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Contents

e Introduction
* Review of basic definitions and operations on discrete time signals
* Review of LTI system definition by difference equation
* Motivation of using the z-transform for analysis of LTI systems.

* |ntroduction of z-transform
o Definition
e RoC
* Properties of z-transform
» Poles-zeros (review from complex calculus)
* Inverse z-transform
» z-transform of elementary discrete time signals
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Contents

« z-transform of elementary operations on discrete time signals
« z-transform of convolution

e LTI systems in z-domain
e Transfer function
* Poles, zeroes of the transfer function
o Z-transform and Fourier transform

* Polynomial manipulation review
» Polynomial long division
« Partial fraction expansion

« BIBO stability

- lnvesting in your fidtwre ——
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Contents

« Convolution properties in the z-domain
« Serial combination of LTI systems
« Parallel combination of LTI systems

« Qutline of special filter types
e Linear phase filters
* Minimum phase filters
» All pass filters

o Examples of z-transform in system analysis
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LTI system as difference equation (review)

Every LTI system can be described in the time domain by its

system equation which is a discrete time difference equation.
N

N M _ M _
Y a-y(n-k)=> b x(n-k) > asS'y(n)=> bS x(n)
k=0 k=0 i=0 j=0

g %K_J

D DM
without the loss of generality we usually assuane 1.
y(n)+a-y(n-1)+---+ay y(n-N)=by x(n)+b, x(n— J+---+b, x(n-M)

y(n)=-a-y(n-13)—---—ay y(n—N)+by x(n)+b, x(n- J+---+b, X(n-M)

This equation can be analyzed by well known mathematica
analytical methods in the time domain.

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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Motivation of using transformed domains

o Certain transformations enable us to deal with the recurrenc
relation (difference equation) in the transformed domain as
simple algebraic equation.

 After solving the algebraic equations with simple
mathematical tools we can transform back them into the to ge
the time domain response of the system

time domain transformed domain

Transform
7

difference equation gébraic equation

. lnvzeting in your fieture T *
10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 £ S 7
* *

‘ +* * F
New Hun;ag, Developmaent Flan




Digital Signal Processing: Transformed domain description

www.itk.ppke.hu

Motivation of using transformed domains

LTI systems can be fully characterized in the transformec
domain by numbers (poles and zeroes).

From these numbers we can simply tell important features @
the system, e.g. stability, structural behavior, degree of th
system, frequency characteristics.

In continuous time we use Integral transforms
In discrete time we use power series, because these transfor
have nice properties for derivation and convolution.

LTI systems in the transformed domain will be represented b
division of polynomials.

fnu,'_-fﬂ«g i your fieture = * %
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Geometric series (review)

* Note that at the time domain analysis we met with geometric
sequences (e.g. homogenous solution) and when we apply t
Laurent series the basic review of the geometric series wil
come Iin handy. We have the following closed forms for the
series:

n+1

C Crz1

1-r
1-r
C

r<1

1-r

Zn:c-rk =
k=0
ic-rk =
k=0

« C
dert=—-, r>1
k=1 r—1

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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The z-transform

« The z-transform (bilateral) of a discrete time signal is definec
as an infinite complex power series (Laurent series):

o0

X(z)=> x(n)z", zeC

N=—0o0

e For compactness we use the notation
X (2)=2Z{x(n)] }X N> (5
(m-z{x ()]

<
for the z-transform and for the inverse z-transform

7=

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 10
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The z-transform — example (entrant)
 Let’s transform the following series into the z-domain:

x(n)=|... 0 52 31-152 24 0..]
T

X(z)= i x(n)z", zeC

N=—c0

X(2)=5.2+3.1z* - 1522+ 2.4

— 5.2+3.1yz— 152/]/22 + 2-4%3

Note that the series is convergent only for a region of z values
This example is convergent foee C,z# 0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 11
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The z-transform — example (leaving)
o Let’s transform the following series into the z-domain:

x(n)=|... 0 52 31-152 24 0..]
T

X(z)= i x(n)yz", zeC

N=—o0

X (2)=5.22+3.122~ 152" + 2.4°

This example is convergent fare C, z# «
 We have to define Region of Convergence.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 12
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The z-transform — RoC
« The region of convergence is defined as follows:

.

all those numbers for which the series are convergent.

o0

D> x(n)z™"

N=—o0

ROC:{Z eC:

* Example 3:x(n):[... 0 52 31-152 24 46 o..}

o0

X(z)= D x(n)z", zeC

N=-o0

X(z)=5.22"+3.12'-15.2°+ 2.4 '+ 4.6°
RoC= {z zeC \{O,oo}}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 13
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The z-transform — RoC
 We can decompose a signal to an entrant and to a leaving par
x(n)=x_(n)+x(n),
X(n) n<O 0 n<O

XL(”)={ 0 n>0’ XE(n):{x(n) n>0

The z-transform of a signal can be also decomposed to tw
parts:

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 14
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The z-transform — RoC
* The two parts have two different region of convergence

X (2)|= Z x (n)z" +:OXE(n)-Zn < n_iw‘xL(n)HzP +§‘XE(n)‘ 2"
\x(z)\gni\xL(n)\-rn +§O\XE(n)\-rn :g\xL(_n) rn+§\xE(n)\ =

<o if r<r, <o if r>n

RoC={zr,>|Z>r} is an annulus for the genecake

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 15
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The z-transform — RoC
RoC={z 7>} is aregion outside of a circle for entraghsis
RoC= {z T, > |z|} IS a region inside of a circle for leayisignals
for the general case the RoC is the intersection of the above two
RoC={zr,>|7>r} is an annulus for the general case

leaving entrant general
A m

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 16
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Properties of z-transform

property time domain Z-domain RoC
linearity a,x (nN)+aXx,(n) aX(z)+a X (z) RoC RoC,
RoC\{O k> O
time shift x(n-k) z“X (2) Lo k>
RoC \{oo} k<O
scaling in the | _
- domain a"-x(n) X(a™z) ar, > |2 >|a|r,
time reversal | x(—n) X (z‘l) 1/r, >|7| > 1/r,
Diff .
| | erentla}tlon nx(n) —z-ix (2) RoC
in z-domain dz
accumulation Zn: X K ) . 1 —X(2)
Sl ~Z
Convolution | x,(n)#* x,(n) X.(z)-X,(2) RoC,n RoC,
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 17
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Review of poles-zeroes (complex analysis)

Let's assume thdt(z) is analytic

zero: if f (z,)= 0 and we can write(z)=(z-z,)" f(z) ,
f (z) analytic,f (z,)#0,3n>1

thenz, is a zero of order

1
(z-2)
h(z) analttic, h(z,)#0,3In>1
thenz, is a pole of ordem

h(z) ,

pole: if we can writd (z) =

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 18
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| aurent series and inverse z-transform
Laurent series:

if f (z) is analytic in an annuluB ={z r;<|z-z,|<r, r,<r,} then
f (z) can be expanded into a pewseries (z) = i ¢ (z- zo)k , Where
k=—-x
1 X(z
(ol X(@

= 272'] - (Z_Zo)k

—dz, whereC s a closed path encirclipg , and

inverse z-transform

x(n)=Z"X(2)}:= iqug X (z)z"'dz

C is a closed path in the complex plane encircling the origin,
all the poles oK (z) and it must lie eintirely within the RoC.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 19
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Inverse z-transform in practice

* |In an LTI system we expect system exponential type responst
(see time domain analysis homogenous solution) an
excitation like answers (see time domain analysis particula
part).

e So usually it is enough if we have a table of the most commor
functions z-transforms.

 And then we need to manipulate them into correct form anc
reverse them into the time domain from a table. Thus we don’
need to evaluate the complex closed path integral.

lnvzeting in your fieture = * 5
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Z-transform of elementary DT signals

« We will present the z-transform, the visualization and the pole
zero plot of some elementary functions:

time z-domain RoC
time z-domain| RoC 7
nu(n) - 17>1
s(n) 1 zeC (z-1)
_Z . Z
u(n) — |41 aw(n) — ERE
Y4 2
uen-n| =2 <t | _Z-zoog@) )
ZIl cogn,) 2> —2zcoq @, )+ 1 2>
u(—n — Z <1 i
=n) 1-7 sin(na,) | = zsin(e) 1Z>1
z° —2zcoq w,) + 1

e Pole-zero plot of an LTI system

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 21
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Z-transform of elementary DT signals

« Kronecker delta or unit sample
1, ifn=0

x(n):§(n)={ z{5(n)}=1, RoCHz zeC}

0, otherwise

Xiz)= Z id6(ny} X(z)y= Z [6(n)

10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 e S
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Z-transform of elementary DT signals
e Unit step function

X(“)=U(n):{1’ ifn>0

0, otherwise

00 N 00 o 1
X(z)=Y u(n)yz"=>z" = ——
geom.serie§ —
n=-00 n=0 assumptiong' z

Z{u(n)} = 1_121 _ zil’ ROC={z:|7>1}

RoC=geometric series closémm only valid if‘z‘l‘ < 1= ROG{z:|7>1}

u(n) Am wm pole
@® zero

pole-zero plot:

poles and zeroes of a conplex funct)()@z) / | Re

pole={Zz :X(z) = oo}

zero={z :X(z)=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 23
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Z-transform of elementary DT signals

e Plot of function X(Z)zl—lz_lzzf’ red line={ X (2):|2| =1}

z z
X(2)= — X(2z2)= —
z-1 z-1

0
Arg(X(z))

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 24
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Z-transform of elementary DT signals

* Plot of function x(n)=u(n) Z{u(n)}=1_1z_1=2fl, RoC={z:|7>1}

(note that outside the RoC the function is not determined)

X(2)= Z{u(m} X(z)= Z{u(ny

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 25




Digital Signal Processing: Transformed domain description

www.itk.ppke.hu

Z-transform of elementary DT signals

* Plot of functionx(n)=-u(-n-1) Z{—u(—n—l)}zzi_l, RoC={z:|7 <1

X(2)=Z{-u(=n-"1)} X(2)= Z {~u(=n—-1)

0
Arg(X(zp

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 26
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Z-transform of elementary DT signals

» Plot of function  x(n)=u(-n) Z{“(_”)}:flz’ RoC={z:|7<1]

using the time reversal property

X(z) = Z{u(-n)} X(2) = Z {u(—=n)}

0
Arg(X(z2))

10/5/2011. 27
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Z-transform of elementary DT signals
e Unit ramp function

n, ifn>0 -1
S vd Z

() -y (0)={0 oD Z{u(n)- e el

we use the property of differentiationZrdomain: — 297 {u(n)} =Z{nx(n)}

dz
u, (n)=nu(n)

x(z):Z{n-u(n)}=—zdiz{u(n)}:_zc;jz( : j{ : J

-1 2
Z 1— Z (1_ Z—l)
-1
y4 ) )
X(2)= > RoC={z]7>1 same as the unit step function.
(-2
10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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Z-transform of elementary DT signals
* Pole-zero plot of the unit ramp function in the z-domain

u(n) A Im X pole

poles and zeroes of the function: r o ole
4
X (Z) - 2 I
(2-1)
=1 o 2

P }multlpllcatlve roots of(z— I o Ri

P, =1

note:resonance from time domain analysis

z, =0 root ofz
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 29
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Z-transform of elementary DT signals

e Plot of function X(Z):ﬁ, red |ine:{)((z) .z‘: :}_

X(2)=

(z-1) (z—1y

0
Arg(X(z))

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 30
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Z-transform of elementary DT signals

e Plot of function x(n)=u, (n) Z{uIr (n)}:ﬁ ROC={z 12> ]}

X(z) = Z{u,(n)) X(2) = Z {up(ny}

0
Arg(X(z)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 31
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Z-transform of elementary DT signals

e Plot of function x(n)=-u, (-n-1) Z{x(n)}z (2_21)2 , RoC:{z 1< i}

X(2z)=Z{-u(—n-1)} X(z)= Z{-u,(—n—1)}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 32
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Z-transform of elementary DT signals
e Exponential function

x(n)=a", ifaeR,—>x(n)eR, ifaeC,—> X(n):(r.ej(p)n _ pngion

O<axl1 l<a

[N R S = A S )

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 33
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Z-transform of elementary DT signals

o z-transform of the exponential function
1 Z

x(n)=a"u(n), Z{x(n)}= T T a RoC={z:|7>|al}
using the scaling in the z domain prayet” x(n) = X (a‘lz)

z{ax(m)}= Y ax(n)z" = Y x(n)(a'z) " =x(a*2)

N=—o0 N=—o0

Z{u(n)} = _1 , RoC={z:|7>1]

Z{a”u(n)}z 1 - RoC={z:|7>|al}

1— (a‘lz)_1 Z-a

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 34
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Z-transform of elementary DT signals

* Pole-zero plot of the exponential function in the z-domain

a"u(n) A Im WX pole

@ :zero
poles and zeroes of the function: ¢
4
X (Z) = ; Re
Q >
p, =a root ofz—a
z, =0 root ofz
10/5/2011.

TAMOP — 4.1.2-08/2/A/KMR-2009-0006 35
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Z-transform of elementary DT signals

* Plot of function X(z):rza, red Iiner{x(z) |z\:a} , a= 0.5

X(2z)y= X(2)=

z-0.5 z-0.5

0
Arg(X(z))

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 36
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Z-transform of elementary DT signals

* Plotoffunction u)_aw(n) z{x(n)}=-%, RoCziz>/d)

X(z)=

z-05 z-05

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 e 37
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Z-transform of elementary DT signals
e z-transform of sine and cosine functions

x(n)=cogan)u(n), RoCzz [7> 1
1-z'c0s(w,)  Z°-z0s(w,)
Zix(n)} = 1-2z"codw,)+z° 72— 2 cobw,)+ 1
x(n)=sin(wn)u(n), RoCHz|Z> 1}
)} - Z*sin(a,)
1- 2z cofwy)+Z 2%

Z{x(n

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 38
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Z-transform of elementary DT signals
e Poles and zeroes sine and cosine functions in the z-domain

poles and zeroes:

A Im W pole

cos(11w,) ® zero

b, = cog @) +i | sir(a)o)| Sl

:pzzcos(a)o)—i‘sir(coo)‘ /
z* —zcoq )= 0 :><\22 :Z;;?wo) k'/o/ -

zsin(wy)=0 ={z=0

z°—2zcoap )+ E B+

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 39
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Z-transform of elementary DT signals

« Plot of function  x(z)= 22222_220(;2(8(”3) . red lne< X (2) [2= } .oy =7 /4
= wy ) +

X(z)= X(z)=

zz—\/?z+1 22—\/?2+1

0
Arg(X(z))

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 40
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Z-transform of elementary DT signals

 Plot of function x(n)=cog(na,)u(n) Z{x(n)}= ZZZ_ZZ_ZZC(;O;(;;)JF 7

RoC={z:|2>1} 0, =7 /4

0
Arg(X(2))

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006 41
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Operations of DT systems — basic operations

name time z-domain
addition y(n)=gf)+hf) Y(z)=G(z)+H(2)
multiplication y(n) _ag(n) Y(z) _ aG(z)

with constant

multiplication

time shift

accumulation

DT convolution

10/5/2011.

TAMOP — 4.1.2-08/2/A/KMR-2009-0006

*
‘ “ * '
MNew Hun;aiy DcUZ[onlcnt Flan



Digital Signal Processing: Transformed domain description

T oS

gy www.itk.ppke.hu

Operations of DT systems — basic operations

Addition, multiplication with constant comes from the linearity property.
Time shift operation:

Z{x(n-k)} = i z‘”x(n—k)mj_k i z ™ x(m)=z"* Z Z™x(m)=z"*X(2)

N=—o0 M=—o0 M=—o0
DT Convolution:

o0

2[4 ()] =2| 3 %(kbeln-)| = 32" 3w (1K)~

N=—o0
B i % (K) i X(n—k)z" = Z x,(k)Z™ i Xy(m)z ™ =
k= A== k=—o0 M=—0o0
- Xl(Z)-XZ(z)
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Operations of DT systems — basic operations
Accumulation

y(n)= Z x(k) using the time shift property

Y (z)= nzz“’loo kzznloo x(k)z™" = r]:Z()o:oo(x(n)+ X(N=1)+-+ x(-2))z " =
= X (z)(1+ z7h 4+ z‘°°): X (z)g z7 =X (z)l_lz_l

alternatively accumulation can be written as a convoluti

o0

y(n)= Zn: x(k) = Zn: x(k)u(n-k)= Z x(k)u(n-k)=x(n)=*u(n)

k=—o0 k=—o0 k=-0
1
Y(2)- X (2 () X ()~
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 44
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LTI systems in the z-domain

A LTI system in the time domain performs a discrete time
convolution on its input with its impulse response function

x(n) ‘ LTI system y(n)
Input, y(n) - h(n) * X(n) Output,
stimulus system response

An LTI system is fully characterized by its impulse response
function ((n)).

If we examine the same system in the transformed domain, w
can use the convolution to multiplication property of the z-

transform: z
* —= :
X (N)* %, (N) == X,(2) X,(2)
10/5/2011. TAMOP - 4.1.2-08/2/A/KMR-2009-0006 e 27 .
New Hm;a@ Developnaent Flan * *




Digital Signal Processing: Transformed domain description

o www.itk.ppke.hu

LTI systems in the z-domain

A LTI system In the z-domain performs a multiplication on its
Input’s z-transform and the system’s transfer function

X (Z) LTI system Y ( Z)
Input, : Y(n) =H (Z)'X (Z) Output,
stimulus system response
An LTI system is fully characterized by its transfer functt(@).
X(n)===X(2) |

Z

if x(n)=45(n)=—=1

y(n)==Y(2)=H(2)X(2) y(n)=h(n)===H(z2)

h(n)==MH(2)

lnvzeting in your fieture T *
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Transfer function of a system
« Remember the linear constant-coefficient difference equation
which described an arbitrary LTI system:
> ay(n-k)= 28 x(n-
Z-transforming it_ (using the_time shift property and linearity):

Z{f(n-k)}=z*F(2), Z{gf(n)+c,f,(n)}=cF(2)+c,F,(2)
z{y(n)}=Y(z), z{x(n)}=X(2),

=Y
213 acv(n- )}=z{ibk-x<n—k>}

k=0

iak 7Y (z Zbk Z*X(z

k=0

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 47
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Transfer function of a system
e We can define the transfer function of an LTI system:

Zakz “Y(z Zq Z X (z

Y(2)= | X (2)- by +bzt+b, 2%+, +b, ™ X(2)
ZN:ak'Z_k a,+arz +a,z i+ ra 7"

M
Lk
257" gy |
H(z) =% = , B(z),A(z) polynomid s
« A(2)
DI
k=0
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Transfer function of a system — poles and zeroes

 We define the poles and zeroes of an LTI system as the pole

and zeroes of it's transfer function:
H (2)- by +bzt+b,z%+...+b, z" B(2)

a,+a,Z +a,z%+...+a,z"  Az)
roots ofB(z)= 0, o, 0, ...,0, are called zees

B(z),A(z) polynomials

rootsof A(z)=0, p,,p,...., Py are callelpoles

M

-M “__(Z_Om)
H(Z): Z" by (z-0)(z-0,):--(z-0y) _ N-M B ma

zN a (z- p)(z- ) (z— py) a 1

0,peC

““(Z_ pn)
e For understanding what does a pole or a zero “do” we need t
understand the connection between the z-transform and tt

discrete Fourier transform.

. lnvzeting in your fieture T *
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Z-transform and the Fourier transform
e Remember the definition of the bilateral z-transform:

X(z)= n_i;ox(n)-z”, zeC

e |f we substitute Z=ej'”’@€[—”’”]

we get the Fourier series of where the Fourier coefficients
are the time samples.

 Note that usually we are interested in a periodic, continuou
time function’s decomposition into Fourier series, where the
coefficients represent the weight of the frequency componen
but from the duality property we can do this in the opposite
direction.

. lnvzeting in your fieture = *
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Z-transform and the Fourier transform

 Here the frequency function is continuous and periodic, ant
the Fourier coefficients are the time samples.

o0

X(a)): Z x(n)-e‘j"‘"”, 0)6[—72',72’]

N=-o0

o XIs a function of the angular frequency. We view the original
whole complex z plane only on the unit circle.

e The following illustration shows the connection.

e On the upper figure the red line shows the function values ol
the unit circle. On the lower figure the axis, the angular
frequency is the “unit circle”, folded out to a line.

lnvzeting in your fieture = * 5
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Z-transform and the Fourier transform

&
X[z) —

4
Xiz)=

z-07 z-07

ArgiXiz))

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 i Y 50
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Transfer function of a system — poles and zeroes

e If we view the system in the frequency domain (properly
introduced later) we can say that a zero in the transfer functio
o=re’reRwel-n7x]
at angular frequency omega is attenuating that frequency ar
It’s surroundings.

e The attenuation strength is dependent how alaséo 1 (how
close is the zero to the unit circle)

e The next figure illustrates a simple zero and it’s frequency
characteristics with zero ag, = 0.9¢°

. lnvzeting in your fieture T *
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Transfer function of a system — poles and zeroes

Xizy=z-09 X(z)y=2z-0.9

0
ArgiXiz)

1X(ew)| Arg(X(w))

3
1.5 \
1.0
- _2 1 1 2 3
0.5 1
—2
—3 —2 1 1 2 3 2 -3
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Transfer function of a system — poles and zeroes
* If we view the system in the frequency domain a pole in the
transfer functionp, =r€'“,reR,0 |-z ,7]

at an angular frequency omega is amplifying that frequenc
and it's surroundings.

 The amplifying strength is dependent how clogs to 1 (how
close is the pole to the unit circle)

* The next figure illustrates a simple two pole and it's frequency
characteristics with poles:

P, = 0.6 712, P, = 0.65 2

lnvzeting in your fieture T *
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Transfer function of a system — poles and zeroes

1 1
Xz = Xiz) =

(2 =1(0.519615+0.3¢)) (2 —(0.519615-0.34)) (z=10.519615+0.3)) (z—(0.519615 - 0.3 ¢))

0
Arg(X(z))

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 i 56
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Transfer function of a system

It can be useful to have the transfer function in the following
form:

N
H (z):Q(z‘1)+Z z(jzp , Q(z‘l) polynomial or Og, constanty,  polestf z)
i=1 i

It will be useful to perform the inverse z-transform because
Z_l{QKZ_k} =g d(N—K)

deg (") deg (2"
Z‘l{Q(z‘l)} =z QZ "=

k=0 k=0

aS(n—k)

Remember the Kronecker delta correction at the solution in the time domain

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 57
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Transfer function of a system
 And for the root factored term

Z™ z(jzp- }zq-p{‘u(n)

ZZ i }%q-pi“U(n)

=S i—1

Remember the response for the particular solutiongivas as

Yu(M =Y CA" soC =g, A"=p

So we can compute the Inverse z-transform easily
The roots of the characteristic polynomial are the poles of the
transfer function.
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Review of polynomial manipulation

 We can manipulate polynomials like:
Let A(z) a polynomial

N
it's standardorm is:A(z) =) a-Z“ =a,+ &,z +a,z" +--- + a, 2"
k=0

from the fundamental theorem of algebra we knowMﬁa@ s elacty N roots.
Let us denote them asr,,...,ry, notatth=r; can happen (multiplicative roots)

If we know the roots, we can write the root factored form
N

A(z):(z—rl)(z—rz)---(z—r,\,):H(z—ri)

i=1
from the complex conjugate root theorem we also know tlatiiR Vi
then the rootspear as complex conjugate pajrs a+bj r; sa—bj

Egx+1=0> 0 j=%j, xX-E 0 @jj=% 1

- lnvzeting in your fieture —
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Review of polynomial long division

 Polynomials of lower degree can divide a polynomial with a
higher degree. We will use this to analyze LTI systems.

 Note that you learned this method Iin elementary school t
divide numbers.
Let B(z) a polynomial of degree M, a{z)  a polynomial of def\ted >N

we want to have () - igg _Q(2)+ igg déR(2))<  dbs(2))

Q(z) is the quotientR(z) is the remainder

 The method will be illustrated on an example.

lnvzeting in your fieture T *
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Review of polynomial long division
 22+42°+82°+ 9%2°+ X+ 3
B 2 +27+ 4

H(2) =2 o)+ Ry

A(2) A(2)
(25 +47° +82° + X+ X+ 35:(22+ 27+ 4):
first divide the highest degree term in theident with the highest term in the divisor
to get the first term of the quotient

z1z2°=7°
then multiply back the resulith the divisor to get the "error" we mad
z?’-(z2 +27+ 4) =7+ 22"+ 47°
substract the errderm to lower the degree dfd divident
2 +47° + 8%+ 9%+ X+ 3(22+22+4): z®
—~( 22+2Z'+ 42°) =

= 27 + 477+ %+ X+ 3

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 61
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Review of polynomial long division
continue from step 1 with the newly obtainedypoimial until it's dgree is smaller
than the divisor's

27 + 47°+ 92°+ X+ 3(22+22+4): Z°
—( 27"+ 4%+ &%)=
= z°+ 3z+ 3:(22+22+4):1
—( Z°+ 2z+ 4=
= z- 1=R(2)

z-1
7> +27+ 4

 22+4z2°+82°+ %%+ X+ 3

3 2
=(Z+227+D +
Z°+27+ 4 ( )

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 62




Digital Signal Processing: Transformed domain description

e www.itk.ppke.hu

Review of partial fraction expansion of polynomials

Given two polynomial#\(z) R(z)  with degrees (i64z))>  (R))
partial fraction expansion can be obtained lyrasg) that

A(Z) Z—p Z-pP, Z—[; Z— Py
If p has multipicity r then the correspondingrims will be

R(2) R(2) G C, c, G Gy o

= L= + ~+ ~+ 4 TR
A2) (z-p) A2 z-R (z-p) (z-p)" (z-p) ZRa  Z°R
we can find the coefficients  with multiplying back for the commonreior A( z)

,G,p €C,wherep  are the roots Af z)

and forthe numerator back substituting eaeip
The method will be illustrated by an example

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 63
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Review of partial fraction expansion of polynomials

Let's use the polynomials frometliong division exanple:
R(z) z-1 z-1 A B

AZ) Zr2z+a 2o (1ev3i)|[z-(-1VF)| z(1+43]) z-(-1V3)
multiply back for the common divisor

,_1 A[z—(—l—\/?’)jﬂ+ B[z—(—1+\/§j)}

[z—(—1+ J3j )}[z—(—l—\/éj )} [z—(—l+ J3j )][z—(—l—\@j )J

equate the numerators

7-1= A[z—(—l—@j )} B[z—(—1+ Jéj)] = Az A(-1-+3))+ Bz B(-1+3])
solve the equation system for the appropriate terms with the appropriate pawer of
z=Az+Bz 1
~1=-A(-1-+3]) - B(-1+/3] )}A_)+’ RN

2 3

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 64
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Review of partial fraction expansion of polynomials

Anothe exampk:
R(2) Z2-z-1 A B C D
A(z) B (z—1)(z+2)(z-3)* “71 7242 z+3 (z+3)2
multiply back for the commodivisor
Z—7-1 ~ A(z+2)(z+ 3)2+B(z—])(z+ 3)2+C(z— Wz+ J(z+ 3+D(z- Yz+ 2
(z-1)(z+ 2)(z- 3f - De+ 2)e— 3j
equate the numetars
Z—z-1=A(z+2)(z+3)" +B(z-1)(z+3) +C(z-1)(z+2)(z+3)+ D(z-1)(z+2)
Z-7-1=(A+B+C)Z’+ (BA+ B+ L£+D Y+ 21+ B+C+D ¥+ 18- B- 6-

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 65
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Review of partial fraction expansion of polynomials

solve the equation system for the appropriate terms with the appropriate pawe
Z =(A+B+C)Z° “
0z° = (8A+ B+ 4:3+D)zz> 1 7 21 25
-z2=(21A+ B+C+D)z 48 3 16 4
-1=18A-B-&C- D

Rz) __ Z-z-1 1 7 21 25
A(z) (z-D(z+2)(z-37  48@z-1) 3@+ 2) 16¢+ 3) 4(z+3)

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 66
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LTI systems — BIBO stability review

An LTI system is BIBO stable iff the system’s impulse response
IS absolute summable.

If ay(n)=h(n)*x(n)= i h(k)x(n—-k) g/stem is BIBO stable,

k=-—o0

S, = i Ih(k)| < o must hold.

kK=—o0

For a FIR system this always holds.
For an IIR system the impulse response fumttis given as:

max(M —N ,0)

h(n)zlzN;CV‘L,“ FY ws(nei)

i=0

o

~
<0

S, <o holds only if4, < 1.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 67
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LTI systems — BIBO stability analysis in z-domain

 If we know the poles of the transfer function we can
Immediately see if the system is BIBO stable or not.

 If the all the poles are within the unit circle the system is BIBO
stable.
max(M —N ,0)

h(n)=IZN;C|/1|” + Z(:) WS (n—i)

<00

S, <o holds onlyf 4, < 1
and we saw that, = p, poles ofdhransfer function.

« If a pole is outside or on the unit circle the system is not BIBO
stable.

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 68
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LTI systems — BIBO stability analysis in z-domain
« Example: y(n)-0.7y(n-1)+ 0.686/(n— 3= Z(n)-x(n- 1

2-7" 27° - 7°
H(Z): 1 3~ _3 2
1-0.7z"+ 0.68& z7 - 0.27+ 0.686
poles:p,= -0.7, p,= 0.4 0.7 py;= 0¥ 0j7

2.0¢ e
1 - 5 i - ] o
1.0

(]-5_ .‘| ‘|"| ‘l ‘l || " 'll || .|| I|| |II| m o5 x 3% 10 Re
_0_5 0T TR T Y o _

-1.0

il

i
U

10/5/2011. TAMOP — 4.1.2-08/2/A/IKMR-2009-0006
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LTI systems — BIBO stability analysis in z-domain

o Example: y(n)-0.8y(n-1)+1.024(n- 3= Z(n)-x(n- }
2-7" 27° — 7°

H(z)= =

1-0821+1.0243% - 082+ 1.024
poles:p,= -0.8, p,= 0.8 0.8 p,= 08 O0j8

100}
50| . :
L LY .YTf.i 3. 'Y P - - ' * H
10" 0 [][*40
—_ 5 0 L l J J 0.5}
-0 el ’
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 70
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Impulse response characteristics based on poles

........
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Convolution properties in the z-domain
e Associativity — serial combination of LTI systems

y(n)=h(n)*x(n)

y(n)=(h, (n)*h,(n))*x(n)

y(n) = h, ()= (h, (n)» x(n)

h(n)=h(n)=*h,(n)

X(z):

h(n)

(n)

Y(2)=H (2)X(2)
Y(2)=(H.(2)H.(2))X (2)

H(2)

Y(2)=H.(2}{H.(2)-X(2))

—

J

LT

| system

| LTl system 1

H

H.(2)

LTI system 2

(z

6(z)

[H(2)=H.(2)H.(2)

| v(2

H,(2)

10/5/2011.
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Serial combination of simple IIR systems

 If we write the system as

M

H(z)= z" b (z-0)(z-0,)---(z-0y) _ N-M &‘rﬁ:‘i(z_om) 0,peC
" 8y (2 p)(Z— Py)-(z— py) a1 (z—p ), o

* |t can be realized that simple one poles one zeroes can be
cascaded to get the original transfer function.

LTI t
oAl i M
"Ao z-p [ 1z-p [ ] z-p, I

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 73
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Convolution properties in the z-domain
e Commutativity — switch ability of LTI systems

H,(2))-X(2)
H.(2))X(2)
2)=H(2)H (2)

(h(n)*hy(n))=x(n) Y(2)=(H,
(hy (n)*hy(n))=x(n) ==1Y(2)=(H,
h(n)=h(n)=h,(n)=h,(n)=h,(n) H(2)= 1( )
system H
X(2) LT LTI tsystem 1] G(2) [L71 system 2 (2
T71 Hi(2 ] H,(z)
system H
X(Z) L-Ii LTI tsystem 2 F(Z)‘ LTI system 1 (Z
T 1 H.(2) ' H.(2)
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Convolution properties in the z-domain
« Commutativity — switch ability of impulse response and

excitation

y(n) h(n)*x(n)};\{wnkH(z)-X(z)
y(n) = x(n)h(n)

X (7 LTI system 1 Y (7
G (2
H(z LTI system 2 Y(7
(2) 2 (2
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Convolution properties in the z-domain
 Distributivity — parallel combination of LTIl systems

y(n)=h(n)*x(n) Y(n)=H(z)X(2)
y(n)=h(n ) x(n)+hy(n)=x(n)| , |Y(n)=H.(2)X(2z)+H,(2)X(2)
y(n)=(h(n)+h(n)=x(n) |~ |Y(n)=(H.(2)+H.(2))X(2)
h(n)=Hh(n )+h( ) H(n)=H,(2)+H,(2)
LTI system H (Z
| LTI system 1 | &
X(2) H,(2) " Y(2)

| LTI system 2

H,(2)

10/5/2011.
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Parallel combinations of simple IIR systems
e If we write the system as

1\ w CZ _ i C,Z C\ 2
H(z)=Q(z')+Y ——=q,+0,2 '+ + +—2= 4.4 N
() ( ) ;Z_ Y o Z—pP Z—P, Z— Py

which can be obtained by polynomial long division and partial
fraction decomposition, it can be realized that a paralle

implementation of the system is: | LTI system H(2)
1 O, >
X(z) [ Y(z)
> .z R > >

> =Y > -
CyZ .

= Z- py >
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‘ +* * F
MNew Hun;ag; DcUZ[ontcmt Flan



Digital Signal Processing: Transformed domain description

it

T www.itk.ppke.hu

Linear phase filters
A linear phase filter is a filter where the phase frequency
response of the system is a linear function.
H (ej""):A(a))ej'L(”), whereA(w) [-7 z]—» R and(0)=a o
so the phase is a linear functiohthe angular frequency with sloje

e Such systems has their impulse response symmetric:
h(n)=h(N-1-n),n=01,...,N-1

+ E.Q. h(n):{]f, 0.8,0.7,0.8,1} H(z)= + 08"+ 07°+08z°+z*

1 X{ew)| Arg(X(ew))
4 2
3 ‘ A 1
. 23 2 1 1 2 “
SN Y W V P oV
3 2 1 1 2 3 ¢ =2
. fnu,'_-ffmg i your fisture T *
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Minimum phase filters

We call a filter a minimum phase filter, if the filter and it’s
Inverse are both causal and stable.

H(2Z)H(2)=1 i H(2)= igg then H(2) = 28
H(z) system is stable and causal if the poles (rootd(ajf) are

within the unit circle, but we are free to choose the zeroe:
(roots ofB(2)) of such system.

The inverse oH(z) will also be stable and causal if it's poles
are within the unit circle (roots d3(z))

A filter is minimum phase if alk’s poles and zeroes are inside
the unit circle.

L lnvzeting in your fieture = *
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All pass filters

o Afilter is said to be all pass (it passes all the frequencies witt

the same amplitude but may pass with different phase) if
‘H (ej“’) :].,Va)e[—ﬂ,ﬂ]

« The all pass filters have their transfer function in the form
(note that real coefficients can be realized by having comple:
conjugate pole pairs) (z)=ﬁ Z'-p

11-pz*t
« Example '

. [X(ew)l Arg(X(w))
poles: 20 3 e
2
pl = 09 1.5 / , / (
P =0 %jﬂ/g e ~s 2 1 2 s 7
2 [l
: 05 -
_ O.%—Jﬂ'/fﬁ j )/ }

p2 ~3 Z2 1 1 2 3 - _3

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Example 1
An LTI system is given by its system equation:
y(n)+y(n-2)=x(n)-2x(n-1)-0.5x(n-4)

a) Give the impulse response of this system, by solving it in the
z-domain

b) Give the response of the system for the given stimulus b
solving it in the z-domainx(n)=2u(n)(0.5)"
c) Isita BIBO stable system?

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 81
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Example 1 — solution a

To give the impulse response of this system, by solving it In
the z-domain we need the transfer function of the system:

Z{y(n)+y(n-2)=x(n)-2x(n-1)-0.5x(n-4)}
Y(2)+Zz°Y(z)=X(z)-22"'X(z)-05Z2"X(2)
Y(z)(1+ 2‘2) = X (z)(l— 27" - 0.52‘4)

1-2z'- 0.5
v(2)=x (1) 2

if x(n)=6(n)— y(n)= h(n)\_#\_x(z) =1->Y(z)=H(2)
4 (Z) _ 1-2z'-0.5%" _ - z'- 05"
1+ z2 (1+ jz‘l)(l— jz‘l)

A(z)=1+2*, B(z)=1-2z"'-05z"

, RoC:{z:\z\>1}

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 82
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Example 1 — solution a

We have the transfer function, we need to inverse z-transforr
It by either evaluating the contour integral or manipulating it
to a form where we know the individual transforms of each
term. We choose to do the latter by using the polynomial lonc
division and the partial fraction expansion.

1-2z'-05%"* z'z2*-2°-05 _,z'- 2°- 05
H (Z): 2 - 2 =Z 2
1+ 2z Z z7+1 z°+1

2*-27°-05 R(zj

N

N

-2
; 2% Q(2)+
z’+1 A(z
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 e A s
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Example 1 — solution a
We apply the polynomial long division:
+0z° +0z-0.5: [22+1] =2z°
—( z* +0Z2° +1z°)
-27 -12° +0z-05:| 2°+1]=-2z
—( =27 +0z° -2)
~-17° +2z- 05: [22 +1] =-1
—( -17° +0z-1)
+27+ 0.5
Q(z)=2"-2z-1 R(z)=2z+05

w

74 27
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Example 1 — solution a

Do the partial fraction expansion to the residual part
Q(z)=2"-2z-1 R(z)=2z+05

(
H(z)=z { (z)+iggj:z2(22—22—1+2§;+01'5j
R(z) 2z+05  2z+05 A B
(

= +

A(z ) Z+1  (z+j)(z-]) (z+]) (z-}])
22+ 05 :A( —j)+B(z+j):z(A+B)+j(B—A)
(z+1)(z-)  (z+i)(z-}]) (z+0)(z-1])
2z=(A+B)z
0.5=(B-A)]j

}A:1+O.25j, B=1- 025]

10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 85
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Example 1 — solution a
We have manipulated the transfer function to have the form:

H(z)=2"" [Q(z)+ iﬁﬁj 22[22_22_“ [CaE )5j
R e T

(14025 (0253
(z+]) (z-1)

we can do the inverse z-transform easily:
Z*{H(z)}=h(n)=5(n)-25(n-1)-5(n-2)+
+(1+0.25 ) j) " u(n- 3+ (& 0.25)(-j)" u(n-3)

H(z)=1-2z"'-Zz*+z

10/5/2011. TAMOP — 4.1.2-08/2/AIKMR-2009-0006 86
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Example 1 — solution a

Let’s compare the results with the solution got from the time
domain analysis:

h(N) =h, 4ansom(N) =6 (N)—26(n-1)- 5 (n—2)+

+@+0.25 ) j) " u(n- 3+ (= 0.2% -j)" u(n- B

, () = Nye gom, anal N) = +0.55 (n) - 0.55 (- 2) +
+(0.25+ ) ' +(0.25-])(-i)
it can be shown thdt (n)=h,(n)

n |01 2 34 5 6 78 9 a
h(n)[1 -2 -1 2 05 -2 -05 2 05 -2 -05
h(n[1 2 -1 2 05 -2 -05 2 05- 2- 0.5

10/5/2011.
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Example 1 — solution b

We know the transfer function, we need to compute the z
transform of the stimulug(n)

1-2z'-0.5%"*
H(z)= 1+ 27

Y(2)=X(2)H(2)

X(2)=2{2u(n)(0.9"} = —"—

2 1-2z7'-05z2° 2477

T1-05' 1+7°? (1-0.527%)(1- jz*)( 1+ jz))

RoCr{ z 7> O.')é

Y(2)

10/5/2011. TAMOP — 4.1.2-08/2/AIKMR-2009-0006 88
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Example 1 — solution b
We have the z-transform of the response, we need to inverse
z-transform it
Y(2)= 2 1-27'-05z2" 2—- 4z -7 _
1-0.52" 1+ 72 (1-0.527) (1= jz*)( & jz )
-4 4 ~,3 R(z
2z_3 2'-22°-05 ... Q(2)+ (2)
z° (z-0.5)(z-j)(z+]) A(z)
after polynomial long division:
Q(z)=z-15, R(z)=-1.7%+ 2- 1.25
after partial fraction
R(z) 055 0.6+0.7 0.6- 0.7
A(z) z-05 z-j Z+ |
10/5/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 e VR (GG 89
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Example 1 — solution b
We have manipulated the response to have the form:
055 06-07 06 o.yj

Y(2)=2 LQ(Z)+ 28] - 221[2‘1'5_(2_0.5) (z+1)  (z-1])

Aoyt 515 5,1 05% 4(06-07)z (0.6 0.7)z
Y(2)=2 L 1.5- (z-0.5) (z+]) (z— ) j
11z _,(12-14)z (12 14)z

Y(z)=2-3z"'-Z" 7

-z
(z-0.5) (z+]) (z-j)
we can do the inverse z-transform easily:
ZHY(2)} =y(n)=25(n)-35(n-1)-

~1.40.9" u(n- 2—(1.2- 1.4)(-j) " u(n- 3-( 1.2 14" %u(n- P
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Example 1 — solution b

Let’s compare the results with the solution got from the time
domain analysis:

Y,(N) = Y, canctorm(N) = 26 (n) =36 (n—1) - 1.1(0.5)"" u(n— 2) -
~(1.2-2.4)(-)"u(n-2-(1.2- 1.4)j"2u(n- P
Y>(N) = Yime dom. analN) = +46 (N)+ 25 (n—1)+
+(1.2+1.4)) " +(1.2-1.4)(- )" - 4.4u(n)( 0.5
it can be shown thzyg(n) = yz( )
n 01 S)

yl(n) _93 _/ / 17 _ 47 _7y 177
(|2 -3 -7 9, % - / -

10/5/2011. TAMOP — 4.1.2-08/2/AIKMR-2009-0006 91
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Example 1 — solution c

c) For the system to be BIBO stable the necessary condition is
have the system transfer function’s poles within the unit circl

PV - Sl - SR Sl
o 1+7 - (1+ jz‘l)(l— jz‘l)

polesip, =, p,=-]

The poles are exactly at the unit circle, so the systemots
BIBO stable.
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Summary of system specific functions and properties

X(n

y(n

Time domain| excitation response Impulse responsg System:
x(n) y(n) | h(n):=h(n)*&(n) | y(n)=h(n)=x(n)
Transformed Transfer function | Systenf{z)=H(2)-X(z)
- ' X Y Y(z - :
z-domain (2) (2) H(2) H(2)= (2) | Pole-zero pIotB(Z)<_ZerOS
X (z) H(z)=
A(z) < poles
Frequency | Spectrum | Spectrum | Spectrum: Bode plot freq. vs. ampl or
(Fourier) of the of the H(w),H(f) freq. vs. phase plot
domain excitation: | response: | Amplitude, phase | Nyquist plot:parametric
X(@),X(f) | Y(@),Y(f) |char: plot of H (@) in the comple]
H (@)],arg(H (»)) | plane or equivalently in
XeC YeC HeC polar coords: phase vs. amn

X
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Summary
 Introduction and illustration of the z-transformation.
* Properties of the z-transform.
« Elementary signals transforms.
e Use of the z-transform in the analysis of the LTI systems.
» Filter realization forms based on the z-transform properties.
 DFT and z-transform connection.
 Examples.

. lngesting in your fisture — *
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