑ ∑ ∑i i i i
s s R s s

( ) ( ) ,T

j jv k k= w s ( ) ( )
0

J

j j

j

k kς
=

=∑r s

,  0,...i i Jλ= ∀ =
i i

Rs s
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (2)
After rewriting the formula without R:

Two vector can be only equal, if each of the 

components are equal:

This differential equation has the following

homogeneous solution:

( ) ( ) ( )( )
0 0

1
J J

i i i i i i i

i i

v k v k v kλ ς
= =

+ = −Δ + Δ∑ ∑s s

( ) ( ) ( )1 1i i i i iv k v kλ ς+ = − Δ + Δs

( ) ( )1
k i

i i i

i

v k c
ςλ λ= −Δ +
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (3)
After replacing it into the original formula:

Transient component:

Wiener solution:

What is the optimal step size in order to maximize the speed of
convergence?

( ) ( )
0 0

1
J J

k i
i i i i

i i i

k c
ςλ λ= =

= − Δ +∑ ∑w s s

( )
0

1
J

k

i i i

i

c λ
=

−Δ∑ s

0

J
i

i

i i

ς
λ=∑ s

opt ?Δ =
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (5)

Relaxation:

0

{ }opt min max 1 i
i

λΔΔ = − Δ
( )min min iλ λ= ( )max max iλ λ= [ ]min max, ,  ∈ ∀i iλ λ λ

minλ maxλ
[ ]{ }

min max
opt

,
min max 1Δ ∈Δ = − Δ iλ λ λ λ
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (6)

The step size can be optimal iff,{ }opt min max 1 i
i

λΔΔ = −Δ

0

1

minλ maxλ
min max

2

+λ λ

1− Δλ

min max

opt
min max

1 1

2

−Δ = Δ −
Δ = +

λ λ
λ λ
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (7)

Problems:

should be solved, but due to the
complexity of eigenvalue decomposition it is impossible to be
done in real-time! ( )det 0λ− =R I

min max, ?λ λ = ?iλ =
,  0,...i i Jλ= ∀ =i iRs s

( ) ( )opt
0 0

1
J J

k
i

i i i i

i i i

k c
ςλ λ= =

= −Δ +∑ ∑w s s

( ) ( ) ( ){ }opt1k k k+ = −Δ −w w Rw r
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Recursive solution of Wiener filter (8)
Estimation of eigenvalues: Gersgorin circles

R(0) can be observable! A near optimal step size can be
implemented!

min max
, ,

,  ii ij ii ij

j j i j j i

R R R Rλ λ
≠ ≠

≥ − ≤ +∑ ∑
, ,

, ,i ii ij ii ij

j j i j j i

R R R Rλ
≠ ≠

⎡ ⎤∈ − +⎢ ⎥⎣ ⎦∑ ∑

( )opt
min max

2 2 1

2 0iiR Rλ λΔ = ≈ =+
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Adaptive filter solution

w is changing in time
T T Tkx

0w 1w 1Jw − Jw

∑
ke

( ) ( ) 2

2

0

how to minimize this 

without the knowledge of  and 

J

k k k j k j

j

J d y d w x −=

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥= Ε − = Ε − =⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦∑w

R r

( ): minopt J=w w

kd
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Adaptive filtering with unknown statistical 
parameters(1)

Problem: R and r are not given!

However a learning set can be known (a set of input-output 
pairs):

Empirical error function:

[ ]: i k k ir d x −= Εr

: ij k i k jR x x− −⎡ ⎤= Ε ⎣ ⎦R

( ) ( ){ }, , 1,...,K

k kx d k Kτ = =
2

( )
opt

1 0

1
min −= =

⎛ ⎞= −⎜ ⎟⎝ ⎠∑ ∑K J
K

k j k j

k j

d w x
Kw

w



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 36

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Unknown statistical parameters(2)
Does it converge to the analytical solution?

Notations:

Application of the projection theorem:

( ) ( )
1, 2, , 1 2, ,..., ,  0,0,...,0, , ..., −

⎛ ⎞⎜ ⎟= = ⎜ ⎟⎝ ⎠��	�

j

K K j

j

d d d x x dd x

( ) ( )
opt

0

: , 0,  0,...,
=

− = ∀ =∑J j i

j

j

w i Jw d x x

( ) 2 2

( )

1 0 0

1
−= = =

⎛ ⎞= − −⎜ ⎟⎝ ⎠∑ ∑ ∑∼
K J J

j

k j k j j

k j j

J d w x w
K

w d x
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Unknown statistical parameters(3)
After re-ordering:

It approximates to the optimal solution, in the sense that we use
the consistent estimation of correlation matrix and vector,
respectively!

i

0 1 1

1 1
,  0,...,

J K K

k i k j j k k i

j k k

x x w d x i J
K K

− − −= = =
⎛ ⎞ = ∀ =⎜ ⎟⎝ ⎠∑ ∑ ∑

rRw
�

��	�
����	���
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

A recursive solution: LD algorithm(1)

We can decompose the correlation matrix for 
consecutive diades in time.

The matrix diade inversion lemma states:

( )1 ( 1) ( 1)K K K+ + +=R w r

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
1

1 1 1 1 1( 1)
1

Matrix diade inversion lemma

K K K K K K KK

Kd

−−+ + + + ++ +
⎛ ⎞= = + +⎜ ⎟⎝ ⎠

T
w R r R x x r x����	���


( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )

T1 T 1
1 1

1
1

T
1 11

K K K K

K

K K K

− −+ +
−+

+ +

⎛ ⎞⎜ ⎟⎝ ⎠= +
R x x R

R

x R x
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

A recursive solution: LD algorithm(2)

By using the decomposition we can write the 
optimal recursion, the Levinson-Durbin 
algorithm:

( ) ( )
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The RM algorithm 
The computing complexity of the term is high:

Simpler solution with stochastic approximation is a substitution 
of a monotone decreasing function:

Robbins-Monroe algorithm
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The solution yielded by the RM algorithm 
Solution converges only in mean square, i.e.:

The proof of this statement is based on the Kushner-Clark
theorem (coming later), first we only demonstrate that in

equilibrium indeed the optimal solution is obtained.

2

optlim ( ) 0
k

E k→∞ − =w w
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Steady state analysis of the RM algorithm (1) 
In order to analyze the equilibrium, one must first keep in mind
that this algorithm is a stochastic (random) recursion. As result,
no changes will occur if the average of is going to be zero. As a
result for reaching the equilibrium the following set of equations
must be satisfied:

0

( )
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k j k j k l

j
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Steady state solution of the RM algorithm (2)
which condition can be rewritten as follows:

or in vector notation:

which is just the solution of the Wiener filtering!
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The LMS algorithm
Least Mean Squares algorithm:

LD algorithm: high computational complexity, optimal 
convergence

RM algorithm: lower complexity, only asymptotic convergence
can be guaranteed

( ) ,  kkΔ = Δ ∀

0

( 1) ( ) ( ) ,   0,...,
J

l l k j k j k l

j
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LMS algorithm(2)
LMS algorithm: very low complexity, no convergence
guaranteed, but mostly it works! (compared to the RM algorithm)

Steepest-descent version of RM algorithm.

Performing the LMS recursion only the observed samples of
random processes and are needed and the algorithm converge to
the optimal solution of Wiener filtering without any a priori
knowledge on the correlation properties of the processes.

0
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Applications of adaptive filtering 
• Open questions:

– What is the optimal degree of the model? J=?

– Information theoretical solution (Akaike, Risamen)

– VC dimension (Vapnik Chervonenkis)

• This algorithm has wide spread applications in
– data compression,

– adaptive channel equalization,

– noise cancellation.



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 47

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Linear prediction(1)
Past samples of an ergodic and weakly stationary

process are given:

Let us predict the future:

Prediction with linear filter:

Optimal linear predictive filter:

Task:
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Linear prediction (2)
This optimization task equals to a special Wiener-filtering
problem, where:

Note: Model degree is only  J (not J+1).

If R is not known, use the RM algorithm:

( )ij k i k jR R i j E x x− −⎡ ⎤= − = ⎣ ⎦
k kd x=

( ) [ ]i k k ir r i E d x −= =
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Implementation in real-life communication systems 
The source is not stationary, only in time slots, therefore filter 
parameters should be re-optimized all the time: 

Optimal filter setting should be resent according  to the statistical 
feature of the learning set!

1 2 3

( )1
optw ( )2

optw
( )3
optw
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Applications: adaptive-predictive coding(1)

Access ChannelCoding Decoding

T T Tkx

1w 1Jw − Jw

∑
kekx

Access Channel

Sender



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 51

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Applications: adaptive-predictive coding(2)

T T Tkx

1w 1Jw − Jw

∑
Access Channel

ke i
kx Receiver
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Applications: adaptive-predictive coding(3)

Real-time implementation:

( )
0

( 1) ( ) ( ) ,   1,...,
J

l l k j k j k l

j

w k w k k d w k x x l J− −=
⎧ ⎫+ = −Δ − =⎨ ⎬⎩ ⎭∑

2
opt optmin ke⎡ ⎤= Ε → =⎣ ⎦w

w Rw r



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 53

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Applications: adaptive-predictive coding (4)

We are interested in data compression rate.

with the optimal filter coefficients this becomes 
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Applications: adaptive-predictive coding (5)
R is hermitian, therefore it has orthonormal 

eigenvectors only positive eigenvalues:

Optimal filter can be represented in the 

eigenvector space:
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Applications: adaptive-predictive coding (6)

The energy of the input signal is much higher than the energy of
the compressed signal, which yields better quantization
possibilities!

The entropy of the predicted signal is smaller than the original

one, thus source coding can be more efficient!

opt 2 2
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Applications: adaptive-predictive coding (7)

Illustration of the effect of data compression
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Applications: adaptive-predictive coding (8)
• The adaptive-predictive coding (or linear predictive coding) is used as a 

form of voice compression by phone companies (e.g.. in the GSM 
standard).

– GSM coder uses this approach and achieves 6.5 Kbit/s instead of 64 Kbit/s in 
the case of voice!

• It is also used for secure wireless, where voice must be digitized, encrypted 
and sent over a narrow voice channel (e.g.. Navajo I).

• LPC synthesis can be used to construct vocoders where musical instruments 
are used as excitation signal to the time-varying filter estimated from a 
singer's speech.

• LPC predictors are used in Shorten, MPEG-4 ALS, FLAC, and other 
lossless audio codecs.
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Applications: channel equalization (1)

Wireless channel impairments:
–Shadowing, large-scale path loss

–Multipath Fading, rapid small-scale
signal variations (ISI)

–Doppler Spread due to motion of
mobile unit
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Applications: channel equalization (2)

Due to the distortion of fading channel, the signal
propagates in a multipath fashion from the sender to the receiver!
This phenomenon causes severe distortion in the transmission
characteristics of the channel, i.e. the signals of the past get mixed
with present values (Intersymbol Interference) which introduces
memory in the IT channel model!
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Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Applications: channel equalization (3)
The channel impairments can lead to significant distortion or
attenuation of the received signal (SNR) which degrade Bit Error
Rate (BER) of digitally modulated signal.
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Applications: channel equalization (4)
• Two techniques are used to improve received signal quality and

lower BER:
– Diversity (expensive and resource consuming): It requires double

antennas or double spectrum.

– Equalization (a more economical approach): it requires only DSP and
algorithmic developments.
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Applications: channel equalization (5)
• Quality of Service (QoS) of a wireless communication system: 

Spectral efficiency [(bit/sec)/Hz]

which refers to the maximal data rate that can be transmitted
over a given bandwidth in a specific communication system.
(e.g. In GSM (1991) system R=0.104Mbit/s per carrier,
B=0.2MHz per carrier SE=R/B=0.52 (bit/sec)/Hz,
or in an LTE (2009)system SE=16.32 (bit/sec)/Hz,
or in 802.11g SE=2.7(bit/sec)/Hz)

• Spectral efficiency is determined by the bit error rate!

• The bit error rate is determined by the channel distortion. 

• Thus adaptive equalization plays a central role.
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Applications: channel equalization (6)
• Equalization algorithms aim to tackle the ISI by implementing

linear filters to equalize the channel distortions at the receiver
side!

• Challenge: how to develop low complexity adaptive signal
processing algorithms, which are:

– real-time and easily implementable;

– yield low Bit Error Rate;

– have learning capabilities to equalize unknown channels only based on
input-output samples.
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Applications: channel equalization (7)



Ad hoc Sensor Networks: Detection and channel equalization

Applications: channel equalization (8)
• The simplified model and notations:
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Applications: channel equalization (9)
• Signal:

• Channel can be represented as a linear filter, which has an 
impulse response:

• Additive Gaussian noise :

• Adaptive filter with impulse response:

• What is optimal w? 

( ) ( ): 1 1 0.5k k ky P y P y= + = = − =

, 0,...,jh j L=
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Applications: channel equalization (10)
• What is optimal w?

– Optimal filter with given channel: Equalization 

– Optimal filter with unknown channel: Adaptive equalization

– Optimal filter with unknown channel without learning set: Blind 
adaptive equalization

• Tradeoff between noise and ISI cancellation.

1. strategy: Zero Forcing (ZF)

0k k n n k k k n n k

n n k
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Applications: channel equalization (11)

The Zero-Forcing strategy: we assume relatively large signal to
noise ratio (the effect of noise can be neglected and focus only
on ISI cancellation):

Typical application: wired communication

The optimal weights:
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Applications: channel equalization (12)
Problem: J+1 free parameters and J+L+2 equations which leads
over determined equation system!

Solution: defining a new goal function

→ Peak Distortion (PD): the maximal value of ISI

The optimal weights:
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Applications: channel equalization (13)
The Peak Distortion :

Extremal point:
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Applications: channel equalization (14)
In the case of unknown H: adaptive Zero Forcing
Training set:

The algorithm converges if (Kushner Clark theorem):
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Applications: channel equalization (15)
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Signal processing on digital, neural, and kiloprocessor based 
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Applications: channel equalization (16)
Problem: Zero Forcing eliminates ISI, but enhances the effect of
additive noise

Energy of the noise component:
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Applications: channel equalization (17)
What happens in low SNR domain ?

Noise energy can be increase too much in case of bad channel!

2 2 2
1≥ =H w Hw

2 2
1= =Hw δ

2

2
max

1 1

λ≥ =w
H

22 1−=w H δ

22 21

min

1

λ−≤ =w H δ

20 0

max min
k

N N
E ηλ λ⎡ ⎤≤ ≤⎣ ⎦
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Applications: channel equalization (18)
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Applications: channel equalization (19)
Minimum Mean Square Error: Adaptive solution of Wiener-
filtering!

Applying the Robins-Monroe algorithm:

( ) 2

2

opt
0

ˆ: min min
J

k k k j k j

j

y y y w y −=

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥Ε − Ε −⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦∑
w w

w ∼

[ ]opt : ,  ,  ij k i k j i k k iR x x r y x− − −⎡ ⎤= = Ε = Ε⎣ ⎦w Rw r

( )
0

( 1) ( ) ( ) ,   0,...,
J

l l k j k j k l

j

w k w k k y w k x x l J− −=
⎧ ⎫+ = −Δ − =⎨ ⎬⎩ ⎭∑

( ) ( ){ }, , 1,...,K

k ky x k Kτ = =
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Applications: channel equalization (20)
The correlation matrix:

What about the noise in case of MMSE?

[ ]
, 0 ,

, 0 , 0

n m i j

ij k i k j k i n n k i k j m m k j

n m

k i n k j m n m k i k j

n m
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T
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n

R x x h y h y

h h y y
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h h N N

δ δ
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Applications: channel equalization (21)
What happens in low SNR domain ?

Eigenvectors:

Noise energy:

The noise can never became infinitely large because of the N0

component in the denominator !

2
0 0

T

i iN Nλ λ→ ⇒ = + → +H R HH I

20 0
2 2
max 0 min 0

k

N N
E

N N
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Applications: channel equalization (22)
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Applications: channel equalization (23)
Adaptive version of MMSE:

Problem: Channel condition is changing in time, therefore a lot 
of overhead is needed because of the learning set. E.g.: In GSM 
system 18% of the packet is this overhead!

( )
0

( 1) ( ) ( ) ,   0,...,
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l l k j k j k l
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w k w k k y w k x x l J− −=
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( ) ( ){ }, , 1,...,K

k ky x k Kτ = =
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Applications: channel equalization (24)
A solution without learning set (Blind signal processing):

Is any guarantee for convergence? If there is,

( )
0

ˆ( 1) ( ) ( ) ,   0,...,
J

l l k j k j k l

j

w k w k k y w k x x l J− −=
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j
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Applications: channel equalization (25)

which is not the original Wiener solution!

Furthermore the probability of bit error is not constant, it depends 
on the filter:
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k k l k k b k k l k k b lj j
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1 2
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− =∑
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Applications: channel equalization (26)
The service provider is interested in the probability of bit error, 
because it is the real QoS subject which should be minimized:

What is this Ψ(w) function?

Recall:

( ) ( )opt minbP = Ψ → = Ψ
w

w w w
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Applications: channel equalization (27)
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Applications: channel equalization (28)
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Applications: channel equalization (29)
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Applications: channel equalization (30)
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Applications: channel equalization (31)
The new goal function:

Problems:

1. Channel information is needed!

2. Algorithm is too complex: every step needs O(2M-1) 
evaluation! 

( )opt min= Ψ
w

w w

( ) ( ) ( )( )1 gradk k k+ = −Δ Ψ
w

w w w
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Applications: channel equalization (32)
Using Monte Carlo methods can be a solution for reducing 
complexity. 

Using upper and lower bounds can be an other solution for the 
problem of complexity.

Lemma: If a < b < c, then

c b c a c a c b

σ σ σ σ
− + − + − − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ −Φ > Φ −Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Applications: channel equalization (33)

The modified goal function:

No more complexity problem!
( ) ( ) ( )( )1 gradk k F k+ = −Δ
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No ISI h=(1, 0.3) 
( ) [ ]MMSE
opt 0.9018 0.2440 0.0660= −w

Simulation Results(1)

Surfaces of error probability
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Simulation Results(2)

Surfaces of error probability

h=(1, 0.5, 0.3) ( ) [ ]MMSE
opt 0.888 0.4047 0.0521= − −w

h=(1, -0.5, 0.1) 
( ) [ ]MMSE
opt 0.8895 0.3996 0.1004=w
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Simulation Results(3)

Bit error probability vs. Mean square error

h=(1, -0.5, 0.1) 
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Simulation Results(4)

Local minimum points are possible!

Bit error probability vs. Mean square error

Mean square errorBit error probability

h=(1, -0.5, 0.1) 



www.itk.ppke.hu

10/5/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 95

Signal processing on digital, neural, and kiloprocessor based 
architectures: Adaptive Signal Processing

Simulation Results(5)

BER vs. SNR
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Questions(1)
1. What is Wiener filtering ?

2. What error function the Wiener filter will minimize ?

3. What are the properties of the correlation matrix ?

4. Give two practical examples for the use of Wiener filters ?

5. Summarize the problem of adaptive radio channel
equalization! Give the optimal solution!

6. Summarize the problem of first order adaptive-predictive
coding! Give the Wiener solution! Show that the solution
increases the speed of data transmission!
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Questions(2)
7. What is the problem of adaptive-predictive coding in mobile

communication systems? Give the block diagram of the
solution, and explain the notations! Give the Robinson-
Monroe algorithm and explain the formula!

8. What kind of optimality is guaranteed solving the Wiener-
Hopf equation? Prove it!

9. What is the Zero Forcing solution in the case of channel
equalization? What happens with the noise?
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An example of Wiener filtering (1)
Problem:

How can we estimate the correlation matrix R based observation?
Give an example of the correlation matrix R if the dimension is 4!
Based on the correlation matrix find the optimal Δ parameter
which guarantees the fastest convergence!

Solution:

By definition, the correlation matrix of a stochastic process is

Rij=E{xixj}, 

which can be estimated using the observations with

( )
( )max ,

0

1
.

max ,

−
+ +=

= − ∑�
K i j

ij i m j m

m

R x x
K i j
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An example of Wiener filtering (2)
Solution (continued): Let us take the correlation matrix R(b) from
example 1! The Δ parameter which guarantees the fastest
convergence can be obtained from the eigenvalues of R. The
eigenvalues of R are

from which the optimal Δ is:
1 2 3 40.191,  0.691,  1.309,   1.809λ λ λ λ= = = =

min max

2 2
1.

0.191 1.809opt λ λΔ = = =+ +
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Problems (1)
1. Define Rij element of the correlation matrix!

2. Are any of the following matrices a valid correlation matrix?:

( ) ( )
1 0.6 0.4 0.1 1 0.5 0 0

0.6 1 0.2 0.4 0.5 1 0.5 0
,

0.4 0.1 1 0.6 0 0.5 1 0.5

0.2 0.4 0.6 1 0 0 0.5 1

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
ba

R R
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Problems (2)
The channel distortion in a wireless communication system is to
be equalized by an FIR filter of third degree. We use the LMS
algorithm to set the equalizer coefficients with parameter Δ=1.
The learning set is given as follows:

While the initial vector is

Give the filter coefficient vector after the first update cycle !

( ) [ ]T0 1 0.1 0.1=w

( ) ( ) ( ) ( ) ( ) ( ){ }5 1,0.3 ; 1, 0.5 ; 1,0.1 ; 1,1.1 ; 1,0.9τ = − − −
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Problems (3)
A random process is to be compressed by a predictor of second 
degree. The correlation function is given as follows: 

Calculate the optimal predictor coefficients !

(0) 1     (1) 0.5    (2) 0.2= = =R R R
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Summary
• Fundamental issues: FIR Wiener-filter, applications of

adaptive signal processing: adaptive-predictive coding,
channel equalization.

• Problem of signal estimation in the presence of undesired
noise or interference can be solved by Wiener filter.

• Adaptivity means real-time re-optimization possibility.

• Theory of Wiener filters can be applied to solve IT problems
such as coding or radio channel equalization.

Next lecture: Introduction to neural processing
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