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Outline
• Course Information

• Introduction and focus of the course

• What is signal processing? (objectives: algorithms, architectures
and applications)

• First lecture: A/D conversion
– The sampling theorem
– Uniform quantization
– Non uniform quantization

• AD converters and main performances

• Available AD converters on the market
– Successive Approximation Register ADC
– Delta-Sigma ADC

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion
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Course Information
• Class Mailing List: digjel@lists.ppke.hu
• Small tests in classes on all topics;
• One major test on Digital Signal Processing scheduled in the

middle of the semester;
• Exam (major questions on Neural Processing, small questions on

Digital Signal Processing);
• Grading:

– Final grade=0.33*av. on STs+0.33*DSP+ 0.33*NSP

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

mailto:digjel@lists.ppke.hu
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Course Information (Cont’d)
• Suggested literature and references:

– Lecture notes (essential for the tests and exams)
– J.G. Proakis, D.G. Manolakis: „Digital Signal Processing”, Prentice

Hall, 1996, ISBN 0-13394338-9
– S. Haykin „Adaptive filters” ,Prentice Hall, 1996 (recommended)
– Haykin, S.: Neural networks - a comprehensive foundation, MacMillan,

2004
– Hassoun, M.: Fundamentals of artificial neural networks, MIT Press,

1995
– Chua, L.O., Roska T. and Venetianer, P.L.: "The CNN is as Universal as

the Turing Machine", IEEE Trans. on Circuits and Systems, Vol. 40.,
March, 1993

– J.G. Proakis: Digital communications, McGraw Hill, 1996.

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion
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Course Syllabus and Scheduling
1. Introduction and Analog to Digital conversion.
2. Description digital signals and systems in time domain.
3. Description digital signals and systems in transform (Z, DFT) domain.
4. Efficient computation of the transform domain (FFT) and filter design.
5. Adaptive signal processing.

Midterm exam

6. Introduction to neural processing (inspiration, history and approaches).
7. Signal processing by a single neuron (linear set separation).
8. Hopfield network, Hopfield net as associative memory and combinatorial

optimizer.
9. Cellular Neural Network.
10. Feed forward Neural Networks (generalization, representation, learning, appl.).
11. Principal Component Analysis.
12. Virtual machines: signal processing with multicore systems.

Final exam

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion
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Objective of Digital Signal Processing

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

A/D conversion + 
computer + SP algorithms

Important 
feature

Observed 
physical 
process

Medical signals,

Seismic signals,

Vibro analysis,

Speech

Video 

Multimedia

etc.

Predicting epileptic 
seizure,

Predicting earthquake

Testing bearings

Data compression for 
transmitting multimedia 

information

linear and nonlinear algorithms
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Seismic signal analysis

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

http://en.wikipedia.org/wiki/File:Seismogram.gif
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Epileptic seizure prediction

http://www.scholarpedia.org/article/Image:Mormann_SeizurePrediction_Fig1.jpg
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Signal processing in IT

Highly complex systems in 
Information Technologies 

Optimal 
operation ?

Untractable by analytical means (huge amount of free
parameters & data to be taken into account)

Some input 
data

desired 
output 

Solution
Modeling architecture (signal 
processing elements with free 

parameters)

estimated 
output

+

-

error signal
KNOWLEDGE 

TRANSFER(LEARNING)

Modeling architecture with 
optimized parameters

new input
generalized 

output

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion
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Fundamental issues

• Representation capabilities (is the architecture complex
enough to model the system) ?

• Learning (how to adjust the free parameters to capture the
hidden characteristics of the modeled system) ?

• Generalization (once the knowledge transfer has taken place,
how to trust the output given to an input being not part of the
training set) ?
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Examples

IP network       (with 
routers, switches, 

buffers …etc.)

Input traffic 
volume (voice, 

video, multimedia)

QoS parameters 
(average packet loss 
rate, average packet 

delay)

Financial system 
(stock market, 

economical factors)

Stock prices, 
currency exchange 

rates (financial 
data series )

Optimal investment 
for maximizing the 

return

GSM or UMTS, 
b3G systems

Number of users
Multiuser interference 

Endeavour: HOW TO MODEL AND OPTIMIZE THESE SYSTEMS ?
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A simple example – packet delay estimation

Inter arrival time

x
d

Complex system (Packet 

switched network)
Input 
traffic

delay

Measurements

d

Modeling architecture 
y=Ax+B est. delay

( )∑= −−K

k

kk
BA

optopt BAxd
K

BA
1

2

,

1
min:,

Future x

est. 
delay

learning

generalization
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Measurements

d

Complex system (Packet 

switched network)
Input 
traffic

delay

Modeling architecture 
y=Ax^3+bx^2+Cx+D est. delay

( )23 2

,
1

1
, : min

K

opt opt k k k k
A B

k

A B d Ax Bx Cx D
K =

− − − −∑

Linear approximation is 
not good 

A simple example – packet delay estimation (cont’)
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Challenges

• Linear or nonlinear modeling (most of the real-life problems
are of highly nonlinear nature) ?

• How to develop fast learning algorithms ?
• How to develop exact measures expressing the quality of

generalization ?

A/D conversion + 
computer + SP algorithms

Important 
feature

Observed 
physical 
process
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Directions

• Fast and real-time linear processing with designated HW
architecture (DSP)

• Biologically inspired nonlinear processing
• Emergence of novel computational paradigms by using kilo-

processor arrays

A/D conversion + 
computer + SP algorithms

Important 
feature

Observed 
physical 
process
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Biological inspirations

Modeling architecture 

Representation Learning Generalization Robustness Modularity

Solution provided by evolution and  biology: MAMMAL BRAIN
•high representation capability;
•large scale adaptation;
•far reaching generalizations;
•modular structure (nerve cells, neurons);
•very robust
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Copying the Brain?

Human 
Brain

Neuro-
biological 

model

Artificial
Neural

Network

Engineering  tools and 
algorithms solving problems
in the field of Information 

Technologies (IT)

Focus of this course: 
Signal Processing algorithms

Feature extraction

(Simplification) Technology (VLSI)
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Signal processing introduction - summary

• Collection of algorithms to solve highly complex problems in
real-time (in the field of IT) by using classical methods and
novel computational paradigms routed in biology.

Complex system (Packet 

switched network)
Input 
traffic

delay

Modeling architecture
est. delay
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Historical notes
• Linear analog filters, 20’s
• Artificial neuron model, 40’s (McCulloch-Pitts, J. von 

Neumann);
• Hebbian learning rule, 50’s (Hebb)
• Perceptron learning rule, 50’s (Rosenblatt);
• Fast Fourier Transformation, 50’s
• Nonlinear adaptive filter, 50’s (Gabor)
• ADALINE, 60’s (Widrow)
• Critical review , 70’s (Minsky)
• Adaptive linear signal processing (RM, KW algorithms) , 70’s
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Historical notes (cont’)
• DSPs and digital filters, 80’s

• Feed forward neural nets, 80’s (Cybenko, Hornik, 
Stinchcombe)

• Back propagation learning, 80’s (Sejnowsky,  Grossberg)

• Hopfield net, 80’s (Hopfield, Grossberg);

• Self organizing feature map, 70’s - 80’s (Kohonen)

• CNN, 80’s-90’s (Roska, Chua)

• PCA networks, 90’s (Oja)

• Applications in IT, 90’s - 00’s 

• Kiloprocessor arrays, 2005
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Analog-to-Digital Conversion
Signal analysis and processing is engaged with studying the different
phenomena of nature and drawing conclusions about how the observed
quantities are changing in time. All applications have one thing in common,
signals are studied as a function of time and the analysis is carried out by a
computer. However, computers can only process digital sequences, thus the
analog signal must first be converted into a binary sequence.

Analog to Digital 
Conversion

analog signal, x(t) binary sequence, cn

00100111101001110111
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Notations
The underlying notation is summarized by the following table:

ˆ
kx

Signal Time Voltage

Analog signal x(t) Continuous Continuous

Sampled signal x(n) or x(nT) Discrete Continuous

Quantized signal Discrete Discrete

Coded signal cn Discrete Binary
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x(t) x(nT) ≡ x(n) ( )x̂ n

Sampling Quantization

T ΔT Optimal 
representation

cn

Coding

Compressing

Analog-to-Digital Conversion 
• ADC has three main steps:

– sampling when sample the value of the signal x(t) at certain discrete time
instants obtaining a sequence xk;

– quantization when the values of the samples xk are rounded to some
allowed discrete levels (referred to as quantization levels) and having a
finite set of these levels they can then easily be represented by binary code
words.

– coding when quantization symbols are mapped into binary code words
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The challenge of ADC
• Question:

– Is there any loss of information in the course of the conversion?
– What is the optimal representation of signals by binary

sequences (in terms of length …etc.) ?

• Fundamental challenges of sampling and of quantization:
choosing proper sampling frequency and quantization levels.
ADC is fully characterized by

– the sampling frequency (denoted by fs);
– the number of quantization levels (N),
– and the rule of quantization.

• Optimizing ADC means that we seek the optimal values of these
parameters in order to obtain efficient binary representation of
signals with minimum loss of information.
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Sampling
Sampling is carried out by a switch and temporary we assume
that the switch is ideal (i.e. the holding period is zero).

x(t) xs(t)

Sampling

T Δt

Analog signal Real sampled signal
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Sampling (cont’)

? x(t)

Reconstructed analog signal

x(t) x (nT)

Sampling

T ΔT

Analog signal Sampled signal

Sampling switch

Can analog signals be reconstructed from their samples without any loss? 
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Bandwidth of a signal: the concept
• It is desirable to classify signals according to their frequency-domain

characteristics (their frequency content):
– Low-frequency signal: if a signal has its spectrum concentrated about zero

frequency

– High-frequency signal: if the signal spectrum concentrated at high
frequencies.

– Band pass-signal: a signal having spectrum concentrated somewhere in the
broad frequency range between low frequencies and high frequencies.
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Bandwidth of a signal: the concept (cont’)

• The quantative measure of the range over which the spectrum
is concentrated is called the bandwidth of signal.

• We shall say that a signal is band limited if its spectrum is
zero outside the frequency range | f | ≥ B, where B is the
absolute bandwidth. The absolute bandwidth dilemma:
– Band limited signals are not realizable! 

– Realizable signals have infinite bandwidth!

– (No signal can be time-limited and band limited simultaneously.)
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Bandwidth of a signal: the concept (cont’)
• In the case of a band pass signal (fmin ≤ f ≤ fmax), the term

narrowband is used to describe the signal if its bandwidth

B= fmax − fmin, 

is much smaller than the median frequency

(fmax + fmin)/2.

Otherwise, the signal is called wideband.

• There are many bandwidth definitions depending on
application:
– noise equivalent bandwidth

– 3 dB bandwidth

– η% energy bandwidth
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The noise equivalent bandwidth
It is defined as the bandwidth of a system with a rectangular
transfer function that receives as much noise as the system under
consideration

f

White noise PSD

B

( )S f
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The 3 dB bandwidth
Is the bandwidth at which the absolute value of the spectrum
(energy spectrum or PSD) has decreased to a value that is 3 dB
below its maximum value.

fBİ

( ) ( ) ( )2
, ,X f X f S f

( )max max
f

X X f=
maxXε ⋅

0.5ε =



10/6/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

The η% energy bandwidth
Is the bandwidth that contains η% of total emitted.

fB90%

( ) ( )2
,X f S f

90%
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Frequency ranges of a some natural signals

B
iological S

ignals

Type of Signal Frequency Range [Hz]

Electroretinogram 0 - 20

Pneumogram 0 - 40

Electrocardiogram (ECG) 0 -100

Electroenchephalogram (EEG) 0 - 100

Electromyogram 10 - 200

Sphygmomanogram 0 - 200

Speech 100 - 4000

Seicmic signals
Seismic exploration signals 10 - 100

Eartquake and nuclear explosion signals 0.01-10

Electromagnetic 
signals

Radio bradcast 3x104 - 3x106

Common-carrier comm. 3x108 - 3x1010

Infrared 3x1011 - 3x1014

Visible light 3.7x1014 - 7.7x1014
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The sampling theorem

(Shannon – Kotelnikov 1949)

If a band limited signal x(t) (the band is limited to B) is sampled
with sampling frequency fs ≥ 2B then x(t) can be uniquely
reconstructed form its samples as follows:

where

( ) ( ) ( )
n

x t x nT h t nT
∞

=−∞
= −∑
( ) ( )sin 2

2
2

Bt
h t T

Bt

π
π=
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Proof of sampling theorem

Since X(f) is band limited it can be extended to form a periodic
signal

if 1/Ts > 2B as indicated by the next figure:

( )s

l s

l
X f X f

T

⎛ ⎞= +⎜ ⎟⎝ ⎠∑
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Proof of sampling theorem (cont’)

One may notice, that the condition fs =1/Ts > 2B guarantee that
there is no overlapping in Xs(f) and as a result:

(furthermore since fs =1/Ts > 2B this statement is also true

Let us also note that Xs(f) is a periodic signal, i.e.

( ) ( )   -1/ 2 1/ 2s s sX f X f T f T= ≤ ≤

( ) ( )   -sX f X f B f B= ≤ ≤

( )s s

s

l
X f X f

T

⎛ ⎞= +⎜ ⎟⎝ ⎠
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Proof of sampling theorem (cont’)

Let us now express a sample x(n) by the means of inverse Fourier
transform

On the other hand, Xs(f) being a periodic signal it can be
expanded into Fourier series as follows:

where

2( ) ( )
B

j fnT

B

x n x t e dfπ
−

= ∫
2( ) sj nfT

s n

n

X f c e
π−=∑

/ 2
2 2

/ 2

1 1
( ) ( )

s

s s

s

T B

j nT j nT

n s s

s sT B

c X f e df X f e df
T T

π π
− −

= =∫ ∫
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Proof of sampling theorem (cont’)
From the Fourier series of Xs(f) follows that

and

Taking into account that we can write

and substituting

into the integral, we obtain

which proves the theorem.

( ) nTx n c= 2( ) ( ) sj nfT

s n
X f T x n e

π−= ∑
( ) ( )   -sX f X f B f B= ≤ ≤

( ) ( ) ( )2 2
B B

j ft j ft

s

B B

x t X f e dt X f e dtπ π
− −

= =∫ ∫
2( ) ( ) sj nfT

s s

n

X f T x n e
π−= ∑

( ) ( )

( ) ( )
22 2( ) ( )

sin 2 ( )
( ) ( ) ,

2 ( )

ss

B B
j f t nTj nT f j ft

n nB B

s

s s s

n ns

x t T x n e e dt T x n e df

B t nT
T x n T x n h t nT

B t nT

ππ π

π
π

−−
− −
⎛ ⎞= = =⎜ ⎟⎝ ⎠

−= = −−

∑ ∑∫ ∫
∑ ∑
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Phenomena of aliasing
If the sample frequency is not chosen to be high enough (i.e. frequency fs ≥ 2B),
then Xs(f) then there is an overlap in the spectrum, which implies that X (f) cannot
be regained from Xs(f) .

Aliasing
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Problem 1:

We sample the functions x1(t)=u(t)e-t and x2(t)=u(t)te-t ,
respectively.

– Which function has larger bandwidth ? (To determine
the bandwidth use parameter İ=0.01 )

– What is the minimum sampling frequency to uniquely
restore the signals form their samples ?
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Problem 2:

Given a the frequency response of a system as follows:

.

– Determine the bandwidth of the system with parameter
İ=0.1!

– What is the impact on the bandwidth if we set İ=0.01?

– What type of filtering does this system implement ?

( ) 4

1

1 1,59 10
H

j
ω ω −= + ⋅ ⋅
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• In practice the sampling is carried out by a switch which
has a finite (non-zero) holding time.

• If the holding time ∆t is small enough then xs(t) can be
perceived as

• The signal xs(t) is often called real sampled signal, as xs(t)
can be obtained from x(t) by a proper electronic circuitry.

• Since the d(t)→į(t) when ∆t →0, thus if we construct a
low-pass filter with impulse response function h(t) then the
output of this filter to the input d(t) is approximately h(t)

as well.

( ) ( )( )s

n

x t x nT d t nT= −∑

Sampling in practice

0
lim ( ) ( )

t
d t tδΔ → =
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Summarizing of sampling
In the case of practical sampling first we obtain xs(t) from x(t) and then from
xs(t) the original signal x(t) can be regained by letting xs(t) pass through a low
pass filter.

Filtering

x(t)

Reconstructed analog signal

H(f)

f

Lowpass filter

x(t) xs(t)

Sampling

T ΔT

Analog signal Real sampled signal

Sampling switch
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Oversampling technique
According to the Shannon theorem the sampling frequency fs should be two
times larger than the signal bandwidth B. Such a choice of sampling frequency
creates a risk that the signals of frequency fH > B can generate the signals fH-fs

in the bandwidth after sampling. For that reason it is safer to set the sampling
frequency fs two times larger than the frequency when the anti-alias filter
sufficiently attenuates the signals.

Analogue
anti-alias

filter
ADC

x(t)

Kfs

Digital
anti-alias

filter

decimal
filter

:K
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Oversampling technique (cont’)

f

KfsKfs/2
fs/2

analogue filter

digital filter

X(f)
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Oversampling technique (cont’)
Higher sampling frequency means less critical requirements of the
filter performances. The profit related to oversampling:

– cheaper and less complicated anti-alias filter

– noise reduction increases the quantization SNR (see later)

This method is currently applied in high quality sound processing:
– in SACD system introduced by Sony (SACD – Super Audio Compact

Disc) the sampling frequency is 2.82 MHz which means the oversampling
factor K = 64.

– in DVD Audio system introduced by Technics the sampling frequency is
192 kHz and the oversampling factor is K = 4.
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Under sampling technique

Let us consider another case when we process the signal in the
bandwidth 30MHz – 55MHz. Applying the sampling frequency
110 MHz (according to the Shannon theorem) seems to be
extravagant. In such a case we can modify the Shannon rule
(aliasing free sampling):

where

Note: k=1 is returned the original Shannon sampling rule

sH H2 2
1

1

ff f

k B B k B

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ < < ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠
H1 trunc

f
k

B

⎛ ⎞≤ ≤ ⎜ ⎟⎝ ⎠
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Under sampling technique (cont’)

In our case of the signals in bandwidth 30 MHz – 55 MHz it is sufficient to use
sampling frequency 55MHz≤fs≤60MHz instead of 110 MHz. Of course, by using
the under sampling technique we apply a band-pass anti-alias filter instead of a
low-pass filter.
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Quantization
We assume that the signal is already sampled and we deal with samples x(n).
Since each sample has continuous amplitude, quantization is concerned to
mapping x(n) into which may have only a finite number of values.

( ) { }1 2ˆ , ,..., ,Nx n Q α α α∈ =

Quantization

( )x n R∈

Sampled signal Quantified signal

( )x̂ n

ˆ( )x n
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Quantization (cont’)
• Quantization always entails loss of information due to the

rounding process.
• The design of a quantizer is concerned with two parameters:

– number of quantization levels;

– location of quantization levels (uniform or non-uniform);

• The quality of quantization is described by a Signal-to-
Quantization Noise Ratio (SQNR) where the average signal
power is compared to the noise power resulting from the
quantization error:

average signal power
:

average noise power due to quantization
SQNR =

[ ]( : 10log )dB
SQNR SQNR=
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• Signal value is rounded off to predefined
thresholds called as quantization values
which are equidistantly placed.

• Notations:
– the sample range is [-C,C]

– the distance between the thresholds is ∆,

– the number of quantization level is N = 2C/ ∆ = 2n,

where n represents the number of bits by which the
quantized signal can be represented.

– the error signal is and -∆/2≤ İ ≤ -∆/2.ˆ: x xε = −

Uniform quantization

The quantization characteristics 
and the quantization error function
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Uniform quantization (cont’)
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Modeling the  quantization noise 
Since the nature of errors are random the specific value of İ depends on the value
of the current sample, thus İ is regarded as a random variable subject to uniform
probability density function, and the average noise power is

( ) / 2 / 2 2
2 2 2

/ 2 / 2

1
( )

12
E u p u du u duεε Δ Δ

−Δ −Δ
Δ= = =Δ∫ ∫



10/6/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 55

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

SQNR of the uniform quantization
• In the case of full-scale sine wave (with amplitude C ):

• In the case of random input variable subject to uniform probability density
function over the interval [-C,C]:

• In the case of sine wave with amplitude A (in normal operation i.e. A<C)

2 2
2 2

2 2

/ 2 3 4 3 3
: 2

/12 2 2 2
nC C

SQNR N= = = =Δ Δ [ ]( : 6.02 1.78)dB
SQNR n= +

( )2 2
2 2

2 2

2 /12 4
: 2

/12
n

C C
SQNR N= = = =Δ Δ

[ ]( : 6.02 )dB
SQNR n=

[ ] ( ): 6.02 1.78 20log /dB
SQNR n C A= + −



10/6/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 56

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

Problems for uniform quantization

Given a random signal the samples of which follow the p.d.f.
indicated bellow. What is the quantization signal-to-noise ratio if
we use an n=5 bit quantizer? (The quantizer is matched to the
amplitude C.) What happens if the system is overdriven, what is
its impact in the signal-to-noise ratio ?
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Problems for uniform quantization

How many bit is required for the quantizer to achieve at least 40
dB signal-to-noise ratio over 40 dB dynamics?
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Problems for uniform quantization

What is the SQNR of an n=8 bit quantizer in the case 10dB
overdrive ? (Under the assumption that the input signal follows
uniform distribution.)
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Oversampling SQNR

The relation of SQNR in the case of sine wave is valid only if the
noise is determined in bandwidth fs/2. If the signal bandwidth B is
less than fs/2 then the expression should be corrected to the form

This expression reflects the effect of noise reduction due to
oversampling – for given signal bandwidth doubling of sampling
frequency increases the SQNR ratio by 3dB.

[ ] ( )s: 6.02 1.78 10log / 2dB
SQNR n f B= + +
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Non-uniform quantization
• Uniform quantization suffer from one bottleneck: if the sample

to be quantized does not exploit the full range of quantization
(i.e. [-C,C] the interval) then SNR can deteriorate severely. As
result a user having smaller dynamic range suffers a drop in
Quality of Service (QoS).

• Non-uniform quantization is way to compensate this effect:
smaller dynamic range there are plenty of quantization levels
(to help the users with smaller dynamics) whereas in the case of
large dynamic signal there are less quantization levels
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Non-uniform quantization (cont’)

Probability density function of samples in the case of small and  large dynamics
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Non-uniform quantization (cont’)

The implementation of nonlinear quantization can be reduced to applying an
equidistant quantizer preceded by a proper nonlinear distortion function l(x).
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SQNR of the non-uniform quantization
• The average noise in an elementary interval:

• The average noise:

– However, thus

• Therefore, the SQNR is:

{ } 2
2

12
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The optimal non-uniform quantization
• The optimal characteristics l(x) can be found by solving the following

problem:

• This optimization is a hard problem itself ( solved in the domain of functional
analysis), but it is made more difficult by the fact that real life processes are
non stationer (the sample p.d.f. p(x) is changing in time) and as result this
problem must be solved again and again in order to adopt to the changing
nature of the process.

( )
( ) ( )

2

opt
( )

2

( ) : max
1

C

x

C

C
l x

x

C

u p u du

l x

p x dx
l x

−
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The logarithmic quantization
• To circumvent the difficulties of optimization, we are satisfied by choosing

an lopt(x) subject to a modified objective function which guarantees uniform
SQRN:

• One can easily see that if x2 ~ 1 / l´(x)2, then indeed the SNR is constant and
independent of px(u). Thus l´(x) ~ 1 / x, from which l(x) ~ log(x), which
entails logarithmic quantization.

( )
( ) ( )

2

opt
( )

2

( ) : max .
1

C

x

C

C
l x

x

C
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l x const
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The logarithmic quantization (cont’)

Characteristics of logarithmic quantizer 
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The logarithmic quantization (cont’)

Non-Uniform 
Quantization

( )ŷ n

Compression
Uniform 

quantization Expansion

( )l x

x

( )y n ( )x̂ n( )x n ( )1l x−

x

The real compressor l(x)  is chosen differently in Europe (“A-law”) or in the US 

and Far East (“μ-law”).
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The logarithmic quantization
• The „A-law”:

where A=87.56

• The „μ-law”:

where μ=255

( ) ( ) ( )

( ) ( )
max

max
max

max

1
sgn 0

1 ln

1 ln
1

sgn 1
1 ln

A x x
x ha

A x A

l x x
A

x x
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A A x
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Quantization errors: zero drift
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Quantization errors: gain error
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Quantization errors: integral nonlinearity
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Quantization errors: differential nonlinearity
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Sample and hold circuit
Although modern analogue-to-digital converters are very fast they need certain
time to perform sampling and quantization process. Therefore, the AD converters
are usually preceded by a special circuit holding the processed signal for the time
necessary for the conversion. These circuits are called SH – sample-and-hold
circuits.
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Sample and hold circuit (cont’)

The typical times of sampling are of about 1 μs and the aperture
time1 is not larger than several ps. There are also very fast sample-
and-hold circuits with sampling time of about 10 ns and aperture
time less than 1 ps.
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AD converters and main performances

Many various AD converters have been designed and developed.
However, currently on the market there are only a few main types
of them: successive approximations register SAR, pipeline, delta-
sigma, flash and integrating converters.
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AD converters and main performances (cont’)

• We can see that there is no one universal AD converter – the
converters of high speed are of the poor resolution and vice versa
– accurate (large number of bits) converters are rather slow.

• The most commonly used are the SAR (Successive
Approximation Register) and Delta-Sigma converters. SAR
converters are very accurate, operate with relatively high
accuracy (16-bit) and wide range of speed – up to 1 MSPS.

• The Delta-Sigma converters (16-bit and 24-bit) are used when
high accuracy and resolution are required. Recently, these
converters are still in significant progress.
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Successive Approximation Register (SAR)
The principle of operation of the SAR device resembles the weighting on the
beam scale. Successively the standard voltages in sequence: Uref/2, Uref/4,
Uref/8... Uref/2

n are connected to the comparator. These voltages are compared
with converted Ux voltage.

-

+SHUx

analogue
signal

Controlled 
voltage 
source

Controlled 
voltage 
source

registerUref

digital
signalUcom

p
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SAR (cont’)
If the connected standard voltage is smaller than the converted voltage in the
register this increment is accepted and the register sends to the output 1 signal. If
the connected standard voltage exceeds the converted voltage the increment is
not accepted and register sends to the output 0 signal.

time

Ux

1 1 1 10

Uref/2

Uref/4

Uref/8
Uref/16

Uref/32

Ucomp
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Delta-Sigma AD converters
The delta-sigma converters utilize the oversampling technique. Due to many
advantages (most of all the best resolution – even up to 24-bit) these converters
are currently very intensively developed. The principle of operation of such
converters is presented in following figure:



10/6/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 80

Digital- and Neural Based Signal Processing & Kiloprocessor Arrays: 
Introduction and Analog to Digital conversion

Delta-Sigma AD converters (cont’)

In delta-sigma conversion the delta modulation is used (hence the name of this
device). In delta modulation the width of the impulse is proportional to the value
of converted signal. As the 1-bit ADC quantizer operates the comparator and
latch switched with the frequency Kfs forced by the clock (K is the oversampling
factor). The output voltage is converted again to analogue form by 1-bit DAC.
The adder in the input compares the input value and the output signal. Due to
feedback the average value of output signal should be equal to the value of the
input signal. If the input signal increases the integrating circuit need more time to
obtain the zero value, the width of the impulse decreases and the average value
of the output signal increases.
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Delta-Sigma AD converters (cont’)

The integrator and output signal of the delta-sigma converter as the
dependence of the sine input signal.
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Delta-Sigma AD converters (cont’)

The important advantage of the delta-sigma converter is the noise
suppression. To obtain a noise suppression of about 40 dB it is
necessary to apply a oversampling factor equal to 64.

f

fs/2

X( f ) sine signal

noise

f

Kfs/2

X( f ) sine signal

noise

f

Kfs/2

X( f ) sine signal

noise

Noise shapingOversampling
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Performance trade-offs of ADC

In the realization of the ADC converters improving the sample rate and the
resolution at the same time are conflicting requirements.
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Available ADC on the market 

Part Type Bits Sampling rate Manufacturer Price, $

ADC180 Integration 26 2048ms Thaler 210

ADS1256 Delta-sigma 24 300kHz Texas 9

AD7714 Delta-sigma 24 1kHz AD 9

AD1556 Delta-sigma 24 16kHz AD 27

MAX132 Integration 18 63ms Maxim 8

AD7678 SAR 18 100kHz AD 27

ADS8412 SAR 16 2MHz AD 23

MAX1200 Pipeline 15 1MHz Maxim 20

AD9480 pipeline 8 500MHz AD 200

MAX105 Flash 6 800MHz Maxim 36
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Characteristics of ADC per application 

Application Architecture Resolution Sampling rate

Audio
SAR

Delta-sigma

10-16 bits

14-18 bits

85-500 kHz

48-50kHz

Medical
SAR

Delta-sigma

8-16 bits

16 bits

50-500 kHz

192 kHz

Automatic control
SAR

Delta-sigma

8-16 bits

16 bits

40-500 kHz

250Hz

Wireless comm.
SAR

Delta-sigma

8 bits

13 bits
270kHz
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Summary
• Fundamental issues: representation capabilities, learning, generalization.
• Collection of algorithms to solve highly complex problems in real-time (in

the field of IT) by using classical methods and novel computational
paradigms routed in biology.

• ADC has three main steps: sampling, quantization and coding.
• The quantitative measure of the range over which the spectrum is

concentrated is called the bandwidth of signal.
• If a band limited signal is sampled with sampling frequency fs ≥ 2B then it

can be uniquely reconstructed form its samples.
• Quantization is concerned to mapping sampled signal into rounded signal

which may have only a finite number of values.
• In the realization of the ADC converters improving the sample rate and the

resolution at the same time are conflicting requirements.

Next lecture: Description digital signals and systems in time domain.
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