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a Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Outline

Course Information
Introduction and focus of the course

What 1s signal processing? (objectives: algorithms, architectures
and applications)

First lecture: A/D conversion
— The sampling theorem
— Uniform quantization
— Non uniform quantization

AD converters and main performances

Available AD converters on the market

— Successive Approximation Register ADC
— Delta-Sigma ADC
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a Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Course Information
Class Mailing List: digjel@lists.ppke.hu
Small tests in classes on all topics;

One major test on Digital Signal Processing scheduled in the
middle of the semester;

Exam (major questions on Neural Processing, small questions on
Digital Signal Processing);

Grading:

— Final grade=0.33*av. on STs+0.33*DSP+ 0.33*NSP

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Course Information (Cont’d)

e Suggested literature and references:

Lecture notes (essential for the tests and exams)

J.G. Proakis, D.G. Manolakis: ,,Digital Signal Processing”, Prentice
Hall, 1996, ISBN 0-13394338-9

S. Haykin ,,Adaptive filters” ,Prentice Hall, 1996 (recommended)

Haykin, S.: Neural networks - a comprehensive foundation, MacMillan,
2004
Hassoun, M.: Fundamentals of artificial neural networks, MIT Press,
1995

Chua, L.O., Roska T. and Venetianer, P.L.: "The CNN is as Universal as
the Turing Machine", IEEE Trans. on Circuits and Systems, Vol. 40.,
March, 1993

J.G. Proakis: Digital communications, McGraw Hill, 1996.

10/6/2011.
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a Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Course Syllabus and Scheduling

Introduction and Analog to Digital conversion.

Description digital signals and systems in time domain.

Description digital signals and systems in transform (Z, DFT) domain.
Efficient computation of the transform domain (FFT) and filter design.
Adaptive signal processing.

Midterm exam

Introduction to neural processing (inspiration, history and approaches).
Signal processing by a single neuron (linear set separation).

8.  Hopfield network, Hopfield net as associative memory and combinatorial
optimizer.

9.  Cellular Neural Network.
10. Feed forward Neural Networks (generalization, representation, learning, appl.).
11.  Principal Component Analysis.
12.  Virtual machines: signal processing with multicore systems.
Final exam

Al ol e

~ o
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Objective of Digital Signal Processing

Obseljved A/D conversion + Important
physical computer + SP algorithms feature
process

A A
:
I

Medical signals,

Predicting epileptic

Seismic signals, :
seizure,

Vibro analysis, o
Y Predicting earthquake

Speech : :
vid linear and nonlinear algorithms Testing bearings
ideo .
P Data compression for
Multimedia N mmmmmmmmmmn 7 transmitting multimedia
ot ) : information
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Seismic signal analysis
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Epileptic seizure prediction
Continuous multi-channel EEG recording

Moving Window
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Time Profile of Characterizing Measure
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Measure @
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* Time

Alarm Seizure

http://www.scholarpedia.org/article/Image:Mormann_SeizurePrediction Figl.jpg
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W Q Introduction and Analog to Digital conversion

Signal processing in I'T

Optimal Untractable by analytical means (huge amount of free
operation ? @ parameters & data to be taken into account)

Some input ___, ,| Highly complex systems in ,  desired
data Information Technologies output

KNOWLEDGE + _
TRANSFER(LEARNING) _.¥ @? error signal

uti Modeling architecture (signal - _
Solution |, processing elements with free | }estlmated
parameters) i output
, Modeling architecture with generalized
new mput ——— .. —  output
optimized parameters P

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Fundamental issues

« Representation capabilities (is the architecture complex
enough to model the system) ?

e Learning (how to adjust the free parameters to capture the
hidden characteristics of the modeled system) ?

e  (Generalization (once the knowledge transfer has taken place,
how to trust the output given to an input being not part of the
training set) ?

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




e Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:

A
W Introduction and Analog to Digital conversion
Examples
Input traffic IP network (with (a\?;j I;arzgitf{zss
volume (voice, —  routers, switches, [ gt P
: : : rate, average packet
video, multimedia) buffers ...etc.)
delay)
GSM or UMTS,
Number of users —» > _ .
b3G systems Multiuser interference
Stock prices, . . . .
currency exchange Financial system Optimal investment
rates (financial (stock market, —> for maximizing the
data series ) economical factors) return

Endeavour: HOW TO MODEL AND OPTIMIZE THESE SYSTEMS ?

, lnvzeting in your fieture /.-—.;\ *
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' Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W ) Introduction and Analog to Digital conversion

A simple example — packet delay estimation

X

SN

Complex system (Packet | delay

switched network)

Input __,
\A l / traffic

A

Inter arrival time
Measurements —>

Modeling arcHitecture
y=Ag(+B est. delay

d

4 N
AT T
/o ! y
A A, B,
! I ! >
Future x generalization

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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W ) Introduction and Analog to Digital conversion

A simple example — packet delay estimation (cont’)

Input _ N
traffic

Complex system (Packet | delay

switched network)
» é | ; ______

Modeling architecture , :
_’ . ’ :
Measurements  « y—AXA3+l?,>(/\2+Cx+D est. delay |
d o ! “a Linear approximationis
not good
: i i 4 B mi 1 & d A — By —C D 2
i i i opt? opt'n}’anEkZ:;( T AX T BX —LX — )
I ! I I >
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N Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Challenges

e Linear or nonlinear modeling (most of the real-life problems
are of highly nonlinear nature) ?

e  How to develop fast learning algorithms ?

e How to develop exact measures expressing the quality of
generalization ?

Obseljved A/D conversion + Important
physical computer + SP algorithms feature
process

, lnvzeting in your fieture /;—.;\ *
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N Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Directions

e Fast and real-time linear processing with designated HW
architecture (DSP)

 Biologically inspired nonlinear processing

«  Emergence of novel computational paradigms by using kilo-
processor arrays

Obseljved A/D conversion + Important
physical computer + SP algorithms feature
process

7 lnvzting in your fidure =
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Biological inspirations

Modeling architecture

-

1
1
- ’ !
1
1

e ‘/' v \‘A \\‘A
Representation Learning Generalization  Robustness — Modularity
— _/

~

Solution provided by evolution and biology: MAMMAL BRAIN

*high representation capability;

elarge scale adaptation;

far reaching generalizations;

emodular structure (nerve cells, neurons);
every robust

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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ww Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:

Engineering toolsand
algorithms solving problems
in the field of Information

@\YK Introduction and Analog to Digital conversion
Copying the Brain?
|
|
Neuro- | Artificial
Human L
Y . *| biological —°J—> Neural
Brain model / Network

; A

Feature extraction

(Simplification) I Technology (VLSI)

A

i

Technologies (IT)

~

Focus of this course:
Signal Processing algorithms

10/6/2011.

TAMOP — 4.1.2-08/2/A/KMR-2009-0006




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Signal processing introduction - summary

e Collection of algorithms to solve highly complex problems in
real-time (in the field of IT) by using classical methods and
novel computational paradigms routed in biology.

Complex system (Packet | delay

Input ) )
traffic switched network)

//‘ l

— Modeling architecture

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Historical notes

e Linear analog filters, 20’s

e Artificial neuron model, 40°s (McCulloch-Pitts, J. von
Neumann);

e Hebbian learning rule, 50°s (Hebb)

e Perceptron learning rule, 50°s (Rosenblatt);

e Fast Fourier Transformation, 50°’s

e Nonlinear adaptive filter, 50’s (Gabor)

e ADALINE, 60’s (Widrow)

e Critical review , 70’s (Minsky)

e Adaptive linear signal processing (RM, KW algorithms) , 70’s

i lngesting in your fisture /,-—_*\ el s
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Historical notes (cont’)

e DSPs and digital filters, 80’s

e Feed forward neural nets, 80’s (Cybenko, Hornik,
Stinchcombe)

e Back propagation learning, 80’s (Sejnowsky, Grossberg)
* Hopfield net, 80’s (Hopfield, Grossberg);

e Self organizing feature map, 70’s - 80’s (Kohonen)

e (NN, 80’s-90’s (Roska, Chua)

 PCA networks, 90’s (Oja)

e Applications in IT, 90’s - 00’s

e Kiloprocessor arrays, 2005

, lnvzeting in your fieture T *
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Analog-to-Digital Conversion

Signal analysis and processing is engaged with studying the different
phenomena of nature and drawing conclusions about how the observed
quantities are changing in time. All applications have one thing in common,
signals are studied as a function of time and the analysis is carried out by a
computer. However, computers can only process digital sequences, thus the
analog signal must first be converted into a binary sequence.

analog signal, x(¢) binary sequence, c,
B Analog to Dlgltal 00100111101001110111
) Conversion
- I
10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 e 22
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

7
e,

Notations
The underlying notation is summarized by the following table:

Signal Time Voltage
Analog signal x(1) Continuous | Continuous
Sampled signal x(n) or x(nT) Discrete Continuous
Quantized signal Xy Discrete Discrete
Coded signal c, Discrete Binary
10/6/2011. TAMOP - 4.12-08/2/A/KMR-2009-0006 i
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e Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:

Introduction and Analog to Digital conversion

Analog-to-Digital Conversion

® ADC has three main steps:

sampling when sample the value of the signal x(¢) at certain discrete time
instants obtaining a sequence x;;

quantization when the values of the samples x, are rounded to some
allowed discrete levels (referred to as quantization levels) and having a
finite set of these levels they can then easily be represented by binary code
words.

Sampling Quantization Coding

x(2)

A\ 4

T AT | (nT) = x(n) )1 Optimal
X g > representation [ 1
-

Compressing

10/6/2011.
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:

VW Q Introduction and Analog to Digital conversion
The challenge of ADC
e Question:

— Is there any loss of information in the course of the conversion?
— What i1s the optimal representation of signals by binary
sequences (in terms of length ...etc.) ?
 Fundamental challenges of sampling and of quantization:
choosing proper sampling frequency and quantization levels.
ADC 1s fully characterized by
— the sampling frequency (denoted by £,);
— the number of quantization levels (),
— and the rule of quantization.

e Optimizing ADC means that we seek the optimal values of these
parameters in order to obtain efficient binary representation of
signals with minimum loss of information.

. lnvzeting in your fieture ﬁ
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Sampling

Sampling 1s carried out by a switch and temporary we assume
that the switch is ideal (i.e. the holding period is zero).

Analog signal Real sampled signal
! Sampling S

T At

X

~
p——c

Ba
~~

Amplitude, xs( 1)

—
=

Amplitude, x#)

—
th

t
S
=]

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 26
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S
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Sampling (cont’)

Sampling

x(?) T AT
X

|
: | i
4 , ; -
(N ! Sampling switch
N —

x(?) R

|
T 1
: |
| ,
mr/\/‘/\/\\\/\/
a3} |
|
5 .
] 1 10

A 4

~>

mplitude, x(z)
Amplitude, x (1

Amplitude, x(#)

a [ 4 [ 8 10 T 4 [
Time, £ [s] ne, £ [s] Time, £ [s]

Analog signal Sampled signal Reconstructed analog signal

Can analog signals be reconstructed from their samples without any loss?

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 27




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
@\V) Introduction and Analog to Digital conversion

Bandwidth of a signal: the concept

e [t is desirable to classify signals according to their frequency-domain
characteristics (their frequency content):

— Low-frequency signal if a signal has its spectrum concentrated about zero
frequency

— High-frequency signat if the signal spectrum concentrated at high
frequencies.

— Band pass-signal a signal having spectrum concentrated somewhere in the
broad frequency range between low frequencies and high frequencies.

Stochastic signal

Autocorrelation function:

Deterministic signal

Time 0 2T R(7) = E {x(t)x(t+ 7))
domain !
------------ B e e | LT
Frequency % i I Power spectral density (PSD)
1

S( f):_J' R(z)e **dg

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Bandwidth of a signal: the concept (cont’)

 The quantative measure of the range over which the spectrum
1s concentrated 1s called the bandwidth of signal.

« We shall say that a signal is band limited if its spectrum is
zero outside the frequency range | f | > B, where B 1s the
absolute bandwidth. The absolute bandwidth dilemma:

— Band limited signals are not realizable!
— Realizable signals have infinite bandwidth!
— (No signal can be time-limited and band limited simultaneously.)

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
@\V) Introduction and Analog to Digital conversion

- Bandwidth of a signal: the concept (cont’)
* In the case of a band pass signal (f.. < f < f. ), the term
narrowband is used to describe the signal if its bandwidth

B:fmax _fmim

1s much smaller than the median frequency

(fmax T f min)/ 2.

Otherwise, the signal is called wideband.

e There are many bandwidth definitions depending on
application:
— noise equivalent bandwidth
— 3 dB bandwidth
— 1% energy bandwidth

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 30
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The noise equivalent bandwidth

It is defined as the bandwidth of a system with a rectangular
transfer function that receives as much noise as the system under
consideration

Is(f))

White noise PSD

A
A\ 4

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
@\V) Introduction and Analog to Digital conversion

The 3 dB bandwidth

Is the bandwidth at which the absolute value of the spectrum

(energy spectrum or PSD) has decreased to a value that 1s 3 dB
below i1ts maximum value.

X (f)

X :mjng(f)

_/ XQ

9

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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The n% energy bandwidth
Is the bandwidth that contains 7 % of total emitted.

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Introduction and Analog to Digital conversion

Frequency ranges of a some natural signals

Type of Signal

Frequency Range [Hz

- Electroretinogram 0-20
g Pneumogram 0-40
% Electrocardiogram (ECGQG) 0-100
é Electroenchephalogram (EEG) 0-100
Q
= Electromyogram 10 - 200
@ Sphygmomanogram 0-200
Speech 100 - 4000
S Seismic exploration signals 10-100
Seicmic signals ——
Eartquake and nuclear explosion signals 0.01-10

Electromagnetic
signals

10/6/2011.

Radio bradcast

3x10%-3x10°

Common-carrier comm.

3x108- 3x1010

Infrared

3x10M - 3x1014

Visible light

TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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The sampling theorem

(Shannon — Kotelnikov 1949)

If a band limited signal x(¢) (the band 1s limited to B) 1s sampled
with sampling frequency f, > 2B then x(f) can be uniquely
reconstructed form its samples as follows:

o0

x(t)z Z x(nT)h(t—nT)

Nn=——0a0
where
sin( 27z Bt
h(t)=2T ( )
27 Bt
10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
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Proof of sampling theorem

Since X(f) 1s band limited 1t can be extended to form a periodic
signal

X.(NH=3x f+Ti

S

if 1/7,> 2B as indicated by the next figure:

X(f) _\

| -
B 2B 3B 45 5B 68 I

X, 1 o1 [=25B>2B ,_,

AVAR VRN

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Proof of sampling theorem (cont’)

One may notice, that the condition f, =1/7s > 2B guarantee that
there 1s no overlapping in X,(f) and as a result:

X.(f)=X(f) -1/2T < f<1/2T,
(furthermore since f, =1/7s > 2B this statement 1s also true

X,(f)=X(f) -BSf<B

Let us also note that X () 1s a periodic signal, 1.e.

[
Xs(f)=Xs(f+?j

S

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 37
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Proof of sampling theorem (cont’)

Let us now express a sample x(n) by the means of inverse Fourier
transform B

x(n) = [ x(t)e* " df

On the other hand, X,(f) being a periodic signal it can be
expanded into Fourier series as follows:

Xs (f) _ che_jzﬂ'nfTs

where
T,/2
=— j X, (e df = j X (e df
~-T,/2
10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Proof of sampling theorem (cont’)
From the Fourier series of X (f) follows that
Ix(n)=c, and X (f)=T) x(n)e’*"
Taking into account that X (f)=X(f) -B< f<B we can write

jX )/ dt = jX )/ dy
and substituting

X, (f)=T Zx(n)e"z””ﬂ
into the integral we obtain

J(TZx(n)e’z”"Tfj e/ dt = TZx(n)J‘ j2xf(i=nt) df —

-B n

sm (27B(t - nﬂ))_ -
=L L=, iy = B h(i=nT)

which proves the theorem.

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006
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Phenomena of aliasing

If the sample frequency 1s not chosen to be high enough (i.e. frequency f, > 2B),
then X,(f) then there 1s an overlap in the spectrum, which implies that X (f) cannot

be regained from X (f) . ,
X(f) —\

B 28 33 4B 58 68 f
XU j=a  [f=25B=2B ,_,
5
fs/2 f;
f=125B<2B

am1 X n=-2 e n=-3_">¢‘r” n=-4 ™
B T 25 T 3B TéiB 58 68
5 1, 3% a5,
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Problem 1:
We sample the functions x,(f)=u(t)e’ and x,(H)=u()te’ ,
respectively.

—  Which function has larger bandwidth ? (To determine
the bandwidth use parameter ¢=0.01 )

— What 1s the minimum sampling frequency to uniquely
restore the signals form their samples ?
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Problem 2:
Given a the frequency response of a system as follows:
1
H (o)

"1t j®-1,59-10

— Determine the bandwidth of the system with parameter
e=0.1!

— What 1s the impact on the bandwidth if we set ¢=0.01?

—  What type of filtering does this system implement ?
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Sampling 1n practice

e In practice the sampling is carried out by a switch which “ d(ﬂ, »
has a finite (non-zero) holding time.
 If the holding time Af 1s small enough then x(f) can be
perceived as
A2 | A2

x, (1) = Zn:x(nT)d(t—nT)

* The signal x(¢) 1s often called real sampled signal, as x ()
can be obtained from x(¢) by a proper electronic circuitry.

e Since the d(t)—o(t) when At —0, thus if we construct a
low-pass filter with impulse response function 4(?) then the
output of this filter to the mput d(z) 1s approximately A(z)
as well.

lim d () = 5(t)

, lnvzeting in your fieture T *
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Summarizing of sampling

In the case of practical sampling first we obtain x,(¢) from x(#) and then from
x(?) the original signal x(#) can be regained by letting x(#) pass through a low
pass filter.

Sampling Filtering
T AT X (t) 2 H(f) X(t)

\ 4

v

_X ]
10
o— o
At holding time
I |

Sampling switch

Amplitude, x)_(u

Amplitude, x(t)

4 5 i 10 “o 2 4 s 8 10 o ] a s
Time, ¢ [s] Time, 7 [s] Time, ¢ [s]

Analog signal Real sampled signal Reconstructed analog signal
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Oversampling technique

According to the Shannon theorem the sampling frequency f, should be two
times larger than the signal bandwidth B. Such a choice of sampling frequency
creates a risk that the signals of frequency f; > B can generate the signals f,;-f,
in the bandwidth after sampling. For that reason it is safer to set the sampling

frequency f, two times larger than the frequency when the anti-alias filter
sufficiently attenuates the signals.

x() | Analogue Digital decimal
— anti-alias > ADC "{ anti-alias 1 filter
filter filter ©
I K

K,

lnvzeting in your fieture
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Oversampling technique (cont’)

\ N, analogue filter
'\ digital filter
* N

VV\

K1 /2 Kf,
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Oversampling technique (cont’)

Higher sampling frequency means less critical requirements of the
filter performances. The profit related to oversampling:
— cheaper and less complicated anti-alias filter

— noise reduction increases the quantization SNR (see later)

This method 1s currently applied in high quality sound processing:

— in SACD system introduced by Sony (SACD — Super Audio Compact

Disc) the sampling frequency is 2.82 MHz which means the oversampling
factor K = 64.

— in DVD Audio system introduced by Technics the sampling frequency is
192 kHz and the oversampling factor is K = 4.

, lnvzeting in your fieture /,-__*\ * X 5
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Under sampling technique

Let us consider another case when we process the signal in the
bandwidth 30MHz — 55MHz. Applying the sampling frequency
110 MHz (according to the Shannon theorem) seems to be
extravagant. In such a case we can modify the Shannon rule
(aliasing free sampling):

TR

Ju

1<k <trunc| =
B

Note: k=1 1s returned the original Shannon sampling rule

where
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Under sampling technique (cont’)

| v
b k=1 2 =3 /
3~ .
f/B 2: | /Q///

/

UNDERSAMPLING

AN W NN

filB

In our case of the signals in bandwidth 30 MHz — 55 MHz it is sufficient to use
sampling frequency 55SMHz<f<60MHz instead of 110 MHz. Of course, by using
the under sampling technique we apply a band-pass anti-alias filter instead of a
low-pass filter.
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Quantization

We assume that the signal is already sampled and we deal with samples x(n).
Since each sample has continuous amplitude, quantization is concerned to
mapping x(n) into x(n) which may have only a finite number of values.

Sampled signal Quantiﬁed signal
. ‘ ‘ B Quantization : ’H H‘ ‘
S i |||||‘ l} ‘ x(n)ER )%(n) %5 | ”|H || |||| HI‘H‘H
Hl m 5 ——— HH”“
20, = = = - = ),(\:(n) S Q {0(1 , a2 , aN ’} 0!30--- m [ |
Discrete time, 1 [-] Discrete tlme n[-]

, lnvzeting in your fieture o ** * **
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Quantization (cont’)

e Quantization always entails loss of information due to the
rounding process.

e The design of a quantizer 1s concerned with two parameters:

—  number of quantization levels;

— location of quantization levels (uniform or non-uniform);

e The quality of quantization is described by a Signal-to-
Quantization Noise Ratio (SQNR) where the average signal
power 1s compared to the noise power resulting from the
quantization error:

SONR = average signal power

average noise power due to quantization

(SONR'®! :=101og SONR)

, lnvzeting in your fieture = *
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Uniform quantization
:
e Signal value 1s rounded off to predefined I o(x)
. . C +
thresholds called as quantization values i
41

which are equidistantly placed.

e Notations:
—the sample range 1s [-C,(]

—the distance between the thresholds is A,

—the number of quantization level is N = 2C/ A = 27, t€
where n represents the number of bits by which the -¢ 1 A2 .

quantized signal can be represented. / dadad t__ A2 o

—the error signal is g¢:=x—x and -A/2<e<-A/2.

The quantization characteristics
and the quantization error function
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Uniform quantization (cont’)

-*'.
@ | Crac
0 < .
R i
ﬂ:‘. I -;:\ A2
PE" i - \;‘_.-
¥ 2 i
L e
E @ &
@, 1 g
gy g
%% | &
I 112 o -Al?
{Iﬁ ﬂ”‘ E 1
a, o =
— Quantization signal ad : ;
0 10 20 30 40 50 0 10 20 30 40 50
Discrete time, n [-] Discrete time, n [-]
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Modeling the quantization noise

Since the nature of errors are random the specific value of &€ depends on the value
of the current sample, thus ¢ 1s regarded as a random variable subject to uniform

probability density function, and the average noise power is

A/2 A/2 1 A2
E(gz) = j u’p. (u)du = j uzzdu :E
~A/2 ~A/2
Quantization y t P [u)
x(n) €R JJ—'IFF i(n)eQ={a.a,,...a,} 2
U
Sampled signal Quantified signal A A ]
X X 2 2

O S 1 A
T* pw-{a ¥ M3
£ 0 otherwise

Quantization noise
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SQNR of the uniform quantization

* In the case of full-scale sine wave (with amplitude C):
2 2
SONR = c/2 34C° 3., 3

=27 —ZN2=22" (SONR'“®!=6.021n+1.78
AZ/12 2 AY 2 2 (5¢ " )

e In the case of random input variable subject to uniform probability density
function over the interval [-C,C]:
(2C)2 /12 4C*  , (B]
SONR = = =N"=2" SONR" =6.02n
< A/12 A (¢ )

* In the case of sine wave with amplitude 4 (in normal operation 1.e. A<C)

SONR“*) = 6.02n+1.78 - 2010g(C/ A)
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Problems for uniform quantization
Given a random signal the samples of which follow the p.d.f.
indicated bellow. What is the quantization signal-to-noise ratio 1f
we use an n=5 bit quantizer? (The quantizer is matched to the

amplitude C.) What happens if the system 1s overdriven, what 1s
1ts impact in the signal-to-noise ratio ?

C C
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Problems for uniform quantization

How many bit 1s required for the quantizer to achieve at least 40
dB signal-to-noise ratio over 40 dB dynamics?

SQNRI4®! |

P frfrfr

-
-

Pmm Pmax 1018 (Psfgnaf )
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Problems for uniform quantization

What 1s the SQNR of an n=8 bit quantizer in the case 10dB
overdrive ? (Under the assumption that the input signal follows
uniform distribution.)

In normal operation In overload operation

0)

12dB  -6dB 0 4B ng[g}

10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 58




Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
Introduction and Analog to Digital conversion

Oversampling SQNR

The relation of SQNR in the case of sine wave 1s valid only 1if the
noise 1s determined in bandwidth f/2. If the signal bandwidth B 1s
less than f/2 then the expression should be corrected to the form

SONR'™ = 6.02n+1.78 +10log( £, /2 B)

This expression reflects the effect of noise reduction due to
oversampling — for given signal bandwidth doubling of sampling
frequency increases the SQNR ratio by 3dB.
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Non-uniform quantization

e Uniform quantization suffer from one bottleneck: if the sample
to be quantized does not exploit the full range of quantization
(i.e. [-C,C] the interval) then SNR can deteriorate severely. As

result a user having smaller dynamic range suffers a drop in
Quality of Service (QoS).

 Non-uniform quantization i1s way to compensate this effect:
smaller dynamic range there are plenty of quantization levels
(to help the users with smaller dynamics) whereas in the case of
large dynamic signal there are less quantization levels

, lnvzeting in your fieture ﬁ * K
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Non-uniform quantization (cont’)

Gy

Rock music

Mozart g :
ozart opera Nonlinear

T quantization

1} ax,

1

px)

-
-

Probability density function of samples in the case of small and large dynamics
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Non-uniform quantization (cont’)

X

£

Rock music

Mozart opera

px)

A

Y

I(x) €1
Nonlinear distortion
function
Nonlinear Linear

1 quantization quantization |
[} Ax, Ay {1
-C]

-
-

The implementation of nonlinear quantization can be reduced to applying an

equidistant quantizer preceded by a proper nonlinear distortion function /(x).
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SQNR of the non-uniform quantization
Ax,”

* The average noise in an elementary interval: £ {52 ‘x = Axl.} =,

* The average noise:

E{gz}zZE{gz‘xeAx} (xeAx,) ZE{ 2‘xeAxl.}p(xi)Axl.

i

A A
— However, l’(xl.)z—y thus Ax. = 24

Ax, (%)

4Cc* ¢ 1
12N? 217 (x)

p(x)dx

Q

e Therefore, the SQNR is: SONR =
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The optimal non-uniform quantization

e The optimal characteristics /(x) can be found by solving the following
problem:

C
jusz(u)du
O
X)dx
Ly

e This optimization is a hard problem itself ( solved in the domain of functional
analysis), but it is made more difficult by the fact that real life processes are
non stationer (the sample p.d.f. p(x) is changing in time) and as result this
problem must be solved again and again in order to adopt to the changing
nature of the process.

, lnvzeting in your fieture /.-—.;\ *
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The logarithmic quantization

e To circumvent the difficulties of optimization, we are satisfied by choosing
an /,,(x) subject to a modified objective function which guarantees uniform

SQRN: ju2px (u)du
lopt(x):nll(%x ]ch ny = const.
x)dx
Ly

* One can easily see that if x?> ~ 1/ /'(x)?, then indeed the SNR is constant and
independent of p (u). Thus I'(x) ~ 1 / x, from which /(x) ~ log(x), which
entails logarithmic quantization.
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The logarithmic quantization (cont’)

A

A J

Characteristics of logarithmic quantizer
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The logarithmic quantization (cont’)

Uniform

quantization Expansion

)

e
—~~
A 4 S
N et
\|=
=
T"’
A 4
<
A 4 :
N——
<>
Y /™
S
N
=

The real compressor /(x) 1s chosen differently in Europe (““A-law”) or in the US
and Far East (“LL-law”).
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The logarithmic quantization
* The ,A-law”: ’ Al X1
sgn(x) ha 0<-—+—L<—
I+In(4) X, A
[(x)=+
(x) 1+In Aﬁ
X . n(x) ha l<L|<1
T () A x

where 4=87.56

e The, p-law”:
ln£1+,u|x|j
I(x)=x “max / son (x)

™ In(1+ p)

where =255
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Quantization errors: zero drift
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Quantization errors: gain error
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Quantization errors: integral nonlinearity
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Quantization errors: differential nonlinearity
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Sample and hold circuit

Although modern analogue-to-digital converters are very fast they need certain
time to perform sampling and quantization process. Therefore, the AD converters
are usually preceded by a special circuit holding the processed signal for the time
necessary for the conversion. These circuits are called SH — sample-and-hold
circuits.

x( f) * 4+
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Sample and hold circuit (cont’)

The typical times of sampling are of about 1 us and the aperture
timel 1s not larger than several ps. There are also very fast sample-
and-hold circuits with sampling time of about 10 ns and aperture

time less than 1 ps.
, aperture timg -

—z—b:—v‘7—
Vo

x(nT)‘l

1 I
0 ]

Sa 1pfei hold

A\

acquisition
time
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AD converters and main performances

Many various AD converters have been designed and developed.
However, currently on the market there are only a few main types
of them: successive approximations register SAR, pipeline, delta-
sigma, flash and integrating converters.

Delta-sig,ma Flash
Integr Pipeline
SAR SAR
Pipeline Delta Sigma
Flash Resolution, 7 [bits] Integr Sampling rate, f, [Hz]
é 1% 24 ] li) % IL I IOIOk I IO%M % "

100 10k 1M 100M
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AD converters and main performances (cont’)

 We can see that there is no one universal AD converter — the
converters of high speed are of the poor resolution and vice versa
— accurate (large number of bits) converters are rather slow.

e The most commonly used are the SAR (Successive
Approximation Register) and Delta-Sigma converters. SAR
converters are very accurate, operate with relatively high
accuracy (16-bit) and wide range of speed — up to 1 MSPS.

 The Delta-Sigma converters (16-bit and 24-bit) are used when
high accuracy and resolution are required. Recently, these
converters are still in significant progress.

, lnvzeting in your fieture ﬁ * X
10/6/2011. TAMOP — 4.1.2-08/2/A/KMR-2009-0006 A L 76
* *

—f—
New Hun;my Developmaent Flan



N Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:
W Introduction and Analog to Digital conversion

Successive Approximation Register (SAR)

The principle of operation of the SAR device resembles the weighting on the
beam scale. Successively the standard voltages in sequence: U./2, U,./4,
U.i8... U,/2" are connected to the comparator. These voltages are compared

with converted U, voltage.

analogue
signal
— SH +
U I

" - digital
Ue.om l signal

£ Controlled Controlled —

U..¢ voltage |« voltage » register |—

source source —
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SAR (cont’)

If the connected standard voltage is smaller than the converted voltage in the
register this increment 1s accepted and the register sends to the output 1 signal. If
the connected standard voltage exceeds the converted voltage the increment 1s
not accepted and register sends to the output 0 signal.

Ucomp
| | Ux
Uref/4 I U f/l 6Uref/3 2
Ued8
Uref/z
I 0 1 1 1 tme
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Delta-Sigma AD converters

The delta-sigma converters utilize the oversampling technique. Due to many
advantages (most of all the best resolution — even up to 24-bit) these converters
are currently very intensively developed. The principle of operation of such
converters 1s presented in following figure:

analogue
signal integrator
nullcomparator
i D latch rectangular
= {-P signal
+ D O :
_ " 1 biv/ky,
re |

________________________________________
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Delta-Sigma AD converters (cont’)

In delta-sigma conversion the delta modulation is used (hence the name of this
device). In delta modulation the width of the impulse is proportional to the value
of converted signal. As the 1-bit ADC quantizer operates the comparator and
latch switched with the frequency Kf, forced by the clock (K is the oversampling
factor). The output voltage 1s converted again to analogue form by 1-bit DAC.
The adder in the input compares the input value and the output signal. Due to
feedback the average value of output signal should be equal to the value of the
input signal. If the input signal increases the integrating circuit need more time to
obtain the zero value, the width of the impulse decreases and the average value
of the output signal increases.
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Delta-Sigma AD converters (cont’)

The integrator and output signal of the delta-sigma converter as the
dependence of the sine input signal.

Output of the integrator
/

/ rectangular signal

(LI O i
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Delta-Sigma AD converters (cont’)

The important advantage of the delta-sigma converter is the noise
suppression. To obtain a noise suppression of about 40 dB it is
necessary to apply a oversampling factor equal to 64.

X(f) sine signal

noise

1
fi2

»
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Performance trade-offs of ADC
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In the realization of the ADC converters improving the sample rate and the
resolution at the same time are conflicting requirements.
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Available ADC on the market

Part Type Bits | Sampling rate | Manufacturer | Price, $
ADC180 |Integration |26 |2048ms Thaler 210
ADS1256 | Delta-sigma | 24 | 300kHz Texas 9
AD7714 |Delta-sigma |24 | 1kHz AD 9
AD1556 | Delta-sigma |24 | 16kHz AD 27
MAX132 | Integration |18 |63ms Maxim 8
AD7678 |SAR 18 | 100kHz AD 27
ADS8412 | SAR 16 |2MHz AD 23
MAX1200 | Pipeline 15 | IMHz Maxim 20
AD9480 | pipeline 500MHz AD 200
MAX105 | Flash 6 800MHz Maxim 36
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Characteristics of ADC per application

Application Architecture |Resolution | Sampling rate
_ SAR 10-16 bits | 85-500 kHz
Audio . :
Delta-sigma | 14-18 bits | 48-50kHz
Medical SAR 8-16 bits | 50-500 kHz
edica Delta-sigma | 16 bits 192 kHz
Aut ¢ ol SAR 8-16 bits | 40-500 kHz
Htomatic contro Delta-sigma | 16 bits 250Hz
Wirel SAR 8 bits S 70KH
TEIeSS comm. Delta-sigma | 13 bits “
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Digital- and Neural Based Signal Processing & Kiloprocessor Arrays:

Summary

Fundamental 1ssues: representation capabilities, learning, generalization.

Collection of algorithms to solve highly complex problems in real-time (in
the field of IT) by using classical methods and novel computational
paradigms routed 1n biology.

ADC has three main steps: sampling, quantization and coding.

The quantitative measure of the range over which the spectrum 1is
concentrated 1s called the bandwidth of signal.

If a band limited signal 1s sampled with sampling frequency f,> 2B then it
can be uniquely reconstructed form its samples.

Quantization 1s concerned to mapping sampled signal into rounded signal
which may have only a finite number of values.

In the realization of the ADC converters improving the sample rate and the
resolution at the same time are conflicting requirements.

Next lecture: Description digital signals and systems in time domain.
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