
Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

BME MIT Tanszéki Munkaközösség

DIGITÁLIS JELFELDOLGOZÁS
Segédlet a „Digitális jelfeldolgozás” (BMEVIMM4084) tárgyhoz

MIT-VIMM4084-01

Kézirat, kizárólag a BME hallgatóinak használatára

2008. szeptember 17.



Szerzők:

Balogh László és dr. Kollár István: 3. fejezet

Dr. Kollár István: 1.4., 1.5., 2., 7.2.3., 7.3. (al)fejezetek, 1a-c mellékletek

Dr. Péceli Gábor előadásai alapján írta dr. Németh József : 1.1., 1.2., 1.3., 4., 5.,
7., 8. (al)fejezetek

Dr. Sujbert László: 6. fejezet

A 1., 4.-5., 7.-8. fejezetek ábráinak megrajzolásában közreműködött Vargha Balázs,
a 2.-4., 6. és 7. fejezetek ábráinak elkészítésében Bank Balázs.

c© Balogh László, Kollár István, Németh József, Péceli Gábor, Sujbert László, 2000-2008

Közzéteszi: BME Méréstechnika és Információs Rendszerek Tanszék
MIT-VIMM4084-01, 2008. szeptember 17.
Csak belső használatra, a BMEVIMM4084 (Digitális jelfeldolgozás) tárgyhoz.
Nyomtatás: Műegyetemi Kiadó
Terjedelem: 171 oldal



Tartalomjegyzék

Előszó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1. A mérési eljárások koncepcionális alapjai 7
1.1. Jel és rendszer a mérési eljárásban . . . . . . . . . . . . . . . . . . . . . 7
1.2. A modellalkotás célja és alapfogalmai . . . . . . . . . . . . . . . . . . . 7
1.3. Modell a mérési eljárásban . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Modellillesztés, paraméterbecslés . . . . . . . . . . . . . . . . . . . . . 10
1.5. A jelek csoportosítása és leírása . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1. Determinisztikus jelek . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2. Sztochasztikus jelek . . . . . . . . . . . . . . . . . . . . . . . . . 17

1a. Melléklet: A Dirac-impulzus . . . . . . . . . . . . . . . . . . . . . . . . . 25
1b. Melléklet: Valószínűségi változók második momentuma . . . . . . . . . . 26
1c. Melléklet: Komplex normális valószínűségi változók . . . . . . . . . . . . 27

2. Mintavételezés 29
2.1. Analóg jelek digitális reprezentációja . . . . . . . . . . . . . . . . . . . 29
2.2. Mintavételezés az időtartományban . . . . . . . . . . . . . . . . . . . . 29
2.3. Az időfüggvény helyreállítása . . . . . . . . . . . . . . . . . . . . . . . 33
2.4. Mintavételezés a frekvenciatartományban . . . . . . . . . . . . . . . . . 34
2.5. A közelítő mintavételi tétel . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6. A DFT, interpoláció FFT segítségével . . . . . . . . . . . . . . . . . . . 35
2.7. Sztochasztikus jelek mintavételezése . . . . . . . . . . . . . . . . . . . . 37
2.8. Sávkorlátozott jelek mintavételezése . . . . . . . . . . . . . . . . . . . . 37
2.9. Alul- és túlmintavételezés . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. Kvantálás 41
3.1. A kvantálási hiba vizsgálata . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2. A kvantáló kimenete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3. A kvantálás és az additív zajmodell összehasonlítása . . . . . . . . . . . 48
3.4. Kvantálási tételek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1. A kvantált jel visszaállítása . . . . . . . . . . . . . . . . . . . . 50
3.5. Sheppard-korrekciók, a momentumok torzítása . . . . . . . . . . . . . . 50

3.5.1. Dither használata . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6. A fehér zajspektrum feltétele . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7. Néhány kiegészítő megjegyzés . . . . . . . . . . . . . . . . . . . . . . . 54

3



TARTALOMJEGYZÉK

4. Átlagolási eljárások 55
4.1. Ideális átlagolás . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1. Rekurzív kiszámítás . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2. Predikciós-korrekciós alak . . . . . . . . . . . . . . . . . . . . . 56
4.1.3. Az alkalmazott jelölések . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4. Az ideális átlagolás tulajdonságai . . . . . . . . . . . . . . . . . 58

4.2. Exponenciális átlagolás . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3. Csúszóablakos vagy mozgó átlagolás . . . . . . . . . . . . . . . . . . . . 61
4.4. Frekvenciatartománybeli jellemzés . . . . . . . . . . . . . . . . . . . . . 61

4.4.1. Egyenletes mintavételezés, harmonikus-analízis . . . . . . . . . . 62
4.4.2. Átviteli karakterisztika, átviteli függvény . . . . . . . . . . . . . 62
4.4.3. Két egyszerű példa . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5. A mozgó átlagolás frekvenciatartománybeli jellemzése . . . . . . . . . . 65
4.5.1. A mozgó átlagolás átviteli függvénye . . . . . . . . . . . . . . . 65
4.5.2. A mozgó átlagolás amplitúdókarakterisztikája . . . . . . . . . . 66
4.5.3. A mozgó átlagolás fáziskarakterisztikája . . . . . . . . . . . . . 66
4.5.4. A mozgó átlagolás szelektivitása, alkalmazása . . . . . . . . . . 66
4.5.5. A mozgó átlagolás pólus-zérus képe . . . . . . . . . . . . . . . . 68

4.6. Az exponenciális átlagolás a frekvenciatartományban . . . . . . . . . . 70
4.6.1. Átviteli függvény, amplitudó-karakterisztika, pólus-zérus kép . . 70
4.6.2. Általánosítás az ideális átlagolásra . . . . . . . . . . . . . . . . 70

5. Rekurzív DFT, a megfigyelőelmélet alapjai 72
5.1. Bevezetés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2. DFT szűrő és DFT sorfejtő . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1. Fésűs szűrő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2. DFT szűrő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3. Megvalósítás valós együtthatójú, másodfokú rezonátortagokkal . 77
5.2.4. DFT sorfejtés, jelspektrum áthelyezése . . . . . . . . . . . . . . 79

5.3. A DFT alkalmazása spektrumbecsléshez . . . . . . . . . . . . . . . . . 81
5.3.1. FFT-analizátor . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2. Sávszelektív Fourier transzformációs eljárás . . . . . . . . . . . 83

5.4. A modell beépülése a mérési eljárásba . . . . . . . . . . . . . . . . . . . 85
5.4.1. Jelmodell és modellkópia . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2. Megfigyelő tervezése lineáris rendszerhez . . . . . . . . . . . . . 86
5.4.3. Véges lépésben konvergáló megfigyelő . . . . . . . . . . . . . . . 87
5.4.4. A megfigyelőelmélet alkalmazása . . . . . . . . . . . . . . . . . 89

5.5. A DFT szűrő megfigyelő alakban . . . . . . . . . . . . . . . . . . . . . 89
5.5.1. Az „egyenértékűség” bizonyítása . . . . . . . . . . . . . . . . . . 90
5.5.2. Általánosítás másfajta szűrőkre . . . . . . . . . . . . . . . . . . 92
5.5.3. A DFT szűrő és a megfigyelő alak összehasonlítása . . . . . . . 93

4



TARTALOMJEGYZÉK

6. Digitális szűrők 95
6.1. Bevezetés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2. IIR szűrők tervezése . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3. FIR szűrők tervezése . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4. Gyakorlati kérdések . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7. Átlagolási eljárások, ablakozás 112
7.1. Bevezető . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2. Az átlagolások statisztikai jellemzése . . . . . . . . . . . . . . . . . . . 113

7.2.1. Várható érték . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.2. Variancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.3. Korrelált minták átlagolása . . . . . . . . . . . . . . . . . . . . 118

7.3. A DFT tulajdonságai, a periodogram . . . . . . . . . . . . . . . . . . . 122
7.3.1. A periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3.2. A korrelációbecslő varianciája . . . . . . . . . . . . . . . . . . . 129

7.4. Ablakozási eljárások . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.1. Spektrumszivárgás és picket fence jelenség . . . . . . . . . . . . 131
7.4.2. Ablakozás . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8. Modellillesztés 138
8.1. Bevezető . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1.1. A fejezet tartalma . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2. Regresszió-számítás . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2.1. Regresszió-számítás teljesen specifikált statisztikai jellemzőkkel . 141
8.2.2. Regresszió-számítás részben specifikált statisztikai jellemzőkkel . 142

8.3. Adaptív lineáris kombinátor . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4. Iteratív modellillesztés . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4.1. Newton módszer . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4.2. A legmeredekebb lejtő módszere . . . . . . . . . . . . . . . . . . 151
8.4.3. Az R mátrix diagonalizálása; a szélsőérték-keresés konvergenci-

ájának vizsgálata . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.4.4. LMS módszer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.4.5. Kombinált módszerek . . . . . . . . . . . . . . . . . . . . . . . . 161

8.5. Általánosabb kritériumfüggvény Taylor sorfejtése . . . . . . . . . . . . 162
8.5.1. Modellillesztés a Taylor-sorfejtett kritériumfüggvény

alapján . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.6. Adaptív végtelen impulzusválaszú rendszerek . . . . . . . . . . . . . . 163

8.6.1. Visszavezetés FIR problémára (EE) . . . . . . . . . . . . . . . . 165
8.6.2. A kimeneti hibán alapuló modellillesztések (OE) . . . . . . . . . 166

Irodalomjegyzék 169

5



Előszó

A segédlet egy majdani jegyzet előzetes kézirata. Ezért az ábrák egy része még gyenge
minőségű, és a gondos ellenőrzés ellenére lesznek még elgépelések, sajtóhibák. Kérjük,
hogy aki ilyeneket talál, akár a kézzel javított példánnyal, akár email-en keresse meg
Kollár Istvánt (Informatika épület E szárny IV. em. IE440, 463-1774, fax 463-4112,
kollar@mit.bme.hu), hogy a hibákat bejelölhessük, és a legközelebbi kinyomtatásban
kijavíthassuk.

Budapest, 2004. szept. 15.

A szerzők

6



1. fejezet

A mérési eljárások koncepcionális
alapjai

1.1. Jel és rendszer a mérési eljárásban

A mérés információgyűjtésből és információfeldolgozásból áll. Az információfeldolgozási
eljárások tárgyalásához a jel- és rendszerelmélet eszközei biztosítanak keretet.

A megfigyelt jelenségre vonatkozó információt valamilyen jel szállítja. A jelenség
(jel) objektumok közötti kölcsönhatás kísérője, amely kölcsönhatás résztvevői rend-
szerbe foghatók össze. A figyelembe vett kölcsönhatások és kölcsönös összefüggések
kijelölik a rendszert alkotó objektumok halmazát. A rendszer működésének leírásával
a kölcsönhatásokban lejátszódó információ- és energiacsere mechanizmusait ragadjuk
meg.

Amikor mérést végzünk, a mérőeszköz kölcsönhatásba lép a mérendő objektummal,
azaz rendszerrel van dolgunk. Rendszerint kölcsönhatások láncolatáról van szó, ennek
megjelenítésére vezetjük be a jelátviteli csatornát (avagy megfigyelési csatornát).

Mérési eljárás: valamely objektum jobb megismerése érdekében végzett információ-
gyűjtés és információfeldolgozás

Jel: egy konkrét jelenség olyan jellemzője, amely információt hordoz valamely objek-
tumra vonatkozóan

Rendszer: kölcsönhatások és kölcsönös összefüggések által összekapcsolt objektumok
halmaza

Kölcsönhatás: objektumok kölcsönös egymásra hatása által létrejövő energiafolya-
matok, információátadással járó folyamatok

(Irodalom: Schnell I. kötet, Előszó, Méréselmélet rész bevezetője, 1.2.3 és 2.1)

1.2. A modellalkotás célja és alapfogalmai

A modell célja ismeretek reprezentálása. Az a priori (eleve meglévő) ismeretek össze-
gyűjtése és rendszerezése, a modellezés munkafeltétel mind a mérés megtervezéséhez
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1. A MÉRÉSI ELJÁRÁSOK KONCEPCIONÁLIS ALAPJAI

(mely ponton, hogyan mérjünk, vagy hogyan gerjesszük a rendszert?), mind a megfi-
gyelések feldolgozásához.

A rendszerek struktúrájukkal, paramétereikkel illetve adott pillanatbeli állapota-
ikkal együttesen írhatók le.

Egy kísérlet vizsgálatához a rendszer tartós összefüggéseinek ismerete biztosít ke-
retet. Ezeket az összefüggéseket nevezzük a rendszer struktúrájának. Ha a modell,
például, egy koncentrált paraméterű hálózat, akkor a strukturális ismeretek határoz-
zák meg a hálózat topológiáját. A topológia megadásával azt feltételezzük, hogy az
ismeretlen rendszer ismert építőelemekből felépíthető, és egyúttal egy adott modell-
osztályra szűkítjük le a lehetséges rendszerek halmazát.

Azokat az értékeket, mennyiségi viszonyokat, amelyek nem állandók, vagy nem
rögzítettek a rendszer paramétereinek hívjuk. Ilyen lehet például egy lineáris dinami-
kus hálózat állapotváltozós leírásában az abban szereplő mátrixok nullától különböző
elemei.

Azok a paraméterek, amelyek a rendszeren belüli kölcsönhatások függvényében
változnak, és a rendszer pillanatnyi energiaviszonyait, állapotát tükrözik, állapotválto-
zóknak hívjuk. Ilyen például a lineáris dinamikus rendszerek tárolóinak a tartalma.

Modell: a rendelkezésre álló ismereteink összessége

Struktúra: a rendszer elemei közötti tartós összefüggések

Paraméter: a tartós összefüggések mennyiségi viszonyai

Állapot: kölcsönhatások adott időpontra vonatkozó viszonyai

(Irodalom: Schnell I. kötet, 1.1-1.3 fejezetek)

1.3. Modell a mérési eljárásban

A valódi rendszerről már az információgyűjtés előtt rendelkezünk bizonyos előzetes (a
priori) ismeretekkel, amelyek között egyrészt szelektálunk (bizonyos részleteket elha-
nyagolunk), másrészt rendszerezünk, tagolunk. Végeredményben az ismeretlen rend-
szert úgy képzeljük el, hogy az bizonyos ismert építőelemekből felépíthető. A való-
ságot a továbbiakban már „ezen az ablakon keresztül nézzük”, vagyis a mérés célja
ezen modell struktúrájának (S), paramétereinek (a), ill. állapotának (x) a (teljesebb)
megismerése (1.1. ábra).

Amikor a mérőeszközzel megfigyeléseket gyűjtünk, figyelembe kell vennünk a fizikai
közeg különböző hatásait és az ezekből származó pontatlanságokat. Ennek megjelení-
tője a modellben a megfigyelési csatorna. Mivel az összes kölcsönhatást nem tudjuk
figyelembe venni, ezért általában sztochasztikus leképzéssel írjuk le a megfigyelések
megszületését. Ez a leggyakrabban azt jelenti, hogy a modellben egy megfigyelési zaj
adódik hozzá az elvileg mérhető értékekhez („additív” zaj).

Összegezve tehát: a keresett mennyiséghez (pl. x) nem férünk hozzá közvetlenül,
az információfeldolgozásnak a szóródó megfigyelésekből (y(n)) kell kiindulnia, viszont
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1.3. MODELL A MÉRÉSI ELJÁRÁSBAN

Paraméterek
Állapotok
Struktúrák

Megfigyelések Becslések/Döntések

csatorna
(valószínűségi)

leképzés

becslési/döntési
eljárás

paraméter/állapot
tér megfigyelési tér becslési/döntési tér

Modell: a rendelkezésre
álló ismeretek összessége

Inverz modell: a megfigyelésekből
következtetünk az állapotra,
paraméterre

a

a

x

x

s
y

y

â (becsült paraméterek)

â (becsült paraméterek)

x̂ (becsült állapotok)

x̂ (becsült állapotok)

szóródás bizonytalanság

1.1. ábra. A valóságról hírt hozó megfigyeléseket (y) az ismereteinket leíró modell
alapján származtatjuk. A becsléshez e modell alapján kell „visszaszűrni” a megfigye-
léseket, ezt jelenti az inverz modell. A bizonytalanság nem küszöbölhető ki teljesen a
becslésben.

rendelkezünk egy modellel, amely kifejezi a megfigyelések keletkezéséről alkotott isme-
reteinket. Az információfeldolgozás e modell alapján kell, hogy „visszaszűrje” a meg-
figyeléseket, vagyis egy „inverz modell” alapján tervezhető meg. Ettől eltérő meggon-
dolások alapján is javasolható eljárás a jelfeldolgozásra, (pl. „végezzünk átlagolást a
megfigyeléseken, mert az csökkenti a szórást”), de ha az valóban jól működik, akkor
valahol benne szerepel az a modell, amely alapján a megfigyelések származtathatók.
A mérés és a modellezés valójában elválaszthatatlan. A modell mindig beépül a mérési
eljárásba.

A megfigyelések pontatlansága nem küszöbölhető ki teljes mértékben a feldolgo-
zással, ezért a pontos érték helyett egy sáv lesz az eredmény, amelyet többféleképpen
jellemezhetünk. Tehát a keresett mennyiség becslője (pl. x̂) mellé mindig támpontot
kell adni a becslő bizonytalanságát illetően is. A bizonytalanságot rendszeres és véletlen
hibák okozhatják, amelyek közül az utóbbiak fokozatosan kiátlagolhatók a feldolgozott
minták számának növelésével.

Megjegyzés: Abban az esetben, ha egy statikus jellemzőt, pl. egy stacionárius va-
lószínűségi változó szórását kell becsülni, a modellben nem játszik szerepet az idő.
Ha azonban a modell dinamikus, akkor a modell invertálása elvi problémába ütkö-
zik. A modellben előforduló késleltetés inverze ugyanis egy „siettetés” lenne, ami nem
megvalósítható. Így hát az időbeni késedelmet fel kell vállalni, ami az eredmény hasz-
nálhatóságát korlátozhatja. Például visszacsatolt szabályozási körben a késedelem 180
fokos fázistolást eredményezhet, ami instabillá teheti a rendszert.

(Irodalom: Schnell I. kötet, 1.1.5, 1.2.3, 2.1., 2.2. fejezetek)
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1. A MÉRÉSI ELJÁRÁSOK KONCEPCIONÁLIS ALAPJAI

1.4. Modellillesztés, paraméterbecslés

Ha mérési eredményeink vannak, legtöbbször valamilyen származtatott mennyiséget
szeretnénk meghatározni: frekvencia, szinusz-amplitúdó, stb. De hogyan? Az ad hoc
módszerek sokszor segítenek, de cserben is hagyhatnak.

A legkézenfekvőbbnek látszó módszer a legkisebb négyzetek módszere. Ez azt je-
lenti, hogy a mért értékeket egy paraméteres modellel közelítjük, és a paramétereket
úgy állítjuk be, hogy a modellből számított és a mért értékek különbségeinek négyze-
tösszegét minimalizáljuk (legkisebb négyzetes vagy LS módszer).

Felmerül a kérdés, hogy az LS módszer mennyire jó, és nincs-e ennél jobb eljárás?
Erre a válasz az, hogy amennyiben ismerjük a megfigyelés modelljét, beleértve a zaj
beépülését a mért eredményekbe, akkor általában van. Ezt maximum likelihood mód-
szernek nevezik. Bizonyos speciális esetekben az LS módszerre vezet, de nem mindig.

A maximum likelihood módszer lényege a következő.

1. Felírjuk a megfigyelések együttes sűrűségfüggvényét. Ez tartalmazza a meghatá-
rozni kívánt paramétereket.

2. A fenti függvényt (vagy annak logaritmusát, ha az egyszerűbb, hiszen a logaritmus-
függvény monoton) maximalizáljuk a paraméterek változtatásával. A maximali-
zálás gyakran (de nem mindig) deriválással történhet.

Példa
Határozzuk meg a középérték becslőjét N független, normális eloszlású megfigyelésből.
Megoldás
Az együttes sűrűségfüggvény a következő:

L(z, μ) = f(z, μ) =
1

(√
2π
)N

σN
e−

(z−µµµ)T (z−µµµ)

2σ2 (1.1)

Ennek logaritmusát célszerű minimalizálni.

ln L(z, μ) = −N

2
ln(2π) − N ln(σ) − 1

2σ2

N∑

i=1

(zi − μ)2 (1.2)

Jól látszik, hogy az első két tag nem függ μ-től, ezért a harmadik tagot kell maxi-
malizálni, vagyis minimalizálni a

N∑

i=1

(zi − μ)2 (1.3)

kifejezést (tehát LS problémára jutottunk). Ennek minimuma:

∂
N∑

i=1

(zi − μ)2

∂μ
=

N∑

i=1

−2(zi − μ) = 0 (1.4)
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vagyis μ̂ = 1
N

N∑

i=1

zi, a számtani középérték.

A maximum likelihood becslőnek nagyon kellemes tulajdonságai vannak:

• aszimptotikusan torzítatlan (nagy N -ekre a torzítás nullához tart)

• aszimptotikusan hatásos (leegyszerűsítve nagy N -ekre a varianciája adott isme-
reteket felhasználva a lehető legkisebb)

• aszimptotikusan normális eloszlású

• egy függvény becslője egyenlő a becslő függvényével (vagyis mindegy, hogy pl. a
σ paramétert, vagy a σ2 paramétert becsüljük-e, és abból számítjuk a másikat)

Mikor jobb egy becslő a másiknál? Két jellemzőt szoktak megvizsgálni: a torzítást
(az a jó, ha egy becslő torzítatlan) és a varianciát vagy szórásnégyzetet (az a jó, ha
egy becslő varianciája kicsi).

A végeredményképpen kapott becslőt hibájával szokták jellemezni. A felhasználót
azonban elsősorban nem ez érdekli, hanem az, hogy a keresett érték milyen inter-
vallumba esik nagy valószínűséggel (hibahatár). Ez az ún. konfidencia-intervallum.
Példaként kiszámítjuk a középérték konfidencia-intervallumát.

A későbbiekben látni fogjuk, hogy az átlagérték varianciája N -ed része a minták
varianciájának: var{μ̂ML} = σ2/N . Ebből felírható például a következő egyenlőtlenség
a (2,5%,97,5%) sávra:

P

(

z2.5% <
μ̂ML − μ

σ/
√

N
< z97.5%

)

= 0.95 . (1.5)

Ebből átrendezéssel felírható a 95%-os konfidencia-állítás μ-re:

μ̂ML − z97.5%
σ√
N

< μ < μ̂ML − z2.5%
σ√
N

. (1.6)

Ezt azért hívják konfidencia-állításnak és nem valószínűségi állításnak, mert az
ismeretlen paraméterre ad meg határokat: itt nem a jellemzett mennyiség, hanem a
határok a valószínűségi változók.

1.5. A jelek csoportosítása és leírása

Manapság, amikor annyi minden digitális, az első kérdés az, hogy idősorral (minták so-
rozatával), vagy folytonos (idő)paraméterű jellel van-e dolgunk (a paraméter nemcsak
idő, hanem például helykoordináta is lehet – mi a következő fejtegetésekben mindig
időt emlegetünk, de minden paraméterre igazak az állítások). A digitális jelfeldolgozás
egyik megközelítése az, hogy idősorból indul ki, és ennek tulajdonságait és feldolgozási
lehetőségét vizsgálja a diszkrét időtartományban.

Ebben a tárgyban abból fogunk kiindulni, hogy a vizsgált jelenségek általában foly-
tonos időparaméterűek, és amikor jelfeldolgozásról beszélünk, akkor a folytonos idejű
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jelek által hordozott információt akarjuk kinyerni. Ebben a megközelítésben idősorunk
akkor van, ha ennek a folytonos idejű jelnek a mintáit vizsgáljuk. A kettő ekvivalenci-
ájának lehetőségeivel foglalkozik a mintavételezés.

A folytonos idejű jelek egy ésszerű csoportosítása látható az 1.2. ábrán.

1.2. ábra. A jelek csoportosítása

A felsorolt jelcsoportok lefedik a gyakorlatban előforduló jelek legtöbbjét.
Amikor jelekről beszélünk, akkor két dolog szokott keveredni. Egyrészt beszélhe-

tünk a valódi jelekről és az őket létrehozó kísérletről, másrészt a jeleket leíró matema-
tikai modellekről. Az alábbiakban mindkettőre kísérletet teszünk, de mindig tartsuk
szem előtt, hogy a kettő nem ugyanaz. A matematikai modell absztrakció, ennek il-
leszkedését a valósághoz mindig ellenőrizni és értelmezni kell.

Ebben a tárgyban lineáris rendszerekkel fogunk foglalkozni, ami azt jelenti, hogy
jelek összetevőire egyenként kiszámítható és összegezhető a rendszer válasza (szuper-
pozíció). A modellek tehát a jelek additív összetevőit írják le, és elegendő az összetevők
egyenkénti vizsgálata.

Az egyes jelek talán legfontosabbnak látszó tulajdonsága az, hogy a generáló kísér-
letet azonos körülmények között megismételve a kapott jel egybevágó-e a korábbival,
vagy nem. Ha egybevágó, akkor determinisztikus (nem véletlenszerű) jelről beszélünk,
vagyis a jelenség által meghatározott formájú jelről (modellje a determinisztikus jel).
Ha ez nem igaz, akkor a jelről azt mondjuk, hogy véletlenszerű (modellje a sztochasz-
tikus folyamat).

1.5.1. Determinisztikus jelek

A determinisztikus jel adott formájú, és az alábbiakban ezt a formát próbáljuk meg
megfelelőképpen jellemezni. Célszerűnek látszik a periodikus jeleket külön kezelni, hi-
szen ezek gyakran előfordulnak, és ezért sokszor van dolgunk velük.

Periodikus jelek

Periodikus egy jel, ha adott Tp idővel eltolva önmagát kapjuk. Ez szépen hangzik,
de a feldolgozás szempontjából nem elegendő. A periodikus jeleket Fourier-sorba is
akarjuk fejteni. Szerencsére a gyakorlatban elforduló jelek kellő pontossággal Fourier-
sorba fejthetők – elvben vannak ugyan olyan jelek, amelyeknek nincsen Fourier-sora,
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vagy van megszámlálhatóan végtelen pontjuk, ahol a sor nem konvergál vagy nem a
jelhez konvergál, de ezek gyakorlati jelentősége elhanyagolható. A továbbiakban olyan
periodikus jelekkel fogunk foglalkozni, melyek Fourier-sora létezik, és ez véges számú
diszkrét ponttól eltekintve előállítja a jelet.

A legkézenfekvőbb periodikus jel a szinuszjel. Ezt 3 paraméter egyértelműen meg-
határozza:

x(t) = A1 cos(2πf1t + ϕ1) (1.7)

azaz az (A1, f1, ϕ1) számhármas. Ha tudjuk azt, hogy szinuszjellel van dolgunk, a
feldolgozásban ezek meghatározása a fontos, hiszen ezek már egyértelműen definiálják
a jelet. Mivel azonban a mérésekben a mérési csatorna offszetje és driftje gyakran nem
elhanyagolható, sokszor egy negyedik mennyiséget is figyelembe veszünk, a DC szintet,
akkor is, ha elvben tiszta szinusszal lenne dolgunk:

x(t) = A1 cos(2πf1t + ϕ1) + C (1.8)

Megemlítjük, hogy a szinuszos jelnek létezik egy másik reprezentációja is, amelyben a
fázishelyzetet úgy vesszük figyelembe, hogy az eltolt szinuszos jelet egy-egy nulla fázisú
szinuszjel és koszinusz-jel összegeként állítjuk elő, és így az A, B, C paraméterekkel
vett lineáris kombinációként áll elő a jel:

x(t) = A cos(2πf1t) + B sin(2πf1t) + C (1.9)

Egymással összevetve a (1.8) és (1.9) kifejezéseket, könnyen belátható, hogy A1 =√
A2 + B2, és ϕ1 = arctan(B/A) + (π ha A < 0), illetve A = A1 cos(ϕ1), és B =

−A1 sin(ϕ1).
Ennek a formának a paraméterbecslésekben van nagy jelentősége.
A szinuszos jel felírható két komplex exponenciális jel összegeként is, az Euler-

formula felhasználásával:

A1 cos(2πf1t + ϕ1) = C1e
j2πf1t + C−1e

−j2πf1t, (1.10)

ahol C1 = A1
2 ejϕ1 és C−1 = C1 (komplex konjugált).

A szinuszjel matematikai értelemben nem Fourier-transzformálható. A fejezet mel-
lékletében látni fogjuk azonban, hogy a komplex exponenciálishoz a Dirac-impulzus
felhasználásával hozzárendelhető egy Fourier-transzformált. Így a (1.10) kifejezés alap-
ján:

F {A1 cos(2πf1t + ϕ1)} = F
{
C1e

j2πf1t + C−1e
−j2πf1t

}

= C1δ(f − f1) + C−1δ(f + f1)

=
A1

2
ejϕ1δ(f − f1) +

A1

2
e−jϕ1δ(f + f1) (1.11)

A szinusz fontos jellemzője az átvitt teljesítmény. Mivel szívesen kezeljük a ±∞ közötti
teljes frekvenciatengelyt, általában úgy járunk el, hogy a ±f1 frekvenciákhoz rendelünk
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P1 = A2
1/4, P−1 = A2

1/4 teljesítményt. Látni fogjuk, hogy a többi jel feldolgozásakor
ez a hasznos forma.

Az ún. teljesítmény-spektrum, melyet így definiálunk, a szinusz két fontos jellem-
zőjét (A1, f1) tartalmazza, a fázist azonban nem. Még a DC-nek megfelelő C2 is hoz-
zárendelhető az f = 0 frekvenciához.

Amennyiben a periodikus jel összetett, akkor Fourier-sor formájában írjuk fel. Mi
a komplex Fourier-sort használjuk, mert így az eredmények könnyen összevethetők a
komplex Fourier-transzformáció eredményeivel:

x(t) =
∞∑

k=−∞

Cke
j2πkf1t, C−k = Ck (1.12)

A C−k = Ck feltétel azért fontos, mert ekkor lesz az összeg valós.
Könnyen belátható, hogy amennyiben a (1.8) szerinti jelről van szó, akkor a meg-

feleltetés A1 = 2|C1|, ϕ1 = arg(C1), C = C0, és P1 = A2
1/4 = |C1|2.

Megemlítjük, hogy a komplex együtthatókat a (1.12) kifejezésben szereplő komplex
exponenciális komplex konjugáltjával való szorzással és integrálással kaphatjuk meg:

Cn =
1

T

T∫

0

x(t)e−j2πkf1t dt =
1

T

T∫

0

∞∑

k=−∞

Cke
j2πkf1te−j2πnf1t dt. (1.13)

Ez azért van így, mert a T = 1/f1 hosszúságú intervallumban csak ez a függvénypár
az, melynek szorzata integrálva nem 0 (amit úgy szoktunk kifejezni, hogy a komplex
Fourier-sor bázisfüggvényei a periódus hosszúságú intervallumon egymásra mind orto-
gonálisak, hiszen a skaláris szorzatot az egyik függvénynek a másik függvény komplex
konjugáltjával való szorzata integráljaként definiáljuk):

1

T

T∫

0

ej2πkf1te−j2πnf1t dt =

{
1 ha k = n
0 egyébként.

(1.14)

A szinuszjelhez hasonlóan az összetett periodikus jelekhez is hozzárendelhető Fourier-
transzformált.

F
{

∞∑

k=−∞

Cke
j2πkf1t

}

=
∞∑

k=−∞

Ckδ(f − kf1) (1.15)

Nem periodikus jelek

Azok a jelek, melyek nem periodikusak, sokfélék lehetnek. Mi két fő csoportjukkal
foglalkozunk, a majdnem periodikus és a tranziens jelekkel.

Majdnem periodikus jelek
Majdnem periodikusnak nevezünk egy jelet akkor, ha periodikus komponensei van-
nak, de ezek összege nem periodikus. A gyakorlatban ez például akkor fordul elő, ha
két szinkronizálatlan periodikus jelgenerátor jelét összeadjuk vagy összeszorozzuk. Így
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kezelhetjük azt a szituációt is, amikor két szinuszos jelösszetevő szinkronizált ugyan,
de frekvenciaarányuk nem fejezhető ki két elég kicsi egész szám hányadosaként. A jel
szigorú értelemben periodikus ugyan, de a periódushossz nagyon nagy.

Matematikai modellként olyan szinuszos összetevők véges vagy végtelen összegét
használjuk, melyeknek nincs közös alapharmonikusa vagy ennek létezését nem vesszük
figyelembe.

x(t) =
∞∑

k=−∞

Cke
j2πfkt, C−k = Ck, f−k = −fk. (1.16)

A majdnem periodikus jelhez is hozzárendelhető Fourier-transzformált:

F
{

∞∑

k=−∞

Cke
j2πfkt

}

=
∞∑

k=−∞

Ckδ(f − fk) (1.17)

Tranziens jelek
Ha egy determinisztikus jelnek nincsen periodikus összetevője, akkor általában feltéte-
lezhetjük, hogy a jel előbb-utóbb nullává válik.1 Ezeket hívjuk tranziens jeleknek. Az
„eltűnést” matematikailag úgy értelmezzük, hogy ezek a jelek abszolút integrálhatók,
ami egyben azt is jelenti, hogy létezik a Fourier-transzformáltjuk.

A tranziens jelekre értelmezzük Fourier-transzformáltjukat, az ún. amplitúdó-spekt-
rumot:

F {x(t)} =

∞∫

−∞

x(t)e−j2πft dt = X(f) . (1.18)

Amennyiben a tranziens jel négyzetesen is integrálható (ez nem mindig igaz, de a
gyakorlatban szinte mindig), akkor értelmezhetjük az ún. tranziens korrelációt:

Rtr(τ) =

∞∫

−∞

x(t)x(t + τ) dt . (1.19)

Ez a jel szerkezetére nézve ad bizonyos információt. Észrevehetünk egy nagyon ér-
dekes összefüggést. Rtr(τ) nem más, mint a jelnek és tükörképének a konvolúciója.
Ezért Fourier-transzformáltja nem más, mint az amplitúdó-spektrumnak és komplex
konjugáltjának a szorzata:

F {Rtr(τ)} = F {x(−t) ⋆ x(t)} = X(f)X(f) = |X(f)|2 (1.20)

Ezt a mennyiséget energia-sűrűségfüggvénynek is hívják, és E(f)-fel jelölik. Ennek
az az oka, hogy E(f0)df megadja az f0 körüli df sávban szállított energia mennyiségét.

1Ez nem teljesen igaz, hiszen a modulált jelek például nem feltétlenül tartoznak egyik fenti kategó-
riába sem, mégsem tűnnek el, de az azért igaz, hogy a jelek egy fontos csoportja időben előbb-utóbb
nullává válik.
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1.3. ábra. Energetikai spektrumok mérése a) a sávteljesítmény mérése b) az
energia-sűrűségfüggvény mérése c) a teljesítmény-sűrűségfüggvény mérése d) a
keresztteljesítmény-sűrűségfüggvény mérése
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Ezt könnyű belátni, ha megvizsgáljuk az ebben a sávban (és −f0 körüli tükörképében)
működő sávszűrőt (1.3b ábra).

A sávszűrő kimenetének energiája valóban a következő (felhasználva a Parseval-
tételt):

E =

∞∫

−∞

y2(t) dt =

∞∫

−∞

|Y (f)|2 df (1.21)

=

∞∫

−∞

|X(f)H(f)|2 df ≈ |X(f0)|2df + |X(−f0)|2df (1.22)

= E(f0)df + E(−f0)df (1.23)

Az energia-sűrűségfüggvény nemnegatív, amint az definíciójából következik, és értel-
mezése is sugallja.

1.5.2. Sztochasztikus jelek

Itt egy filozófiai jellegű megjegyzést kell előre bocsátanunk. Számunkra a véletlen két
dolgot jelenthet. Egyrészt a kísérletek megismétlésekor előforduló „látható ok nélküli”
ingadozásokat, másrészt a megfelelő determinisztikus ismeretek hiányából vagy elha-
nyagolásából származó bizonytalanságot jelenti. Számunkra az ok azonban mindegy:
a fontos az, hogy a körülmények nem definiálják egyértelműen a kísérlet eredményét.

A sztochasztikus jelek matematikai modellje a sztochasztikus folyamat. Ez a való-
színűségi változó természetes általánosításaként fogható fel a legegyszerűbben: az elemi
események itt függvények, vagyis minden bekövetkezés egy-egy függvény. Ezeket min-
tafüggvénynek hívjuk. Egy mérés, látszólag a véletlentől függően, különféle megfigyelt
függvényeket eredményezhet, ezeket az eseteket egy-egy elemi eseménynek tekintjük,
melyek halmazaihoz valamekkora valószínűséget rendelhetünk hozzá (ld. 1.4 ábra).

A sztochasztikus folyamatot a bekövetkezhető események halmazán értelmezett va-
lószínűségi mérték definiálja, mely minden mérhető halmazra megmondja, mennyi a
halmaznak mint eseménynek a bekövetkezési valószínűsége. Így minden olyan esemény,
amelyhez ilyen halmazt lehet rendelni, valószínűséggel rendelkezik: például a [−2, 3]
intervallumon a +1 értéket meg nem haladó függvények halmazának megadható a
bekövetkezési valószínűsége. Az események, és így a halmazdefiníciók bonyolultak le-
hetnek, a sztochasztikus folyamat mint absztrakt fogalom vonzó, de kezelhetetlennek
látszik. Szerencse, hogy az információfeldolgozás szempontjából nem maguk az egyes
függvények, hanem a folyamat mintafüggvényeinek összességét jellemző paraméterek
az érdekesek. Ezért az a priori ismeretek (v. feltételezések), és a konkrét megfigyelé-
sek alapján a folyamat statisztikai eloszlásairól kell becsléseket tenni. Ez könnyít a
helyzeten, de sajnos nem eleget.

Ezen nehézségek miatt van nagy jelentősége az ún. Kolmogorov-féle alaptételnek.
Kolmogorov bebizonyította, hogy a fenti definíció ekvivalens a következővel. A függvé-
nyek t időpillanatban felvett értéke legyen x(t). Ez t paraméterű valószínűségi változó,
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Ω

ξ1

ξ2
ξj

x(t, ξ1)

x(t, ξ2)

x(t, ξj)

T

t1

Az első kísérlethez

A j-edik kísérlethez
tartozó időfüggvény

tartozó időfüggvény

1.4. ábra. A sztochasztikus folyamat, mint mintafüggvény-sokaság

hiszen értékét a konkrét bekövetkezés adja meg. Adjuk meg az összes x(t) valószínűségi
változó eloszlását, azután az összes x(t1), x(t2) valószínűségi változó pár eloszlását, és
így tovább, úgy, hogy az eloszlások mind kompatibilisek legyenek, vagyis az alacso-
nyabb rendszámú eloszlások a magasabb rendszámúak peremeloszlásai legyenek. A
tétel szerint ez a megadás, és a fenti megadás ekvivalens, vagyis a sztochasztikus fo-
lyamat felfogható úgy is, mint egy valószínűségi változó-sorozat, melyet eloszlásaik
egyértelműen definiálnak. Elegendő tehát paraméterfüggő eloszlás-seregben gondol-
kodnunk. Ezek segítségével azután különböző momentumokat definiálhatunk, melyek
már ésszerű eszközökkel vizsgálhatók.

Sztochasztikus folyamatoknál a leggyakrabban vizsgált, sokszor időfüggő momen-
tumok a következők:

• várható érték:
μx(t) = E{x(t)}

• átlagos négyzetes érték és variancia:
Ψ2

x(t) = E{x2(t)}, var{x(t)} = σ2
x(t) = Ψ2

x(t) − μ2
x(t)

• autokorrelációs függvény és autokovariancia-függvény (τ = 0 esetén ezek a fenti
két mennyiséget adják):
Rx(t, τ) = E{x(t)x(t + τ)}, Cx(t, τ) = Rx(t, τ) − μ2

x(t)

Stacionárius folyamatok

Az „összes” sztochasztikus folyamat így még mindig kezelhetetlenül általános. Nagy
jelentősége van viszont azoknak a folyamatoknak, melyek tulajdonságai az idő előre
haladtával nem változnak, hiszen a valóságban is van szép számú időben állandó sta-
tisztikai tulajdonságú jelenség, melynek modellje lehet az ilyen folyamat. Ezeket a
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folyamatokat (erősen) stacionárius sztochasztikus folyamatoknak hívjuk. Ilyenkor a
felvett változók együttes eloszlása időeltolásra nézve invariáns, vagyis az eloszlások
alakját csak a változók egymáshoz viszonyított helyzete szabja meg.

Ez az ismeret nagyban segítheti a mérést, és a mérések alapján a folyamatról
alkotott kép kialakítását. Matematikailag:

Fx1,x2,...xN
(z1, z2, ...zN , t1, t2, ...tN)

= Fx1,x2,...xN
(z1, z2, ...zN , t + t1, t + t2, ...t + tN) (1.24)

a t1, t2, ...tN időpontok tetszőleges megválasztása esetén, t-től függetlenül.
Sajnos eloszlásokat mérni eléggé körülményes, különösen, ha aránylag nagy pon-

tosságot követelünk meg. Ezért az előírt tulajdonságokat nemigen lehet ellenőrizni.
Redukáljuk tehát az igényeinket a mérhető mennyiségekre. Ezek a momentumok, a
E{xM} alakú, illetve E{∏M

i=1 xki(ti)} alakú mennyiségek. Ezek már ellenőrizhetők is
lehetnek, különösen, ha M ≤ 2. Amennyiben legalább az első- és másodrendű momen-
tumok időinvariánsak, a folyamatot gyengén stacionáriusnak nevezzük.

A legalább gyengén stacionárius sztochasztikus folyamatoknál a fenti momentu-
mok időinvariánsak (a következő felsorolás redundáns, hiszen például Ψ2 = R(0),
σ2 = Ψ2 − μ2 és var{x} = σ2(t), de a legfontosabb mennyiségeket fel szerettük volna
tüntetni):

μ(t) = μ

Ψ2(t) = Ψ2

var{x(t)} = var{x}
σ2(t) = σ2

R(t, τ) = R(τ)

C(t, τ) = C(τ) (1.25)

Amennyiben az autokorrelációs függvény időinvariáns, definiálhatjuk Fourier-transz-
formáltját:

F{R(τ)} =

∞∫

−∞

R(τ)e−j2πfτ dτ = S(f) . (1.26)

Figyeljük meg, hogy a mintafüggvények Fourier-transzformálásával nem kísérleteztünk
(ez általában a szokásos értelemben nem is létezik), ehelyett az autokorrelációs függ-
vény Fourier-transzformáltját vizsgáljuk. A mérési eljárásoknál lesz szó majd arról,
hogy a véges hosszúságon mért mintafüggvények azok, amelyek közvetlen Fourier-
transzformációval feldolgozhatók, és felhasználási lehetőségeiket is megvizsgáljuk.

Az S(f) függvényt teljesítmény-sűrűségfüggvénynek is hívják, mert S(f0)df meg-
adja az f0 körüli df sávban szállított teljesítmény mennyiségét. Ezt ismét könnyű
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belátni, ha bevezetjük erre a sávra (és −f0 körüli tükörképére) a H(f) sávszűrőt (1.3c.
ábra).

A sávszűrő kimenetének teljesítménye valóban a következő, felhasználva a „Híradás-
techniká”-ból tanult Syy(f) = Sxx(f)|H(f)|2 összefüggést:

P = Ψ2
yy = Ryy(0) =

∞∫

−∞

Syy(f) df (1.27)

=

∞∫

−∞

Sxx(f)|H(f)|2 df (1.28)

≈ Sxx(f0)df + Sxx(−f0)df (1.29)

A (1.26) összefüggést, tudniillik azt, hogy az autokorrelációs függvény Fourier-transz-
formáltja nem más, mint a teljesítmény-sűrűségfüggvény, Wiener-Hincsin összefüggés-
nek hívják.

A teljesítmény-sűrűségfüggvény nemnegatív, amint az a fenti levezetésből követke-
zik (a mért teljesítmény nem lehet negatív). Ez a tulajdonság természetesen valamilyen
formában meg kell, hogy jelenjen inverz Fourier-transzformáltjában, az autokorrelációs
függvényben is. S(f) nemnegativitása ekvivalens azzal, hogy az autokorrelációs függ-
vénynek pozitív szemidefinitnek kell lennie (ha ez nem teljesül egy adott függvényre,
akkor ez a függvény nem lehet autokorrelációs függvény). Ez azt jelenti, hogy a min-
táiból képzett korrelációs mátrix pozitív szemidefinit:

⎡

⎢
⎢
⎢
⎣

R(0) R(t1) R(t2) . . . R(tN−1)
R(t1) R(0) R(t1) . . . R(tN−2)

...
...

...
...

...
R(tN−1) . . . . . . R(t1) R(0)

⎤

⎥
⎥
⎥
⎦

(1.30)

Hasonló a helyzet az autokovariancia-függvénnyel, és ennek Fourier-transzformáltjával,
a kovariancia-teljesítmény-sűrűségfüggvénnyel is, ami nem meglepő, hiszen a két eset
között mindössze a kovariancia esetén nullára transzformált középérték a különbség.

Megemlítjük, hogy lehetséges két sztochasztikus folyamat együttes jellemzése is
(hogy összefüggésüket is vizsgálni tudjuk, például a rendszerek be- és kimenete kö-
zötti összefüggést). Ehhez definiáljuk a keresztkorrelációs függvényt (most már csak a
stacionárius esetben):

Rxy(τ) = E {x(t)y(t + τ)} (1.31)

A keresztkorrelációs függvény leírja a két jel közötti összefüggést. Definiálható Fourier-
transzformáltja, az ún. kereszt-teljesítmény-sűrűségfüggvény is:

Sxy(f) = F{Rxy(τ)} =

∞∫

−∞

Rxy(τ)e−j2πfτ dτ . (1.32)
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Amennyiben egy lineáris rendszer be- és kimenete x(t) ill. y(t), akkor igazak a követ-
kező összefüggések:

Sxy(f) = Sxx(f)H(f) (1.33)

Syx(f) = Sxy(f) (1.34)

Syy(f) = Sxx(f)|H(f)|2 (1.35)

Rxy(τ) = Rxx(τ) ⋆ h(t) (1.36)

Ryx(τ) = Rxx(τ) ⋆ h(−t) (1.37)

Ryx(τ) = Rxy(−τ) (1.38)

Ryy(τ) = Rxx(τ) ⋆ h(t) ⋆ h(−t) (1.39)

A korrelációs függvény és a teljesítmény-sűrűségfüggvény értelmezése

Az eddigiekben láttuk, hogy a két függvény egyenértékű, hiszen Fourier-transzformált
párok. Azt mondhatjuk, hogy a sztochasztikus folyamat szerkezetéről adnak felvi-
lágosítást: az utóbbi megmondja, milyen frekvencia környékén mekkora a hordozott
teljesítmény. Implicit módon ezt teszi az azonos információ-tartalmú autokorrelációs
függvény is, de kevésbé koncentrált módon: a szinuszos összetevő azonos frekvenciájú
koszinuszfüggvényként jelenik meg, az ismétlődő jelformák (csúcsok) jobban észreve-
hető ismétlődő csúcsokként mutatkoznak.

A korrelációs függvény közvetlen fizikai jelentése úgy fogalmazható meg, hogy lo-
kális maximumai arra utalnak: a jelben ismétlődő komponensek vannak. Különösen
fontos ez a keresztkorreláció esetén: a keresztkorrelációban megjelenő csúcsok helye és
nagysága a két folyamat közötti jelterjedési utak késleltetéseit és fontosságát mutatják.

A stacionaritás ellenőrzése

Láttuk, hogy a stacionaritás kellemes dolog. Felmerül azonban a kérdés: egyáltalán
hogyan ellenőrizhető a momentumok időinvarianciája? Hiszen ehhez végtelen, vagy
legalábbis nagyon sok realizációt kellene mérnünk és átlagolnunk. Erre gyakran nincsen
lehetőségünk sem, például egy műhold zajos jelét csak egyszer tudjuk megfigyelni.

Ilyenkor fizikai megfontolások segíthetnek. Ha nincs olyan időben változó kompo-
nens vagy jelenség, mely a jel jellemzőit időben befolyásolja, akkor feltételezhetjük,
hogy a stacionárius folyamat jó modell.

Ezzel együtt bajban vagyunk, ha a csak egyszer megfigyelhető jeleket is jellemezni
szeretnénk. Ebben segít az úgynevezett ergodikus hipotézis.

Ergodikus folyamatok

Amennyiben egyetlen realizáció áll csak rendelkezésünkre, akkor ésszerűnek látszik az a
gondolat, hogy ennek vizsgáljuk meg idő szerinti átlagait. Mikor lesznek ezek azonosak
a sokaság szerinti átlagokkal?
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Nyilvánvalóan szükséges feltétel, hogy a folyamat stacionárius legyen. Az ergo-
dicitás azt jelenti, hogy a következő teljesül: pl. az első két momentumra (gyenge
ergodicitás):

E{x(t)} = μx = lim
T→∞

1

T

T∫

0

x(t) dt

E{x2(t)} = Ψ2
x = lim

T→∞

1

T

T∫

0

x2(t) dt

E{x(t)x(t + τ)} = R(τ) = lim
T→∞

1

T

T∫

0

x(t)x(t + τ) dt (1.40)

Az integrálás a (0, T ) intervallum helyett a (-T/2,T/2) intervallumra is ugyanúgy
felírható.

Szemléletesen annyit mondhatunk, hogy amennyiben x(t) és x(t+ t0) valószínűségi
változók t0 növelésével egyre függetlenebbé válnak, akkor a mért függvényt megfelelően
hosszú szeletekre vágva a kapott függvénydarabok úgy viselkednek, mintha különböző
realizációkból származnának, és ilyenkor az ezek fölött mint sokaság fölött végzett átla-
golás ekvivalens a ténylegesen a realizációk fölötti átlagolással. Ez az állítás közvetlenül
nemigen ellenőrizhető, de fizikai megfontolásokkal alátámasztható.

Szemléletesen azt mondhatjuk, hogy az ergodicitás akkor nem teljesül, ha az egyes
realizációk valamilyen átlagértékükben különböznek egymástól. Más szóval, a létrehozó
jelenségben van valamilyen memória, mely realizációnként beáll, és a realizáció során
megmarad. Ha nincs okunk ilyen memória létezését feltételezni, akkor az ergodikus
hipotézis általában teljesül.

Egyszerű példa memóriával rendelkező jelenségekre a közönséges flip-flop kimeneté-
nek viselkedése a tápfeszültség bekapcsolása után. Ez általában véletlenszerűen beáll,
és ezután úgy is marad. A kimenet modellje tehát stacionárius, de nem ergodikus szto-
chasztikus folyamat, melynek realizációi a két konstans függvény. Az idő szerinti átlag
az egyik konstans, míg a sokaság szerinti átlag a két konstans közötti érték.

Bebizonyítható, hogy ha

lim
T→∞

1

T

T∫

−T

(

1 − |τ |
T

)

R(τ) dτ = 0 , (1.41)

akkor a folyamat az első momentumra nézve ergodikus. Ez kicsivel enyhébb feltétel,
mint a fent megfogalmazott „x(t) és x(t+t0) valószínűségi változók t0 növelésével egyre
függetlenebbé válnak” feltétel, hiszen ha R(τ) periodikus 0 átlagértékkel (periodikus
realizációjú sztochasztikus folyamat, lásd lejjebb), akkor az ergodicitás a függetlenné
válás hiánya ellenére is teljesül, de ez inkább kivétel. A függetlenné válás (C(τ) →
0) mindenesetre elégséges feltétel. Sajnos egyetlen realizáció ismeretében ismét egyik
feltétel sem ellenőrizhető...
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Periodikus realizációjú folyamatok

Speciális, de gyakorlatilag fontos folyamatok a periodikus realizációjú folyamatok. Ez
azt jelenti, hogy a realizált mintafüggvények a determinisztikus értelemben periodi-
kusak. Legfontosabb osztályuk a véletlen időzítésű folyamatok osztálya: ezek minta-
függvényei megfelelő időeltolás után egymással egybevágók. A periodikus realizációjú,
véletlen időzítésű folyamat egy periodikus jelnek véletlenszerűen kiválasztott időpil-
lanatban megkezdett regisztrációját modellezi. Matematikailag, ha a mért determi-
nisztikus jel xd(t), akkor a sztochasztikus folyamat mintafüggvényei a {xd(t + T )}
függvények. Itt T valószínűségi változó.

Ez a folyamat felfogható úgy is, mint a T valószínűségi változó leképezése az
xd(t + T ) függvénnyel. A T valószínűségi változó eloszlásának ismeretében tehát a
sztochasztikus folyamat minden tulajdonsága meghatározható.

Amennyiben xd(t) periódusideje Tp, és T egyenletes eloszlású a [t0, t0 + Tp] inter-
vallumon, akkor belátható, hogy mivel a sokaságban minden időzítési helyzet azonos
eséllyel előfordul, és ezért az időpontok mindegyike azonos szerepet játszik, a folyamat
stacionárius, sőt, ergodikus is.

Véletlen fázisú szinuszjel
A véletlen időzítésű sztochasztikus folyamat egyik legegyszerűbb esete a véletlen fázisú
szinuszjel. Ezt így írhatjuk le:

x(t) = A1 cos(2πf1(t + T )) (1.42)

Amennyiben T egyenletes eloszlású valamely t0 + (0, 1/f1) intervallumon, vagy más
olyan intervallumon, melynek hossza a periódusidő egész számú többszöröse, akkor ez
a folyamat stacionárius és ergodikus is. Szűkebb értelemben ezt a folyamatot nevezik
véletlen fázisú szinusznak. Amennyiben az intervallum hossza más, akkor a folyamat
nem stacionárius, és így nem is ergodikus.

A véletlen fázisú szinusz autokorrelációs függvénye a stacionaritás miatt:

R(τ) = E {x(t)x(t + τ)}
= E {A1 cos(2πf1(t + T ))A1 cos(2πf1(t + T + τ))}

= E

{

A2
1

cos(2πf1τ) + cos(2πf1(2t + 2T + τ))

2

}

=
A2

1

2
cos(2πf1τ) (1.43)

A fázis tehát a várható érték képzése miatt kiesik; az eredmény 0-ra szimmetrikus
periodikus függvény. Ennek Fourier-transzformáltja két szimmetrikusan elhelyezkedő
Dirac-impulzus:

S(f) = F {R(τ)} =
A2

1

4
δ(f − f1) +

A2
1

4
δ(f + f1) (1.44)

Talán furcsán hangzik, de a determinisztikus szinuszjelet is fel lehet dolgozni az er-
godikus jelekre vonatkozó kifejezések felhasználásával, hiszen felfogható úgy, mint egy
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véletlen fázisú szinuszjel egyetlen realizációja. Mi több, a várható érték, a korreláció, a
spektrum mind értelmezhetők, és a véletlen fázisú szinuszjel ergodicitása miatt megfe-
lelő eredmény kapható. Ugyanakkor az így elvégzett kiértékelés nem képes visszaadni
a fix fázis értékét — ezt külön módszerekkel határozhatjuk meg.

Általános periodikus realizációjú, a periódusidő szélességében egyenletes eloszlású
értékkel időzített függvény esetén az autokorrelációs függvény és a spektrális sűrű-
ségfüggvény (1.43) és (1.44) általánosításai. Ha xd(t) a (1.15) kifejezésnek megfelelő,
akkor

R(τ) = A2
0 +

∞∑

k=1

A2
k

2
cos(2πkf1τ) = |C0|2 +

∞∑

k=−∞
k �=0

|Ck|2
4

cos(2πkf1τ) (1.45)

és

S(f) = A2
0δ(f) +

∞∑

k=1

(
A2

k

4
δ(f − kf1) +

A2
k

4
δ(f + kf1)

)

= |C0|2δ(f) +
∞∑

k=−∞
k �=0

|Ck|2
4

δ(f − kf1) . (1.46)

Normális eloszlású folyamatok (Gauss-folyamatok)

A normális eloszlású folyamatok azok, melyek tetszőleges paraméterű változócsoport-
jának (x(t1), x(t2), ...x(tN)) együttes eloszlása többdimenziós normális eloszlás:

f(x) =
1

√
2π

N√|ΣΣΣ|
e−

(x−µµµ)T ΣΣΣ−1(x−µµµ)
2 (1.47)

ahol ΣΣΣ a valószínűségi változók kovariancia-mátrixa. Nem elegendő tehát az, hogy
egyetlen változó eloszlása normális legyen. Hozzá kell tennünk, hogy ez a precízség
inkább elméleti jelentőségű – a gyakorlatban előforduló, normális mintaeloszlású fo-
lyamatok általában normális eloszlású folyamatok. Ennek az az oka, hogy a központi
határeloszlás-tétel kimondható sztochasztikus folyamatokra is: a sok, egyenként kis
súlyú, többé-kevésbé független hatás összegeként előálló folyamatok közelítőleg Gauss-
folyamatok.

A Gauss-folyamatok specialitása, hogy mivel az eloszlásokban csak a várható ér-
tékek és a kovariancia-mátrix szerepelnek, a folyamat teljes statisztikai jellemzéséhez
elegendő megmérni a várható értéket és a kovariancia-függvényt (vagy az autokorrelá-
ciós függvényt).

A fehér zaj

A jelfeldolgozásban sokszor megvizsgáljuk az eljárásokat a sávkorlátozott fehér zaj
esetére. Ezért erről is kell ejtenünk néhány szót.
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1A. MELLÉKLET: A DIRAC-IMPULZUS

A zaj fehérsége azt jelenti, hogy teljesítmény-sűrűségfüggvénye konstans. A teljes
frekvencia-tartományban konstans spektrumú, normális eloszlású folyamatot fehérzaj-
folyamatnak, vagy Wiener-folyamatnak (vagy Brown-mozgásnak) hívják. Ez a folya-
mat absztrakció eredménye, és a jelfeldolgozásban közvetlenül nem használható. Ennek
az az oka, hogy a végtelen széles spektrum alatti terület végtelen, ezért a fehér zaj va-
rianciája végtelen.

A fehér zajjal gerjesztett rendszer kimenetének azonban általában véges a sávszé-
lessége (illetve az átviteli függvénye f növelésével eltűnik), és így véges a varianciája
is. Amikor egy rendszer kimenetét vizsgáljuk, akkor nem is különösebben érdekes,
hogy a bemenet végtelen sávszélességű, vagy csak a rendszer sávszélességéhez képest
nagy a sávszélessége: az eredmény ugyanaz. Akkor tehát, amikor fehér zaj gerjesztés-
ről beszélünk, akkor egyszerűen a vizsgált rendszer teljes átviteli sávjában egyenletes
gerjesztésre gondolunk.

Hasznos, és jól kezelhető modell viszont a sávkorlátozott fehér zaj. Ennek a (±B)
sávban konstans a teljesítmény-sűrűségfüggvénye. A varianciát σ2-tel jelölve a spekt-
rum magassága σ2/(2B). Várható értéke alapértelmezésben nulla, eloszlását általában
normálisnak tekintjük.

Megkülönböztetjük tőle az ún. színes zajt: a színesség egyszerűen azt jelenti, hogy
a spektrum értéke a frekvencia függvényében nem konstans.

1a. Melléklet: A Dirac-impulzus

A fejtegetésekben többször előkerült a Dirac-impulzus. Mivel ez szigorú értelemben
nem függvény, néhány dolgot célszerű ezzel kapcsolatban rögzíteni: milyen értelemben
használjuk, mit jelent, és mit tehetünk vele?

A deltafüggvényt matematikai precizitással a disztribúcióelmélet tárgyalja. Amikor
a Dirac-impulzusról beszélünk, akkor matematikailag egy olyan ún. disztribúcióról van
szó, mely a következő tulajdonságú: folytonos g(x) függvény esetén

∞∫

−∞

g(x)δ(x − x1) dx = g(x1) , (1.48)

és emiatt

∞∫

−∞

δ(x)dx = 1 . (1.49)

Amíg a Dirac-impulzus egy integráljel alatt szerepel, addig a fenti tulajdonságok isme-
rete elegendő. Így van ez akkor is, amikor például az inverz Fourier-transzformáltban
Dirac-impulzus szerepel:

∞∫

−∞

δ(f − f1)e
j2πft df = ej2πf1t . (1.50)
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1. A MÉRÉSI ELJÁRÁSOK KONCEPCIONÁLIS ALAPJAI

Mivel a Fourier-transzformáció általában egy-egy értelmű, ennek inverze, vagyis a
komplex exponenciális függvény Fourier-transzformáltja egy Dirac-impulzus kell, hogy
legyen:

F
{
ej2πf1t

}
= δ(f − f1) . (1.51)

Hasonló a helyzet a konvolúcióval:

∞∫

−∞

g(u)δ(x − u) du = g(x) . (1.52)

Ha a mennyiségeket dimenziókkal kezeljük, ahogyan a mérnöki számításokban szoktuk,
akkor az (1.49) kifejezésnek megfelelően δ(f) idődimenziójú kell, hogy legyen (mérték-
egysége s = 1/Hz), illetve precízebben a δ(f/f0) függvényt lenne szabad csak felírnunk,
hiszen a matematikai függvények (pl. sin,cos) argumentuma általában dimenziótlan.
Az így felírt függvényre nézve igaz az, hogy

∞∫

−∞

δ(f/f0) d(f/f0) = 1 ,

∞∫

−∞

δ(f/f0) df = f0 . (1.53)

A rendszerelméletben gyakran használjuk az egységnyi Dirac-impulzust: δ(t). Ez mege-
gyezéses jelölés, és úgy értendő, hogy ennek az impulzusnak az idő szerinti integrálja 1:

∞∫

−∞

δ(t) dt = 1 . (1.54)

Mérnöki szempontból a Dirac-impulzust úgy képzelhetjük el, mint egy „nagyon kes-
keny” és „nagyon magas” impulzust, melynek intenzitása (integrálja) éppen 1, és az
integráljel alatt a fenti módon viselkedik.

1b. Melléklet: Valószínűségi változók második momen-
tuma

Valószínűségi változók esetén a konstanstól való átlagos négyzetes eltérés egyszerű
alakban kifejezhető. (Megjegyzés: ez a mechanikából ismert Steiner-tétel megfelelője:
a tehetetlenségi nyomaték kiszámítható két tagból: össze kell adni a súlypontra számí-
tott tehetetlenségi nyomatékot, és a súlypont és az adott pont távolsága négyzetének
tömeggel vett szorzatát.)

Jelöljük a konstans értéket k-val. Az ettől vett átlagos négyzetes érték a követke-
zőképpen fejezhető ki:
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1C. MELLÉKLET: KOMPLEX NORMÁLIS VALÓSZÍNŰSÉGI VÁLTOZÓK

E{(ξ − k)2} = E{(ξ − μ + μ − k)2}
= E{(ξ − μ)2 + (μ − k)2 + 2(ξ − μ)(μ − k)}
= σ2

x + (μ − k)2 , (1.55)

hiszen (ξ − μ) várható értéke 0. Ebből azonnal következik, hogy

• az adott konstanstól való átlagos négyzetes értéket a szórásnégyzet és a kons-
tansnak a várható értéktől való eltérése négyzetének az összege adja,

• az eltérés négyzetes értéke a várható értékre vonatkozóan a legkisebb.

Hasonlóan mutatható meg az R(τ) = C(τ) + μ2 összefüggés is.

1c. Melléklet: Komplex normális valószínűségi változók

A valószínűségi változók speciális csoportját alkotják a komplex értékű valószínűségi
változók. Ezekről a valószínűség-számítási alapkönyvek csak futólag emlékeznek meg,
nekünk azonban többször is szükségünk lesz rájuk.

A komplex értékű valószínűségi változókat úgy kezeljük, mint a kételemű valószí-
nűségi vektorváltozókat, vagyis a kétváltozós eloszlás- és sűrűségfüggvényekkel, illetve
az egyváltozós és vegyes momentumokkal. Komplex értékű változók esetén azonban be
tudunk vezetni egy kis egyszerűsítést.

Legyen xr és xi két valós valószínűségi változó, és x = xr + jxi legyen egy belőlük
képzett komplex értékű valószínűségi változó. A két változó együttes eloszlása definiálja
a valószínűségi mezőt. Gauss-esetben az ezekhez szükséges paraméterek:

μμμ = E

{[
xr

xi

]}

=

[
μxr

μxi

]

(1.56)

ΣΣΣ = E

{[
(xr − μxr)

2 (xr − μxr)(xi − μxi)
(xi − μxi)(xr − μxr) (xi − μxi)

2

]}

=

[
σ2

xr cxri

cxri σ2
xi

]

(1.57)

Az eloszlás sűrűségfüggvénye haranggörbe-alakú. Szintvonalai háromfélék lehetnek:

• körök, ha a mellékátlókban nullák vannak (a valós és képzetes rész korrelálatla-
nok), és a főátlókban lévő elemek egyenlők,

• vízszintes-függőleges tengelyű ellipszisek, ha a mellékátlókban nullák vannak, és
a főátlókban lévő elemek különböznek,

• ferde ellipszisek egyébként.
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1. A MÉRÉSI ELJÁRÁSOK KONCEPCIONÁLIS ALAPJAI

Az első két esetben a valós és képzetes rész független valószínűségi változók, és az első
esetben az eloszlás körkörösen szimmetrikus.

A kétdimenziós normális eloszlású valószínűségi változó körkörösen szimmetrikussá
transzformálható. A

n = ΣΣΣ−1/2

[
xr − μxr

xi − μxi

]

(1.58)

változó (ahol ΣΣΣ−1/2 a mátrix pozitív definit négyzetgyöke) várható értéke nulla, kova-
rianciája pedig

E{nnT} = ΣΣΣ−1/2ΣΣΣΣΣΣ−1/2 = E . (1.59)

Komplex változóra értelmezzük a komplex változó várható értékét és szórásnégyzetét
is:

μx = E{x} = μxr + jμxi (1.60)

σ2
x = var{x} = E{(x − μ)(x − μ)} = E{|x − μ|2} = σ2

xr + σ2
xi . (1.61)

A σ2
x mennyiség, mely skalár, nyilvánvalóan nem jellemzi teljes mértékben x viselke-

dését, hiszen ΣΣΣ általában három különböző elemet tartalmaz. Kivétel, amikor tudjuk,
hogy az eloszlás körkörösen szimmetrikus, mert ilyenkor ΣΣΣ mellékátlóiban nullák van-
nak, és a főátló elemei egyenlők: σ2

xr = σ2
xi = σ2

x/2.
Számunkra fontos eset az, amikor szeretnénk két komplex valószínűségi változó

együttes eloszlását megvizsgálni (pl. egy rendszer be- és kimenetén mért komplex
Fourier-amplitúdókat). Ilyenkor 4 skalár valószínűségi változónk van. A későbbiekben
belátjuk, hogy mind a bemeneti, mind a kimeneti változó körszimmetrikus Gauss-
eloszlású, ezért a kovariancia-mátrix négy-négy elemét a két variancia meghatározza.
A kereszt-tagok szintén speciálisak, és a komplex kovarianciából meghatározhatók,
melyet a varianciához hasonlóan így definiálunk:

cxy = cov{x, y} = E{(x − μx)
T (y − μy)} (1.62)

A komplex kovariancia láthatóan komplex értékű: azt fejezi ki, hogy a bemenet mek-
kora része, és milyen fázisforgatással jelenik meg a kimenetben.

A kereszt-tagok között tehát szintén összefüggések vannak, melyek miatt a kovarian-
cia-mátrix így néz ki:

ΣΣΣ =

⎡

⎢
⎢
⎢
⎣

σ2
x

2
0 cxyr

2

cxyi

2

0 σ2
x

2
− cxyi

2

cxyr

2
cxyr

2
− cxyi

2

σ2
y

2
0

cxyi

2

cxyr

2
0

σ2
y

2

⎤

⎥
⎥
⎥
⎦

(1.63)

A szükséges mennyiségek tehát meghatározhatók (1.60) mind a bemeneti, mind a
kimeneti változókra történő kiértékelésével, és (1.62) kiértékelésével.

28



2. fejezet

Mintavételezés

2.1. Analóg jelek digitális reprezentációja

Ahhoz, hogy az analóg jeleket digitális eszközökkel, például számítógéppel feldol-
gozhassuk, először véges bitszámon ábrázolt számsorozatokká kell alakítani őket. Ez
az időben és amplitúdóban folytonos jel diszkrét formára hozását jelenti mindkét
tartományban. Az időtartománybeli diszkretizálást mintavételezésnek, az amplitúdó-
tartománybelit kvantálásnak nevezzük. Ez a két művelet általában egymás után tör-
ténik, a mintavételezést leggyakrabban egy mintavevő-tartó (sample-hold) egység, a
kvantálást pedig analóg-digitális átalakító valósítja meg.

A fenti két művelet egymással felcserélhető, és általában egymástól elkülönítve is
vizsgálható (2.1. ábra). A következőkben először a mintavételezés, azután a kvantálás
fontosabb kérdéseit fogjuk tárgyalni.

2.2. Mintavételezés az időtartományban

Mintavételezéskor az időben folytonos jelnek mintasorozatot feleltetünk meg. Ennek
leggyakoribb módja az, hogy a mintasorozat a jel egyenletes időközökben felvett érté-
keit tartalmazza (2.2. ábra).

Az ábrán jól megfigyelhetjük, hogy az ismét egyenletes távolságokban felrajzolt
mintavételi értékek sorozata az eredeti görbéhez hasonló benyomást kelt. Az az ér-
zésünk támad, hogy megfelelő interpolációval az eredeti görbe szinte hibátlanul hely-
reállítható. Annál inkább ez a helyzet, minél sűrűbb a mintavételezés az eredeti jel
változási sebességéhez képest. Feltehetjük a kérdést, hogy adott jelet végül is hogyan
kell mintavételezni, ha a kis hibájú ill. hibátlan helyreállítást biztosítani szeretnénk.

A jel változási sebessége a jel spektrumával van szoros kapcsolatban. Ezért először
Fourier-transzformálható (tranziens) jelekre fogunk szorítkozni és a mintavételezésnek
a Fourier-transzformáltra gyakorolt hatását vizsgáljuk. Ebben a tárgyban a Fourier-
transzformáció következő alakját használjuk:
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2. MINTAVÉTELEZÉS

t

tt

ti ti

ti

x(t)x(t)

xm(t) xq(t)

xm,q(t) xq,m(t)

a) b)

2.1. ábra. A mintavételezés és kvantálás hatása a jelekre a) először mintavételezés,
azután kvantálás b) először kvantálás, azután mintavételezés

t ti

t0t0

x(t) x(ti)

Ts

2.2. ábra. A mintavételezés szokásos módja
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2.2. MINTAVÉTELEZÉS AZ IDŐTARTOMÁNYBAN

t titi

x(t) m(t) x(t)m(t)

2.3. ábra. A matematikai mintavételezés

X(f) = F {x(t)} =

∞∫

−∞

x(t)e−j2πft dt . (2.1)

A legnagyobb nehézséget az jelenti, hogy a számsorozatnak önmagában zérus a
Fourier-transzformáltja, hiszen csak diszkrét helyeken különbözik nullától. Ezért az
egyes értékekhez a vizsgálat céljából Dirac-impulzusokat rendelünk úgy, hogy a Dirac-
impulzus-sorozat integrálja ne különbözzön lényegesen az eredeti jel integráljától:

xm(t) =
∞∑

i=−∞

x(ti)δ

(
t − ti
Ts

)

= x(t)
∞∑

i=−∞

δ

(
t − iTs

Ts

)

, ti = iTs (2.2)

ahol xm(t) a mintavett jelet reprezentáló Dirac-impulzus-sorozat, x(t) a mintavétele-
zendő folytonos jel, a ti időpontok a mintavételezés helyei, és Ts a mintavételi távolság.
Így

∞∫

−∞

xm(t)dt =
∞∑

i=−∞

⎛

⎝x(ti)

∞∫

−∞

δ

(
t − iTs

Ts

)

dt

⎞

⎠ =
∞∑

i=−∞

x(ti)Ts ≈
∞∫

−∞

x(t)dt . (2.3)

Az (2.2) kifejezés utolsó tagja alapján a mintavételezés jelelméleti szempontból
Dirac-impulzus-sorozattal történő szorzással modellezhető. Ezt a modellt matematikai
mintavételezésnek nevezzük (2.3. ábra). Tegyük fel, hogy az egyik mintavételezési pont
az origóba esik.

Be lehet látni, hogy a Dirac-impulzus-sorozat Fourier-sorba fejthető:

∞∑

i=−∞

δ

(
t − iTs

Ts

)

=
∞∑

k=−∞

ej2π k
Ts

t , (2.4)

és ez utóbbi kifejezés már könnyen Fourier-transzformálható, hiszen minden egyes
komplex exponenciálisnak egy-egy Dirac-impulzus felel meg a frekvenciatartomány-
ban:
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2. MINTAVÉTELEZÉS

f

Xm(f)

B−B fs = 1
Ts

2
Ts

2.4. ábra. A mintavételezés hatása a Fourier-transzformáltra

F
{

∞∑

k=−∞

ej2π k
Ts

t

}

=
∞∑

k=−∞

δ

((

f − k

Ts

)

Ts

)

Ts . (2.5)

Most már közvetlenül felírható a mintavételezett jel Fourier-transzformáltja:

Xm(f) = F {xm(t)} = F
{

x(t)
∞∑

i=−∞

δ

(
t − iTs

Ts

)}

= X(f) ∗
∞∑

k=−∞

δ

((

f − k

Ts

)

Ts

)

Ts =
∞∑

k=−∞

X

(

f − k

Ts

)

. (2.6)

A mintavételezett jel spektruma tehát az eredeti jel spektrumának 1/Ts távolságban
vett ismétlődéseiből áll (2.4. ábra).

Ennek alapján a folytonos jelhez tartozó X(f) spektrum (és így a folytonos idő-
függvény) visszaállíthatóságának feltétele a következő: biztosítani kell azt, hogy az is-
métlődő spektrumok ne lapolódjanak át, amit úgy lehet elérni, hogy fs = 1/Ts értékét
eléggé nagyra választjuk. Ilyenkor ugyanis Xm(f)-nek a (−1/(2Ts), 1/(2Ts)) interval-
lumba eső része pontosan megegyezik X(f)-fel, azaz ideális aluláteresztő szűrővel X(f)
kivágható Xm(f)-ből, és inverz Fourier-transzformációval x(t) is kiszámítható.

Kimondható tehát az I. mintavételi tétel (időtartománybeli mintavételi tétel):

1. Tétel. Ha egy jel Fourier-transzformáltja sávkorlátozott, azaz

X(f) = 0, ha |f | ≥ B , (2.7)

akkor

fs =
1

Ts

≥ 2B, azaz Ts ≤
1

2B
(2.8)

esetén a folytonos időfüggvény hibátlanul visszaállítható (azaz a mintavételezéssel nem
veszítünk információt).
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2.3. AZ IDŐFÜGGVÉNY HELYREÁLLÍTÁSA

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2.5. ábra. Szinuszjel hibás mintavételezése. o = mintavételi értékek, fs = 2f1.

A tételt első megfogalmazóiról elnevezve Shannon-féle tételnek ill. Nyquist-tételnek
is hívják, az fs/2 frekvenciát Nyquist-frekvenciának is nevezik.

Megjegyzés: Annak, hogy a spektrum már f = B-nél sem lehet zérustól külön-
böző, elvi jelentősége van. Az természetesen nem baj, ha X(f) itt véges értékű, hi-
szen egyetlen pontban felvett véges függvényérték nem befolyásolná az inverz Fourier-
transzformált alakját. Ha azonban itt Dirac-impulzus jelenik meg, ami f1 = B frekven-
ciájú szinuszjelnél (mely tágabb értelemben Fourier-transzformálható) meg is történik,
akkor az fs = 2B frekvenciával mintavételezve súlyos hibát követnénk el (2.5. ábra).
Szinuszjelre tehát a fentieknek megfelelő mintavételi előírás:

fs > 2f1 . (2.9)

2.3. Az időfüggvény helyreállítása

Az I. mintavételi tétel levezetése megmutatja, hogy a Fourier-transzformálton keresztül
hogyan lehet helyreállítani a folytonos időfüggvényt. Ha azonban már tudjuk azt, hogy
a mintavételi tételt betartottuk, akkor a mintavételi értékekből a folytonos időfüggvény
értékeit közvetlenül (Fourier-transzformáció nélkül) is kiszámíthatjuk. A megfelelő for-
mulához például az alábbi módon juthatunk el.

A mintavételezett jel spektrumából az eredeti jel spektruma egy négyszög-ablakkal
való szorzás segítségével állítható elő:

X(f) = Xm(f) rect

(
f

1/Ts

)

, (2.10)

ahol

rect(x) =

{
1 ha |x| < 0.5,
0 egyébként.

Elvégezve az inverz Fourier-transzformációt:
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2. MINTAVÉTELEZÉS

x(t) = xm(t) ∗ F−1

{

rect

(
f

1/Ts

)}

=

(
∞∑

i=−∞

x(iTs)δ

(
t − iTs

Ts

))

∗ sinc

(

π
t

Ts

)

=
∞∑

i=−∞

x(iTs) sinc

(

π
t − iTs

Ts

)

, (2.11)

ahol

sinc(x) =
sin(x)

x
. (2.12)

Az (2.11) kifejezést interpolációs formulának nevezzük, mert a minták közötti je-
lértékeket a minták felhasználásával interpolálja.

Figyeljük meg, hogy t 
= iTs esetén x(t) előállításában az összes (végtelen sok)
x(iTs) értékre szükség van. Gyakorlatilag jó közelítést ad azonban az, ha mindkét irány-
ban eléggé távoli x(iTs) értékeket is figyelembe tudunk venni, mert a sinc-függvény még
messzebb már kicsi.

2.4. Mintavételezés a frekvenciatartományban

A számítógépes adatfeldolgozás során gyakran át kell térnünk az időtartományból a
frekvenciatartományba. Ilyenkor a frekvenciatengely mentén is csak diszkrét pontok-
ban tudjuk kiszámítani a Fourier-transzformáltat, ezért szükségünk van a (folytonos)
Fourier-transzformált megfelelő mintavételezését biztosító tételre is.

Ha észrevesszük, hogy a Fourier-transzformáció és inverze matematikailag azonos
alakú operációk, akkor a megfelelő kifejezések szisztematikus cseréjével közvetlenül
kimondható a II. mintavételi tétel (frekvenciatartománybeli mintavételi tétel):

2. Tétel. Ha egy jel időkorlátozott, azaz csak egy T időtartamon belül különbözik 0-tól,
akkor spektrumát (Fourier-transzformáltját)

∆f ≤ 1

T
(2.13)

távolságokban mintavételezve a spektrum hibátlanul helyreállítható (azaz a mintavéte-
lezéssel nem veszítünk információt).

Figyeljük meg, hogy bár 2B szerepét T vette át, a tétel megfogalmazásánál nem
törődtünk a T hosszúságú időtartam helyével, ugyanis az 1/∆f távolságokban tör-
ténő ismétlések a T időtartam tetszőleges elhelyezkedése esetén sem lapolódnak át.
Nem bajlódtunk az intervallum szélén a Dirac-impulzus kizárásával sem, hiszen az
időfüggvény nem tartalmazhat ilyen anomáliákat.
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2.5. A KÖZELÍTŐ MINTAVÉTELI TÉTEL

2.5. A közelítő mintavételi tétel

Az I. és II. mintavételi tételt ismerve úgy vélhetjük, hogy a két tételt idő- és sávkor-
látozott jelre alkalmazva megoldottuk a mintavételezés problémáját. Sajnos a helyzet
nem ennyire egyszerű, ugyanis bebizonyítható, hogy egy jel és Fourier-transzformáltja
nem lehet egyszerre idő- ill. sávkorlátozott, tehát például az interpolációs formulá-
ban elvileg nem tekinthetünk el az i → ∞ határátmenettől. Szerencsére azonban sok
jel adott időtartamon ill. frekvenciasávon kívül csak elhanyagolhatóan tér el nullától.
Ilyen jeleket véges sok adattal jellemezhetünk. Ezt mondja ki a közelítő mintavételi
tétel:

3. Tétel. Ha egy jel egy T hosszúságú időtartamon kívül közelítőleg nulla, és spekt-
ruma is közelítőleg sávkorlátozott B sávkorláttal, akkor

N ≥ 2BT (2.14)

adattal kis hibával jellemezhető.

Például az időtartományban:

N =
T

Ts

≥ T
1

2B

= 2BT . (2.15)

Ez a tétel biztosítja azt, hogy a számítógépen véges sok adattal számolva is kielégítő
pontosságú eredményt kaphassunk.

Megjegyzés: Az időtartományban fs = 2B esetén elegendő ennyi adat. Ha azonban
fs > 2B, akkor a T hosszúságú időintervallumból N ′ = Tfs > N adatot kell vennünk,
de ezek az adatok némileg redundánsak. A 2BT kifejezés tehát az időfüggvényből
nyerhető független adatok számát adja meg.

2.6. A diszkrét Fourier-transzformáció, interpoláció
FFT segítségével

A mintavételi tételek ismeretében már részleteiben is megérthető a diszkrét Fourier-
transzformáció (DFT) alakja.

Induljunk ki a véges Fourier-transzformáltból és közelítsük az integrált téglányösszeg-
gel:

XT (f) =

T∫

0

x(t)e−j2πftdt ≈
N−1∑

i=0

x(iTs)e
−j2πfiTsTs . (2.16)

A fenti kifejezést számítógéppel kiértékelve a Fourier-transzformáltat is diszkrét
pontokban számítjuk ki. Legyenek ezek a pontok egy ∆f frekvencialépés egész számú
többszöröseinél:
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2. MINTAVÉTELEZÉS

X(k∆f) =
N−1∑

i=0

x(iTs)e
−j2πk∆fiTsTs . (2.17)

A kérdés most már csak az, hogy ∆f mekkora legyen, és k milyen értékeket vegyen
fel ahhoz, hogy ne veszítsünk információt.

A frekvenciatartománybeli mintavételi tétel értelmében

∆f ≤ 1

T
. (2.18)

Mivel a feleslegesen sűrű mintavétel feleslegesen redundáns adatokat eredményez,
célszerűnek látszik a

∆f =
1

T
(2.19)

választás.
Az időtartománybeli mintavételezés miatt a spektrum 1/Ts távolságokkal periodi-

kus. Ez azt jelenti, hogy

NF =
1
Ts

∆f
=

T

Ts

= N (2.20)

pontban kell kiszámítanunk a Fourier-transzformáltat, ami logikusnak tűnik, hiszen N -
pontos regisztrátumból N pontot kiszámítva a független adatok száma nem változik.
(A DFT-nél megengedünk komplex bemenő adatokat is. Valós bemenő adatok esetén
elvben elegendő lenne N/2 komplex pont is, ugyanis a komplex eredmény valós és
képzetes része is független adatot jelent, és valós jel Fourier-transzformáltjára igaz,
hogy X(k∆f) = X(−k∆f), ezért az N pont fele tartalmaz csak független információt.)

Vegyük észre azt is, hogy a fentiekkel rögzítettük a kitevőkben szereplő Ts∆f szor-
zat értékét is:

Ts∆f = Ts
1

T
=

1

N
. (2.21)

Azt kell még eldöntenünk, hogy k milyen értékeket vegyen fel (a periodicitás miatt
szabad kezünk van). Szimmetria-okokból k-t is ugyanazokon az értékeken futtatjuk
végig, mint i-t (0 ≤ i ≤ N − 1):

Xk =
N−1∑

i=0

xie
−j2π ki

N Ts k = 0, 1, . . . , N − 1 . (2.22)

A fenti kifejezésben immár az egyetlen, a fizikai idővel kapcsolatban lévő tényező
a Ts szorzó. Ezt a jelfeldolgozásban általában egységnyinek szokták tekinteni (aminek
következményeképpen a felhasznált frekvenciatartomány 0 és 1 között helyezkedik el),
és ezzel előttünk áll az immár időfüggetlen diszkrét Fourier-transzformáció (DFT):

Xk =
N−1∑

i=0

xie
−j2π ki

N k = 0, 1, . . . , N − 1 . (2.23)
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2.7. SZTOCHASZTIKUS JELEK MINTAVÉTELEZÉSE

Végül, ha Ts egységnyi, akkor ∆f = 1/N , és így az inverz DFT:

xi =
1

N

N−1∑

k=0

Xke
j2π ki

N i = 0, 1, . . . , N − 1 . (2.24)

A DFT-nek létezik a műveletek ügyes csoportosításán alapuló gyors kiértékelő al-
goritmusa is (gyors Fourier-transzformáció, FFT). Ezért a DFT hatékonyan alkalmaz-
ható például az interpoláció gyors elvégzésére. Az alapelv nem más, mint az interpolá-
ciós formula levezetésekor bemutatott lépések gyors végrehajtása az FFT segítségével
(2.6. ábra). A szükséges műveletek száma lényegesen kisebb lehet, mint amennyi az
interpolációs formula kiértékeléséhez kell, még akkor is, ha az interpolációs formula
kiértékeléséhez a sinc függvény értékeit előre kiszámítva, táblázatban tároljuk.

2.7. Sztochasztikus jelek mintavételezése

A mintavételi tételek előző alakjai Fourier-transzformálható (tranziens, esetleg periodi-
kus) jelekre vonatkoznak. Gyakran kell azonban sztochasztikus jeleket is feldolgoznunk.
Az ezekre vonatkozó tétel bizonyítása körülményesebb, ezért itt csak kimondjuk:
Mintavételi tétel sztochasztikus jelekre

4. Tétel. Ha egy sztochasztikus folyamat teljesítménysűrűség-spektruma sávkorláto-
zott, azaz

S(f) = 0 ha |f | ≥ B , (2.25)

akkor

Ts ≤
1

2B
(2.26)

közönként mintavételezve lényegében nem veszítünk információt, azaz az interpolációs
formula négyzetes értelemben konvergál a folytonos időfüggvény értékeihez:

lim
M→∞

E

⎧

⎨

⎩

(

x(t) −
M∑

i=−M

x(iTs) sinc

(

π
t − iTs

Ts

))2
⎫

⎬

⎭
= 0 . (2.27)

Megemlítjük még, hogy a fenti feltétel az I. mintavételi tétel miatt a korreláció-
függvény ilyen mintákból való helyreállíthatóságát is közvetlenül biztosítja, hiszen en-
nél X(f) szerepét S(f) veszi át. A mintákból diszkrét pontokban kiszámítható korre-
lációértékekből tehát a folytonos korrelációfüggvény is megkapható.

2.8. Sávkorlátozott jelek mintavételezése

Az előzőkben ismertetett mintavételi tételek kimondásakor abból a hallgatólagos fel-
tételezésből indultunk ki, hogy a jel spektruma „kitölti” a (−B,B) frekvenciasávot,
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a)

b)

c)

d)

0

0

0

0

0.5

0.5 1

r

x(iTs)

iTs

(N − 1)Ts

Xk

k
N

Xk′

k′

N

r − 0.5 0 ≤ k′ ≤ rN − 1

x(i′ Ts

r
)

iTs = i′ Ts

r

FFT

Kiegészítés nullákkal

IFFT

2.6. ábra. Interpoláció FFT segítségével a) az eredeti időfüggvény, b) a diszkrét Fourier-
transzformált c) a spektrumok „széttolása”, vagyis (r− 1)N db nulla behelyezése után
kapott eredmény d) az interpoláció eredménye
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2.9. ALUL- ÉS TÚLMINTAVÉTELEZÉS

ff

B−B

X(f) Xm(f)

fmfm

számunkra érdekes sáv

2.7. ábra. Keskenysávú jel mintavételezése

ezért itt semmiféle betranszformálódás nem engedhető meg. Ha azonban a jel spekt-
ruma nem ilyen, például csak egy ismert keskeny sávban különbözik nullától, akkor
enyhébb feltételt is megfogalmazhatunk: elég azt biztosítani, hogy a számunkra fontos
sávba ne transzformálódjon be teljesítmény (2.7. ábra).

fs alkalmas megválasztásával fs ≪ 2B is megengedhető lehet. Gondosan ügyelnünk
kell azonban fs helyes megválasztására: kis tévedés is elég lehet ahhoz, hogy a jel
spektruma jelentősen torzuljon az esetleges betranszformálódás miatt.

2.9. Alul- és túlmintavételezés

A mintavételi tételt nem szabad mereven alkalmazni. Előfordulhatnak olyan mérési fel-
adatok, amikor nem kell minden lehetséges információt kinyernünk az adott hosszúságú
jelből, például ritkább mintavételezéssel is elegendő számú mintánk van megfelelően
kicsi varianciájú átlagérték képzéséhez. Mi több, a ritka mintavételezéssel nyert érté-
kek egymástól statisztikailag függetlenek is, ami az eredmény statisztikai jellemzését
egyszerűsíti.

Másrészről, ha az időfüggvény vizsgálatát kell elvégeznünk, például a vizuális kiér-
tékelésnél, általában nem elegendő a mintavételi tétel egyszerű teljesítése (2.8. ábra).

Annak ellenére, hogy az ábrán látható pontsorozat elvben minden információt
tartalmaz, a periódusonként alig valamivel több, mint 2 mintából a szinusz szabad
szemmel nem ismerhető fel. Utólagos interpoláció helyett ilyenkor célszerűbb a sűrűbb
mintavételezés, fs ≫ 2B frekvenciával. Tegyük még azt is hozzá, hogy ha csonkí-
tott regisztrátumunk van (például sztochasztikus jelből), akkor a csonka regisztrátum
sávszélessége a levágás miatt jóval nagyobb a teljes (végtelen hosszúságú) jel sávszéles-
ségénél, és ezért a teljes jel kisebb sávszélessége alapján mintavételezve a helyreállítás
hibája nagy lesz a regisztrátum széle környékén.

Megemlítjük, hogy ide tartozik az ún. ekvivalens mintavételezés. Periodikus jeleknél
a mintákat vehetjük eltérő periódusokból, kicsit eltolt fázishelyzetben: ha az időzítés
pontos, ezekből a mintákból az oszcilloszkóp meg tudja jeleníteni a teljes periódust,
annak ellenére, hogy a szigorúan vett mintavételi tételt nem tartjuk be.
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0 0.2 0.4 0.6 0.8 1

−1

0

1
(a)

0 0.2 0.4 0.6 0.8 1

−1

0

1
(b)

2.8. ábra. A túlmintavételezés szükségességének illusztrációja
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3. fejezet

Kvantálás

A kvantálásnál – annak ellenére, hogy finom felbontású kvantálásnál a kvantált jel
erősen emlékeztet az eredeti jelre – nem lehet biztosítani a kvantálatlan jel hibátlan
helyreállítását. Ennek egyik legfőbb oka az, hogy a kvantálás nemlineáris művelet
még akkor is, ha az A/D konverziónak leginkább megfelelő modellt, az ún. egyenletes
kvantálót vizsgáljuk (3.1. ábra).

Tehát a mintavételezéssel ellentétben itt nem az a célunk, hogy valamilyen, a min-
tavételezéshez hasonló feltételt adjunk az egyértelmű visszaállíthatóságra. Mit tudunk
tehát garantálni? A válasz az, hogy az eredeti jel momentumai (hatványainak várható
értéke) közül néhányat őrizzünk meg a kvantált jelben (természetesen például digitá-
lis jeleknél, ahol csak két amplitúdószint van, teljes visszaállíthatóságot jelentene!). A
tervezés során felmerülő kérdésekre (mely momentumok szükségesek) az alább ismerte-
tésre kerülő elmélet adja meg a választ. Például egy jel átlagértékének (DC szintjének)
mérésekor csak az első rendű momentum pontos átvitelére van szükség, így akár egy-
bites kvantálót is alkalmazhatunk.

A kvantálás egyszerűbb tulajdonságait a mintavételezéssel analóg módon tárgyal-
juk. Ki fog derülni, hogy formálisan a mintavételezés és a kvantálás lényegében ugyanaz
a matematikai művelet.

x

xq

q

s0

xi xi+1

yi

3.1. ábra. Az egyenletes kvantáló
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t

t

x(t)
xq(t)

q

q
2

− q
2

nq(t) = xq(t) − x(t)

3.2. ábra. Szinuszjel kvantálása és a kvantálási hiba

3.1. A kvantálási hiba vizsgálata

A nemlineáris karakterisztika matematikai leírása és vizsgálata nem sok reménnyel
kecsegtet. Ehelyett vegyük szemügyre a kvantált jel és az eredeti jel különbségét, az
ún. kvantálási hibát egy egyszerű esetben (3.2. ábra).

A szinuszjel durva kvantálásakor a következő megfigyeléseket tehetjük:

• A kvantálási hiba közelítőleg fűrészfog alakú azokon a helyeken, ahol a szinuszjel
görbülete kicsi. Ez azt jelenti, hogy eloszlása közelítőleg egyenletes, és annál jobb
a közelítés, minél kisebb q értéke a szinuszjel amplitúdójához képest.

• A kvantálási hiba alakja nemigen emlékeztet a szinuszjelre, annak ellenére, hogy
determinisztikus transzformációval kaptuk belőle. Ennek oka az, hogy a kvan-
tálási hiba az eredeti jelnek a legközelebbi kvantumszinthez képest lokális vi-
selkedését írja le. Ezért ha a két jel keresztkorreláció függvényét képezzük, az
várhatóan kicsi lesz, és a kvantumnagyság csökkentésével egyre kisebb.

• A kvantálási hiba láthatóan sok felharmonikust tartalmaz, határfrekvenciája jó-
val nagyobb, mint az eredeti jelé, és a határfrekvencia q csökkentésével egyre
nő.

A fentiek alapján a kvantálási hibát célszerűnek látszik statisztikai alapon vizsgálni
és a kvantálásra a következő, ún. zajmodellt bevezetni (3.3. ábra).

Statisztikai szempontból az egyenletes kvantáló hatását additív zajjal modellezzük,
melynek a következő tulajdonságai vannak:
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x(t)x(t) xq(t)xq(t)x
xq

nq(t)

fnq
(z)

z
q
2− q

2

3.3. ábra. A kvantálás zajmodellje

x, x′

−5q/2 −3q/2 −q/2 q/2 3q/2 5q/2

fx(x)

· · ·· · ·

(b)

3.4. ábra. Az eredeti és a kvantált jel sűrűségfüggvénye

• egyenletes eloszlású;

• az eredeti jellel korrelálatlan (esetleg független az eredeti jeltől);

• fehér spektrumú.

Ez az ún. zajmodell általában akkor alkalmazható, ha a q kvantumnagyság elég
kicsi. Későbbi fejezetekben ennek a pontosabb feltételeit fogalmazzuk meg.

3.2. A kvantáló kimenetének sűrűségfüggvénye és ka-
rakterisztikus függvénye

A jel amplitúdójának sűrűségfüggvénye megadja, hogy mely amplitúdószintnek milyen
valószínűsége van. Ez a függvény alapvető jelentőségű a kvantálás vizsgálatakor.

Kérdés, hogyan alakul a kvantált jel amplitúdójának sűrűségfüggvénye. A kvantált
jelből ugyanis ezt tudjuk az amplitúdó-hisztogram segítségével közelíteni. Látni fog-
juk, hogy a kvantált jel sűrűségfüggvényét megkapjuk az eredeti jel sűrűségfüggvényé-
nek szűrésével és mintavételezésével. A sűrűség-, illetve a karakterisztikus függvények
használatának az előnye, hogy a magasabb rendű momentumok vizsgálatát is lehetővé
teszi.

Jelölje az eredeti jelet x, a valószínűség-sűrűségfüggvényét fx(x). Tudjuk, hogy egy
valószínűségi változó karakterisztikus függvénye a valószínűség-sűrűségfüggvényének
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inverz Fourier-transzformáltja. Tehát

Φx(u) =

∞∫

−∞

fx(x)ejux dx.

Legyen a kvantált jel x′ és valószínűség-sűrűségfüggvénye fx′(x). Ez utóbbi olyan Dirac-
impulzus-sorozat, amelynek elemei az amplitúdó-tengelyen a megfelelő kvantálási szin-
teknek felelnek meg.

A 3.4. ábrán láthatjuk a kvantálás hatását a valószínűség-sűrűségfüggvényre. Meg-
figyelhető, hogy a kvantálási lépcsőknek megfelelő területtel „arányos” Dirac-impulzu-
sokat kapunk. Emlékeztetünk arra, hogy a Dirac-impulzusnak nincs függvényértéke,
csak azt tudjuk, hogy az adott tartományban az integrálja véges. Ebben az esetben
ez azt jelenti, hogy az eredeti jel valószínűség-sűrűségfüggvénynek megfelelő területé-
vel egyezik meg az adott Dirac-impulzus integrálja. Például a 0 értéknél elhelyezkedő
Dirac-impulzusra igaz, hogy

∞∫

−∞

x0δ(x)dx =

∫ q/2

−q/2

fx(x) dx.

A különböző kvantálási szintekhez (..., −3q/2-től −q/2-ig, −q/2-től q/2-ig, q/2-
től 3q/2-ig, ...) tartozó sűrűségfüggvény tehát „összehúzódik” egy megfelelő Dirac-
impulzus-sorozattá.

Ez a művelet egy fontos lépésben eltér az időtartománybeli mintavételezéstől. Két
lényeges lépésre bontható, mégpedig:

• konvolúció egy négyszög alakú impulzussal,

• mintavételezés (a „szokásos” módon).

A művelet részleteinek bemutatáshoz térjünk vissza a 3.4. ábrához. Az ábrán is látható
módon fx′(x)-t, a kvantált jel valószínűség-sűrűségfüggvényét, tehát a Dirac-impulzus-
sorozatot kifejezhetjük az alábbi módon:

fx′(x) = ... + δ(x + q)

∫ − q

2

− 3q

2

fx(x)dx + δ(x)

∫ q

2

− q

2

fx(x)dx +

+δ(x − q)

∫ 3q

2

q

2

fx(x)dx + ... =

=
∞∑

m=−∞

δ(x − mq)

∫ mq+ q

2

mq− q

2

fx(x)dx. (3.1)

A képletek egyszerűsítése céljából jelöljük a négyszög alakú impulzust a következő
módon:

fn(x) =

{ 1
q
, ha − q

2
< x < q

2

0, különben.
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Figyeljük meg, hogy ennek a függvénynek a területe 1. Képezzük fn(x) és fx(x) kon-
volúcióját, így megkapjuk a következő összefüggést:

fn(x) ∗ fx(x) =

∫ ∞

−∞

fn(x − α)fx(α)dα =

∫ x+ q

2

x− q

2

1

q
fx(α)dα. (3.2)

Vezessük be továbbá az alábbi Dirac-impulzus-sorozatot a következő módon:

c(x) =
∞∑

m=−∞

qδ(x − mq) (3.3)

Így tehát 3.1 és 3.3 miatt írható:

∞∑

m=−∞

δ(x − mq)

∫ mq+ q

2

mq− q

2

fx(x)dx =
(
fn(x) ∗ f(x)

)
c(x).

Felhasználjuk a Dirac-impulzus-sorozat következő tulajdonságát:

δ(x − mq)g(x) = δ(x − mq)g(mq),

így

(
fn(x) ∗ f(x)

)
c(x) =

∞∑

m=−∞

δ(x − mq)

∫ mq+ q

2

mq− q

2

fx(x)dx

Végül folytatva a (3.1) felírást a következő összefüggést kapjuk:

fx′(x) = (fn(x) ∗ f(x)) c(x).

Megmutattuk tehát, hogy a kvantált jel valószínűség-sűrűségfüggvénye előállítható
az eredeti jel valószínűség-sűrűségfüggvényéből egy konvolúciós lépés, majd mintavé-
telezés segítségével. Az 3.5. ábrán egy egyszerű esetben is követhetjük a kvantálás
lépéseit.

Mi történik a karakterisztikus függvénnyel? Számoljuk ki az előbb bevezetésre ke-
rült fn(x) függvény inverz Fourier-transzformáltját:

Φn(u) =

∫ ∞

−∞

fn(x)ejuxdx =

∫ q

2

− q

2

1

q
ejuxdx = sinc

qu

2
.

Így tehát – a 3.6. ábrán követhető lépésekkel – azt kapjuk, hogy a kvantáló kimenetének
karakterisztikus függvénye a következő:

∞∑

l=−∞

Φx(u + lΨ)sinc

(
q(u + lΨ)

2

)

=
∞∑

l=−∞

Φx(u + l
2π

q
)sinc

(qu

2
+ lπ

)

ahol

Ψ =
2π

q
.
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x

fx(x)

−2q −q 0 q 2q
(a)

          
x

fn(x)

−q/2 q/2

1/q

(b)

x

fn(x) ⋆ fx(x)

−2q −q 0 q 2q
(c)

x

c(x)

−2q −q 0 q 2q
· · · · · ·

(d)

x

fx′(x) =
(

fn(x) ⋆ fx(x)
)

· c(x)

−2q −q 0 q 2q

fn(x) ⋆ fx(x)

(e)

3.5. ábra. A kvantált jel valószínűség-sűrűségfüggvényének származtatása: (a) az ere-
deti jel valószínűség-sűrűségfüggvénye, (b) a négyszög alakú pulzus, (c) a négyszög-
alakú pulzus és az eredeti jel valószínűség-sűrűségfüggvényének konvolúciója, (d) a
mintavételezés, azaz a moduláló Dirac-impulzus-sorozat, (e) a kvantált jel valószínűség-
sűrűségfüggvénye.

3.1. táblázat. A mintavételezés és a kvantálás egymásnak megfelelő változói

mintavételezés i t k ω Ts Ω = 2π/Ts

kvantálás m x l u q Ψ = 2π/q
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u

Φx(u)

−2Ψ −Ψ 0 Ψ 2Ψ

1
(a)

  
u

sincqu
2

−2Ψ −Ψ Ψ 2Ψ

1
(b)

u

Φx(u) sincqu
2

−2Ψ −Ψ 0 Ψ 2Ψ

1
(c)

u−2Ψ −Ψ 0 Ψ 2Ψ

1

· · · · · ·

Φx(u) sincqu
2 Φx(u − Ψ) sinc

q(u − Ψ)
2(d)

u

Φx′(u)

−2Ψ −Ψ 0 Ψ 2Ψ

1
(e)

3.6. ábra. A kvantált jel karakterisztikus függvényének származtatása
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Σ

x

x

x′

Q

x + n

n

+
+

3.7. ábra. A kvantálás és az additív zaj hozzákeverés modellje

A Ψ változót tekinthetjük úgy is, mint a „kvantálási körfrekvencia”, a mintavétele-
zés analógiájára. A további egymásnak megfeleltethető mennyiségeket a 3.1. táblázat
tartalmazza. ahol i,m, k, l indexek, t az időváltozó, x az amplitúdóváltozó, ω a =kör-
frekvencia, u a karakterisztikus függvény független változója, Ts a mintavételi idő, q
a kvantumnagyság, Ω a mintavételi körfrekvencia (2πfs), Ψ a kvantáláshoz tartozó
„körfrekvencia” a karakterisztikus függvény tartományában.

3.3. A kvantálás és az additív zajmodell összehason-
lítása

A 3.1. alfejezetben megemlítettük, hogy a kvantálási hibát lehetséges additív, egyen-
letes eloszlású zajjal modellezni. Ebben az alfejezetben megvizsgáljuk, hogy milyen
kapcsolat van az additív zajmodell és az előző részben kapott eredmények között.

Tekintsük tehát a 3.7 ábrát. Láthatjuk, hogy az additív, egyenletes eloszlású zaj
hozzákeverése esetén a kvantáló kimenetének valószínűség-sűrűségfüggvénye a követ-
kező:

fx+n(x) = fn(x) ∗ fx(x),

hiszen az összeadás konvolúcióba megy át a valószínűség-sűrűségfüggvények esetén.
Ebben az összefüggésben az egyenletes eloszlású zaj várható értéke 0, varianciája q2

12
.

Ezzel szemben a tényleges kvantálás után kapott sűrűségfüggvény a következő:

fx′(x) = fx+n(x)c(x),

felhasználva az 3.2 összefüggést. A képleteket összehasonlítva világos, hogy a kvantá-
lás és a zajhozzákeverés nem ugyanaz a művelet. Az első esetben a sűrűségfüggvény
egy Dirac-impulzus-sorozat, még a második esetben a kvantáló kimenetén a sűrűség-
függvény általában folytonos. A 3.8 ábrán látható a két valószínűség-sűrűségfüggvény.
Világos, hogy az additív zajmodell sűrűségfüggvényét a matematikai mintavételezésnek
alávetve megkapjuk a kvantálás valószínűség-sűrűségfüggvényét.

Továbbá az additív zajjal modellezett kvantáló kimenetének karakterisztikus függ-
vénye:

Φx+n(u) = Φx(u)Φn(u) = Φx(u)sinc
qu

2
,

amely megfelel az előzőekben kapott eredménynek. Ebben az esetben is látható a szoros
analógia a mintavételezés és a kvantálás között.
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x

fx′(x)

−3q −2q −q 0 q 2q 3q

fx+n(x)

3.8. ábra. A kvantálás és az additív zaj valószínűség-sűrűségfüggvénye

3.4. Kvantálási tételek

Az előző alfejezetekben bemutatott összefüggésekkel már elég ismeretünk van ahhoz,
hogy kimondjuk a mintavételezési tétel megfelelőjét a kvantálás esetében. Az alábbi-
akban ismertetésre kerülő két tételt nevezzük kvantálási tételeknek.

Az eredeti jel Φx(u) karakterisztikus függvény egyértelmű helyreállíthatóságához
Φx′(u)-ból szükséges, hogy a megfelelő komponensek Φx′(u)-ban ne lapolódjanak át.
Tehát az úgynevezett első kvantálási tétel a következő:

1. Tétel (I. kvantálási tétel). Ha az x jel karakterisztikus függvénye „sávkorláto-
zott”, azaz

Φx(u) = 0, ha |u| >
π

q
=

Ψ

2
,

akkor

- a Φx′-ben található ismétlődések nem lapolódnak át,

- az x karakterisztikus függvénye visszaállítható Φx′(u)-ból,

- az x valószínűség-sűrűségfüggvénye visszaállítható fx′(x)-ből.

Az első kvantálási tétel kimondja tehát, hogy ha a q kvantumnagyság elég kicsi,
akkor a kvantált jelből egyértelműen helyreállítható az eredeti jel. A visszaállítás rész-
leteit a következő alfejezet tárgyalja.

Egy másik kvantálási tételt is kimondunk, amely az x momentumaira vonatkozik.

2. Tétel (II. kvantálási tétel). Ha az x jel karakterisztikus függvénye „sávkorláto-
zott”, azaz

Φx(u) = 0, ha |u| >
2π

q
− ε = Ψ − ε,

ahol ε tetszőlegesen kicsi pozitív szám, akkor x momentumai visszaállíthatók a kvantált
jel momentumaiból.
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x

fx′(x)

−3q −2q −q q 2q 3q

fx+n(x)

3.9. ábra. Az interpoláció illusztrációja

Fontos megjegyeznünk, hogy a II. kvantálási tételnek nincs megfelelője az időtar-
tománybeli mintavételezési tételek között.

Mit mondanak a kvantálási tételek? Ahogy a fejezet elején megjegyeztük, általában
nem tudjuk garantálni az eredeti jel visszaállíthatóságát. Ez azt jelenti, hogy általá-
ban a jel valószínűségi sűrűségfüggvénye nem korlátos tartójú és így nem teljesülnek az
I. kvantálási tétel feltételei. Furcsa módon ugyanakkor a feltétel nem teljesülése nem
zárja ki a helyreállíthatóságot, csak nem garantálja minden jelre. Például egy egy-
szerű négyszögjelet már egy egybites kvantálóval is helyreállíthatunk, abban speciális
esetben, ha a kvantálás a szinteket éppen változatlanul hagyja.

A II. kvantálási tétel nem a sűrűségfüggvény helyreállítására vonatkozik. Mint arra
a legelején utaltunk, bizonyos feltételek teljesülése esetén – precízen a II. kvantálási
tétel feltételeiről van szó – a jel megfelelő momentumai maradnak meg a kvantálás
után is. A tétel éppen ezt az állítást fogalmazza meg egzakt formában.

3.4.1. A kvantált jel visszaállítása

Amennyiben a q kvantálási lépcső annyira kicsi, hogy az I. kvantálási tétel feltéte-
leit teljesítjük, akkor az eredeti x valószínűség-sűrűségfüggvényét visszaállíthatjuk a
kvantált x′ jel valószínűség-sűrűségfüggvényéből. Ez nagyon fontos akkor, ha csak a
kvantált adatok állnak a rendelkezésünkre, és ezekből kell az eredeti jel bizonyos sta-
tisztikai tulajdonságait meghatározni.

Az fx′(x)-ből tehát a fx+n(x) meghatározása a célunk. Ezt hasonlóan az időtarto-
mánybeli mintavételezéshez megtehetjük sinc-es interpolációval, ahogyan a 3.9 ábrán
látható.

Ezek után az eredeti x jel valószínűség-sűrűségfüggvénye megkapható, ha az fx+n(x)-
et dekonvolváljuk fn(x)-szel.

3.5. Sheppard-korrekciók, a momentumok torzítása

Amennyiben az additív zajmodell megfelelő a számunkra, akkor könnyen kiszámolhat-
juk, hogy mennyi a különböző momentumok torzítása.

A II. kvantálási tétel alapján a jel karakterisztikus függvényére az u = 0 környékén
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a következő összefüggés teljesül:

Φx′(u) = Φx(u)sinc
qu

2
, (3.4)

azaz a kvantált jel karakterisztikus függvénye itt pontosan olyan alakú, mintha az
eredeti jelhez egy független, egyenletes eloszlású zajt adtunk volna, hiszen független
valószínűségi változók összegzésekor a sűrűségfüggvények konvolúcióját kell képeznünk,
és így a karakterisztikus függvények szorzódnak. Eszerint a zajmodell első két tulaj-
donsága teljesül, és a momentumok közötti összefüggéseket a zajmodellből meghatá-
rozhatjuk (xq = x + nq).

E{x} = E{xq}

E{x2} = E{x2
q} −

q2

12

E{x3} = E{x3
q} − 3E{xq}

q2

12
. . . (3.5)

Ezek az úgynevezett Sheppard-korrekciók.
A kvantálási tétel feltételét a gyakorlatban előforduló jelek legfeljebb közelítőleg tel-

jesítik (a karakterisztikus függvény korlátos tartója ellentmond a valószínűség-sűrűség-
függvény korlátos szélességének). Általában megadható azonban olyan korlát, ami fö-
lött a karakterisztikus függvény gyakorlatilag nullának tekinthető. Így kapható például
a következő ökölszabály: Gauss-jelekre q < σx teljesítése elegendő. Pontosabb vizsgála-
tokkal az is megmutatható, hogy például a kvantált és a kvantálatlan Gauss-jel várható
értékének különbségére jó közelítéssel a következő teljesül:

|E{xq} − E{x}| <
q

π
e
−2σ2

q2 π2

, (3.6)

a második momentumokra pedig
∣
∣
∣
∣
E{x2

q} − E{x} − q2

12

∣
∣
∣
∣
<

q2

2π2
e
−2σ2

q2 π2

. (3.7)

Más, kevésbé gyorsan csillapodó karakterisztikus függvényű jelek esetén a kvantá-
lásnak a jelamplitúdóhoz képest jóval finomabbnak kell lennie, így szinuszjelre a q ≪ A
feltételt teljesíteni kell.

Mint azt az előzőekben láttuk az additív zajmodell nem írja le pontosan a kvantálás
hatását. Ezért a Sheppard-korrekciók sem érvényesek abban az esetben, ha a kvantálás
„pontos” modelljét alkalmazzuk. Mi itt csak az elsőrendű momentum torzítását fogjuk
megvizsgálni.

Tudjuk, hogy egy valószínűségi változó momentumait könnyen megkaphatjuk a
karakterisztikus függvényből. Ha n a keresett momentum, akkor

E{xn} =
1

jn

dnΦx(u)

dun

∣
∣
∣
∣
u=0

. (3.8)
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x(t) x(t) xq(t)xq(t)x
xq

nq(t)d(t) d(t)

3.10. ábra. Dither alkalmazása

E{xq} =
∞∑

k=−∞

1

j

d

du

(

Φx

(

u − 2πk

q

)

sinc
(qu

2
− kπ

))
∣
∣
∣
∣
∣
u=0

=
1

j

dΦx(u)

du

∣
∣
∣
∣
u=0

+
1

j

∞∑

k=−∞
k �=0

(

Φx

(

u − 2πk

q

)

sinc
(qu

2
− kπ

))

∣
∣
∣
∣
∣
∣
∣
∣
u=0

= E{x} +
1

j

∞∑

k=−∞
k �=0

Φx

(

−2πk

q

)
q(−1)k−1

2πk
. (3.9)

Figyeljük meg, hogy az első momentum torzítatlan méréséhez elegendő

Φx

(
2πk

q

)

= 0, k = ±1,±2, . . . (3.10)

biztosítása is.

3.5.1. Dither használata

Legyen x egyenletes eloszlású a (−1
2
rq, 1

2
rq) intervallumon (r egész). Könnyen belát-

ható, hogy a karakterisztikus függvény

Φx(u) = sinc
rqu

2
(3.11)

alakú, ami azt jelenti, hogy a (3.10) feltételt sinc(rπk) = 0 miatt biztosítottuk, tehát a
várható értékek megegyeznek: elég a kvantált adatokat átlagolni, annak ellenére, hogy
x nem teljesíti a kvantálási tételben megfogalmazott feltételt. Nincs azonban mindig
ilyen szerencsénk.

Szükség esetén speciális technika alkalmazásával kisebb kvantumszám is elegendő
lehet. Vizsgáljuk meg, mi történik, ha a bemenő jelhez kvantálás előtt tőle statisztika-
ilag független zajt, ún. dithert adunk (3.10. ábra).

A kevert jel karakterisztikus függvénye a függetlenség miatt

Φx+d(u) = Φx(u)Φd(u) (3.12)

alakú. Ha a dither teljesíti a feltételt, akkor az összeg is teljesíteni fogja, hiszen a két
karakterisztikus függvény szorzódik, és Φx+d(u) a megfelelő helyen nulla lesz, Φx(u)
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3.6. A FEHÉR ZAJSPEKTRUM FELTÉTELE

értékétől függetlenül. A jelhez hozzáadott ditherrel tehát biztosítani lehet a Sheppard-
korrekciók érvényességét. Ügyeljünk azonban arra, hogy a Sheppard-korrekciók ilyen-
kor nem az x jel momentumaira, hanem az x+d jel momentumaira érvényesek, ezért x
momentumainak meghatározásához d momentumait is figyelembe kell venni! Például:

var{x} = var{xq} −
q2

12
− var{d}. (3.13)

Ugyanakkor a dither hozzákeverése miatt általában a mérések varianciája is nő.
Így például a várható érték becslése esetén, ha közelítőleg teljesítjük a kvantálási tétel
feltételét, a variancia a következő:

var{xq} = var{x + d + nq} ≈ var{x} +
q2

12
+ var{d} . (3.14)

Az esetleg nagy amplitúdójú dither erősen megnövelheti a varianciát, ezért gyakran
speciális technikával „szabadulnak meg” tőle, például kvantálás után a dither értékével
korrigálnak (ha ez rendelkezésre áll), vagy kiszűrik, ha lehet.

Az audio-technikában a háromszög-eloszlású dither az elterjedt (két, kvantumnagy-
ság szélességű egyenletes eloszlású dither konvolúciója). Bebizonyítható, hogy ekkor a
várható érték torzítatlan, és a variancia is jelfüggetlen, ami azért fontos, mert külön-
ben lüktető zaj jelenhet meg (pl. négyszög-dithernél ténylegesen meg is jelenhet), ami
csendesebb részeknél nagyon zavaró.

3.6. A fehér zajspektrum feltétele

Folytonos időparaméter esetén a kvantálási zaj spektruma nem lehet fehér, ugyanis

∫ ∞

−∞

Snq
(f)df = var{nq} =

q2

12
< ∞, (3.15)

ami ellentmond annak, hogy a spektrum konstans.
Ugyanakkor a kvantálás szinte mindig mintavételezéssel együtt fordul elő. Ha a

mintavételezési frekvencia nem túl nagy a kvantálási zaj határfrekvenciájához képest,
akkor a kvantálási zajhoz tartozó ismétlődő spektrumok átlapolódnak, és az eredő
spektrum mégis közelítőleg fehér lesz (3.11. ábra).

Konkrét esetekre a következő adódik:

• sávkorlátozott Gauss-jelre

fm < 9
σx

q
B ,

• szinuszjelre

fm < 3
A

q
f1 .

Ezek a feltételek aránylag könnyen teljesíthetők.
A kvantálási zaj spektruma fehérségének a következő előnyei vannak:
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f

fm 2fm

S(f)

Sn(f) Sn(f − fm) Sn(f − 2fm)

Snm(f)

3.11. ábra. A fehér zajspektrum kialakulása

• a spektrum alakja nem függ a bemenő jeltől, tehát egyszerűen és általánosan
figyelembe vehető;

• a kvantálási hiba teljesítménye egyenletesen el van osztva a frekvenciatengely
mentén, tehát nem tartalmaz zavaró csúcsokat;

• a kvantálási zaj mintái korrelálatlanok, ezért az egyszerű átlagolás a lehető leg-
hatékonyabb a zaj kiküszöbölésére, és a statisztikai adatfeldolgozási módszerek
hibaképletei közvetlenül alkalmazhatók.

3.7. Néhány kiegészítő megjegyzés

A fenti elmélet ideális egyenletes kvantálót feltételezett, és ezt felhasználva mutattuk
meg például azt, hogy a variancia növelése árán a torzítás jelentősen csökkenthető. Ez
valódi A/D konverterek esetén így nem egészen igaz, ugyanis figyelembe kell venni az
A/D konverter linearitási hibáit is, és szigorúan el kell kerülni a túlvezérlést. Ez durván
azt jelenti, hogy az A/D konverter által okozott hibát nem tekinthetjük még a lehető
legügyesebb beállítás és adatfeldolgozás esetén sem az LSB értéknél sokkal kisebbnek.
Nagy amplitúdójú dither alkalmazásával ugyanakkor valamennyire megnövelhetjük az
A/D konverter látszólagos linearitását (l. de Lotto, 1986).

A zajmodell alapján érthető, hogy szűréssel miért nem állítható vissza a kvantált
jelből az eredeti függvény. A bemenő jel spektrumának ismeretében a legjobb eset-
ben optimális szűrő tervezhető (l. Katzenelson, 1962), mely a visszaállítás hibájának
varianciáját minimalizálja (Wiener- ill. Kalman-szűrő).
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4. fejezet

Átlagolási eljárások

Az átlagolás egy olyan varianciacsökkentő eljárás, amely azt feltételezi, hogy a meg-
figyelések (y (n)) egy időben nem változó (vagy csak lassan változó) jelenségről (x)
hordoznak információt, de a megfigyelésekhez a mérési csatornán keresztül zaj adódik.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

4.1. ábra. Konstans érték, melyen szinuszos zaj ül; a megfigyelés nem egész periódust
tartalmaz.

A 4.1 ábrán látható jelrészlet egy konstans érték és a hozzáadódó szinuszos zaj
eredője. Ez a példa azt sugallja, hogy az átlagérték megállapítása csupán számítás
kérdése, hiszen szemre is szétválasztható az eltolási érték és a szinusz. Ehhez azonban
azt a feltételezést kell tenni, hogy a zaj szinuszos, vagyis, hogy a vizsgált jelrészleten
kívül is szinuszosan folytatódik. Világos, hogy adható olyan eljárás, amely a szinuszos
zaj feltételezést használva tetszőleges paraméterű szinusz jelet és eltolási értéket is kü-
lön tud választani véges minta alapján. Mi történik azonban, ha ez az eljárás szinusszal
nem modellezhető zajjal találja magát szemben: például több harmonikus összetevőt
tartalmazó vagy nemperiodikus zajjal? Látszik, hogy az átlagérték eldöntése nem csak
számítás kérdése, a különböző átlagolási eljárások különböző modelleket tételeznek fel.
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4.1. Ideális átlagolás

Diszkrét jelre az ideális átlagolást a megfigyelések k = 0 időponttal jelölt kezdetétől
írjuk fel:

x̂(n) =
1

n

n−1∑

k=0

y(k) (4.1)

Az n-edik időpontban kapott eredmény csak az (n − 1)-edik időpontig bezáróan
tartalmaz megfigyeléseket. Ennek az az értelme, hogy a valós életben mindig véges
idő alatt tudunk csak eredményt előállítani. Ha az időnek csak diszkrét pontjait te-
kintjük (ahogyan ez szinkron digitális hálózatok esetén megszokott), akkor az n-edik
időpillanatban állítható elő legkorábban az (n − 1)-edik mérésből származó mintát is
felhasználó eredmény.

4.1.1. Rekurzív kiszámítás

Az n + 1-edik átlagértéket, amelyben már az n-edik megfigyelés is szerepel, az alábbi
rekurzív formával az n-edik átlagértékből is kifejezhetjük:

x̂(n + 1) =
1

n + 1

n∑

k=0

y(k) =
1

n + 1

n−1∑

k=0

y(k) +
1

n + 1
y(n) (4.2)

=
n

n + 1
x̂(n) +

1

n + 1
y(n) = (4.3)

= x̂(n) − 1

n + 1
x̂(n) +

1

n + 1
y(n) = (4.4)

= x̂(n) +
1

n + 1
[y(n) − x̂(n)] n = 0, 1, 2... (4.5)

Itt és a továbbiakban, minden rekurzív megadásnál a kezdeti érték nulla: x̂(0) = 0.

4.1.2. Predikciós-korrekciós alak

Az átlagértékek egymást követő, folyamatos kiértékelése esetén a rekurzív képlettel való
számítás szükségtelenné teszi a régebbi minták eltárolását és az ismétlődő részösszegek
újbóli kiszámítását. A 4.5 szerinti rekurzív felírással egyúttal egy általános szemléletet
bevezető kifejezéshez jutunk:

x̂(n + 1) = x̂(n) + 1
n+1

(y(n) − x̂(n))

Új érték = Jóslás + Kiigazítás
az eddigi az új megfigyelés

tudás figyelembe-
alapján vételével

(4.6)
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Adott predikciós-korrekciós képlet esetén („predikció” = jóslás, „korrekció” = javí-
tás, kiigazítás), a kiértékelésben szereplő legnagyobb időindex és az új becslő időinde-
xeinek különbségét k-val jelölve, k lépéses prediktorról ill. jóslóról beszélhetünk. Jelen
esetben az ideális átlagolás egylépéses jóslást valósít meg.

Megjegyzés: Amennyiben k = 0, akkor szűrésről, k < 0 esetén simításról beszélünk.
Az általános szóhasználatban azonban mind a három esetre alkalmazzuk a „szűrés”-t,
mivel a jel spektruma megváltozik.

(Megjegyzés: A később előforduló predikciós-korrekciós képletekben a predikciós
tag nem szükségszerűen a pillanatnyi x becslője. Az átlagolás során egy statikus jel-
lemzőt becsülünk, így a korábbi becslés megtartása célravezető jóslásnak bizonyul.)

4.1.3. Az alkalmazott jelölések

Az átlagolást, mint az adatfolyam útjába iktatott adatkiértékelési folyamatot, ábrával
is szemléltethetjük.

Az ábrákon alkalmazott építőelemeket az alábbi pontokban definiáljuk:

• Az adatok irányított élek mentén terjednek késleltetés nélkül. Az élek kötik össze
a különböző rajzi egységeket.

• Az élek mentén feltüntetett számok (konstansok) velük végzett szorzást jelölnek.
(4.2/b ábra)

• Az egy csomópontba befutó élek mentén érkező adatok összegződnek. Egy cso-
mópontnak elvileg bárhány bemenete és kimente lehet. Kivonás (−1)-gyel való
szorzás és összegzés útján tehető meg. (4.2/a ábra)

• Az összegzés és szorzás műveletvégző elemek, amelyek explicit módon is jelölhe-
tők. Erre akkor lehet szükség, ha pl. két jel szorzódik, vagy ki akarjuk hangsú-
lyozni a műveletvégzést, (pl. megvalósítás szempontjából tekintjük a hálózatot).
(4.2/c-d ábra)

• Az eddig felsorolt építőelemek nem vezetnek be késleltetést emiatt nem enged-
hető meg, hogy az élek alkotta irányított gráfban hurok forduljon elő). Az idő-
beni egymásutániság megjelenítésére egyedül a tárolók szolgálnak (4.2/e ábra).
A tároló (memória) az adott időpillanatban a bemenetére érkezett adatot a rákö-
vetkező időpillanatban bocsátja a kimenetére. Ennek megfelelően, ha bemenetén
x(n+1) van, akkor kimenete x(n), ha pedig bemenetén x(n) van, akkor kimenete
x(n − 1).

• Az eddigi jelölések használhatók akkor is, ha a jelcsatorna nem valós skalár,
hanem komplex vagy vektor értékű. A gyakorlati megvalósítás szempontjából
természetesen ugyanaz a jelölés egészen más összetettségű műveletvégzést je-
lenthet ilyenkor (pl. az egyszerű szorzás helyett skalár-szorzatot; egyetlen valós
érték helyett egy komplex érték, vagy egy vektor tárolását). Vektorok esetén a
matematikai apparátus bővül a mátrixszal (A) való szorzással, ami ugyancsak
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vektort eredményez. Ilyenkor szemléletesebb az élek párhuzamosokkal való jelö-
lése. (4.2/f ábra)

A

T

a) b) e)

c) d) f)

4.2. ábra. Jelölések

A meghatározások értelmében csak diszkrét időpontokat értelmezhetünk. A felso-
rolt építőelemekkel diszkrét idejű lineáris hálózatotok adhatók meg, (ha bemenőjelből
származó mennyiségeket nem szorzunk egymással).

4.1.4. Az ideális átlagolás tulajdonságai

Az ideális átlagolás nem más, mint a várható érték becslője annak feltételezésével,
hogy a mintasorozat ergodikus (ld. 6. fejezet).

A 4.3 ábrán időtől függő mennyiséggel szorozzuk a korrekciónak megfelelő jelet;
emiatt az ideális átlagolás időben változó jelkiértékelési mód.

Egyrészről, időben előrehaladva egyre több mintát veszünk figyelembe mind ki-
sebb, (de minden mintára azonos) súllyal. A 4.3 képlet szerinti rekurzió alapján azt is
mondhatjuk, hogy egyre inkább megbízunk az egyre kevésbé bizonytalan becslőnkben,
és ezért egyre kevésbé hagyatkozunk egy újabb zajos megfigyelésre.

Másrészről, a régi és az új megfigyelések egyforma súlyúak, vagyis az átlagérték
csak abban az esetben alkalmazható eredményesen, ha a becslendő jellemző valóban
konstans. Egyébként a kiszámított átlagérték a zaj kiküszöbölése helyett a becsülendő
paraméter megváltozását fogja elfedni. Tehát az ideális átlagolás egyáltalán nem képes
a becsülendő paraméter megváltozását követni.

Megjegyzés: Ha predikció helyett szűrést írunk fel (nem jövőbeli értéket becslünk,
hanem a jelenlegi értéket), akkor a blokkvázlaton a késleltető elem elől kell kicsatolni

T−1 1

y(n)

x̂(n)

x̂(n + 1)
1

n+1

4.3. ábra. Az ideális átlagolás blokkvázlata a predikciós alak szerint
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az eredményt, így ezt jelöljük x̂ (n)-nel. Az egyenletet továbbra is a tároló előtti pontra
kell felírni:

x̂(n) = x̂(n − 1) +
1

n + 1
[y(n) − x̂(n − 1)] . (4.7)

4.2. Exponenciális átlagolás

Helyezzünk az ideális átlagolás 4.3 szerinti rekurzív képletébe az n időindextől függő
súlytényezők helyére állandó súlyokat úgy, hogy azok összege egyet adjon:

x̂(n + 1) = (1 − 1

Q
)x̂(n) +

1

Q
y(n) ahol Q > 1 (4.8)

Így kapjuk az exponenciális vagy „felejtő” átlagolást. Ezt az állandó súlyok miatt egy-
szerű megvalósítani, és alább ismertetendő tulajdonságai is kedvezők.

A rekurziót kifejtve a következő eredményhez jutunk:

x̂(n + 1) =
1

Q
y(n) +

(

1 − 1

Q

)

x̂(n) = (4.9)

=
1

Q
y(n) +

(

1 − 1

Q

)
1

Q
y(n − 1) +

(

1 − 1

Q

)2

x̂(n − 1) = (4.10)

=
1

Q
y(n)+

(

1 − 1

Q

)
1

Q
y(n−1)+...+

(

1 − 1

Q

)n−1
1

Q
y(1)+

(

1 − 1

Q

)n
1

Q
y(0), (4.11)

azaz Q > 1 (azaz 1 − 1
Q

< 1) miatt a régebbi megfigyelések hatványozottan csök-
kenő súllyal szerepelnek az eredményben. Innen származik az exponenciális átlagolás
elnevezés. Képletesen fogalmazva, a régi megfigyelések időben mind távolabb kerülve
fokozatosan „elfelejtődnek”. Ez a „felejtés” azonban sosem lesz teljes mértékű, a legko-
rábbi megfigyelés súlya is csak a végtelenben tart nullához.

Az exponenciális átlagolás lényeges előnye, hogy a felejtő tulajdonság által követni
képes a becsülendő paraméter lassú változásait. A becsülendő paraméter változékony-
sága miatt kézenfekvő, hogy az időben hozzánk közelebbi minták pontosabb informá-
ciót hordoznak a keresett paraméterről. A nagyobb súlyok azt tükrözik, hogy ezeknek
a közeli mintáknak nagyobb jelentőséget tulajdonítunk (4.4 ábra). Minél gyorsabb a
paraméter változása, annál gyorsabban avulnak el a mért értékeink, így a felejtés mér-
tékének megfelelő 1

Q
tényezőt annál nagyobbra, következésképpen Q-t annál kisebbre

kell választanunk (pl. Q = 1 szélsőséges választással az átlagolás a legutolsó mért érték
elfogadásává fajul, Q = 2 mellett az előző becslés és az új mérés egyforma súllyal esik
latba, éppen számtani közepüket kapjuk, stb.).

Példaként a meteorológiai jelentés állhat. A különböző napszakok hőmérséklete
nem jellemezhető egyazon átlagértékkel. Ha tetszőleges pillanatban akarjuk a lassan
változó hőmérséklet alakulását egy integrális mennyiséggel jellemezni, el kell különíteni
a méréseinkben szereplő zavaró hatásokat (pl. széllökések, elhaladó felhő árnyéka) a
napszakok közötti lassú, folyamatos változástól (pl. a nap állása folyamatosan változik,
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0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

k

sú
ly

4.4. ábra. A k-adik megfigyelés súlya az n = 11 időpillanatban exponenciális átlagolás
és Q = 3 esetén

a talajnak hőtároló hatása van). Az exponenciális átlagolás erre a célra megfelelő
eszköz.

Az exponenciális átlagolás predikciós-korrekciós alakban:

x̂(n + 1) = x̂(n) +
1

Q
[y(n) − x̂(n)] (4.12)

T

y(n)

x̂(n)

x̂(n + 1)
1
Q

1 − 1
Q

4.5. ábra. Az exponenciális átlagolás blokkvázlata

T−1

y(n)

x̂(n)

x̂(n + 1)
1
Q

4.6. ábra. Az exponenciális átlagolás predikciós-korrekciós alakjának blokkvázlata
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4.3. CSÚSZÓABLAKOS VAGY MOZGÓ ÁTLAGOLÁS

4.3. Csúszóablakos vagy mozgó átlagolás

Időben változatlan jelkiértékelési módot kapunk úgy is, ha az átlagolásban résztvevő
megfigyelések számát korlátozzuk állandó értékre. Minthogy az időben közeli minták
nagyobb információtartalommal bírnak (a jelenlegi állapot-érték a jelenlegihez közeli
megfigyelésekkel van a legszorosabb összefüggésben, hiszen a korábbi megfigyelések
az állapotváltozó korábbi értékeit tartalmazzák, és a korrelációs függvény csökkenése
miatt ezek csak mérsékelten használhatók a jelenlegi állapot becslésére), az utolsó N
darab mintát használjuk fel:

x̂(n) =
1

N

n−1∑

k=n−N

y(k) (4.13)

ahol N : az átlagolási szám.
Ezt az eljárást csúszóablakos v. mozgó átlagolásnak hívjuk, mert a teljes jelből csak

az N minta széles ablakon át látható mintákat átlagoljuk, és az ablakot kiértékelésen-
ként egy mintányival továbbcsúsztatjuk.

N

N · T

4.7. ábra. Az átlagolás súlyai csúszó ablakként vágnak ki egy részletet a jelből.

A mozgó átlagolás ugyancsak számítható rekurzív módon, de a jel utolsó N darab
mintájának tárolása szükséges. Ütemenként így is csak a legutolsó mintát kell eltárolni,
és az N -nel megelőzőt kiküszöbölni (4.8 ábra).

x̂(n + 1) =
1

N

n∑

k=n−N+1

y(k) =
1

N

n−1∑

k=n−N

y(k) +
1

N
[y(n) − y(n − N)] = (4.14)

= x̂(n) +
1

N
[y(n) − y(n − N)] (4.15)

4.4. Frekvenciatartománybeli jellemzés

A következő szakaszokban a hálózatok és rendszerek témakörének egyes alapösszefüg-
géseit ragadtuk ki.
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−1

y(n)

x̂(n)

x̂(n + 1)
1
N

y(n − N)

4.8. ábra. A mozgó átlagolás blokkvázlata

4.4.1. Egyenletes mintavételezés, harmonikus-analízis

Időinvariáns lineáris rendszereknek jól kezelhető leírását adhatjuk a frekvenciatarto-
mányban. Ehhez egyenletes mintavételezést kell feltételeznünk. Tehát például x(n) →
x (t = nTs) ahol Ts a mintavételezés periódusideje. Ts egyúttal a tárolón keresztülha-
ladó jel által elszenvedett késleltetésnek az idejét is jelenti. Ez a késleltetés a frekven-
ciával egyenesen arányos fázistolást eredményez a harmonikus jelösszetevőkőn.

Adott frekvenciájú bemenő szinuszjel egy lineáris hálózat összegzőiben különböző
amplitúdókkal és fázisokkal összegződik, aminek eredményeképpen a kimeneten meg-
változott amplitúdójú és fázisú, de a bemenettel megegyező frekvenciájú szinusz jelenik
meg. Egy az előbbitől különböző frekvenciájú szinuszos bemenőjel az előbbitől eltérő
fázistolásokkal összegződik a hálózatban, vagyis frekvenciáról frekvenciára változik a
hálózat átvitele (csillapítása vagy erősítése, ill. fázistolása), amit az átviteli karakte-
risztikával adhatunk meg.

A szuperpozíció elvét alkalmazva, (amely alapján a lineáris hálózatokat definiál-
juk), egyszerre több harmonikus komponenssel gerjesztve a rendszert is teljesül, hogy
adott bemeneti komponens csak azonos frekvenciájú kimeneti komponenst hoz létre,
és megfordítva: adott kimenő komponens csak a megfelelő frekvenciájú bemenő har-
monikus komponens függvénye.

4.4.2. Átviteli karakterisztika, átviteli függvény

A rendszer súlyfüggvényének Z-transzformáltja adja az átviteli függvényt. Az egység-
kör mentén (z = ejωTs pontokban) kiértékelve az átviteli függvényt az átviteli karak-
terisztika pontjait kapjuk.
A tárolóelem súlyfüggvénye például:

hT (n) = δ (n − 1) (4.16)

Ebből az átviteli karakterisztika:

HT

(
ejωTs

)
= F{hT(n)} =

∞∑

n=−∞

δ (n − 1) e−jωTsn = e−jωTs , (4.17)

Az átviteli függvény:

HT (z) = Z{hT(n)} =
∞∑

n=0

δ (n − 1) z−n = z−1. (4.18)
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Mintavételezett jelekre továbbá:

ωTs = 2πfTs = 2π
f

fs

, (4.19)

ahol ω a körfrekvencia, f a frekvencia, Ts a mintavétel periódusideje, fs a mintavételi
frekvencia.

Mintavételezett jelek esetén használatos a (dimenzió nélküli) diszkrét frekvencia
(vagy normált frekvencia): f

fs
= fTs és a radián dimenziójú ωTs szorzat, amely a

diszkrét körfrekvenciát (vagy relatív körfrekvenciát) adja.
A továbbiakban e kettő közül, új jelölés bevezetése nélkül, az ωTs diszkrét körf-

rekvenciát használjuk, amely azt adja meg, hogy egy mintavételi ütem alatt az ω
körfrekvenciájú szinusz jel fázisa hány radiánnal változik meg. Ezzel a választással
képleteinkben kiküszöböljük a 2π konstanssal való szorzást, viszont ωTs-ben és annak
ábráinkon feltüntetett értékeiben megjelenik a szinusz függvény periódusát adó 2π.

T

H (jωTs) = e−jωTs

4.9. ábra. Tárolóelem és átviteli karakterisztikája

ωTs

ωTs

|H (jωTs)|

∠H (jωTs)

4.10. ábra. A tároló amplitúdó- és fáziskarakterisztikája

Az eddigi eljárások átviteli függvénye közvetlenül kiolvasható a rendszer blokkváz-
latából, ha a tárolókat a z−1-gyel való szorzásnak feleltetjük meg.

4.4.3. Két egyszerű példa

A következőkben két egytárolós, visszacsatolás nélküli rendszer átvitelét vizsgáljuk.
4.4.1 Példa. Az N = 2 paraméterű csúszó ablakos átlagolás:

x̂(n + 1) =
y(n) + y(n − 1)

2
, (4.20)
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A Z-transzformáltakat jelöljék:

Z{x̂(n)} = X̂(z); Z{y(n)} = Y (z) (4.21)

Ezekkel:

zX̂ (z) = Y (z)
1 + z−1

2
(4.22)

X̂ (z)

Y (z)
= z−1 1 + z−1

2
|z=ejωTs = e−jωTs

1 + e−jωTs

2
= (4.23)

= e−jωTs

e
−jωTs

2

(

e
jωTs

2 + e
−jωTs

2

)

2
= e−j 3

2
ωTs cos (ωTs/2) (4.24)
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4.11. ábra. N = 2 átlagoló, abs(cos) alakú, aluláteresztő amplitúdó-karakterisztikája

Tegyük fel, hogy szinuszos bemenettel vizsgáljuk a hálózatot. A karakterisztikára
kapott eredmény nem meglepő, hiszen ha egy szinusz jelet egy késleltetettjével átlago-
lunk, minél nagyobb a frekvenciájuk, annál inkább eltérő fázisban fognak összegződni,
mígnem ωTs = π diszkrét körfrekvencia esetén éppen ellenfázisba kerülnek, és kioltják
egymást. Ennek megfelelően az aluláteresztő karakterisztika átvitele nulla a ωTs = π
helyen (4.11 ábra).

4.4.2 Példa. Ha a minták különbségét képezzük, vagyis minden ütemben a meg-
változást figyeljük,

x̂diff(n + 1) =
y(n) − y(n − 1)

2
, (4.25)

akkor a következő felüláteresztő karakterisztikát kapjuk:

zX̂diff (z) = Y (z)
1 − z−1

2
, (4.26)

X̂diff (z)

Y (z)
= z−1 1 − z−1

2

∣
∣
∣
∣
z=ejωTs

= e−jωTs
1 − e−jωTs

2
, (4.27)
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= e−jωTsj
e

−jωTs

2

(

e
jωTs

2 − e
−jωTs

2

)

2j
= ej(π

2
− 3

2
ωTs) sin (ωTs/2) . (4.28)
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4.12. ábra. Különbségképző tag abs(sin) alakú felüláteresztő amplitúdó-karakteriszti-
kája

4.5. A mozgó átlagolás frekvenciatartománybeli jel-
lemzése

4.5.1. A mozgó átlagolás átviteli függvénye

Általános N esetén az átlagolás átviteli függvénye a 4.15 rekurzív képlet alapján:

zX̂ (z) = X̂ (z) +
1

N
Y (z)

(
1 − z−N

)
, (4.29)

H(z) =
X̂(z)

Y (z)
=

1

N
z−1 1 − z−N

1 − z−1
. (4.30)

Ugyanakkor a nemrekurzív képletből kiindulva:

zX̂ (z) =
1

N
Y (z)

(
1 + z−1 + z−2 + ... + z−(N−1)

)
, (4.31)

H(z) =
X̂(z)

Y (z)
=

1

N
(z−1 + z−2 + . . . z−N)
︸ ︷︷ ︸

N tag

. (4.32)

A kettőnek nyilván egyeznie kell, azaz az alábbi oszthatóságnak teljesülnie kell:

1 − z−N

1 − z−1
=
(
1 + z−1 + z−2 + ... + z−(N−1)

)
(4.33)
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Az azonosság a mértani sor összegképletéből adódik.
Az átviteli függvény számlálójában ill. nevezőjében szereplő tagok mértani közepeit

kiemelve:

H(z)|z=ejωTs =
1

N
e−jωTs

1 − e−jNωTs

1 − e−jωTs
=

1

N
e−jωTs

e−j N
2

ωTs

e−j 1
2
ωTs

· ej N
2

ωTs − e−j N
2

ωTs

ej 1
2
ωTs − e−j 1

2
ωTs

= (4.34)

=
1

N
e−jωTs(1+

N
2
− 1

2
) sin

N
2
ωTs

sin 1
2
ωTs

(4.35)

4.5.2. A mozgó átlagolás amplitúdókarakterisztikája

Az amplitúdókarakterisztika:

|H(z)||
z=ejωTs

=
1

N

∣
∣
∣
∣
∣

sin N
2
ωTs

sin 1
2
ωTs

∣
∣
∣
∣
∣
; (4.36)

A számlálóban egy N -szer gyorsabb szinusz szerepel, mint a nevezőben. Miközben
a számlálóban látható szinusz szaporán ingadozik, a nevezőben látható szinusz éppen
egy negyed periódust tesz meg ωTs = π-ig, azaz értéke 0-tól 1-ig monoton nő (vö. 4.13
ábra). Ez a [0; π] szakaszon egy csökkenő tendenciájú karakterisztikát eredményez,
amely azonban nem monoton, mert a számláló nulla helyein „leszívások” találhatók
(4.14 ábra). Az ωTs = 0 helyen a számláló és a nevező is nulla. Itt éppen egy az
átvitel:

|H(z)|ωTs→0 = 1 (4.37)

Ez úgy is belátható, hogy a szinuszokat határértékben az argumentumukkal helyette-
sítjük, vagy az alábbiak szerint, a l’Hôspital-szabály alkalmazásával:

lim
ωTs→0

sin N
2
ωTs

sin 1
2
ωTs

= lim
ωTs→0

N
2

cos N
2
ωTs

1
2
cos 1

2
ωTs

= N (4.38)

4.5.3. A mozgó átlagolás fáziskarakterisztikája

Mivel a 4.35 kifejezésben szereplő exponenciális kitevője ωTs lineáris függvénye, ezért
a fázismenet lineáris. Meredeksége, azaz a futási idő konstans: −N+1

2
. Ahol a szinuszok

hányadosa előjelet vált, ott π fázisugrás van, a futási idő nem értelmezett.

4.5.4. A mozgó átlagolás szelektivitása, alkalmazása

N -re periodikus jelekre, amelyek ωTs = k 2π
N

körfrekvenciájú komponensekből állnak,
az átlagolás hibátlan, azaz a frekvencia-átvitel nulla. Ezeken a körfrekvenciákon a
szinuszos összetevőknek éppen egész számú periódusa fér bele az átlagolás mozgó ab-
lakába, így a teljes periódusokon belül az ellentétes fázisú pontok páronként éppen
kiejtik egymást az összegzésben. Periodikus zajhatás pl. a hálózati zavar, amely ilyen
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4.13. ábra. a) Gyors ill. lassú szinusz b) a szinuszok hányadosa c) 1/N -nel skálázott
abszolútértéke

módon kiküszöbölhető. Ehhez 50Hz-es hálózat esetén Ts =20 ms többszörösére kell vá-
lasztani az ablak szélességét. (60 Hz-es, 400 Hz-es hálózat esetén értelemszerűen annak
megfelelően.) Mozgó átlagolást valósít meg analóg módon a dual-slope A/D átalakító
is.

Az ablakhosszra periodikus zajokkal szemben tehát a mozgó átlagolás ugyanazt az
eredményt adja, mint amit az ideális átlagérték adna:

ȳ(n) =
∞∑

−∞

y (n) (4.39)

A csökkenő tendenciájú amplitúdókarakterisztika időtartománybeli magyarázata
az, hogy a fennmaradó részperiódusok, amelyek a tökéletlen elnyomást okozzák, rövi-
debbek (vö. 4.15 ábra).
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4.14. ábra. Csúszó ablakos átlagolás amplitúdó- és fáziskarakterisztikája

4.5.5. A mozgó átlagolás pólus-zérus képe

Írjuk fel az átlagolás átviteli függvényének gyöktényezős alakját, amelyből közvetlenül
látszik, hogy hol nulla az átvitel (ahol a számlálónak gyökei vannak, melyeket a nevező
nem ejt ki):

H(z) =
1

N
z−1 1 − z−N

1 − z−1
=

1

N
z−N zN − 1

z − 1
=

1

N

N−1∏

m=0

(z − zm)

(z − 0)N (z − 1)
(4.40)

ahol zm az m-edik komplex egységgyököt jelöli.

zN
m = 1, m = 0, 1, · · · , N − 1; (4.41)

zm = ej 2π
N

m m = 0, 1, · · · , N − 1; (4.42)

A pólusokat és a zérusokat a Z-síkon ábrázolva a rendszer pólus-zérus képét kapjuk
(ld. 4.16 ábra).

Nyilvánvaló, hogy a 0 frekvencián tapasztalható nemnulla átvitelért a pólus-zérus
kiejtés felel. Mivel az origón kívül máshol nem marad pólus, az átvitel számlálója és
nevezője, z−1-ben felírva, osztható egymással, így polinomot kapunk az átvitelre, azaz
véges impulzusválaszú az átlagoló (ld. 4.16. ábra). Az origóban lévő négyszeres pólus
nélkül a hálózat nem lenne megvalósítható.
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4.15. ábra. Az egész periódusokban az ellenfázisú minták éppen kiejtik egymást, viszont
a maradék részperiódus esetén nem. a) DC esetén nincs kiejtés, b) egész periódus,
kiejtés, c) Tört periódus, maradék.
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Z

4.16. ábra. A mozgó átlagolás pólus-zérus képe (4-szeres pólus az origóban, egymást
kiejtő pólus-zérus pár z = 1-ben)
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4.6. Az exponenciális átlagolás jellemzése a frekven-
ciatartományban

4.6.1. Átviteli függvény, amplitudó-karakterisztika, pólus-zérus
kép

A 4.8 egyenletből az exponenciális átlagolás átviteli függvénye:

zX̂(z) = (1 − 1

Q
)X̂(z) +

1

Q
Y (z) ⇒ X̂(z)

Y (z)
=

1/Q

z − (1 − 1
Q

)
(4.43)

Vagyis az exponenciális átlagolásnak egy (1 − 1
Q

)-ban elhelyezkedő valós pozitív
pólusa van. Q-t minél nagyobbra választjuk, annál közelebb kerülünk az egységkörhöz
(4.18 ábra). Ez a pólus 0 frekvencián emel ki, és hatása a frekvencia növekedésével
monoton csökken, ami egy monoton aluláteresztő karakterisztikát eredményez (4.17
ábra). Az amplitúdócsúcs annál keskenyebb és magasabb, minél közelebb van a pólus
az egységkörhöz (Q → ∞).

Az amplitudó karakterisztika:

|H (z)| =

∣
∣
∣
∣

1/Q

z − (1 − 1/Q)

∣
∣
∣
∣

∣
∣
∣
∣
z=ejωTs

=

√

1/Q

ejωTs − (1 − 1/Q)
· 1/Q

e−jωTs − (1 − 1/Q)

=
1

Q

1
√

1 − 2 (1 − 1/Q) cos (ωTs) + (1 − 1/Q)2
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4.17. ábra. Exponenciális átlagolás amplitúdó-karakterisztikája

4.6.2. Általánosítás az ideális átlagolásra

Az ideális átlagolásra nem alkalmazhatunk frekvenciatartománybeli leírást, mivel az
átviteli függvény stacionárius kimenetet feltételez, míg az idővariáns szűrőt megvalósító
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4.18. ábra. Exponenciális átlagolás pólus-zérus képe

ideális átlagoló kimenetén minden ütemben újabb tranziensek kezdődnek a paraméter-
változtatás miatt. (Igaz, az idő előrehaladtával, ez a paramétermódosítás egyre fino-
mabb, így egyre kisebb tranzienst okoz.) Jóllehet, a tranziensek miatt nem mondható,
hogy az ideális átlagoló ütemenként megfeleltethető egy n = Q tényezőjű exponenciális
átlagolónak, az viszont igaz, hogy ha az n-edik ütemben rögzítjük a korrekciós súly-
tényezőt, akkor ezzel a megfelelő exponenciális átlagolóra történik átkapcsolás, és az
annak megfelelő karakterisztika lesz érvényes az állandósult összetevőre. Az ideális– és
az exponenciális átlagolás ilyen ötvözését alkalmazzák olyan esetekben az exponenciá-
lis átlagolás elindításához, ahol a felejtési tényező túl kicsi és már az indulást követően
szeretnénk viszonylag torzítatlan átlagértékeket gyűjteni.
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5. fejezet

Rekurzív DFT, a megfigyelőelmélet
alapjai

5.1. Bevezetés

A mozgó átlagolás amplitúdó-karakterisztikájának főhullámáért az átlagolás pólusa
felelős, amely kiejt egy zérust. A pólust elhagyva fésűs szűrőt kapunk.

Az mozgó átlagoló általánosítható úgy, hogy a pólus-zérus kiejtést mindegyik zérus-
ra egyenként megvalósítjuk (az átlagoló átviteli függvényéből z−1 → z−1zm helyettesí-
téssel), az így kapott szűrőkészlet a DFT-szűrőbank.

Az egyes DFT-szűrők amplitúdó- és fáziskarakterisztikája 2π
N

eltolástól eltekintve
megegyezik a mozgó átlagoláséval. Állandósult állapotban a DFT-szűrők kimenete a
bemenő jel megfelelő, komplex Fourier-komponense fázishelyesen.

A megvalósítás során kihasználható, hogy a bemenő jel valós, ezért a szűrőbank
komplex együtthatójú szűrői konjugált páronként összevonhatók. A valós együtthatójú
szűrőket például másodfokú rezonátortagokkal valósíthatjuk meg.

A DFT-szűrés előállítható úgy is, hogy a kívánt Fourier-komponenset az alapsávra
keverjük, komplex átlagolással szűrést végzünk, majd a szűrt jel spektrumát keverés-
sel visszatoljuk az eredeti frekvenciapozícióba. A visszakeverést elhagyva a harmonikus
komponens komplex Fourier-együtthatóját állítjuk elő. Ez a Fourier-sorfejtő. A modu-
lációval bemutatott elv a jelspektrum áthelyezése, melyet felhasznál például a zoom
FFT eljárás.

A predikciós-korrekciós kiértékelési sémán alapul a megfigyelőelmélet. A megfigyelő
olyan rendszer, amely képes egy másik rendszer állapotváltozóit lemásolni. Ha sikerül
olyan modellt alkotnunk a megfigyeléseinkhez, amelyekben az állapotváltozók képvi-
selik a mérendő mennyiségeket, akkor a hibabecsatolás megválasztásával tetszőleges
dinamikájú megfigyelő tervezhető.

A DFT is előállítható megfigyelő formában. Ez a megvalósítás numerikusan ked-
vezőbb, mint a korábbi struktúra, mivel a megfigyelő egy globális visszacsatolást tar-
talmaz, és ezen keresztül egyszerre valósítja meg a pólusokat és a zérusokat. Ezzel
a rezonátoros szűrőstruktúrával nemcsak DFT, hanem tetszőleges lineáris predikciós
eljárás megvalósítható.
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5.2. DFT szűrő és DFT sorfejtő

A DFT szűrő definíciójához vizsgáljuk meg először a mozgó átlagolásban szereplő fésűs
szűrőt.

5.2.1. Fésűs szűrő

Ha a csúszóablakos átlagolásból elhagyjuk a z = 1-ben elhelyezkedő pólust, akkor ún.
fésűs szűrőhöz jutunk (5.1/a ábra). A fésűs szűrő N zérusa az egységnek N -edik gyöke,

zN
m = 1, m = 0, 1, · · · , N − 1 (5.1)

zm = ej 2π
N

m m = 0, 1, · · · , N − 1 (5.2)

a szűrő N pólusa pedig az origóban van. Ez alapján a fésűs-szűrő átviteli függvénye:

H (z) =
1

N

N−1∏

m=0

(z − zm)

(z − 0)N
=

1

N

zN − 1

zN
=

1

N

(
1 − z−N

)
(5.3)

Ebből közvetlenül adódik a fésűs szűrő kimenetét megadó egyenlet:

x̂f (n) =
1

N
(y (n) − y (n − N)) (5.4)

Megjegyzés: Mivel az éppen beérkező megfigyelés nem vehető figyelembe a valós
idejű eredményben, ezért a fésűs szűrő önmagában csak késleltetéssel valósítható meg.
A mozgó átlagolásban szereplő rezonátor bevezet egy ilyen késleltetést (vö. 4.8 ábra).

A frekvencia karakterisztika:

H (z)|z=ejωTs =
1

N

(
1 − e−jNωTs

)
=

1

N
e−j N

2
ωTs

(

ej N
2

ωTs − e−j N
2

ωTs

)

=

= ej(π
2
−N

2
ωTs) · 2

N

(

sin
N

2
ωTs

)

Az átlagolásnál hozzávett z = 1 pólus az 5.1/b ábrán látható módon (minden 2π
hosszú intervallumban) kitör egy fogat a fésűs szűrő karakterisztikájából.

5.2.2. DFT szűrő

A mozgó átlagoláshoz hasonlóan, a többi N-1 egységgyök helyén is kiejthető az adott
zérus, ha a mozgó átlagolás pólusát elforgatjuk. A fésűs szűrő m-edik fogát kitörve
az amplitúdó-karakterisztikában az átlagolásnál megismert alakú, de eltolt pozíciójú
sáváteresztő szűrőkarakterisztikát kapunk (5.1/c ábra).

A pólus elforgatásához z−1 → z−1zm helyettesítést hajtunk végre az átlagolás át-
vitelét megadó egyenletben. A következő m szerint paraméterezett átviteli függvények
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0
0

1

0
0

1

0
0

1

-1 0 1

-1

0

1

8

Z

-1 0 1

-1

0

1

8

Z

-1 0 1

-1

0

1

8

Z

2
N

2
N

2
N

2π
N

2π
N

2π
N

π

π

π

2π

2π

2π

3π

3π

3π

ωTs

ωTs

ωTs

5.1. ábra. a) Fésűs szűrő amplitúdó-karakterisztikája és pólus-zérus képe, b) pólus-
zérus kiejtéssel kapott aluláteresztő karakterisztika c) eltolt pozíciójú pólus-zérus ki-
ejtés ill. fésűfog-kitörés (DFT)
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adódnak:

Hm(z) =
1

N
z−1zm

1 − (z−1zm)
N

1 − z−1zm

= (5.5)

=
1

N
z−1zm

1 − z−N

1 − z−1zm

, m = 0, 1, · · · , N − 1 (5.6)

Utóbbihoz felhasználtuk az 5.1 azonosságot.
Az 5.5 szerinti átviteli függvényben felismerhető az alábbi véges mértani sor összeg-

képlete:

Hm(z) =
1

N
z−1zm

(
1 + z−1zm + (z−1zm)2 + ... + (z−1zm)N−1

)

elvégezve a beszorzást, és megfordítva a tagok sorrendjét

Hm(z) =
1

N

(
(z−1zm)N + ... + (z−1zm)2 + z−1zm

)
(5.7)

kiemelve zN
m = 1 − et

Hm(z) =
1

N

(
z−N + z−(N−1)z−1

m + z−(N−2)z−2
m + · · · + z−1z−(N−1)

m

)
(5.8)

ahol m = 0, 1, · · · , N − 1. Ebből közvetlenül adódik az időtartományban az alábbi
egyenlet az m. szűrő kimenetére:

x̂m (n) =
1

N

(

y (n − N) + y (n − N + 1) e−j 2π
N

m + ... + y (n − 1) e−j 2π
N

m(N−1)
)

(5.9)

A fenti összegben szereplő súlyok, az 1
N

skálázástól eltekintve, megegyeznek a 2.23
szerinti DFT súlyaival. Vagyis éppen azt a hatást érjük el, mintha soros-párhuzamos
átalakítás után, ütemenként elvégeznénk a a 2.23 szerinti DFT szerinti műveletet.

Az m paraméterű szűrők összessége, melyet szűrőkészletnek, vagy szűrőbanknak
nevezünk, minden ütemben egy N elemű komplex vektort állít elő a legutolsó N meg-
figyelés alapján. Hardver megvalósítás esetén az N darab szűrő párhuzamosan számít-
hatja az eredményt. (ld. 5.2 és 5.3 ábra).

A DFT szűrő amplitúdó-karakterisztikáját 5.5-ből z = ejωTs változócserével és a
számláló, ill. a nevező mértani közepének kiemelésével kapjuk:

|H(z)||z=ejωTs =
1

N
e−j(ωTs−

2π
N

m) · 1 − ejN(ωTs−
2π
N

m)

1 − e−j(ωTs−
2π
N

m)
= (5.10)

=
1

N
e−j(ωTs−

2π
N

m) · e−j N
2

(ωTs−
2π
N

m)

e−j 1
2
(ωTs−

2π
N

m)
· sin N

2
(ωTs − 2π

N
m)

sin 1
2
(ωTs − 2π

N
m)

= (5.11)

=
1

N
e−j N+1

2
(ωTs−

2π
N

m) · sin N
2
(ωTs − 2π

N
m)

sin 1
2
(ωTs − 2π

N
m)

(5.12)
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Z
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Z
-1

Z
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Fésűs szűrő (zérusok)

1
N

(
1 − z−N

)

Rezonátorok (csatornánként egy pólus)

zm
z−1

1−z−1zm

−1

y(n)
1
N

y(n − N)

z0

z1

zN−1

x̂0(n + 1)

x̂1(n + 1)

x̂N−1(n + 1)

5.2. ábra. A DFT-szűrő blokkvázlata

fsfs

N × 1

1
×

N

5.3. ábra. A DFT szűrőbank soros-párhuzamos átalakítást is végez a jelen.
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Az 5.12 és a 4.35 egyenletek összevetése alapján kimondható, hogy az m-dik DFT
szűrő egy olyan sávszűrő, amelynek amplitúdó- és fáziskarakterisztikája jellegre azonos
a csúszó ablakos átlagolóéval, de sávközepe 2π

N
m relatív körfrekvencián van. A DFT

szűrő úgy viselkedik az 2π
N

m frekvenciapozícióban, mint az átlagoló a nulla pozícióban:
míg az átlagolótól azt várjuk, hogy konstans értéket szolgáltasson a kimenetén, addig
a DFT szűrőtől azt várjuk, hogy a jelből csak az ωTs = 2π

N
m körfrekvenciájú Fourier-

komponens jusson a kimenetre. Az N -re periodikus diszkrét jeleket a DFT szűrőbank
Fourier-komponenseire bontja.

5.2.3. Megvalósítás valós együtthatójú, másodfokú rezonátor-
tagokkal

A DFT szűrők egy-egy zm = ej 2π
N

m pólusú ún. komplex együtthatójú rezonátort foglal-
nak magukban. Az egységkörön elhelyezkedő pólus ugyanis azt eredményezi a vissza-
csatolásban, hogy a magára hagyott rendszer komplex értékű állapotváltozója egy
2π
N

m diszkrét körfrekvenciával forgó fazor lesz, hiszen ennyivel forgatja el ütemenként
a zm-mel való szorzás. Ha tehát ilyen körfrekvenciájú szinuszos jelet adunk a bemene-
tére, akkor azt csillapítás nélkül fázisszinkronban összegzi, így azon a körfrekvencián
végtelen az átvitele, azaz rezonancia lép fel.

A rezonátorok bemenetén y′ (n) = y (n)−y (n − N) jel van, amely a csúszó ablakba
bekerülő legújabb minta és a kieső legrégebbi minta különbsége, azaz az 5.4 egyenletnek
megfelelő fésűs szűrő kimente. Az egyes rezonátorok kimenetét jelölje x̂m(n), átviteli
függvényét pedig HRm(z).

A DFT rezonátortagok az m = 0 indexű egyszerű átlagolót és az m = N
2
-hez tar-

tozó szűrőt kivéve, komplex együtthatót tartalmaznak így valós bemenetre is komplex
eredményt adnak; amplitúdó-karakterisztikájuk nem páros függvény (vö. 5.1/c ábra).
Ennek megfelelően megvalósításukhoz kételemű vektorokon kellene a komplex szorzás-
nak és összeadásnak megfelelő műveleteket elvégezni. Ilyen kiszámítás például az, ha
valamilyen magas szintű programnyelven komplex-műveleteket tudunk végrehajtatni.
Alacsony szintű realizációnál azonban nem tekinthetünk el attól, hogy a komplex szá-
mokon értelmezett műveleteket valós számpárokon végezzük, valós együtthatójú háló-
zattal, és tulajdonképpen nem egy, hanem két valós értékű jelcsatornát kell megvalósí-
tani rezonátortagonként, amelyek egy-egy tárolót tartalmaznak: a valós és a képzetes
rész számára, valamint a kimenet is két valós érték: az eredmény valós része és képzetes
része.

Az alacsony szintű megvalósítás egyszerűsödik, ha kihasználjuk, hogy a bemenő
jel valós-értékű. Ekkor ugyanis a szűrőbank komplex rezonátorai konjugált páronként
összevonhatók (N

2
-re szimmetrikusan: az első az N −1-dikkel stb.), mivel kimeneteik is

komplex konjugáltjai lesznek egymásnak. (A 0-dik és az N
2
-dik rezonátorok eleve valós

együtthatójúak, és külön-külön elsőfokú taggal megvalósíthatók. )
Legyen

ϕm =
2π

N
m . (5.13)

Az m-dik és N −m-dik komplex rezonátor átvitelének összegéből a valós részt előállító
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csatorna:

Re{HRm(n)} =
1

2

(
zmz−1

1 − zmz−1
+

z−1
m z−1

1 − z−1
m z−1

)

=
z−1 cos ϕm − z−2

1 − 2z−1 cos ϕm + z−2
, (5.14)

különbségükből a képzetes részt előállító csatorna:

Im{HRm(n)} =
1

2j

(
zmz−1

1 − zmz−1
− z−1

m z−1

1 − z−1
m z−1

)

=
z−1 sin ϕm

1 − 2z−1 cos ϕm + z−2
. (5.15)

A fentiekhez felhasználtuk, hogy:

zN−m = ej
2π(N−m)

N = e−j 2πm
N = z−1

m = z∗m , (5.16)

valamint az Euler azonosságot:

ejϕ = cos ϕ + j sin ϕ, (5.17)

amellyel

zm + z−1
m = 2 cos ϕm , (5.18)

zm − z−1
m = 2j sin ϕm . (5.19)

A két csatorna összevonva megvalósítható, mivel a nevezők megegyeznek, vagyis
a visszacsatolások egyformák. Ahhoz, hogy ezt kihasználjuk, a kaszkádban előbb a
nevezőt kell megvalósítanunk (5.4 ábra). Mivel a két késleltetősorra azonos adatok
jutnak, ezért megcsapolási pontjaikon is azonos adatok vannak, vagyis a két késleltető
sor összevonható eggyé. Ezt mutatja az 5.5 ábra.

átviteli fv. nevezője

−1

−1

y′ (n)

2 cos ϕm

cos ϕm

sin ϕm

Re {x̂m(n)}

Im {x̂m(n)}

5.4. ábra. A valós és a képzetes jelcsatorna megvalósítása
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−1

2

y′ (n)

cos ϕm

sin ϕm

Re {x̂m(n)}

Im {x̂m(n)}

5.5. ábra. Az m-dik másodfokú rezonátortag egy lehetséges megvalósítása

5.2.4. DFT sorfejtés, jelspektrum áthelyezése

A DFT-szűrő kimenetére kapott 5.9 kifejezést megismételjük:

x̂DFTszűrő =
1

N

(

y (n − N) + y (n − N + 1) e−j 2π
N

m + ... + y (n − 1) e−j 2π
N

(N−1)m
)

(5.20)

Egy kis átalakítás után ezt kapjuk:

= ej 2π
N

mn

(

1

N

n−1∑

k=n−N

y (k) e−j 2π
N

mk

)

(5.21)

A zárójelezett, súlyozott átlag úgy is előállítható, hogy a beérkező y (n) megfigyelé-
seket minden ütemben szorozzuk az e−j 2π

N
mn komplex harmonikus jel mintáival, majd

átlagolást végzünk. Ezzel éppen a megfelelő súlyozást valósítjuk meg minden egyes
ütemben. A két jel időtartománybeli összeszorzását keverésnek hívjuk. A komplex ke-
verők periodikusan ismétlik komplex hullámformájukat.

A keverés a frekvenciatartományban áthelyezi a jelet. Legegyszerűbben két komplex
harmonikus szorzásán szemléltethetjük ezt. Legyen y (n) = ejω1Tsn, és w (n) = e−jω2Tsn

. Szorzatuk u (n) = y (n) w (n) = ejω1Tsne−jω2Tsn = ej(ω1−ω2)Tsn, vagyis a keverés −ω2Ts

diszkrét körfrekvenciával áthelyezte a jel spektrumát (5.6 ábra). Ha az y (n) jel egy
tetszőleges periodikus jel, akkor a keverés minden egyes Fourier-komponensét ugyan-
ennyivel tolja el, tehát ugyanúgy áthelyeződik a teljes spektrum. A híradástechnikai
szóhasználatban a vivővel való keverést modulációnak, az alapsávra keverést demodu-
lációnak nevezik.

A keverést követő átlagolástól állandó értékű kimenetet várunk. A (5.21) egyenlet-
ben az átlagolást egy visszakeverés követi az ej 2π

N
mn moduláló jellel.

Megjegyzés: a DFT-szűrő levezetésében, és rezonátoros megvalósításában nem hasz-
náltunk keverést, kizárólag a szűrő együtthatóját változtattuk.
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ω1ω2 ω1 + ω2

5.6. ábra. Spektrumáthelyezés modulációval

1

x (n)

e−j 2π
N

n

e−j 2π
N

(N−1)n

X0 (n)

X1 (n)

XN−1 (n)átlagoló

átlagoló

átlagoló

a diszkrét Fourier-sorfejtés
együtthatója az utolsó N
mérés alapján

komplex
keverő

kétcsatornás
átlagoló (Re, ill. Im)

5.7. ábra. DFT sorfejtés

A DFT-sorfejtő (5.7 ábra) az N -edik egységgyök szerint eltolja a spektrumot úgy,
hogy a vizsgált frekvencia-összetevő a 0 frekvenciára kerüljön, majd átlagolással előál-
lítja a harmonikus jelkomponens Fourier együtthatóját. Megjegyzés: maga a Fourier-
integrál hasonló struktúrájú:

X(f) =

∫ ∞

−∞

x(t)e−j2πftdt, (5.22)

azaz komplex keverés, majd aluláteresztő szűrés, de véges energiájú jelekre.
A DFT sorfejtés kimenete és a DFT szűrő kimenőjele között egy ej 2π

N
mn-nel végzett

komplex keverés teremt kapcsolatot. Az 5.8 ábrán a szorzás előtti ponton az (ideális
esetben konstans) Fourier-együttható, a szorzás után a DFT szűrőnek megfelelő kime-
nőjel jelenik meg.

A DFT komponensek előállítása nyomán kétféle frekvenciatartománybeli áthelye-
zést ismerhettünk meg:

1. Szűrőkarakterisztika áthelyezése: A DFT szűrő esetén az aluláteresztő szűrő frek-
venciatulajdonságait toltuk el más sávközépi frekvenciára, a szűrőben szereplő
együtthatók megváltoztatásával.
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átlagoló

e−j 2π
N

mn ej 2π
N

mn

demodulátor kétcsatornás
átlagoló

modulátor

5.8. ábra. DFT komponens megvalósítása keveréssel

2. Jel spektrumának áthelyezése: A keverésen keresztül megvalósított DFT szűrő
esetén a jel eltolása, átlagolása, visszatolása volt az út.

A jelspektrum áthelyezése egy általánosan használt elv, amely két megfontolásból
lehet előnyös:

• A rögzített paraméterekkel megvalósított jelfeldolgozó eszközhöz „visszük” a spekt-
rumot. Integrált áramkörök esetén ez azonos áramköri (logikai) blokkokból való
építkezés lehetőségét teremti meg. Műszer esetében jelentheti azt, hogy egyetlen
jelfeldolgozó modul alkalmazható többféle frekvenciatartomány vizsgálatához a
keverést követően.

• Az alacsonyabb frekvenciára keverés lehetősége nagyfrekvenciás jelek esetén elő-
nyös. Nagy sávszélességű vagy nagy vivőfrekvenciájú jel nagy mintavételi frek-
venciát tesz szükségessé, ami meghatározza az adatfolyam sebességét, és előírja
a műveletvégzések gyorsaságát. Bonyolultabb jelfeldolgozási algoritmusok esetén
keveréssel, majd szűréssel sávkorlátozni lehet a jelet, és újra-mintavételezéssel
alacsonyabb mintavételi frekvencián lehet folytatni a jelfeldolgozást.

5.3. A DFT alkalmazása spektrumbecsléshez

5.3.1. FFT-analizátor

Az ablakhosszra periodikus jelekre a DFT előállítja a jel Fourier-sorának komplex
együtthatóit, amelyek abszolút érték négyzete a jel teljesítményspektrumát adják köz-
vetlenül. A DFT négyzeteit periodogramnak is hívják. A periodogram használható
sztochasztikus jelek spektrumának a becslésére is. Ld. Schnell, 24.6.2., 24.8.3 fejezet.
Ezen az elven működnek a Fourier-analizátorok, melyek a DFT kiszámítására külön-
böző gyors Fourier transzformációs, angol rövidítéssel FFT (Fast Fourier Transform)
eljárásokat használnak.

Az FFT algoritmusok olyan számítási struktúrák, amelyek kihasználják a DFT
szimmetrikus és ciklikus tulajdonságait (ld. Schnell, 24.7.5 fejezet). Míg a 2.23 szerinti
kiszámításánál az N darab N tagú összeg számításához O(N2) (N2 nagyságrendű)
komplex szorzás és összeadás szükséges, addig az FFT-vel, amely faktorizációk útján
az összes DFT pontot együtt csak számítja, O(N · log2 N) számítási művelet szükséges.
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20 lg |H (f)|

0dB

−80dB

fs/4 fs/2 fs

f

áteresztő átmeneti záró

5.9. ábra. Az átlapolásgátló szűrő karakterisztikájának betükröződése

Fontos, hogy míg a DFT-szűrő rekurzívan állítja elő az eredményt, addig az FFT
nem rekurzív. Az FFT blokkos számítási eljárás, ami azt jelenti, hogy az eljárás felté-
telezi, hogy a számítás megkezdésekor az összes minta egyszerre rendelkezésre áll.

Spektrumanalízis esetén nem jelent hátrányt a blokkos kiértékelés, mivel az egy-
mást követő ütemek transzformáltjai redundanciát tartalmaznak, (mialatt N minta
keresztülhalad a DFT-szűrőn, azalatt N2 kimenő minta születik). Ezért spektrum-
becslés esetén elegendő N ütemenként „néhányszor” kiértékelni a transzformáltat. Ilyen
feltételek mellett az FFT rendkívül hatékonyan alkalmazható.

A DFT-szűrő számításához ütemenként csak O(N) műveletet kell végezni a transz-
formált előállításához, de a rekurzív számítás miatt nem takaríthatjuk meg az ütemen-
kénti kiértékelést, ezért N ütemre vetítve a számítási igénye O(N2).

A mintavételezés előtt a vizsgált jelet sávkorlátozni kell. Az analóg átlapolásgátló
szűrőt úgy kell megtervezni, hogy a vizsgálni kívánt sávban egyenletes áteresztő tarto-
mánya legyen, valamint nagy legyen az elnyomása abban a sávban, amelyik a mintavé-
telezés következtében éppen ebbe a vizsgált frekvenciasávba lapolódik be. Az áteresztő-
és a zárósáv közötti átmeneti tartomány éppen önmagába lapolódik be a mintavétele-
zést követően.

Az 5.9 ábra egy olyan átlapolásgátló szűrő jellegre helyes amplitúdó-karakterisztiká-
ját mutatja, amely a mintavételi frekvencia negyedéig terjedő vizsgálati tartományt
enged meg 80dB előírt dinamika mellett, azaz a spektrumcsúcstól számítva -80dB
dinamikatartományban nem keletkezhetnek hamis összetevők.

Szaggatott vonallal a karakterisztika betükröződése látható a mintavételezést köve-
tően, ami úgy értelmezhető, hogy ha a bemenőjel fehér zaj, akkor a szűrőkarakterisztika
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által kivágott jelspektrum a mintavételezés után a szaggatott vonal szerint tükröződik
be.

5.3.1 Példa. Vizsgáljuk meg az elért felbontást FFT esetén. N = 1024 pontos FFT
esetén és az 5.9 ábra szerinti aluláteresztő szűrővel N

4
= 256 értékes pontot kapunk,

mivel a N
2
. pontra szimmetrikusan komplex konjugált értékek találhatók, ill. a N

4
. pont

felett az átlapolás miatt nem teljesül a 80dB-es dinamika. Ha a mintavételi frekvencia
fs = 102, 4 kHz, (amivel a vizsgálható tartomány fs

4
= 25, 6 kHz,) akkor a felbontás

fs

N
= 100 Hz. �

A felbontás ( fs

N
) növelésére alkalmazható nagyobb pontszámú FFT, amelynek azon-

ban határt szab a numerikus pontosság és a rendelkezésre álló számítási teljesítmény,
ill. tárolóméret. Mivel N növelésével nem lehet lényegesen javítani a felbontást, ezért
az fs mintavételi frekvenciát kell csökkenteni. A megoldás az, hogy egyszerre csak
egy kis tartományt vizsgálunk; sok esetben egyébként is csak a spektrum jellegzetes
tartományai az érdekesek. Ezt a megoldást sávszelektív FFT eljárásnak hívják.

5.3.2. Sávszelektív Fourier transzformációs eljárás

A sávszelektív Fourier transzformációs eljárás (röviden: sávszelektív eljárás, angolul:
„band selective FFT” v. „zoom FFT”) a jelspektrum áthelyezésének elvét használja fel.
Mint a neve is utal rá, egy adott sávot kiválasztva becsli a jel spektrumát.

Az 5.10 ábrán nyomon követhető módon a sávszelektív eljárás komplex keverés-
sel az alapsávra helyezi át a spektrumban vizsgálni kívánt sávot, majd ezt követően
aluláteresztő szűréssel korlátozza a spektrumot ennek a sávnak a környezetére, majd
újramintavételezi a jelet alacsonyabb frekvenciával. További újra-mintavételezéssel, a
spektrumnak mind keskenyebb szelete válik vizsgálhatóvá az origó mind kisebb kör-
nyezetében, egyre kisebb mintavételi frekvencia mellett. Végül az alacsony mintavételi
frekvencia mellett elvégezhető FFT-vel megfelelő felbontású spektrumbecslés lehet-
séges. A többlépcsős újra-mintavételezésre azért van szükség, mert így az alapsávi
szűréssel szembeni követelmények lényegesen enyhíthetők. A – többnyire 2-es, 3-as,
5-ös tényezőjű – decimálások eredő hányadosát jelölje: L =

∏

i Li.

Az újramintavételezés (decimálás) során az aluláteresztő szűrés lecsökkenti a jel
sávszélességét, így ezt követően elegendő a kimenőjel minden L1-dik mintát megtartani
a mintavételi tétel betartásával, ahol L1 a sávszélesség lecsökkentésének mértékétől
függ.

A sávszelektív módszer lehetővé teszi, hogy P bemenő mintára P pontos FFT
helyett csak egy N = P

L
pontos FFT-t számítsunk, (azonos ideig gyűjtve a mintákat),

amely az eredeti (P pontos) FFT-nek tetszőleges N szomszédos pontját adja meg.
Más megvilágításban: egy N pontos FFT-t alkalmazva, az eljárás L-szer pontosabb

felbontást eredményez (a teljes vizsgálható sávnál L-szer keskenyebb sávban és az
eredeti diszkrét jel N · L mintáját feldolgozva), mint az eredeti jel N pontos minta
regisztrátumán elvégzett N pontos transzformáció.

Megjegyzés: A fentiekből egyértelmű, hogy az eljárás nem tart rövidebb ideig, mint
ha a teljes spektrumot vizsgálnánk. A felbontás akárcsak az egyszerű FFT esetében,
az analóg jel regisztrátum-hosszának reciprokával egyenlő.
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a)

b)

c)

d)

e)

f1

f1

fs

fs

−fs

−fs

f ′

s−f ′

s f

f

f

f

f

5.10. ábra. A jelspektrum alakulása a sávszelektív eljárásban

cos (ω1Tsn)

sin (ω1Tsn)

5.11. ábra. Sávszelektív eljárás blokkvázlata az újra-mintavételezésig
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Megjegyzés: „decimálás” = „tizedelés”, de az eljárást tetszőleges arányú mintaeldo-
básra használjuk. Ha a sávkorlátozó szűrést is értjük alatta, akkor célszerű „decimáló
szűrés” kifejezést használjuk.

5.3.2 Példa. Ha egy ∆fvizsg. = 1Hz széles sávot kívánunk vizsgálni, akkor az 5.9
ábra szerinti feltételek mellett f ′

s = 4 Hz-re csökkenthető le a mintavételi frekvencia (a
sávszelektív eljárással). Az FFT-nél példaként vett (83. old) N = 1024 pontos FFT-t
alkalmazva a felbontás ekkor ∆f ′ = 4 Hz

1024
≃ 0, 004 Hz. A decimált jel mintavételének

periódusa T ′
M = 1

f ′

s
= 0.25 s, ilyen időközönként áll elő egy új minta.

A vizsgálathoz az analóg jel Tr = 1024 · 0, 25 s= 256 s= 4 min 16 s hosszú részletét
szükséges mintavételezni. Ha az 5.3.1 példához (83. old) hasonlóan továbbra is 102, 4
kHz mintavételi frekvenciát alkalmazunk (a rendelkezésre álló átlapolásgátló szűrő,
vagy a vizsgálni kívánt frekvenciasáv sávközepe miatt), akkor összesen P = 102, 4
kHz·256 s= 25 ·220 db minta begyűjtése szükséges a megadott, igen finom ∆f = 0, 004
Hz felbontáshoz. Nem valósidejű feldolgozás esetén ennyi mintának az eltárolása is
probléma volna, nemhogy a megfelelő pontszámú FFT-nek a kiszámítása. A pontok
hatalmas tömege, a teljes FFT kiszámítása esetén, az eredményben egyformán jelent-
kezne fs

∆f
= P , és a vizsgálandó sáv a teljes spektrumeredménynek csak elhanyagolha-

tóan kis részét tenné ki (1 Hz/25, 6 kHz). �

Megjegyzés: Berendezésben az első újramintavételezésig célhardverrel dolgozzák
fel a jelet. Az azt követő, lecsökkent mintavételi ütem mellett szoftver megvalósítást
alkalmaznak.

Megjegyzés: Az 5.10 ábra c-e. sorában ábrázolt jel már nem valós-értékű (spekt-
ruma nem páros ill. páratlan, valós ill. képzetes részű). Ugyanez vehető észre az 5.11
ábrán, ahol megjelenik a valós-, és képzetes jelcsatorna.

5.4. A modell beépülése a mérési eljárásba, a megfi-
gyelőelmélet alapjai

5.4.1. Jelmodell és modellkópia

Tegyük fel, hogy mérendő egy x állandó. Ennek modellje az 5.12 ábra szerint egy
önmagára visszacsatolt állapotváltozó lehet, melynek kezdeti értéke, x(0), a keresett
állandó. Ugyanígy ennek az állandónak az inverz modellben megvalósított kópiája
is egy önmagára visszacsatolt tároló elem, amelynek azonban a kezdeti értéke, x̂(0),
tetszőleges. A másolás a predikciós-korrekciós elv segítségével a két rendszer állapot-
változóinak eltéréséből származtatott hiba becsatolásával hajtható végre az 5.12 ábra
szerint. A predikció-korrekció általános sémáját emeli ki az 5.13 ábra. M a modell, M̂
a modellkópia, K a korrekciós stratégia.

Az, hogy a hibát hogyan használjuk fel, nem egyértelmű. Ha azt feltételezzük, hogy
a mérésünk pontos, akkor a hibát közvetlenül is becsatolhatjuk (g = 1), és egyetlen
lépésben átmásolódik az állapotváltozó, a további lépésekben a hiba nulla lesz. Abban
az esetben azonban, ha zaj terheli a mérési csatornát, akkor nem az állapotváltozót,
hanem annak egy zajos értékét kapjuk minden lépésben. Ha lineárisan átlagoljuk a
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−1

x(n)g

5.12. ábra. A konstans érték egy lehetséges modellje felfedezhető az átlagolásban

−1

modell

mérési csatorna

stratégia modellkópia

5.13. ábra. A predikciós-korrekciós séma blokkvázlata

mintákat, vagyis a 4.5 egyenlet szerint g-t 1
n+1

-re választjuk, akkor a zaj kiátlagolódik.
Zaj nélküli esetben ilyenkor is egy lépésben átmásolódik az állapotváltozó és a továb-
biakban eltűnik a hiba. Alkalmazható g = 1

Q
, Q > 1 konstans is, ami az exponenciális

átlagolásnak felel meg, és így tovább.

5.4.2. Megfigyelő tervezése lineáris rendszerhez

A megfigyelők olyan rendszerek, amelyek egy másik rendszer állapotváltozóinak, vagy
az azokból származtatott mennyiségeknek a meghatározására szolgálnak, azaz végső
soron mérési eljárást valósítanak meg. A továbbiakban mindössze a lineáris, időin-
variáns rendszerekre szorítkozunk, és olyan megfigyelőre, amely a mérendő rendszer
állapotváltozóit azonosan másolja.

Az 5.14 ábrán látható rendszer baloldalt egy autonóm (bemenet nélküli) rend-

A A

C CGZ
-1

Z
-1

−1

y(n)
x (n + 1) x (n) x̂ (n)x̂ (n + 1)

y(n) − ŷ(n)

ŷ

az autonóm rendszer modellje
stratégia

az autonóm rendszer kópiája

x(n + 1) = A · x(n) x̂(n + 1) = A · x̂(n) + G[y(n) − ŷ(n)]

5.14. ábra. Lineáris, mérendő- és megfigyelő rendszer
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szert, a szaggatott vonaltól jobbra egy másik, ún. megfigyelő rendszert tartalmaz. A
megfigyelt N -ed rendű rendszer meghatározott struktúrájú és adott paraméterű (A:
állapotátmenet mátrix, C: „kicsatoló” mátrix), nem ismerjük azonban állapotát (x). Az
A állapotátmenet mátrix, és C „kicsatoló” mátrix segítségével az alábbi állapotváltozós
leírása adható:

x (n + 1) = Ax(n) (5.23)

y (n) = Cx(n) (5.24)

A megfigyelő, amely képes követni a megfigyelt rendszer állapotát úgy áll elő, hogy
még egyszer megvalósítjuk az autonóm rendszert, kiegészítve egy bemenettel. A beme-
netet a két rendszer kimenetének eltéréséből, vagyis a hibából képezzük a G „becsatoló”
mátrixon keresztül. A rendszerkópia állapotváltozói a megfigyelt rendszer állapotának
becslői, ezért közvetlenül a becslő jelölést (x̂, ŷ) alkalmazhatjuk a rendszer leírásakor:

x̂ (n + 1) = Ax̂ (n) + G (y(n) − ŷ(n)) (5.25)

ŷ (n) = Cx̂(n) (5.26)

Visszahelyettesítéssel kiküszöbölhetők a kimeneti változók, és az is látszik, hogy a
megfigyelő rendszer állapotátmenet mátrixa (A − GC) :

x̂ (n + 1) = (A − GC)x̂ (n) + Gy(n) = (A − GC)x̂ (n) + GCx(n) (5.27)

Egészét tekintve a rendszer autonóm, és a követési hiba eltűnésével páronként meg-
egyező állapotváltozókat kell kapnunk. Az állapotváltozók különbségeire, vagyis a kö-
vetési hibára differencia-egyenlet írható fel, melyet hibarendszernek hívunk:

x(n + 1) − x̂(n + 1) = A(x(n) − x̂(n)) − GC(x(n) − x̂(n)) = (5.28)

= (A − GC) (x(n) − x̂(n)) = (A − GC)n+1 (x(0) − x̂(0)) (5.29)

Ha a mérendő rendszer teljesen megfigyelhető, akkor a G mátrix alkalmas megvá-
lasztásával tetszőleges dinamikájú megfigyelő létrehozható. A gyakorlatban a megfi-
gyelő sajátértékeit úgy állítják be, hogy a konvergencia gyorsabb legyen, mint a rend-
szer egyéb változásai.

5.4.3. Véges lépésben konvergáló megfigyelő

A továbbiakban azokat a megfigyelőket tekintjük, amelyek véges lépésben konvergál-
nak. Az egy- illetve többlépéses konvergencia esete a C „kicsatoló” mátrix alapján
választható külön.

Ha dimx = dim x̂ = N és dimy = M , akkor a mátrixok dimenzióira A−GC miatt
dimA = N×N , dimG = N×M és dimC = M×N kell teljesüljön. Míg a C „kicsatoló”
mátrix cij elemei azt adják meg, hogy a kimenetvektor i. elemének előállításához milyen
együtthatóval kell venni a j. állapotot, addig a G „becsatoló” mátrix minden egyes gij

eleme azt adja meg, hogy a kópia i. állapotának kiszámításához milyen együtthatóval
kell venni a hibavektor j-edik elemét.
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Ha C négyzetes, vagyis annyi kimenete van a megfigyelt rendszernek, ahány álla-
potváltozója van, akkor G is az. Ilyenkor két eset lehetséges: az egyes kimenetek vagy
olyan súlyozott összegei az állapotváltozóknak, hogy belőlük egyértelműen vissza lehet
következtetni, hogy mik voltak az egyes állapotváltozók, vagy nem. Ha igen, akkor
nyilván felírható az a G mátrix, amellyel ez a visszaalakítás megtehető, ha nem, ak-
kor bizonyos kimentek feleslegesek, vagyis elhagyásukkal az az eset adódik, amikor
C nem négyzetes. Matematikailag az előbbi gondolatmenet úgy fogalmazható meg,
hogy amennyiben C négyzetes mátrix, és sor- illetve oszlopvektorai függetlenek, léte-
zik C−1, amellyel jobbról szorozva az A − GC = 0 egyenletet G = AC−1 adódik.
Vagyis megadható olyan G mátrix, amellyel egylépéses konvergencia biztosítható.

Ha C nem négyzetes (és sorok elhagyásával nem tehető négyzetes, nemszinguláris
mátrixszá), akkor egylépéses konvergencia nem lehetséges. További lehetőség a vé-
ges lépésben elérendő konvergencia biztosítására az, ha a hibarendszer állapotátmenet
mátrixa (A−GC) „kontraktív” jellegű, vagyis az autonóm hibarendszer a hibateljesít-
ményt adott számú lépés alatt disszipálni képes. Matematikailag (A−GC)N = 0 kell,
hogy teljesüljön. Ilyenkor A−GC nilpotens mátrix, ami annyit jelent, hogy olyan nem
nulla mátrix, mely bizonyos számú (legfeljebb N − 1) önmagával történő szorzás után,
vagyis bizonyos hatványkitevő fölött, nullává válik. A nilpotens mátrixok meghatározó
jellemzője, hogy valamennyi sajátértékük nulla. Ez a megállapítás azzal egyenértékű,
hogy a rendszer pólusai mind az origóban helyezkednek el, vagyis a rendszer frekven-
ciaátviteli függvénye z−1 polinomjaként írható fel. Ez viszont azt jelenti, hogy véges
impulzusválaszú (FIR) a rendszer.

Az N lépéses konvergencia, illetve a sajátértékekre vonatkozó tulajdonság alapján
G kétféleképpen is számítható: először fel kell írni parametrikusan az A−GC mátrixot,
majd vagy a (A − GC)N = 0 mátrix elemeit kell felírni és megoldani a nullával való
egyenlőségeket, vagy az A − GC mátrix karakterisztikus egyenletét kell felírni, és az
abban szereplő 0-tól N − 1-dik terjedő hatványokig az együtthatókra felírni a nullával
való azonosságot, majd megoldani az így kapott egyenletrendszert; a karakterisztikus
egyenletnek ugyanis λN = 0 alakúnak kell lennie.

5.4.1 Példa. Tekintsünk egy másodfokú autonóm rendszert, amelynek állapot-
átmenet mátrixa, ill. „kicsatoló” mátrixa:

A =

[
1 0
0 −1

]

; C =
[

1 1
]
; (5.30)

Tervezendő a megfigyelő G mátrixa. G =

[
g0

g1

]

;

A megfigyelő állapotátmenet mátrixa ezzel : A − GC =

[
1 − g0 −g0

−g1 −1 − g1

]

;

(A − GC)2 =

[
(1 − g0)

2 + g0g1; g0(g0 + g1)
g1(g0 + g1) (1 + g1)

2 + g0g1

]

= 0 =⇒ g0 = 1
2
; g1 = −1

2
,

amivel a megfigyelő állapotátmenet mátrixa:

A − GC =

[
1
2

−1
2

1
2

−1
2

]

. (5.31)
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Ha x1, x2, x̂1, x̂2 állapotváltozók kezdeti értékeit rendre a, b, c, d -vel jelöljük, akkor
a rendszer változói, az alábbiak szerint alakulnak:

n x1 x2 y y − ŷ ŷ x̂1 x̂2

0 a b a + b a + b − c − d c + d c d
1 a −b a − b a − b − c + d c − d a+b+c−d

2
−a−b+c−d

2

2 a b a + b 0 a + b a b

A további lépésekben a hiba azonosan nulla. Érdekes, hogy ha kezdeti állapotok
nullák: x̂1(0) = c = x̂2(0) = d = 0, akkor ennél a megfigyelőnél az állapotok konver-
genciájának bekövetkeztéig az ŷ = 0 kimenet nulla. �

Ha a mérendő rendszernek bemenete is van, akkor mindkét állapotegyenlet kiegé-
szül, de „egyformán”; az additív tagra a szuperpozíció elve érvényes:

x̂(n + 1) = Ax̂(n) + G[y(n) − ŷ(n)] + Bu(n) (5.32)

x(n + 1) = Ax(n) + Bu(n) (5.33)

Megjegyzés: Abban az esetben, ha a megfigyelési csatornán keresztül a megfigyelt
rendszer kimenetéhez, vagy közvetlenül az állapotváltozóihoz zaj adódik, akkor a véges
lépésű konvergencia nem teljesül. Az elvben véges, több lépéses konvergenciát biztosító
rendszer zaj esetén valamivel kedvezőbb tulajdonságú, mint az egylépéses konvergen-
ciát biztosító, mert a zaj bizonyos fokig kiátlagolódik.

5.4.4. A megfigyelőelmélet alkalmazása

Az eddigiek alapján jól látható, hogy a megfigyelőket jelfeldolgozási feladatra úgy
tudjuk felhasználni, hogy:

• elkészítjük a feldolgozandó jelet létrehozó rendszer koncepcionális (lehetséges)
modelljét, mégpedig úgy, hogy a kiértékelés során meghatározandó paraméterek,
vagy jelkomponensek a koncepcionális modell állapotváltozóival legyenek (lehe-
tőség szerint lineáris) kapcsolatban, majd

• létrehozunk egy olyan megfigyelőt, amely a koncepcionális modell állapotvál-
tozóinak, ill. az azokkal kapcsolatban lévő mennyiségeknek a meghatározására
alkalmas.

5.5. A DFT szűrő megfigyelő alakban

A megfigyelő-elméletet alkalmazzuk elsőként DFT szűrő előállítására. Ehhez először is
az N -re periodikus jeleknek egy olyan modelljére van szükség, ahol az állapotváltozók
az egyes Fourier-komponensek.

A komplex exponenciális jelek leírhatók megfelelő fázisforgatáson keresztül vissza-
csatolt tárolókkal. Ilyenkor a kezdeti állapot, amely egy komplex érték, határozza meg
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Z
-1

Z
-1

Z
-1

Fourier összetevők

ŷ(n)

z0

z1

zN−1

x0(n + 1)

x1(n + 1)

xN−1(n + 1)

5.15. ábra. Komplex értékű periodikus jelek egy lehetséges modellje.

a jel amplitúdóját és fázisát, a visszacsatolás paramétere pedig a jel körfrekvenciáját.
Az N -re periodikus diszkrét jelek N tagú Fourier-sorba fejthetők, így az 5.15 ábra sze-
rint N darab egytárolós rendszer kimenetének az összegzésével írhatók fel. Az N tároló
az N harmonikus összetevő modellje, a kezdeti állapotok értékei az adott harmonikus
komponens komplex együtthatói.

A visszacsatolás paramétermátrixa A = diag < z0, z1, . . . zN−1 >, ahol zm =
ej 2π

N
m,m = 0, 1, . . . , N − 1, és a „kicsatoló” mátrix C = [1, 1, . . . , 1] .

Vagyis ez az az eset, amikor C nem kvadratikus, és az N db állapotváltozó a skalár
kimenet N db mintája alapján N lépésben „kényszeríthető ki” a „másolt” rendszerben:
(A − GC)N = 0. Igazolható, hogy ilyenkor G = 1

N
ACT = [ 1

N
z0,

1
N

z1, . . . ,
1
N

zN−1]
T.

Az 5.16 ábrán ez úgy valósul meg, hogy xm(n + 1) helyett a zm-mel való szorzás elé
csatolunk be 1

N
súllyal.

5.5.1. Az „egyenértékűség” bizonyítása

Az 5.16 ábrán látható megfigyelő a DFT-szűrőtől alapvetően eltérő struktúrájú, jólle-
het ugyanúgy N lépésben konvergál, és ugyanúgy harmonikus komponenseire bontja a
bemenetére jutó periodikus jelet. Mindkét struktúrára felírva a bemenőjel és a Fourier-
komponenseiből visszaállított jel közti átviteli függvényt, belátható a kétféle struktúra
„egyenértékűsége” (kerekítésmentes megvalósítást feltételezve).
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Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Jellmodell Korrekciós stratégia ( 1
N

zm) Modellkópia

−1

y(n) 1/N ŷ(n)

z0 z0

z1 z1

zN−1
zN−1

x0(n + 1)

x1(n + 1)

xN−1(n + 1)

x̂0(n + 1)

x̂1(n + 1)

x̂N−1(n + 1)

5.16. ábra. Periodikus jelet generáló rendszer modellje, és a DFT megfigyelő alakban

A DFT szűrő esetében az átviteli függvény:

Ŷ (z)

Y (z)
=

1

N
(1 − z−N) ·

N−1∑

m=0

zmz−1

1 − zmz−1
(5.34)

A megfigyelő alakban

Ŷ (z)

Y (z)
=

1
N

N−1∑

m=0

zmz−1

1−zmz−1

1 + 1
N

N−1∑

m=0

zmz−1

1−zmz−1

(5.35)

Ez a negatívan visszacsatolt rendszer H(z)
1+H(z)

átviteléből adódik, ahol H(z) a nyílt hurkú
átvitel.

Tegyük fel, hogy
N−1∑

m=0

zmz−1

1 − zmz−1
=

Nz−N

1 − z−N
(5.36)

Ekkor 5.34 illetve 5.35 -be visszahelyettesítve, mindkét átvitelre z−N adódik:

Ŷ (z)

Y (z)
=

1

N
(1 − z−N)

Nz−N

1 − z−N
= z−N (5.37)

Ŷ (z)

Y (z)
=

z−N

1−z−N

1 + z−N

1−z−N

= z−N (5.38)
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Elegendő tehát a feltételt (5.36) bizonyítani.
Felhasználjuk, hogy az összeg egyes tagjai kifejezhetők egy végtelen mértani sorként:

zmz−1

1 − zmz−1
= zmz−1 + (zmz−1)2 + · · · + (zmz−1)N + · · · + (zmz−1)2N + . . . (5.39)

Az 5.36 feltételben szereplő N tagot 5.39 behelyettesítésével egymás alá kifejtve, elő-
ször az egymás alatt elhelyezkedő – z azonos hatványát tartalmazó – tagokat össze-
gezzük:

z0z
−1+ (z0z

−1)2+ · · · + (z0z
−1)N+ · · · + (z0z

−1)2N + . . .
z1z

−1+ (z1z
−1)2+ · · · + (z1z

−1)N+ · · · + (z1z
−1)2N + . . .

...
...

...
...

zN−1z
−1+ (zN−1z

−1)2+ · · · + (zN−1z
−1)N+ · · · + (zN−1z

−1)2N + . . .
0+ 0+ · · · + Nz−N+ · · · + Nz−2N + . . .

(5.40)

Az összegzésnél felhasználtuk, hogy

N−1∑

m=0

zk
m =

{
N ha k=0,N,2N,...
0 egyébként.

(5.41)

(Az 5.39. kifejezést visszahelyettesítve az 5.36 egyenlet baloldali tagjába, megcse-
réltük az így kapott kettős összegzés sorrendjét.)

Egy olyan mértani sorhoz jutunk, melynek hányadosa z−N , összegképlete:

N

∞∑

k=1

z−kN =
Nz−N

1 − z−N
(5.42)

Ezzel igazoltuk az 5.36 alatti azonosságot. �

Érdekes az az eredmény, hogy a visszaállított periodikus jel éppen N -szeres kés-
leltetettje a bemenő jelnek. Ez azt jelenti, hogy 0 kezdeti állapotú tárolókkal indítva
a megfigyelőt, az N -re periodikus jel rákapcsolása utáni N hosszú konvergencia in-
tervallumban az ŷ kimenet azonosan 0, majd ezt követően fázishelyesen egyezik a
bemenettel. (Ez megfigyelhető az 5.4.1 példában látott megfigyelőnél, ami nem más
mint egy N = 2 pontos DFT.)

5.5.2. Általánosítás másfajta szűrőkre

A periodikus jelekre kapott megfigyelő általánosítható N -re nem periodikus harmo-
nikus összetevőjű jelek esetére is. Ekkor zm = ejϕm , de nem feltétlenül egységgyök.
A többszörös gyököket ellenben kizárjuk. A véges beállás feltétele, hogy Ŷ (z)

Y (z)
po-

linom alakba legyen írható. Ennek beállításához szabad paraméterek kellenek. Le-
gyen GT = [r0z0 r1z1 . . . rN−1zN−1]. (A megfigyelő alakú DFT esetén rm = 1

N
;
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m = 0, 1, . . . , N − 1, zm egységgyök volt.) Írjuk át ennek megfelelően az 5.35 átvi-
teli egyenletet ( 1

N
→ rm csere):

Ŷ (z)

Y (z)
=

N−1∑

m=0

rmzmz−1

1−zmz−1

1 +
N−1∑

m=0

rmzmz−1

1−zmz−1

(5.43)

(ahol Y (z) a megfigyelő bemenete, Ŷ (z) a kimenete, és a kettő beállás utáni egyezése
a cél). Ŷ (z)/Y (z) polinom lesz (vagyis véges beállás történik), ha

1 +
N−1∑

m=0

rmzmz−1

1 − zmz−1
=

1
N−1∏

m=0

(1 − zmz−1)

(5.44)

mert ezt behelyettesítve 5.43 egyenletbe (a nevezőbe is és 1-et levonva a számlálóba
is) a nevezővel egyszerűsíteni lehet.

Az rm, m = 0, 1, . . . , N − 1 értékek az 5.44 szerinti résztörtre bontási feladat meg-
oldásaként adhatók meg. Mindkét oldalon szorozva az 5.44 egyenletet (1− zkz

−1)-gyel
és z −→ zk határértékképzéssel adódik rk :

rk =
1

N−1∏

m=0,m�=k

(1 − zmz−1
k )

(5.45)

Ha nem véges beállást szeretnénk, hanem előírt pólusok megvalósulását, akkor

rm =

M−1∏

k=0

(1 − pkz
−1
m )

N−1∏

k=0,k �=m

(1 − zkz−1
m )

(5.46)

kell, hogy teljesüljön, ahol pk, k = 0, 1, . . . , M − 1 az előírt pólusokat jelöli. Ezzel
M−1∏

k=0

(1 − pkz
−1) lesz az 5.43 átviteli függvény nevezőjében.

A fentiek alapján általános lineáris predikciós eljárás megvalósítható a rezonátor-
alapú megfigyelő-struktúrával.

irodalom: [Péceli]

5.5.3. A DFT szűrő és a megfigyelő alak összehasonlítása

A gyakorlatban a véges számábrázolás miatt pontatlanul megvalósított pólusok a DFT
szűrőben azt eredményezik, hogy a pólus-zérus kiejtés nem tökéletes, mert a zérusok
és a pólusok megvalósítása egymástól független. Ez súlyos numerikus problémákat
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okoz. Az egységkörön kívül kerülő pólusok instabillá tehetik a rendszert. A megfigyelő
alakban a pontatlan pólusokat az ugyanúgy pontatlan zérusok továbbra is kiejtik.

A megfigyelő alak a globális visszacsatolás folytán a pontatlan paraméterértékeken
túl a számítások véges pontossága okozta kerekítési zajra, és a periodikus jelen ülő
egyéb zajhatásra is kevésbé érzékeny.
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6. fejezet

Digitális szűrők

6.1. Bevezetés

Majdnem minden rendszer szűrő. Akár analóg, akár diszkrét rendszereket tekintünk,
átviteli függvényük általában nem azonosan 1, ezért a kimenetükön megjelenő jel nem
egyezik meg a bemenetükre adott jellel. Általában a rendszerek átviteli függvénye
nem konstans, ebből következően dinamikus rendszerek, amelyek energiatárolókat (pl.
tekercs, kondenzátor), illetve diszkrét esetben késleltetőket tartalmaznak. Ebben az
értelemben szűrőnek tekinthető a már korábban megismert mozgó átlagoló vagy expo-
nenciális átlagoló is. Sőt, a diszkrét Fourier-transzformáció is szűrést valósít meg: egy
egybemenetű – többkimenetű szűrőt.

A felsorolt példákban a kiindulás a mérési eljárás volt, a rendszer átviteli függvénye
kiadódott. A digitális szűrők ezzel szemben olyan diszkrét dinamikus rendszerek, ame-
lyek tervezésénél az átviteli függvényt specifikáljuk. A digitális szűrő tervezésnek több
ága van, ebben a bevezető jellegű fejezetben azokkal a lineáris szűrőkkel foglalkozunk,
amelyeknek csak az amplitúdómenetét specifikáljuk.

Klasszikus értelemben szűrőnek tekintjük azokat a rendszereket, amelyek amplitúdó-
karakterisztikája felosztható ún. áteresztő-, illetve zárótartományokra. Az áteresztő
tartományokban konstans (jellegzetesen egységnyi), a zárótartományokban zérus át-
vitelt írunk elő. Az ilyen előírást pontosan teljesítő rendszer impulzusválasza azonban
időben nem korlátos, ezért a gyakorlatban az áteresztő-, illetve zárótartományok kö-
zött mindig van egy ún. átmeneti tartomány, ahol az amplitúdónak 1-nél kisebbnek
kell lennie, továbbá megengedünk adott mértékű ingadozást az áteresztő-, illetve zá-
rótartományokban. Ez utóbbiban a (zérus körüli) ingadozást elnyomásnak nevezzük.
A specifikációt szemlélteti egy sávszűrőn a 6.1. ábra. Ennek megfelelően alul- és felül-
áteresztő, sáváteresztő és -záró szűrőket tervezhetünk.

Egy lineáris diszkrét idejű rendszer átviteli függvénye z-ben racionális törtfüggvény:

H(z) =
B(z)

A(z)
, (6.1)

ahol B(z) és A(z) polinomok. Az átviteli karakterisztikához z = ejϑ helyettesítéssel

95



6. DIGITÁLIS SZŰRŐK

ϑ1 ϑ2 ϑ3 ϑ4 π

|H(ejϑ)|

1 − δ1

1

0
δ2

6.1. ábra. A szűrőspecifikáció. ϑ2, ϑ3, illetve ϑ1, ϑ4 rendre az áteresztő- illetve zárótar-
tomány határai; δ1, δ2 az ingadozás, illetve az elnyomás.

jutunk, ahol ϑ a diszkrét körfrekvencia. A folytonos rendszerekkel való kapcsolatban:

ϑ = 2π
f

fs

, (6.2)

ahol f a frekvencia, fs pedig a mintavételi frekvencia. Látható, hogy H(ϑ) 2π-ben
periodikus függvény, vagy másként az átviteli karakterisztika fs-ben periodikus.

A H(z)-vel jellemzett szűrő végtelen vagy véges impulzusválaszú (IIR vagy FIR)
lehet. IIR esetben B(z) és A(z) tetszőleges polinom lehet (persze A(z) a stabilitási
feltételnek eleget tesz), B(z) együtthatóinak száma M , A(z) együtthatóinak száma
N . FIR esetben A(z) = zN−1, ahol N − 1 a polinom fokszáma. Ekkor az N − 1 pólus
az origóban van, az átviteli függvény pedig a következő alakban írható:

H(z) = z−N+1B(z) = B′(z). (6.3)

B′(z) szintén polinom, együtthatói B(z) együtthatói fordított sorrendben.
A digitális szűrők számítása általában (6.1) alapján történhet:

y(n) =
M−1∑

i=0

bix(n − i) −
N−1∑

i=1

aiy(n − i), (6.4)

ahol x(n) és y(n) rendre a gerjesztés és a válasz mintái az n. időpillanatban, az ai és bi

konstansok pedig rendre A(z) és B(z) együtthatói. Az átírás során ügyelni kell a helyes
együttható-sorrendre. FIR szűrők esetén (6.4) a következőképpen egyszerűsödik:

y(n) =
M−1∑

i=0

bix(n − i). (6.5)

A fenti egyenlet szerint a kimenet a bemenet és a bi együtthatókészlet diszkrét konvo-
lúciójaként áll elő. Ez viszont azt is jelenti, hogy a bi együtthatókészlet valójában az
adott FIR szűrő impulzusválasza is.
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6.2. IIR SZŰRŐK TERVEZÉSE

A digitális szűrők között kitüntetett a szerepe azoknak, amelyeknek lineáris a fázis-
menete. Ennek belátásához hasznos definiálni az ún. csoportkésleltetés (group delay)
fogalmát:

τ = −dϕ(ϑ)

dϑ
, (6.6)

ahol ϕ(ϑ) H(z) fáziskarakterisztikája. Ha ϕ(ϑ) lineáris, azaz a következő alakú:

ϕ(ϑ) = −kϑ, (6.7)

akkor τ = k, azaz a szűrő tetszőleges frekvenciájú bemenőjelet ugyanolyan mértékben
késleltet. Ebből következően a szűrő alakhű átvitelt valósít meg, amely számos alkal-
mazásban (pl. EKG) fontos követelmény. Ahhoz, hogy a fázismenet lineáris legyen, az
átviteli függvénynek

H(z = ejϑ) = H(ϑ)e−jkϑ (6.8)

alakúnak kell lennie, ahol H(ϑ) valós, vagy képzetes. Az exponenciális tagnak az idő-
tartományban késleltetés felel meg, H(ϑ)-nak pedig egy zérus körüli szimmetrikus
(képzetes esetben antiszimmetrikus) impulzusválasz. Kauzális esetben a késleltetés-
nek olyannak kell lennie, hogy negatív időpillanatokra az impulzusválasz zérus legyen.
Ebből az is következik, hogy IIR szűrővel lineáris fázismenetet elvileg nem lehet meg-
valósítani. A gyakorlatban azonban elérhető, hogy az áteresztő tartományban egy IIR
szűrő is közelítőleg lineáris fázisú legyen.

Az IIR és a FIR szűrők mind tervezésüket, mind tulajdonságaikat, mind pedig
megvalósításukat tekintve jelentősen eltérnek egymástól, ezért külön alfejezetben tár-
gyaljuk őket.

6.2. IIR szűrők tervezése

Digitális szűrő tervezésére a legkézenfekvőbb módszer, hogy analóg szűrőket transz-
formáljunk. (A digitális szűrők megjelenésekor az analóg tervezési módszerek már jól
kidolgozottak voltak.) Az analóg szűrőtervezés lépéseire nincs mód részleteiben ki-
térni, itt csak a legfontosabb lépéseket ismertetjük. Ezekkel a klasszikus módszerekkel
csak a Bevezetőben említett négyféle (alul- és felüláteresztő, sáváteresztő és -záró)
karakterisztika tervezhető.

Approximáció-típusok

Az egyes approximációk az ideális aluláteresztő karakterisztikát közelítik valamilyen
matematikailag definiált módon. A törésponti frekvencia mindig az ω = 1 pont. Ez
a szűrő az ún. referens aluláteresztő szűrő. Ennek megfelelően a tervezett szűrőhöz
frekvencia-transzformációval jutunk. Az alábbiakban közölt átviteli függvények foly-
tonos idejű hálózathoz tartoznak.
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6.2. ábra. Butterworth approximáció (szaggatott: N = 3, folytonos: N = 7)

Butterworth approximáció

A Butterworth approximáció Taylor-sorral közelíti az ideális aluláteresztő szűrőt ω = 0
és ω = ∞ esetén. A szűrő átviteli karakterisztikája a következő:

|H(jω)|2 =
1

1 + ω2N
, (6.9)

ahol N a szűrő fokszáma. A szűrő 3 dB-es pontja ω = 1-ben van, és a karakterisztika
deriváltja ω = 0-ban nulla. Mivel az áteresztő tartományban az előírás konstans, a But-
terworth approximációt maximálisan laposnak is nevezik. |H(jω)| különböző N -ekre
a 6.2. ábrán látható. Minél nagyobb a fokszám, annál élesebb a levágás, azaz adott
specifikáció (áteresztő- és zárótartományi hiba) esetén annál közelebb lehet egymáshoz
a két tartomány. Mivel szűrőtervezés esetén a specifikáció adott, ennek alapján meg-
adható a szükséges fokszám. Mivel a görbe (6.9) szerint adott, az átviteli függvény a
frekvenciáknak megfelelően transzformálható.

Csebisev approximáció

A Csebisev approximáció Taylor-sorral közelíti az ideális aluláteresztő szűrőt ω = ∞-
ben, de az áteresztő tartományban olyan az approximáció, amely a hiba maximumát
minimalizálja (minimax). A szűrő átviteli karakterisztikája a következő:

|H(jω)|2 =
1

1 + ε2C2
N(ω)

, (6.10)

ahol N a szűrő fokszáma, ε pedig meghatározza az áteresztő tartománybeli ingadozást,
úgy, hogy |H(ω)| ∈ [1/

√
1 + ε2, 1]. CN(ω) az ún. N -edrendű Csebisev-polinom, amely

a következő:
CN(ω) = cos(N arccos(ω)). (6.11)

|H(jω)| különböző N -ekre a 6.3. ábrán látható. Az áteresztő tartományban a karakte-
risztika egyenletes ingadozású, és optimális abban az értelemben, hogy adott fokszám
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6.3. ábra. Csebisev approximáció (szaggatott: N = 3, folytonos: N = 7)

mellett ez a polinom minimalizálja a hiba maximumát. Szűrőtervezés szempontjá-
ból ez azért fontos, mert legtöbbször azt kívánjuk meg, hogy az átvitel tetszőleges,
az áteresztő tartományhoz tartozó frekvencián legyen egy adott kicsiny hibától el-
tekintve egységnyi. Ha pl. négyzetes értelemben közelítenénk (v.ö. Fourier-sorfejtés:
Gibbs-oszcilláció), akkor a négyzetes hiba ugyan minimális lenne, de a hiba egyes
frekvenciákon túl nagy lenne. A zárótartományban a szűrő a Butterworth karakterisz-
tikához hasonlóan maximálisan lapos, ω = ∞ esetén az átvitel zérus. Adott specifikáció
esetén a hibából és a két tartomány közötti frekvenciakülönbségből kiindulva megad-
ható a szükséges fokszám, végül frekvencia-transzformációval a valódi frekvenciáknak
megfelelő szűrő.

Inverz Csebisev approximáció

Az inverz Csebisev approximáció felcseréli a két tartományt: az áteresztő tartomány-
ban maximálisan lapos, a zárótartományban egyenletes ingadozású karakterisztikát
eredményez. (6.10)-ből úgy juthatunk az inverz Csebisev karakterisztikához, hogy ω
helyébe 1/ω-t írunk, majd ezt kivonjuk 1-ből. A helyettesítés tükrözi a karakterisztikát
az ω = 1 pontra (tartomány csere), azaz a szűrő felüláteresztő lesz, ezért kell az 1-ből
való kivonás. Így az inverz Csebisev szűrő átviteli karakterisztikája a következő:

|H(jω)|2 =
ε2C2

N(1/ω)

1 + ε2C2
N(1/ω)

, (6.12)

ahol N a szűrő fokszáma, ε pedig meghatározza a zárótartomány-beli ingadozást, úgy,
hogy |H(ω)| < 1/

√
1 + ε2. CN(ω) ismét az N -edrendű Csebisev-polinom. |H(jω)|

különböző N -ekre a 6.4. ábrán látható. A szűrőtervezés az előzőekhez hasonló módon
történhet.

Cauer (elliptikus) approximáció

Elliptikus approximáció esetében a karakterisztika mind az áteresztő tartományban,
mind pedig a zárótartományban egyenletes ingadozású. A szűrő átviteli karakteriszti-
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6.4. ábra. Inverz Csebisev approximáció (szaggatott: N = 3, folytonos: N = 7)
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6.5. ábra. Cauer (elliptikus) approximáció (szaggatott: N = 3, folytonos: N = 7)

kája a következő:

|H(jω)|2 =
1

1 + ε2G2
N(ω)

, (6.13)

ahol N a szűrő fokszáma. G(ω) a Csebisev-polinom általánosítása, számításához el-
liptikus integrálokra van szükség. A polinom nemcsak ω függvénye, így lehetséges,
hogy a két tartományra különböző ingadozást írjunk elő. |H(jω)| különböző N -ekre
a 6.5. ábrán látható. A szűrőtervezés itt is a specifikációból (áteresztő- és zárótarto-
mány határa, ingadozás-értékek) indul, és bonyolult átalakítás után kiadódik a G(ω)
függvény.

A fenti approximációk ismertetése csak nagyon vázlatos volt, és elsősorban az ered-
ményre, a megtervezett szűrő karakterisztikájának tulajdonságaira koncentrált. Esze-
rint tehát (a Csebisev-polinom tulajdonságai miatt) egy adott specifikációt a Cauer-
szűrő teljesít a legkisebb fokszámmal. Annak, hogy mégis használnak egyéb approxi-
mációkat is, oka lehet egyrészt a maximálisan lapos frekvenciamenet igénye, másrészt
a szűrők fázismenete. A legkedvezőbb (áteresztő-tartományban közel lineáris) fázisme-
nete ugyanis éppen a Butterworth-szűrőnek van, amely azonban magasabb fokszámot
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igényel adott specifikáció megvalósításához; a legkedvezőtlenebb fázismenettel viszont
a Cauer-szűrő rendelkezik. Fontos még, hogy numerikus szempontból is a Butterworth-
szűrő a legkedvezőbb, illetve a Cauer-szűrő a legkedvezőtlenebb. A Csebisev- (és a
komplexitásban vele megegyező inverz Csebisev-) szűrő a kettő között helyezkedik el.
A szükséges fokszám a specifikáció alapján kiadódik, becslő képletek alkalmazásával
vagy – programok használata esetén – próbálgatással állapítható meg.

Frekvencia-transzformáció

A frekvencia-transzformáció két lépésből áll:

1. a referens aluláteresztő szűrő egységnyi törésponti frekvenciájának adott frek-
venciára szorzása, valamint (amennyiben szükséges):

2. a kívánt nem aluláteresztő karakterisztikába transzformálás.

A tervezés elején a transzformáció iránya fordított.

Aluláteresztő–felüláteresztő transzformáció

Mint az inverz Csebisev approximációnál már szerepelt, ω helyébe 1/ω-t kel helyette-
síteni, vagy általánosabban a:

p =
1

s
(6.14)

helyettesítést kell alkalmazni, ahol p a referens aluláteresztő szűrő Laplace-transzfor-
máltjának változója.

Aluláteresztő–sáváteresztő transzformáció

A transzformáció ebben az esetben a következő:

p =
s2 + ω2

0

s
, (6.15)

ahol ω0 a sávközépi frekvencia, és teljesül a következő egyenlőség:

ω0 =
√

ω2ω3 =
√

ω1ω4, (6.16)

ahol ω2, ω3, illetve ω1, ω4 rendre a tervezendő sávszűrő áteresztő tartományának, illetve
zárótartományainak határát jelöli.

Aluláteresztő–sávzáró transzformáció

A transzformáció ebben az esetben a következő:

p =
s

s2 + ω2
0

, (6.17)

ahol ω0 ismét a sávközépi frekvencia, és teljesül (6.16), ahol ω2, ω3, illetve ω1, ω4 rendre
a tervezendő sávzáró szűrő zárótartományának, illetve áteresztő tartományainak ha-
tárát jelöli.

Fentiek alapján az analóg szűrőtervezés a következőképpen zajlik:
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• a specifikáció transzformálása a referens aluláteresztő specifikációba

• a kiválasztott approximáció alapján a karakterisztika tervezése

• a referens aluláteresztő szűrő visszatranszformálása

Ennek a feladatnak a megoldására programok (pl. Matlab) állnak rendelkezésre, ré-
gebben pedig táblázatokat használtak.

Folytonos átviteli függvények diszkretizálása

Ahhoz, hogy digitális szűrőhöz jussunk, a megtervezett analóg szűrőt (analóg átviteli
függvényt) transzformálnunk kell. Keresett tehát, hogy adott H(s) átviteli függvény-
nek milyen H(z) felel meg. Ezzel azért érdemes részletesebben foglalkozni, mert az
átviteli függvények megfeleltetése nem kizárólag a digitális szűrők tervezésével kapcso-
latos feladat.

Az első lehetőség az ún. impulzus-invariáns transzformáció. Ebben az esetben az
analóg rendszer súlyfüggvényének mintavételezésével kapjuk a diszkrét rendszer im-
pulzusválaszát, azaz:

h(n) = w(nT ), (6.18)

ahol h(n) a diszkrét impulzusválasz, w(nT ) pedig az analóg súlyfüggvény értékeit jelöli
az nT időpontokban. A transzformáció stabil s-beli pólust stabil z-beli pólusba képez
le. Problémát jelent azonban, hogy az illesztés az időtartományban történik. A min-
tavételezés miatt a súlyfüggvényre igaznak kell lenni a mintavételi tétel feltételének,
ellenkező esetben a Fourier-transzformáltak (azaz az átviteli függvények) átlapolódhat-
nak, így a frekvenciatartományban optimalizált szűrő karakterisztikája a diszkretizálás
után nem lesz optimális. Ha azonban az időtartománybeli illesztés a cél, a transzfor-
máció jól használható. A MATLAB ezt az illesztést a prony.m függvénnyel végzi.

Az analóg szűrők tulajdonságait az ún. bilineáris transzformáció őrzi meg. Ezt az
analóg átviteli függvényben az

s =
2

Ts

z − 1

z + 1

sT

2
=

z − 1

z + 1
(6.19)

helyettesítéssel tehetjük meg, ahol Ts a mintavételi időköz. Ez a transzformáció is
stabil s-beli pólust stabil z-beli pólusba képez le, azaz az s-tartomány bal félsíkját a z-
tartomány egységkörének belsejébe képezi le. Ezt szemlélteti a 6.6. ábra. A tartomány
határát, a jω tengelyt pedig az egységkörre. Ez az impulzus-invariáns transzformáció
esetében is így volt, itt azonban nincs átlapolódás. A transzformáció ugyanis az analóg
frekvenciát a következőképpen transzformálja:

ω =
2

Ts

tan
ϑ

2
. (6.20)

Ezt az összefüggést szemlélteti a 6.7. ábra. A (6.2) összefüggés szerint ϑ = π-nek
ω = 2πfs/2 felel meg, itt azonban ω = ∞. Tehát a frekvenciatengely torzított, amit a
specifikáció megadásánál figyelembe kell venni. Más oldalról viszont ez hasznos tulaj-
donság, így ugyanis nem lapolódnak át az átviteli függvények, a frekvenciatartomány-
beli tulajdonságok megőrződnek.
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6.6. ábra. A bilineáris transzformáció
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6.7. ábra. A bilineáris transzformáció frekvenciatorzítása
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A komplex átviteli függvény mintavételezése: mintavételezés a
frekvencia-tartományban

Előfordul, hogy adott egy (komplex) frekvenciaátviteli függvény egy sor pontban, és
egy ezekre illeszkedő digitális szűrőt kívánunk tervezni. Ez lehet a feladat például
csatornakiegyenlítéskor, amikor egy sor pontban megmérjük az átvitelt, és az átviteli
sávban ennek inverzét kívánjuk realizálni.

A feladat egyszerűen felírható: keressük azt a szűrőt, amelyre a

H(fk) −
B(zk)

A(zk)
, k = 1, 2, ...N (6.21)

különbségek valamilyen értelemben (minimax, négyzetösszeg, stb.) minimálisak. Erre
a legegyszerűbb eljárás a következő: keressük a

N∑

k=1

|H(fk)A(zk) − B(zk)|2 (6.22)

összeg minimumát. Ez egy paraméterekben lineáris LS feladat, melyet megfelelő pro-
gramokkal meg lehet oldani. MATLAB-ban ilyenek pl. a invfreqz.m, elis.m függvé-
nyek. Egyetlen apró nehézség az, hogy tervezéskor a stabilitást nem lehet garantálni,
ezért kísérletezni kell, esetleg valamennyi késleltetést megengedve.

Összefoglalás

A fentiekben áttekintettük az IIR szűrők tervezésének lépéseit. Ezek – az egyes rész-
feladatok megoldásának tulajdonságait is figyelembe véve – a következők:

• Specifikáció megadása, és a bilineáris transzformáció frekvenciatorzításának meg-
felelő előtorzítása

• Analóg szűrő tervezése

• bilineáris transzformáció

IIR szűrők tervezésére a MATLAB is kínál függvényeket, pl. butter.m, cheby1.m,

cheby2.m, ellip.m. Az egyes függvények analóg és digitális szűrők tervezésére egya-
ránt alkalmasak.

6.3. FIR szűrők tervezése

A véges impulzusválasz a diszkrét rendszerek sajátja. Míg az IIR szűrők lényegében
ugyanolyan tulajdonságokkal rendelkeznek, mint analóg megfelelőik, addig a FIR szű-
rők új eszközt jelentenek a tervező számára. FIR szűrők tervezésére számos módszer
létezik, itt csak két eljárást ismertetünk.
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6.8. ábra. Szűrőtervezés ablakozással. (a) aluláteresztő specifikáció, N = 8192; (b)
prototípus szűrő; (c) a szűrő impulzusválasza ablakozás nélkül, M = 75; (d) a szűrő
impulzusválasza Hanning-ablakkal.

Szűrőtervezés ablakozással

A módszer az ún. frekvencia-mintavételi eljárás továbbfejlesztése. Ahogyan az a Be-
vezetőben is szerepelt, a FIR szűrők együtthatói megegyeznek az impulzusválaszuk-
kal. Eszerint tehát a specifikáció (mint ideális átviteli karakterisztika) egyszerű inverz
Fourier-transzformációjával előállítható a keresett együtthatókészlet. Az alábbiakban
egy célszerű utat mutatunk be ennek gyakorlati megvalósítására:

1. A szűrőspecifikáció megadása egy vektorban. A vektor elemei valósak, és szim-
metrikusak a DFT-nek megfelelő módon:

D(k) = D(N − k), k = 1..N/2, (6.23)

ahol D(k) a specifikáció egy mintája, N a DFT pontszáma és páros. Ez utóbbi
nem feltétlenül szükséges, de a tárgyalást megkönnyíti. Nem is megszorítás, mert
N -et célszerű nagyra választani, a megvalósítandó szűrő együtthatóinak számá-
nál lényegesen nagyobbra. D(0) a szűrő DC átvitele. A szűrőspecifikáció a 6.8.a
ábrán látható.

2. IDFT alkalmazásával kapunk egy N hosszúságú impulzusválaszt, amely a pro-
totípus szűrő:

h0 = IDFT {D} (6.24)
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Ennek az impulzusválasznak valósnak kell lennie, és szimmetrikusnak a 0 időpil-
lanatra. Minthogy azonban DFT-t alkalmaztunk, a negatív időnek a prototípus
szűrő második felének mintái felelnek meg, ahogyan az a 6.8.b ábrán látható.

3. Legyen az M páratlan szám a megvalósítandó szűrő együtthatóinak száma. (A
tervezés természetesen megoldható páros M-re is, de így lényegesen egyszerűb-
bek az összefüggések. Mivel M rendszerint több 10, ez nem okoz gondot.) Az N
mintát csonkolnunk kell úgy, hogy M mintát is kapjunk, és az előírt karakterisz-
tikát is minél jobban közelítsük. Ezt úgy tehetjük meg, ha a zérus időpillanatra
szimmetrikusan csonkoljuk a prototípus szűrőt. Mivel a szűrőnek kauzálisnak
kell lennie, el is kell tolnunk úgy, hogy negatív időpillanatokban zérus legyen az
impulzusválasz, azaz:

h(k) =

[

h0(N − M − 1

2
), . . . , h0(N − 1), h0(0), h0(1), . . . , h0(

M − 1

2
)

]

(6.25)

Ez látható a 6.8.c ábrán. Az (M − 1)/2 eltolás miatt azonban a szűrő karak-
terisztikája nem lesz valós, de a (6.6), (6.7) egyenletek szerint lineáris lesz a
fázismenete. A szűrő karakterisztikája a D specifikáció és a h(k) impulzusválasz
N pontos DFT-je alapján ellenőrizhető.

4. A Gibbs-oszcilláció miatt azonban a karakterisztika a levágási pontok közelében
jelenősen eltérhet a specifikációtól, még nagy M -ek esetében is. Ezt a jelenséget
ablakozással csökkenthetjük, úgy, hogy a h(k) vektort megszorozzuk egy alkalma-
san választott, szintén M hosszúságú ablakfüggvénnyel (pl. Hanning-ablakkal):

h∗(k) = w(k)h(k), k = 0..M − 1, (6.26)

ahol w(k) az ablakfüggvény. A 6.8.d ábra az ablakozott impulzusválaszt mutatja.
A karakterisztika ismét a h∗(k) impulzusválasz N pontos DFT-je alapján ellen-
őrizhető. Ha a szűrő valamilyen tervezési igényt nem elégít ki, az ablakfüggvény
vagy M értéke módosítható, ilyenkor a 3. és 4. pont szerinti műveleteket újra el
kell végezni.

A megtervezett szűrő az előírt karakterisztikát a legkisebb négyzetek elvének meg-
felelően közelíti, azaz négyzetes hiba integrálja minimális. Ez azonban megengedi azt,
hogy a karakterisztika egyes pontokban jelentősen eltérjen a specifikációtól. Az ab-
lakfüggvény ezt a hatást csökkenti, és növeli a zárótartományi elnyomást, de a levá-
gás „élességét” csökkenti. Ezt szemlélteti a 6.9ábra. Az ablakozásos szűrőtervezést a
MATLAB a fir1.m, fir2.m függvénnyel támogatja. Az ablakozásos szűrőtervezéssel
természetesen tetszőleges amplitúdómenet megtervezhető.

A szűrőtervezés szempontjából sokszor optimális közelítés a hiba maximumát mi-
nimalizálja. Ez az IIR szűrők tervezésénél is alkalmazott Csebisev-approximáció. A
következőkben egy ilyen karakterisztikájú szűrő tervezésére alkalmas algoritmust mu-
tatunk be.
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6.9. ábra. Az átviteli karakterisztika ablakozás nélkül (pontozott), és ablakozással (foly-
tonos)

Szűrőtervezés Remez-algoritmussal

A Remez- (vagy Remes-) algoritmus egyenletes ingadozású, lineáris fázisú FIR szűrő
tervezésére alkalmas. Az approximáció tehát Csebisev-approximáció, a szűrő átviteli
karakterisztikája pedig a következő alakú:

H(ϑ) = Q(ϑ)
r−1∑

k=0

ck cos(kϑ), (6.27)

ahol Q(ϑ) = 1, cos(ϑ/2), sin(ϑ/2), sin(ϑ) választás lehetséges, a megvalósítandó ka-
rakterisztikától (pl. felüláteresztő) függően. A Remez-algoritmus úgy állítja be a ck

együtthatókat, hogy az:

||E(ϑ)|| = max {W (ϑ)|D(ϑ) − H(ϑ)|} (6.28)

normával definiált hiba minimális legyen. A fenti képletben D(ϑ) a valós specifikáció
és W (ϑ) egy súlyozó függvény. Létezik egy egyértelmű ck együtthatókészlet, amelyre
||E(ϑ)|| minimális. A hiba legalább r+1 helyen felveszi maximumát a ϑ1, ϑ2, . . . , ϑr+1,
helyeken, alternáló előjellel, azaz:

D(ϑm) =
r−1∑

k=0

ck cos(kϑm) + (−1)mδ, m = 1, . . . , r + 1, (6.29)

ahol δ a hiba maximuma. (Az egyszerűség kedvéért W (ϑ)-t egységnyinek tekintjük.)
Ez egy lineáris egyenletrendszer, amely ck-ra megoldható. Maga a szűrőtervezési algo-
ritmus egy iteráció, amelynek lépései a következők:

1. Fel kell venni egy tetszőleges kezdeti ϑ1, ϑ2, . . . , ϑr+1, készletet, és a (6.29) egyen-
let megoldásával meghatározni a ck együtthatókészletet és egy δ értéket (így
adódik ki az r + 1 független paraméter).
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6.10. ábra. Remez-algoritmussal tervezett FIR szűrő

2. Ki kell számolni H(ϑ)-t elegendően „sűrűn”, kb. 10r számú pontban, a frekvenci-
atengelyen egyenletesen. Mivel az 1. pontban felvett együtthatókészlet általában
nem optimális, kiadódik egy új ϑ1, ϑ2, . . . , ϑr+1, készlet, valamint egy új δ hiba,
amely kisebb, mint az előző.

3. Az új frekvenciakészlet és hiba alapján meghatározható egy új ck együttható-
készlet, amelyre vonatkozóan megint a 2. pont szerint kell eljárni.

Az eljárást addig kell ismételni, amíg a hiba nem növekedik tovább. Az ehhez a hi-
bához tartozó ck együtthatókészlet a szűrő impulzusválasza, a hiba pedig az átviteli ka-
rakterisztika ingadozása. Az algoritmus konvergens, és reális számítási igényt támaszt,
ezért széles körben alkalmazzák. Egy Remez-algoritmussal tervezett FIR szűrő átvi-
teli karakterisztikája látható a 6.10. ábrán. A MATLAB ezt az algoritmust a remez.m

függvénnyel támogatja. Az eljárás tetszőleges amplitúdómenet megvalósítására alkal-
mas.

6.4. Gyakorlati kérdések

Analóg vagy digitális?

Sokszor felmerülő kérdés, hogy egy konkrét esetben analóg vagy digitális szűrőt alkal-
mazzunk. Az alábbi táblázat az analóg és digitális szűrők néhány előnyét és hátrányát
mutatja be:
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analóg szűrők digitális szűrők

hátrá- pontatlan vagy drága elemek elő- nagy pontosság
nyok idővariáns elemek nyök DSP-ben olcsó

nagy elektronikus zaj csak kvantálási zaj
nehezen változtatható könnyen átkonfigurálható

elő- nagy frekvencián is alkalmazható hátrá- a mintavételi frekvencia korlátozott
nyök egy egyszerű szűrő olcsó nyok analóg rendszerben drága

A technológia fejlődésével egyre nagyobb mintavételi frekvenciát alkalmazhatunk,
és egyre több alkalmazásban válthatják fel a digitális szűrők az analóg eszközöket. Egy
analóg rendszerben sokszor nehézkes és feleslegesen drága digitális szűrőt alkalmazni,
de ha az adott területen is megjelenik a digitális jelfeldolgozás, a digitális szűrő előnyei
triviálisak (pl. audio alkalmazások). A jelfeldolgozó rendszerekben alkalmazott véges
szóhosszúság azonban problémákat is okozhat.

FIR vagy IIR?

Ha már digitális szűrő alkalmazása mellett döntöttünk, beszélnünk kell a fenti kérdésről
is. Az alábbi táblázat ehhez kíván segítséget nyújtani.

IIR szűrők FIR szűrők

hátrá- stabilitási problémák elő- mindig stabil
nyok túlcsordulás, határciklusok nyök nincs túlcsordulás, határciklusok

sokszor nagy paraméter-érzékenység kis paraméter-érzékenység
színes kvantálási zaj fehér kvantálási zaj

számításigényes implementáció kis számításigényű implementáció
nemlineáris fázismenet lineáris fázismenet tervezhető

elő- alacsony fokszám hátrá- nagy együtthatószám (akár több száz)
nyök egyszerű tervezési módszer nyok sok együttható esetén számításigényes

fizikai rendszereket jól modellez fizikai rendszereket rosszul modellez

Mint látható, a legtöbb esetben célszerű FIR szűrőt választani, mert megvalósítása
„problémamentesebb”, mint az IIR szűrőké. Ugyanakkor maga szűrési feladat egyes
esetekben megkívánja, hogy IIR szűrőt alkalmazzunk. Ekkor lépnek fel a táblázatban
feltüntetett hátrányok, amelyek szinte kivétel nélkül az együtthatók véges szóhosszú-
ságú ábrázolásából és a számítások véges pontosságából adódnak.

Példaként megterveztünk egy FIR, illetve egy IIR szűrőt, mindkettő ugyanazt a
specifikációt elégíti ki: a szűrő sávszűrő, amelynek átvitele:

|H(ϑ)| =

⎧

⎨

⎩

0, ϑ = 2π[0..0.175], δs = 10−3 (−60dB)
1, ϑ = 2π[0.2..0.3], δp = 0.01 (∼= 0.1dB)
0, ϑ = 2π[0.325..0.5], δs = 10−3 (−60dB)

(6.30)

ahol δs a zárótartományi elnyomás és δp az áteresztő-tartományi ingadozás. Ezt a speci-
fikációt egy 115 együtthatós FIR szűrő elégíti ki, amelyet a MATLAB remez.m függvé-
nyével terveztünk meg. Az átviteli karakterisztika a 6.11. ábrán látható. Megterveztük
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6.11. ábra. A (6.30) specifikációval tervezett egyenletes ingadozású FIR szűrő átviteli
karakterisztikája
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6.12. ábra. A (6.30) specifikációval tervezett elliptikus IIR szűrő átviteli karakteriszti-
kája

a (6.30) specifikációnak megfelelő IIR szűrőt is, a MATLAB ellip.m függvényével, te-
hát elliptikus, minden tartományban egyenletes ingadozású approximációval. Az adott
specifikációt egy 6-odfokú elliptikus szűrő elégítette ki, amelynek átviteli karakterisz-
tikája a 6.12. ábrán látható. A két karakterisztika nagyon hasonló, hiszen ugyanazt a
specifikációt elégítik ki, a legfontosabb különbség azonban az, hogy az IIR szűrő fázisa
nemlineáris. A fokszám alapján (ha a fázis nem számít) egyértelmű lenne az IIR szűrő
előnye, de numerikus okokból sokszor mégis inkább a FIR szűrőt választják. Ennek
hátterére az alábbiakban térünk ki.

A FIR és IIR szűrők implementáció szempontjából is elkülönülnek. Míg a FIR szű-
rőket szinte kivétel nélkül a (6.5) egyenlet szerint számíthatjuk, addig IIR esetben ritka,
hogy a (6.4) egyenlet szerinti (ún. direkt) számítás megfelelő lenne. Az ai együtthatók
pl. a nevezőpolinomot valósítják meg (6.1)-ban. A gyökök és az együtthatók közötti
összefüggés erősen nemlineáris, és kis együttható-változáshoz is nagy gyök-eltérés is
tartozhat. Ezért előfordulhat, hogy a megtervezett szűrő kvantált együtthatói már la-
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stabil rendszer instabil rendszer

tervezett

együtthatók

kvantálás
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együtthatók
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műveletek

változók túlcsordulás

kvantálás

∃pi : |pi| ≥ 1

"overflow"

oszcilláció

határciklusok

6.13. ábra. A kvantálás hatása a tervezés és a működés során

bilis rendszert eredményeznek. Minél nagyobb a fokszám, annál nagyobb ez a veszély.
De ha stabil is marad a rendszer, előfordulhat, hogy nem teljesíti a specifikációt. To-
vábbi probléma, hogy a kiszámítás során fellépő kvantálási hiba úgy halmozódhat,
hogy a rendszer labilissá válik. Ezeket a lehetőségeket foglalja össze a 6.13. ábra.

A fenti problémák miatt a H(z) átviteli függvény megvalósítására speciális struktú-
rákat alkalmaznak. Egy gyakori megoldás, hogy az átviteli függvényt másodfokú ténye-
zőkre bontják, és ezeket a másodfokú blokkokat már direkt módon meg lehet valósítani.
Jó tulajdonságokkal rendelkeznek az ún. lattice, illetve hullámdigitális és rezonátoros
szűrők. A működtetés során általában célszerű olyan kerekítési stratégiát alkalmazni,
amely a kerekítendő szám abszolút értékét csökkenti. Ha a fenti példában szereplő
6-odfokú elliptikus IIR szűrő megvalósítására fixpontos jelfeldolgozó processzort al-
kalmazunk, a biztonságosnak tekinthető rezonátoros struktúra kb. 70 utasításciklust
igényel. A FIR szűrő esetében együtthatónként egy utasításciklus elegendő, azaz kb.
120. Látható, hogy eltűnt a nagyságrendi különbség. Mindig meg kell azonban vizs-
gálni, hogy melyik a legkedvezőbb eset, mert valós idejű implementáció esetén ennek
igen nagy a jelentősége.
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7. fejezet

Átlagolási eljárások statisztikai
jellemzése, ablakozási eljárások

7.1. Bevezető

Az eddigiekben az átlagolási eljárásokat, és a mozgó átlagolás általánosításának tekint-
hető DFT eljárásokat vizsgálva megállapíthattuk, hogy maguk az eljárások valamilyen
modellt feltételeznek.

A mozgó átlagolás ill. a DFT esetében azt láttuk, hogy amennyiben ez a modell
megfelel a „valóságnak”, akkor az eljárás tökéletes eredményt szolgáltat: az N -re perio-
dikus zajt tökéletesen kiszűri, és a mérendő konstans értékét (DFT esetében a Fourier-
komponenset ill. a Fourier-együtthatót) pontosan szolgáltatja. Amennyiben azonban a
megfigyelt jel nem ismétlődik az ablakhosszra periodikusan (vagy azért, mert egyálta-
lán nem periodikus, vagy, mert periodikus ugyan, de periódusa nem osztója N -nek), a
szűrés nem tökéletes, a DFT-sorfejtő pedig nem a Fourier-együtthatókat szolgáltatja.

Végeredményben a hiba oka a véges adatmennyiségen végzett számításban, illetve
az ennek következtében nem tökéletesen szelektív frekvenciatartománybeli amplitúdó-
karakterisztikában keresendő.

A következőkben először azt vizsgáljuk meg, hogy az eredményt hogyan befolyá-
solja a sztochasztikusan modellezhető zaj (az időtartománybeli jelreprezentációra szo-
rítkozva).

Ezt követően azokat a hibajelenségeket vizsgáljuk meg a frekvenciatartományban,
amelyek periodikus jelekre végzett, nem megfelelő ablakhosszúságú mozgó átlagolás,
ill. DFT esetén lépnek fel. Ezek a hibajelenségek a spektrumszivárgás és a picket
fence (léckerítés)-hatás. Részbeni kiküszöbölésükre különféle ablakozási módszereket
mutatunk be. Sztochasztikus jelek feldolgozásakor ugyanezek a jelenségek hasonlóan
fellépnek, a bemutatott ablakozási módszerek ezekben az esetekben is alkalmazhatók.
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7.2. Az átlagolások statisztikai jellemzése

Az átlagolási eljárásokat vizsgálva arra vagyunk kíváncsiak, hogy a méréseinket ter-
helő sztochasztikus, additív zaj hatását mennyire sikerül általuk elnyomni, és milyen
pontossággal tudjuk megbecsülni a mérendő jellemzőt, amely egy determinisztikus,
konstans érték. A megfigyelések modellje tehát:

y(k) = x + n(k) (7.1)

ahol x a keresett mennyiség, és n(k) a zajminták.
Az átlagolás a megfigyelések várható értékének becslője, vagyis maga is a statisztikai

jellemzés egy eszköze. Általában minták időbeni sokaságát átlagoljuk, felhasználva,
hogy a folyamat (gyengén) stacionárius és ergodikus:

E{y(n)} = lim
n→∞

1

n

n−1∑

k=0

y(k) (7.2)

Legyen nulla várható értékű a zaj:

E {n(k)} = 0 (7.3)

Ekkor
E{y(n)} = x (7.4)

.

Véges idejű átlagolás eredményeként kapott x̂ becslő egy valószínűségi változó,
statisztikai paramétereit elvileg a realizációk sokaságából határozhatjuk meg, vagyis
ugyanazt a mérést többszörösen lefolytatva több átlagolás eredményét kellene átlagol-
nunk.

Ehelyett a következőkben feltételezzük a megfigyelések gyenge stacionaritását, va-
lamint első- és másodrendű statisztikai jellemzőinek ismeretét és ezek függvényeként
számítjuk ki az átlagérték várható értékét és varianciáját.

Azt az esetet itt nem tárgyaljuk, amikor csak maguk, a megfigyelések állnak ren-
delkezésre (véges számban), és azokból kell a statisztikai jellemzőket becsülni (pl. em-
pírikus szórás stb.).

7.2.1. Várható érték

Az ideális átlagolás esetén (4.1 egyenlet), a becslő várható értéke:

E {x̂(n)} =
1

n

n−1∑

k=0

E {y(k)} = x (7.5)

Ilyen esetben, vagyis ha a becslő várható értéke megegyezik a becsült értékkel, azt
mondjuk, hogy a becslés torzítatlan.
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Az olyan becslés, amelyre E{x̂} 
= x, torzított. A torzítás mértéke:

b = E {x̂(n)} − x (7.6)

Exponenciális átlagolás esetén a várható érték:

E {x̂ (n)} =

(

1 − 1

Q

)n−1
1

Q
E {y(0)}+

(

1 − 1

Q

)n−2
1

Q
E {y(1)}+· · ·+ 1

Q
E {y(n − 1)}

(7.7)
Mivel E {y(k)} = x, ezért

E {x̂(n)} =

[

1 −
(

1 − 1

Q

)n]

x (7.8)

A becslő torzított, de a torzítás az idő múltával nullához konvergál:

b = −
(

1 − 1

Q

)n

x → 0, ha n → ∞ (7.9)

Az ilyen becslést aszimptotikusan torzítatlannak nevezzük.
Megjegyzés: Mint a frekvencia-tartománybeli jellemzésnél már beláttuk az expo-

nenciális átlagoló egy egy-időállandós rendszer, amelynek a folytonos időtartományban
egy RC aluláteresztő szűrő felel meg (7.1 ábra). Ez utóbbinak az átmeneti függvénye
1− e−t/(RC) szerint aszimptotikusan tart 1-hez, tehát az exponenciális átlagolóhoz ha-
sonlóan a kimenet csak a végtelenben éri el a nulla időpontban belépő állandó jelszintet.

R

C

K = RC

7.1. ábra. RC tag

A mozgó átlagolásra ugyanaz írható fel, mint az ideális átlagolásra, csupán annyi
a különbség, hogy n helyett N tagot összegzünk, ami viszont a várható értékre nézve
nem okoz különbséget az eredményben.

A becslő torzítottsága vagy torzítatlansága még nem jelenti azt, hogy pontos vagy
pontatlan a becslés, hiszen a várhatóérték-képzés miatt ezek a vizsgálatok csak végte-
len számú elvégzett mérés sokaságáról szólnak. Ahhoz, hogy támpontot kapjunk arról,
hogy az egyedi mérésünk mennyire megbízható, a sokaság eloszlásáról többet kell mon-
dani.
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Ha meg tudnánk adni a becslő sűrűségfüggvényét, akkor az teljes mértékben jelle-
mezné a realizációk sokaságát, ehhez azonban a zajról is ilyen mélységű feltételezéseket
kellene tenni; ezért csak a becslő szórásának vizsgálatára szorítkozunk.

A mérési eredményünk tehát a becsült érték és annak szórása lehet. (A szórás
helyett, a mérés kiterjesztett bizonytalanságát, vagy konfidencia intervallumokat is
lehet használni a bizonytalanság megadására.) A lényeges az, hogy a becsült érték
önmagában még nem mérési eredmény, hiszen a becslő mindig valószínűségi változó.
Mivel a mért jelet sztochasztikusan modelleztük , így a véletlen szerepe soha nem
küszöbölhető ki teljes mértékben a mérési eredményből.

7.2.2. Variancia

A variancia a várható értéktől vett eltérés négyzetes várható értéke, amely megegyezik
az első- és másodrendű momentumok különbségével, hiszen

var {x̂(n)} = E
{
(x̂(n) − E {x̂(n)})2} (7.10)

= E
{
x̂2(n) − 2x̂(n)E {x̂(n)} + E2 {x̂(n)}

}

= E
{
x̂2(n)

}
− E2 {x̂(n)} (7.11)

A szórás (σ) a variancia négyzetgyöke, dimenziója megegyezik az argumentumbeli
mennyiségével:

σx(n) =
√

var {x̂(n)}. (7.12)

A szórás szemléletesen a valószínűségi változó amplitúdójának átlagos ingadozását adja
meg, az effektív értékhez hasonló mennyiség.

Eddigi feltételezéseinket most újabbakkal egészítjük ki (gyenge stacionaritás + a
zaj fehérsége):

var {n(k)} = σ2
n (7.13)

E {n(k)n(j)} = 0, k 
= j (7.14)

Ezekből következően:

E {y(k)y(j)} =

{
E {y2(k)} = E {y2} = x2 + σ2

n, k = j
x2, k 
= j

(7.15)

Az első feltétel (7.13) a zaj szórásának időbeni állandóságát jelenti. A második fel-
tétel (7.14) a zaj eltérő időpontbeli mintáinak korrelálatlanságát írja elő. Ez azt jelenti,
hogy a zaj mintái egymástól független valószínűségi változók, a realizációk sokaságát
tekintve, egymástól függetlenül változnak, nem „cibálják egymást”. A stacionaritást
figyelembe véve ez azt is jelenti, hogy az autokorrelációs függvénye a nullában a szó-
rásnégyzet (σ2

n), egyébként nulla. Az autokorrelációs függvény Fourier transzformált-
jaként kapott spektrum azonosan σ2

n

2fM
, vagyis fehér. A fehér zaj feltétele (7.14) teljesül

általában a legnehezebben, hiszen a zaj egymást követő mintái sűrű mintavételezés
esetén összefügghetnek. (Ez akkor következik be, ha a zaj sávszélességére túlteljesítjük
az 1. mintavételi tétel szerinti feltételt. Ld. 2. fejezet; Schnell, 24.3.1. fejezet.)
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Az ideális átlagolás esetén a becslő második momentuma:

E
{
x̂2(n)

}
= E

⎧

⎨

⎩

(

1

n

n−1∑

k=0

y(k)

)2
⎫

⎬

⎭
=

1

n2
E

⎧

⎨

⎩

(
n−1∑

k=0

y(k)

)2
⎫

⎬

⎭
(7.16)

A könnyebb áttekinthetőség kedvéért az 1
n2 tényezőt mellőzzük a további levezetésben:

E

⎧

⎨

⎩

(
n−1∑

k=0

y(k)

)2
⎫

⎬

⎭
= E

⎧

⎨

⎩

(
n−1∑

k=0

(x + n(k))

)2
⎫

⎬

⎭
= (7.17)

= E

{
n−1∑

k=0

n−1∑

l=0

(x + n(k)) (x + n(l))

}

= (7.18)

= E

{
n−1∑

k=0

n−1∑

l=0

x2 + xn(k) + xn(l) + n(k)n(l)

}

= (7.19)

= E

{

n2x2 + 2n
n−1∑

k=0

xn(k) +
n−1∑

k=0

n−1∑

l=0

n(k)n(l)

}

= (7.20)

= n2x2 + 0 +
n−1∑

k=0

(
E
{
n2(k)

})
= n2x2 + nσ2

n (7.21)

Ezzel a 7.16 kifejezés eredménye:

E
{
x̂2(n)

}
=

1

n2
E

⎧

⎨

⎩

(
n−1∑

k=0

y(k)

)2
⎫

⎬

⎭
=

1

n2

(
n2x2 + nσ2

n

)
= x2 +

σ2
n

n
. (7.22)

A variancia a 7.11 kifejezését felhasználva a következő adódik:

var {x̂(n)} =
σ2

n

n
; σx̂(n) =

σn√
n

. (7.23)

Vagyis a 7.1, 7.3, ill. 7.13-7.14 feltételek teljesülése esetén (!) az ideális átlagolás n
arányában csökkenti a varianciát, illetve

√
n arányában a szórást.

Megjegyzések

1. A 7.10 képlet szerinti kiszámítás tulajdonképpen egyszerűbbre adódik. Ennek vé-
gigszámolását az olvasóra bízzuk. A A 7.11 képlet olyan esetben lehet előnyösebb,
ha pl. x sztochasztikus, és/vagy a megfigyelési egyenlet nem lineáris.

2. Abban az esetben, ha a zaj várható értéke nem nulla, de továbbra is stacionárius,
akkor az eddigi feltételezéseket megtartva, de y(k) = x+nkonst.+n(k) megfigyelési
egyenletből indulhatunk ki, ez azonban csak a várható értéket befolyásolja a
varianciát nem.
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3. Korrelált minták esetén a variancia-csökkenés mértéke általában kisebb, hiszen
a keresztszorzatok várható értékei nem nullák, így nem tűnnek el a 7.20 összeg-
zésből:

E

{
n−1∑

k=0

n−1∑

l=0

n(k)n(l)

}


= E

{
n−1∑

k=0

(n(k))2

}

(7.24)

4. A korrelálatlanság pl. úgy biztosíthatjuk, ha minden L. mintát dolgozzuk csak
fel, amelyek között a korreláció már elhanyagolható. A frekvenciatartományban
az figyelhető meg, hogy a mintavételi frekvencia csökkentésével a zaj spektruma
egyre inkább átlapolódik, és közel a egyenletessé válik.

5. Ha a mintavételezés lecsökkentésével sérülne a hasznos jel (pl. nem átlagolást
végzünk, hanem DFT-t, és nem konstans mennyiséget, hanem egy periodikus
jelet mérünk), akkor eljárhatunk úgy, hogy minden rendelkezésre álló (korrelált)
mintát feldolgozunk ugyan, de az eredmény szórásáról legfeljebb annyit tétele-
zünk fel, mint amennyit minden L. minta feldolgozásával értünk volna el.

Mozgó átlagolás esetére ugyanaz a variancia írható fel, mint az ideális átlagoláséra,
de n → N helyettesítéssel. Korrelálatlan zaj esetére tehát:

var {x̂(n)} =
σ2

n

N
(7.25)

Az időtartományban megfogalmazva: az ablakhosszal fordítottan arányos a variancia-
csökkenés. A frekvenciatartományban ugyanez úgy figyelhető meg, hogy az eredetileg
„fehér” zajspektrumból, a szűrőkarakterisztika által „kivágott” zajteljesítmény, egyenes
arányban áll a sinc karakterisztika főhullámának szélességével; miközben a sávközépre
eső hasznos jelösszetevő nem sérül.

A bemenet teljesítménye:

E
{
u2(n)

}
= x2 + σ2

n (7.26)

A kimeneté (vö. 7.22 egyenlet):

E
{
x̂2(n)

}
= x2 +

σ2
n

N
(7.27)

vagyis N növelésével az átlagérték mellől „eltűnik” a zaj.

Az eredmények DFT-re és periodikus hasznos jelre is kiterjeszthetők.

Megjegyzés: Periodikus jelek esetén további lehetőség az, hogy az egymástól peri-
ódusnyi távolságra lévő mintákat átlagoljuk egymással, és ezt elvégezzük a periódus
minden mintájára. Összességében tehát periódusokat átlagolunk. (ld. Schnell, 24.3.5
fejezet) M periódus átlagolása az eredményt tekintve megfelel annak, mintha a pe-
riódushossz (N) többszörösére (M · N) végeznénk DFT-t, de csak minden M -edik
DFT-pontot értékelnénk ki, és a többit 0-nak tekintve transzformálnánk vissza IDFT-
vel.
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Exponenciális átlagolás varianciája. A variancia 7.10 képletét használva:

var {x̂(n)} = E
{
(x̂(n) − E {x̂(n)})2} =

= E

⎧

⎨

⎩

(
n−1∑

k=0

[(

1 − 1

Q

)n−1−k
1

Q
(x + n(k))

]

− E {x̂(n)}
)2
⎫

⎬

⎭
=

= E

⎧

⎨

⎩

(
n−1∑

k=0

(

1 − 1

Q

)n−1−k
1

Q
(n(k))

)2
⎫

⎬

⎭
=

=
1 −
(

1 − 1
Q

)2n

2Q − 1
· σ2

n , (7.28)

amelyhez felhasználtuk, hogy

(
1

Q

)2 1 −
(

1 − 1
Q

)2n

1 −
(

1 − 1
Q

)2 =
1 −
(

1 − 1
Q

)2n

Q2 − (Q2 − 2Q + 1)
=

1 −
(

1 − 1
Q

)2n

2Q − 1
. (7.29)

Felhasználva a 7.26 és 7.11 egyenleteket, és azt, hogy lim
n→∞

(

1 − 1
Q

)2n

= 0, a vari-

ancia időben aszimptotikusan beáll az alábbi határértékre:

lim
n→∞

var {x̂(n)} =
σ2

n

2Q − 1
(7.30)

A varianciák alapján a mozgó átlagolás és az exponenciális átlagolás közel egyen-
értékű korrelálatlan minták esetén, ha N = 2Q − 1.

irodalom: [Schnell] 5.1.4, 5.1.5, 24.3.1, 24.3.4, 24.3.5 fejezetek

7.2.3. Korrelált minták átlagolása

Az eddigiekben korrelálatlan minták átlagolását vizsgáltuk. A korrelálatlanság azon-
ban a mintavételtől függ, és nem mindig tudjuk biztosítani, hogy a minták ténylegesen
korrelálatlanok legyenek. Ezért meg kell vizsgálnunk a bonyolultabb esetet is.
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var{x̂(n)} = E{(x̂(n) − x)2}

= E

⎧

⎨

⎩

(

1

n

n−1∑

k=0

(y(k) − x)

)2
⎫

⎬

⎭

=
1

n2
E

{
n−1∑

k=0

n−1∑

m=0

(y(k) − x)(y(m) − x)

}

=
1

n2

n−1∑

k=0

n−1∑

m=0

E {(y(k) − x)(y(m) − x)}

= 1
n2

n−1∑

k=0

n−1∑

m=0

Cyy(m − k) . (7.31)

Észrevehetjük, hogy ha m−k konstans, akkor ugyanazokat az értékeket kell össze-
geznünk. Ezeket összeszámolva:

var{x̂(n)} =
1

n2

n−1∑

p=−(n−1)

Cyy(p)(n − |p|)

=
1

n

n−1∑

p=−(n−1)

Cyy(p)

(

1 − |p|
n

)

. (7.32)

Ezt a kifejezést megvizsgálhatjuk két szélső esetben. Ha a mintavételezés ritka,
vagyis az autokovariancia függvény a p 
= 0 helyeken már elhanyagolható (korrelálatlan
minták), akkor a C(0) = σ2 összefüggés miatt visszakapjuk a korábban kiszámított
var{x̂(n)} = σ2/n kifejezést.

Számunkra most fontos eset az, ha n jóval nagyobb, mint C(p) nullától különböző
részének szélessége. Ekkor a jobb oldali tényező C(p) fontos értékeinél gyakorlatilag 1,
és közelítőleg C(p) mintáinak összegét kapjuk. Ha a mintavételi tételt C(τ)-ra betart-
juk, az összeget a mintavételi intervallum szélességével beszorozva, ez jól közelíti C(τ)
integrálját, ami megegyezik Sc(0) értékével:

var{x̂(n)} ≈ 1

n

n−1∑

p=−(n−1)

Cyy(p)
Ts

Ts

≈ Sc(0)

T
. (7.33)

Ez a kifejezés egyben a folytonos középértékbecslő közelítő varianciája is ha a
regisztrátum-hossz elég nagy ahhoz, hogy ennyi idő alatt C(τ) eltűnjék, hiszen a min-
ták összege Ts-vel szorozva a T hosszúságú integrált adja.

Vizsgáljuk meg most (7.33) értékét sávkorlátozott fehér zajra. A variancia mege-
gyezik a sávszélesség és Sc(0) szorzatával, vagyis

var{x̂(n)} ≈ σ2

2BT
. (7.34)
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Kiszámítottuk tehát a variancia értékét sávkorlátozott fehér zajra, mind sűrű min-
tavételezés, mind folytonos átlagolás esetére. Ez a kifejezés jellemző az átlagolási eljá-
rásokra: az átlagolás nélküli értéket (σ2) osztjuk a BT szorzattal. A 2BT szorzatról
egyébként tudjuk, hogy megegyezik az ekvivalens mintaszámmal, és így ismét a σ2/n
kifejezéshez jutunk.

A (7.34) kifejezés egyébként nem csak sávkorlátozott fehér zajra alkalmazható.
Észrevehetjük, hogy a sávszélességet így vezettük be a kifejezésbe:

Sc(0) =
σ2

2B
. (7.35)

Más jelekre az ekvivalens sávszélességet használhatjuk, ennek mintájára:

Be =
σ2

2Sc(0)
=

∞∫

−∞

Sc(f) df

2Sc(0)
, var{x̂(n)} ≈ σ2

2BeT
. . (7.36)

7.2. ábra. Az egyenértékű fehér zajjal való helyettesítés (az ekvivalens sávszéles-
ség definíciója) a) a helyettesítő zaj autokorrelációs függvénye b) a helyettesítő zaj
teljesítmény-sűrűségfüggvénye c) helyettesítés a frekvenciatartományban

A fenti kifejezések alapján ábrázolhatjuk a variancia mintaszám-függését, állandó
regisztrátum-hossz esetén (vagyis a növekvő mintaszám egyre sűrűbb mintavételezést
jelent).

Ez a viselkedés ismét általában jellemző az átlagolási eljárásokra: független minták
esetén a variancia 1/n-nel arányosan csökken addig, amíg el nem érjük az n = 2BT
határt, vagyis azt az értéket, amelytől kezdve betartjuk a mintavételi tételt. Innen
kezdve a minták sűrítése nem hoz információtöbbletet: a variancia nem csökken tovább.
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7.3. ábra. A variancia mintaszám-függése exponenciális kovariancia-függvény esetén.
Az időállandó τ = 1, a regisztrátum-hossz Tr = 50. Be = 1/4, 2BeT = 25.
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7.3. A DFT tulajdonságai, a periodogram

Ahhoz, hogy képünk legyen arról, hogy a transzformált jeleknek milyen tulajdonsá-
gai vannak, célszerű megvizsgálnunk a folytonos és a diszkrét Fourier-transzformáció
eredményének tulajdonságait különböző bemeneti jelek esetére. Kezdjük egy folytonos
négyszögjellel, melynek értéke 1 a ±T/2 értékek között.

W (f) = F{w(t)} =

∞∫

−∞

rect

(
t

T

)

e−j2πft dt

=

[
e−j2πft

−j2πf

]T/2

−T/2

=
e−jπfT − ejπfT

−j2πf

=
sin(πfT )

πf

= T sinc(πfT ) . (7.37)

Amennyiben a négyszögjelet eltoljuk úgy, hogy a (0, T ) intervallumban legyen,
akkor a számítás hasonló, de az eredmény e−jπfT -vel szorzódik:

W0T (f) = F {w0T (t)} =

∞∫

−∞

rect

(
t − T/2

T/2

)

e−j2πft dt = e−jπfT T sinc(πfT ) (7.38)

Vizsgáljuk most meg a 0, Ts, 2Ts, ...(N − 1)Ts helyeken mintavételezett négyszög
Fourier-transzformáltját!

Wd(f) = F {wd (t)} =

∞∫

−∞

N−1∑

i=0

δ

(
t − iTs

Ts

)

e−j2πft dt

=
N−1∑

i=0

Tse
−j2πfiTs

= Ts
1 − e−j2πfNTs

1 − e−2jπfTs

=
e−jπfNTs

e−jπfTs
Ts

sin(πfNTs)

sin(πfTs)

= e−jπf(N−1)TsTs
sin(πfNTs)

sin(πfTs)
. (7.39)

Észrevehetjük, hogy ha T = NTs, és Ts → 0, akkor Wd(f) → W0T (f), ahogy el is
várhatjuk.
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Azt is megfigyelhetjük, hogy Wd(f) kifejezése majdnem teljesen megegyezik a diszk-
rét egység-sorozat DFT-jével az f = k

NTs
helyeken, mindössze el kell hagyni a Ts szor-

zót:

Wdk =
N−1∑

i=0

e−j2πk 1
NTs

iTs

=
1 − e−j2πk

1 − e−2jπ k
N

=
e−jπk

e−jπ k
N

sin(πk)

sin(π k
N

)

= e−jπk N−1
N

sin(πk)

sin(π k
N

)
. (7.40)

Ezek alapján már könnyű meghatározni egy véges hosszúságú szinuszjel Fourier-
transzformáltját, hiszen az nem más, mint egy végtelen hosszúságú szinuszjel és egy
ablakfüggvény szorzata.

F {w0T (t) A1 cos(2πf1t + ϕ1)}

= e−jπfT T sinc(πfT ) ⋆

(
A1

2
ejϕ1δ(f − f1) +

A1

2
e−jϕ1δ(f + f1)

)

= e−jπ(f−f1)T ejϕ1
A1

2
T sinc(π(f − f1)T )

+e−jπ(f+f1)T e−jϕ1
A1

2
T sinc(π(f + f1)T ) (7.41)

Megfigyelhető, hogy az ablakfüggvény Fourier-transzformáltja van megismételve a
szinusz frekvenciájánál és ennek mínusz egyszeresénél. A pozitív oldalon a fázis pozitív
irányba forgat, a negatív oldalon negatív irányba.

A mintavételezett szinusz Fourier-transzformáltja hasonló:

F {wd (t) A1 cos(2πf1t + ϕ1)}

= e−jπf(N−1)TsTs
sin(πfNTs)

sin(πfTs)
⋆

(
A1

2
ejϕ1δ(f − f1) +

A1

2
e−jϕ1δ(f + f1)

)

= e−jπ(f−f1)(N−1)Ts
A1

2
ejϕ1NTs

sin(π(f − f1)NTs)

N sin(π(f − f1)Ts)

+e−jπ(f+f1)(N−1)Ts
A1

2
e−jϕ1NTs

sin(π(f + f1)NTs)

N sin(π(f + f1)Ts)
(7.42)

Ebből kiszámítható, a DFT eredménye is: láttuk, hogy el kell hagyni egy Ts szor-
zót, és elvégezni az f → k

N
fs valamint f1 → f1dfs helyettesítéseket (f1d a diszkrét

frekvencia, (0, fs/2) között):
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Xk = e−jπ( k
N
−f1d)(N−1)A1

2
ejϕ1N

sin(π( k
N
− f1d)N)

N sin(π( k
N
− f1d))

+e−jπ( k
N

+f1d)(N−1)A1

2
e−jϕ1N

sin(π( k
N

+ f1d)N)

N sin(π( k
N

+ f1d))
(7.43)

Jól látható, hogy a DFT eredménye a ±f1-nél megismételt négyszög Fourier-transzformáltjának
mintavételi értékeiből áll. Speciális eset az, amikor a mintavételezés koherens, (vagyis
f1d az 1/N egész számú többszöröse, azaz a szinuszból egész periódusokat mértünk),
mert ekkor az f1d = k1

N
helyettesítéssel

Xk = e−jπ(k−k1)
N−1

N
A1

2
ejϕ1N

sin(π(k − k1))

N sin(π k−k1

N
)

+e−jπ(k+k1)
N−1

N
A1

2
e−jϕ1N

sin(π(k + k1))

N sin(π k+k1

N
)

=

⎧

⎪⎨

⎪⎩

ejϕ1 A1
2 N ha k = k1

e−jϕ1 A1
2 N ha k = −k1

0 egyébként.

(7.44)

Ebben az esetben tehát, ha véletlen fázisú szinuszjelről van szó, akkor Xk1 eloszlása

egyenletes a A1
2 N sugarú kör fölött, tehát varianciája

(
A1
2 N

)2

. Valós és képzetes része

korrelálatlan, de nem független egymástól.
Ha a mintavételezés nem koherens, (vagyis f1d nem az 1/N egész számú több-

szöröse, akkor a helyzet sokkal bonyolultabb, mert az összes helyen lesz valószínűségi
változó (ezt szivárgásnak hívjuk, lásd később), a k1-hez legközelebb eső vonal is kisebb,

mint a A1
2 N érték (picket fence vagy léckerítés-hatás), és ráadásul a körszimmetrikus

eloszlás sem igaz, mert a negatív oldalról beszivárgó, a fázis növekedtével ellenkező
irányban forgó tagok ezt elrontják.

Ha a feldolgozott jel folytonos spektrumú, akkor másképpen kell számolnunk.

Xk =
N−1∑

i=0

xie
−j2π ki

N

=
N−1∑

i=0

xi cos(2π
ki

N
) − j

N−1∑

i=0

xi sin(2π
ki

N
)

= ξ − jη . (7.45)

Ez adott k-ra egy komplex értékű valószínűségi változó. Valós és képzetes részéről
azt mondhatjuk el, hogy amennyiben a mintafüggvény normális eloszlású folyamat-
ból származik, akkor ezek eloszlása is normális, ha mégsem, akkor pedig a központi
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határeloszlás tétele miatt közelítőleg az. A szinusszal illetve koszinusszal való szorzás
miatt a várható értékük nulla, varianciájuk jó közelítéssel azonos, és korrelálatlanok.
Összefoglalva: ξ − jη körszimmetrikus normális eloszlású.

A variancia is kiszámítható:

var{Xk} = E{XkXk}

= E

{
N−1∑

i=0

xie
j2π ki

N

N−1∑

l=0

xle
−j2π kl

N

}

=
N−1∑

m=−(N−1)

(N − |m|)R(m)e−j2π km
N

= N

N−1∑

m=−(N−1)

N − |m|
N

R(m)e−j2π km
N

≈ NS(k) , (7.46)

feltéve, hogy a közelítések helyesek: betartjuk a mintavételi törvényt, és a regisztrátum-
hossz eléggé nagy R(m) változó részének lefedéséhez. Ezek szerint ismerjük ξ és η
varianciáját is:

var{ξ} ≈ var{η} ≈ N

2
S(k) (7.47)

Azt is könnyű belátni, hogy különböző k értékekre az Xk változók a különböző
frekvenciájú szinuszok ortogonalitása miatt egymástól közelítőleg függetlenek.

7.3.1. A periodogram

A fentiekben láttuk, hogy egy véges hosszúságú regisztrátum Fourier-transzformáltjának
varianciája folytonos spektrumú jeleknél közvetlen kapcsolatban van a spektrummal.
Valóban, az

Ŝ(k) =
1

N
|Xk|2 (7.48)

kifejezés várható értéke folytonos jeleknél közelítőleg a teljesítmény-sűrűségfügg-
vénnyel egyenlő. Ez azért is kézenfekvő, mert az energia-sűrűségfüggvény és a teljesít-
mény-sűrűségfüggvény fizikai értelmezése nagyon hasonló, ezért kézenfekvő, hogy az
energia-sűrűségfüggvény definíciós összefüggéséhez hasonlóan a teljesítmény-sűrűség-
függvényt is meg tudjuk határozni.

A pontos érték úgy számítható ki, hogy a (7.46) kifejezésben elhanyagolt háromszög-
ablakot (Bartlett-ablakot) figyelembe vesszük:

E
{

Ŝ(k)
}

= {S(k)} ⋆ F {w∆(m)} (7.49)

125



7. ÁTLAGOLÁSI ELJÁRÁSOK, ABLAKOZÁS

A várható érték tehát az „igazi” spektrum és a frekvenciatartománybeli Bartlett-
ablak konvolúciója. Ennek az a következménye, hogy az éles csúcsok szétkenődnek, a
meredek élek pedig ellapulnak.

A variancia meghatározásához azt kell meggondolnunk, hogy

Ŝ(k) =
1

N
|Xk|2 =

1

N

(
ξ2 + η2

)
≈ S(k)

2
χ2

2. (7.50)

Ebből pedig az következik, hogy a variancia

var
{

Ŝ(k)
}

≈
(

S(k)

2

)2

var
{
χ2

2

}
= S2(k) (7.51)

Vagyis a variancia 100%, tehát a periodogramot valahogy átlagolni kell. Két egy-
szerű lehetőségünk van erre:

• A periodogramot többször egymás után mért regisztrátumokra kiszámítjuk, és
az eredményeket átlagoljuk (Welch-módszer).

• A periodogramot sok pontra, nagy felbontással kiszámítjuk, és a szomszédos
vonalcsoportokat átlagoljuk (Bartlett-módszer).

A periodogramot a fentiekben folytonos spektrumú jelekre vezettük be. Mivel a
véletlen fázisú szinusznak szintén van teljesítmény-sűrűségfüggvénye, azt gondolhat-
nánk, hogy a periodogram szinuszos jelre is használható. Írjuk fel tehát a szinuszjel
DFT-jéből meghatározható periodogramot.
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S(k) =
1

N
XkXk

=
1

N

(

ejπ( k
N
−f1d)(N−1)A1

2
e−jϕ1N

sin(π( k
N
− f1d)N)

N sin(π( k
N
− f1d))

+ejπ( k
N

+f1d)(N−1)A1

2
ejϕ1N

sin(π( k
N

+ f1d)N)

N sin(π( k
N

+ f1d))

)

×
(

e−jπ( k
N
−f1d)(N−1)A1

2
ejϕ1N

sin(π( k
N
− f1d)N)

N sin(π( k
N
− f1d))

+e−jπ( k
N

+f1d)(N−1) A1

2
e−jϕ1N

sin(π( k
N

+ f1d)N)

N sin(π( k
N

+ f1d))

)

=
A2

4
N

(

sin(π( k
N
− f1d)N)

N sin(π( k
N
− f1d))

)2

+
A2

4
N

(

sin(π( k
N

+ f1d)N)

N sin(π( k
N

+ f1d))

)2

+2
A2

4
N cos(ϕ1 + 2πf1d(N − 1))

× sin(π( k
N
− f1d)N)

N sin(π( k
N
− f1d))

sin(π( k
N

+ f1d)N)

N sin(π( k
N

+ f1d))
(7.52)

Ebben a kifejezésben a varianciát a harmadik tag képviseli. Mivel az ablakfüggvé-
nyek keresztszorzata kicsi, a szinuszjel periodogramjának kicsi a varianciája, illetve ha
a fázis fix (egyetlen függvény), akkor a fázishelyzetből származó hiba kicsi. Ebből az
következik, hogy szinusz detektálására a periodogram kiválóan alkalmas, mert nincs
esélye annak, hogy a csúcs eltűnik.

A várható értékben tehát itt is a Bartlett-ablak Fourier-transzformáltja jelenik
meg, mégpedig a szinusz Fourier-transzformáltjában lévő két Dirac-delta helyén.

Hozzá kell tennünk, hogy ugyanakkor a szinusz periodogramja csak távolról em-
lékeztet a két Dirac-deltát tartalmazó teljesítmény-sűrűségfüggvényre. Két csúcs van
ugyan benne, de ezek véges szélességűek és véges magasságúak. Ezért itt a hibát nem
a két függvény különbségeként kell értelmeznünk, hanem úgy, hogy a periodogramból,
felismerve a szinuszos tartalmat, ki kell számítanunk a szinusz paramétereit, és ezek
hibáját érdemes vizsgálnunk.

Ha a periodogram a teljesítmény-sűrűségfüggvény becslője, akkor ennek inverz
Fourier-transzformáltja az autokorrelációs függvény becslője. Ez azért fontos, mert
az FFT gyorsasága a DFT többszöri kiértékelését is nagyon gyorssá teszi.

Vizsgáljuk meg tehát a periodogram inverz Fourier-transzformáltjának a várható
értékét. Mivel általánosan akarunk vizsgálódni, a kereszt-spektrum becslőjét vizsgáljuk
meg.
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E
{

R̂c
xy(i)

}

= E

{

1

N

N−1∑

k=0

1

N
XkYke

j2π ki
N

}

=
1

N
E

{
N−1∑

k=0

1

N

(
N−1∑

p=0

xpe
j2π kp

N

N−1∑

q=0

yqe
−j2π kq

N

)

ej2π ki
N

}

=
1

N

N−1∑

k=0

⎛

⎝

N−1∑

s=−(N−1)

1

N
(N − |s|)Rxy(s)e

−j2π ks
N

⎞

⎠ ej2π ki
N

=
1

N

N−1∑

s=−(N−1)

N−1∑

k=0

(

1 − |s|
N

)

Rxy(s)e
j2π

k(i−s)
N . (7.53)

Az utolsó előtti lépésben az s = q − p helyettesítést végeztük el.
A k szerinti összegzésben az exponenciális tényezők (a komplex egységgyökök) csak

akkor nem ejtik ki egymást, ha (i− s) az N -nek egész számú többszöröse: esetünkben
(i − s) = 0 vagy (i − s) = N . Ilyenkor viszont az N tag összegzésével az 1/N szorzó
kiesik, és a következőt kapjuk:

E
{

R̂c
xy(i)

}

=

(

1 − i

N

)

Rxy(i) +
i

N
Rxy(i − N), i = 0, 1, 2, ..., N − 1 . (7.54)

Azt kaptuk, hogy a háromszög alakú Bartlett-ablakkal súlyozott korrelációs függ-
vény bal oldala rámásolódik a jobb oldalra (7.4. ábra).

7.4. ábra. A cirkuláris korreláció várható értéke, és ennek keletkezése az egymásra
másolódó korrelációdarabokból

Ha a korrelációs függvény a (−T/2, T/2) intervallumon kívül elhanyagolható (il-
letve már konstans: μ2), tehát elegendően hosszú regisztrátumot dolgoztunk fel, ez az
átmásolódás nem zavaró. Ha azonban Rxy szélesebb (például periodikus komponens
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esetén egyáltalán nem válik konstanssá), akkor az egymásra másolódás kellemetlen
torzítást okoz.

Vizsgáljuk meg, miből is származik az összemásolódás! A minta regisztrátum az
iTs pontokban adott (T = NTs időtartam), és így Fourier-transzformáltja is N -pontos.
Xk és Yk ennek megfelelően a k/T helyeken van kiszámítva („mintavételezve”). A frek-
venciatartományban elvégzett szorzásnak azonban konvolúció felel meg az időtarto-
mányban, és így egy 2T hosszúságú korrelációs függvénynek kellene megkapnunk a
DFT-jét. Ezt viszont a k/(2T ) helyeken kellene mintavételezni, azaz a spektrumra sű-
rűbben lenne szükség. Nem tartjuk tehát be a mintavételi törvényt. Mit lehet tenni?
A következő lehetőségeink vannak:

• Interpoláljuk az {Xk} és {Yk} sorozatokat. A sorozatok cirkulárisak, ezért cirku-
lárisan interpolálunk - ez ekvivalens az alább ismertetett nullákkal való kiegészí-
téssel, ezért ez egy lehetőség, de végrehajtása több számítást igényel.

• Az időtartományban kiegészítjük a minta-regisztrátumokat Ndarab 0-val, és így
2N -pontos DFT-t hajtva végre megkapjuk a kívánt pontokban a transzformál-
takat, majd a spektrumbecslőt.

• Egy lehetséges megoldás az is, hogy az időfüggvényt T/2 hosszra csonkoljuk.

A nullákkal való kiegészítéssel a körbeforduló sorozatba annyi nullát iktatunk, hogy
a körbefordulás cirkuláris jellege a nullákkal való szorzás miatt eltűnjön (7.4a. ábra).

A cirkuláris konvolúció fellépte egyébként analóg azzal a megfigyeléssel, hogy míg
a folytonos Fourier-transzformáció a konvolúciót és a szorzást valóban egymásba viszi
át, a DFT a frekvenciatartománybeli szorzást az ún. cirkuláris konvolúciónak felelteti
meg.

A korreláció becslője ezzel majdnem készen van, de a Bartlett-ablakkal még min-
dig osztanunk kell. Mivel kis számmal osztva a variancia nagyon megnőne, a ±T/2
intervallumban végezzük csak el az osztást.

7.3.2. A korrelációbecslő varianciája

A korábbiakban láttuk, hogy a periodogram varianciája nagy: 100%. Arra számítha-
tunk, hogy az inverz Fourier-transzformált varianciája szintén nagy.

Vizsgáljuk meg először az egyszerű szorzat: x(i)x(i + m) varianciáját. Normális
eloszlás esetén a négyszeres szorzat várható értéke egyszerűen kifejezhető:

E{x1x2x3x4} = E{x1x2}E{x3x4}
+E{x1x3}E{x2x4} + E{x1x4}E{x2x3} − 2μ1μ2μ3μ4 . (7.55)

Ennek felhasználásával:

var{x(i)x(i + m)} = E{x2(i)x2(i + m)} − R2(m)

= Ψ4
x + R2(m) − 2μ4

= C2(0) + 2μ2C(0) + C2(m) + 2μ2C(m) . (7.56)
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Ebből azonnal látható, hogy m = 0 esetén a variancia kb. 2σ4 (200%), nagy m
esetén pedig fele ekkora. Ez azt jelenti, hogy a variancia nagyságrendben ugyanakkora
minden késleltetés esetén.

Azt is be lehet látni, hogy sávkorlátozott fehér zaj esetén a T hosszúságú átlago-
lással számított variancia kb. 1/(2BT ) arányban csökken.

Ezekből már ki tudjuk számítani a varianciát, de a korreláció-becslőt még nem tud-
juk jellemezni, hiszen a különböző késleltetésekhez kapott becslők összefüggése nem is-
mert. A korrelációbecslőnél az a helyzet, hogy a szomszédos pontokhoz tartozó becslők
erősen korreláltak. Emiatt a mért pontok az emberi szem számára függvénnyé állnak
össze, pedig az ábra nagy részén a hullámzás a varianciából származik (7.5).

7.5. ábra. A variancia megjelenése a korreláció és a spektrum becslőjében

Mivel ez veszélyes érzékcsalódás, jeleznünk kell a felhasználó számára. Ennek leg-
ésszerűbb módja a konfidencia-sávok kijelzése (vagyis azon határok kijelzése, melyek
közé az ismert variancia esetén az igazi függvény jó eséllyel beleesik, 7.6. ábra). Ezt
sajnos a korrelátorok többsége ma még nem teszi meg.

7.4. Ablakozási eljárások

Ebben a fejezetben először a szivárgás és a léckerítés-hatás egy a fentieket szemléletben
kiegészítő leírását adjuk, majd megvizsgáljuk csökkentésük módját.

Az ideális átlagérték meghatározása a DC komponens mérését jelenti, minden más
frekvencia kiszűrésével. Ehhez a frekvenciatartományban egy végtelenül keskeny alu-

130



7.4. ABLAKOZÁSI ELJÁRÁSOK

7.6. ábra. A konfidencia-sáv kijelzése korreláció-becslésben

láteresztő karakterisztika tartozik. A valóságban véges számú (N) minta alapján kell
becslést tenni, és a véges megfigyelési hossz miatt a frekvenciafelbontás véges. Ezt
a tényt elfogadva arra törekszünk, hogy olyan mérőszámot kapjunk, amely kielégítő
módon jellemzi a jel spektrumának 7.7 ábrán látható, véges szélességű tartományát.

ωT− 2π
N

2π
N

2π
N

7.7. ábra. Jelspektrum egy véges keskenységű sávja

Az N -pontos mozgó átlagolás szűrőkarakterisztikájának áteresztő tartománya nem
korlátozódik a kívánt sávra: a fősáv 22π

N
széles, nem egyenletes, és ún. oldalsávok is

vannak. A véges felbontáson túl, tehát, további engedményeket kell tenni, de amint
azt az ablakozási módszereknél látni fogjuk, különböző kompromisszumok között vá-
laszthatunk.

7.4.1. Spektrumszivárgás és picket fence jelenség

A 7.8 ábra egy furcsa jelenségre hívja fel a figyelmet. Egy 21
256

relatív frekvenciájú diszk-
rét koszinusz 256 mintáját állítottuk elő (21 periódust). FFT-t végezve a pontokon,
a 256-pontos DFT vonalai k

256
, k = 0, 1, . . . , 127 frekvenciáknak felelnek meg, tehát

a koszinusz frekvenciája DFT-vonalra esik. Az eredmény a 256-tal való skálázástól
eltekintve megadja a koszinusz Fourier-együtthatóit (ld. 7.8/a ábra).

Ezután olyan esetet állítottunk elő, amikor a koszinusz frekvenciája DFT-vonalak
közé esik. A koszinusz frekvenciájának módosítása helyett a DFT pontszámát csökken-
tettük felére. Ezzel az új DFT-vonalak k

128
= 2k

256
, k = 0, 1, . . . , 63 frekvenciákra esnek.

A 21
256

frekvenciájú komponens és párja DFT vonalak közé esnek. Ha a 7.7 ábra szerinti
felbontással tudnánk jellemezni a spektrumot, akkor csak a koszinusz frekvenciájában
lenne bizonytalanság, ettől eltekintve az eredmény a valódi spektrumot tükrözné. A
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7.8. ábra. a) fT = 21
256

normált frekvenciájú koszinusz jel 256 pontos DFT-je. b-c)
Spektrumszivárgás és picket fence jelenség a jel 128 pontos DFT-je esetén, az első 128
ill. a második 128 mintát transzformálva; (amplitúdó látható)

DFT ellenben a 7.8/b ill. 7.8/c ábrán látható eredményt adja. Az előbbi esetben a
jel első 128 mintájára végeztünk FFT-t, a második esetben a 64+[1:128] mintákra.
Az első eset mintái egy koszinusznak, a másodiké egy szinusznak felelnek meg (21 · 90
fokos fázistolás).

Két jelenséget tapasztalunk:

1. Az eredeti jelspektrum egyes komponenseinek teljesítménye távoli frekvenciákra
is „átszivárog” (ld. 7.8/b-c ábra), a DFT-frekvenciákra koncentrált teljesítmény
azonban egyáltalán nem (ld. 7.8/a ábra).

2. Az eredeti jelspektrum DFT-vonalak közé eső csúcsai elvesznek.

Az előbbit spektrumszivárgásnak a másodikat picket fence (léckerítés-) hatásnak
nevezik. A spektrumszivárgás azért veszélyes, mert a nagyobb amplitúdójú frekvenci-
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akomponensek elfedhetnek szomszédos, kisebb amplitúdójú komponenseket. A picket
fence hatás pedig az egyes komponensek amplitúdójára nézve megtévesztő.

A 7.8/b-c ábrán az is látható, hogy a spektrumszivárgás jelensége a véletlen fázistól
függ.

A jelenségek létrejöttét többféleképpen is lehet értelmezni, de a korábbi fejezetek
alapján a legkézenfekvőbb, ha a DFT-t, mint szűrőbankot tekintjük.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-1

10
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

10
-2

10
0

normált frekvencia (fT )

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

7.9. ábra. Spektrumszivárgás és picket fence jelenség: (a) egy szinuszos jel spektruma,
(b-i) a DFT-szűrőbank szűrőkarakterisztikái (N = 8), (j) a szűrőkimenetek teljesítmé-
nye a megfelelő sávközépen ábrázolva (szaggatottal a valódi teljesítmény-spektrum).

A 7.9 ábra egy szinuszos jel amplitúdó spektrumát, alatta pedig az egyes sávszű-
rők karakterisztikáját mutatja N = 8 esetén, a normált frekvencia függvényében. A
legalsó tengely mentén az egyes sávszűrők kimenetén megjelenő jel teljesítményét tün-
tettük fel, mindegyik értéket a szűrő sávközepének megfelelő frekvencia fölött. Ez a
jel teljesítmény-spektrumának becslője, melyen nyilvánvaló a szivárgás hatása; (szag-
gatott vonallal az eredeti teljesítményspektrumot is feltüntettük).
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A szivárgás úgy jön létre, hogy mindegyik szűrő, a karakterisztikákon jelzett mó-
don, csak véges mértékben csillapítja a jel két komplex harmonikus komponensét. A
két egymásra ortogonális jelkomponens teljesítményét összegezve kapjuk az adott sáv
eredő teljesítményét. (jelek ortogonalitása: ld. Schnell, 2.3. fejezet)

A szivárgás tehát a szűrőkarakterisztikák átfedése ill. periodikus „leszívásai” miatt
jön létre, a picket fence hatás pedig azért, mert a karakterisztikák nem elég „laposak”
a sávközép 2π

N
(k ± 1

2
) környezetében.

Megjegyzés: A picket fence jelenség más szűrőbank esetén is előfordulhat, spekt-
rumszivárgás azonban hasonló formában nem jelentkezik: Mivel a DFT-szűrők ka-
rakterisztikája az áteresztő sávon kívül nem monoton csökkenő, ezért a szinuszos jel
frekvenciáját monoton változtatva a spektrumszivárgás előbb csökken, majd növek-
szik, vagy fordítva; sávközéphez érve pedig teljesen megszűnik. Ez a fajta érzékenység
nem jelentkezik azoknál a szűrőbankoknál, amelyek szűrőkarakterisztikái levágnak (ld.
Schnell 24.77. ábra).

7.4.2. Ablakozás

A mozgó átlagolás amplitúdó-karakterisztikája kapcsán már megvizsgáltuk, hogy a
frekvenciatartománybeli szelektivitás hogyan feleltethető meg az időtartománybeli fel-
dolgozásnak: a 4.15 ábra alapján szinuszos jelekre beláttuk, hogy az oldalsávokon át-
szivárgó teljesítményt az ablakban látszódó nem egész számú periódus okozza. Ezért
arra kell törekedni, hogy elnyomjuk az ablakban látszódó részperiódusokat.

Az egyszerűség kedvéért a mozgó átlagolásra szorítkozunk, az eredmények értelem-
szerűen a többi DFT pozícióra is kiterjeszthetők.

Ha nem egyenletes súlyokkal átlagoljuk a mintákat, hanem például a szélek felé
fokozatosan csökkenő súllyal, akkor az ablakhosszon egész-számú periódust tartalmazó
jel, ill. nem egész-számú periódust tartalmazó jel közötti „különbözőség” csökken. Az
amplitúdó-karakterisztika oldalsávjai csökkennek. A módszert ablakozásnak nevezik, a
súlyok megválasztására különböző ablakfüggvények javasolhatók.

Az átlagolás helyébe súlyozott átlagolás lép: eddig minden minta egyforma 1
N

súllyal
szerepelt, most különböző {wk} súlyok. A torzítatlanság feltétele stacionárius jelek

esetén:
N−1∑

k=0

wk = 1 (7.57)

mivel:

E {x̂(n)} =
N−1∑

k=0

wkE {y(n − N + k)} = x

N−1∑

k=0

wk. (7.58)

A torzítatlanság értelmében 0 frekvencián a szűrő átvitele 1.

A Hanning ablak:

wHanning(n) =
1

N
[1 + cos

2π

N
n]; −N

2
≤ n ≤ N

2
(7.59)
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Az ablak a kiértékelés időpontjára szimmetrikus, így Fourier-transzformáltja valós ér-
tékű, az wk súlyok összege 1. Az ablak a szélek felé egyre kevésbé veszi figyelembe a
mintákat, míg közepén a négyszögletes ablakhoz képest éppen kétszeres súllyal.

Az ablakfüggvény a periodikus „emelt koszinusz” és az azt NT időtartományra kor-
látozó, diszkrét-idejű, négyszögletes ablak szorzata. Ezért az ablak karakterisztikája
az „emelt koszinusz” vonalas spektrumának és a négyszögletes ablak Fourier transzfor-
máltjának konvolúciójaként áll elő (ld. 7.10 és 7.11 ábra):

F {wHanning} =
1

2N

sin N
2
(ωTs + 2π

N
)

sin 1
2
(ωTs + 2π

N
)

+
1

N
· sin N

2
ωTs

sin 1
2
ωTs

+
1

2N

sin N
2
(ωTs − 2π

N
)

sin 1
2
(ωTs − 2π

N
)

(7.60)

A három összetevő eredőjeként, a négyszögletes ablak karakterisztikájához képest,

t

1
N

NT

1

ωT

2π
N

1
N

sin N
2

ωT

sin 1

2
ωT

7.10. ábra. Négyszögletes ablak, és amplitúdó-karakterisztikája

1
N

1
2N

1
2N

2π
N 2π

N

− 2π
N

ωT ωT

korlátozás nélkül négyszögablakkal

7.11. ábra. Az ablak spektruma korlátozás nélkül és négyszögletes ablakkal szorozva

±2π
N

-nél eltűnnek a leszívások, tehát a frekvenciafelbontás romlik, viszont az ellentétes
fázisú oldalhullámok összege kisebb oldalhullámokat eredményez, ezért a spektrum-
szivárgás csökken. Mivel a főhullám is szélesebb, ezért a maximális amplitúdóhiba is
csökken.

További felharmonikusok felhasználásával más ablakok is tervezhetők, így például a
Flat-top ablak, amely minimalizálja a maximális amplitúdó-hibát adott számú együtt-

ható mellett. Az alábbi Flat-top ablak Fourier transzformáltja kilenc
sin N

2
ωTs

sin 1
2
ωTs

jellegű

komponens lineáris kombinációja:

A0 +
4∑

k=1

Ak cos
2π

N
k · n; − N

2
≤ n ≤ N

2
(7.61)
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A három ablaktípus jellemző adatai (vö. 7.12 ábra ):

Ablak függv. Oldallengés Oldallengés Zajsávszélesség Max. ampl. hiba
maximuma határmeredekség (relatív) két pozíció között

Négyszögletes -13dB -20dB/D 1 3.9 dB
Hanning -32 dB -60 1.5 1.4 dB
Flat-top -90,5 dB 0 > 3 < 0, 1 dB

(7.62)

normált frekvencia (fT ) sávközép arányában

Max. amplitúdóhiba

Max. oldalsáv Oldalsávesés
meredeksége
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10
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-3-3

-4-4
1 2

7.12. ábra. Az ablakfüggvények frekvenciatartománybeli jellemzői (a négyszögletes ab-
lak példáján)

Ha az ablak karakterisztikája egységnyi varianciájú fehérzaj teljesítménysűrűség-
spektrumából éppen 1

N
területet vág ki (az fT ∈ [−0.5, +0.5] tartományon), akkor

ekvivalens zajsávszélessége egységnyi. (A négyszögletes ablak zajsávszélessége a 7.25
egyenletből következően 1.)

Az ekvivalens zajsávszélességet tehát úgy számíthatjuk ki, hogy a karakterisztika
négyzetét a relatív frekvencia szerint integráljuk a [−0.5, +0.5] tartományon, és szor-
zunk N -nel. A Parseval-tétel értelmében az integrál megegyezik a súlyok négyzet-
összegével. Egységnyi zajsávszélességhez tehát a súlyok skálázása:

N−1∑

k=0

w2
k =

1

N
(7.63)

Az ablakfüggvények relatív zajsávszélessége megadja, hogy a 7.57 szerinti skálázás
mellett a súlyok négyzetösszege hányszor nagyobb a a 7.63 szerinti skálázással kapott
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súlyok négyzetösszegénél, vagyis 1
N

-nél.:

Brel = N

N−1∑

k=0

⎛

⎜
⎜
⎜
⎝

wk

N−1∑

k=0

w2
k

⎞

⎟
⎟
⎟
⎠

2

= N

N−1∑

k=0

w2
k

(
N−1∑

k=0

wk

)2 (7.64)

Sztochasztikus jelek teljesítménysűrűség-spektrumának becslése esetén is alkalmaz-
ható ablakozás (ld. Schnell, 24.8.3. fejezet). Ha a 7.57 szerinti skálázást alkalmaztuk a
súlyokra, akkor az ablak relatív zajsávszélességével le kell osztani az eredményt ahhoz,
hogy helyesen skálázott spektrumot kapjunk. Természetesen egyszerűbb és egyenér-
tékű megoldás, ha eleve a 7.63 szerinti skálázást alkalmazzuk.

A DFT ablakozással:

Xm =
1

N

N−1∑

k=0

wkx(k)e−j 2π
N

km (7.65)

Megjegyzés: Az ablakozás művelete egyenértékű módon elvégezhető a frekvencia-
tartományban is. Ekkor az időkorlátozás nélküli ablakfüggvény spektrumával kell cir-
kuláris konvolúciót végezni a négyszögletes időablakkal korlátozott jel spektrumán.
Hanning ablak esetén, ez a megoldás bizonyos esetekben előnyösebb is, mint az idő-
tartományban elvégezni a beszorzást. Ha ugyanis N kettő hatványa, akkor a Hanning
ablak esetében a konvolúcióhoz nem kell szorozni, csak helyiértéket léptetni, és össze-
gezni. (Más ablakfüggvényeknél az időtartománybeli kiértékelés előnyösebb, kivétel
olyan jelfeldolgozási esetekben, ahol a jel eleve a frekvenciatartományban áll rendel-
kezésre.)

Megjegyzés: Tervezhetők a fentiektől eltérő módon is ablakok, ha a periodikus
leszívások elérése nem célkitűzés. A Kaiser ablak például a kívánt sávon kívül eső
teljesítményt minimálja (közelítőleg).
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8. fejezet

Modellillesztés

8.1. Bevezető

Az előző fejezetekben bemutatott eljárásokban felfedezhető volt a jel modellje:

• Az átlagolást állandónak feltételezett paraméter becslésére használjuk, és való-
ban felfedezhető benne az állandó érték egy modellje (5.12 ábra).

• A DFT-szűrő tartalmazza az N -re periodikus diszkrét harmonikus jelek modell-
jeit (vö. 5.15, 5.2 ábrákat).

• A megfigyelő elvet használó struktúrák a jelmodellből indulnak ki, és a modell és
kópiája közötti hibát használják fel az állapotparaméterek lemásolásához. (5.14
és 5.16 ábrák).

A modellillesztés egyrészt az előbbieket kiegészítő, másrészt azokhoz hasonló fela-
dat.

„Kiegészítő” abban az értelemben, hogy az előzőekben ismertnek feltételezett mo-
dellparaméterek (esetleg modellstruktúra) meghatározása a cél. Azt a modellillesztési
feladatot, amikor a megfigyeléseinkre legjobban illeszkedő rendszert a topológiájával
és fokszámával megadott modellosztályon belül, a modellparaméterek változtatásával
keressük, paraméterbecslésnek nevezzük.

Ugyanakkor a paraméterbecslés az állapotbecsléshez „hasonló” feladat is.
Az eljárásban itt is megvalósul egy modellkópia, és a rendszer ill. az illesztett mo-

dell kimeneteinek eltérését minimalizáljuk valamilyen hibakritérium szerint, hasonlóan,
mint a megfigyelőnél; (ott a pontos modellkópia, és a zajmentes megfigyelés miatt a
„nulla eltérés” volt a cél).

Egyes esetekben előfordulhat, hogy egyazon feladat megoldható úgy is, mint para-
méterbecslés, és úgy is, mint állapotbecslés, hiszen ugyanazon mennyiség megmérésé-
hez sokféle módon rendelhetünk modellt: az egyik esetben az ismeretlen mennyiség
paramétere, a másik esetben állapotváltozója lehet a modellünknek. Ehhez megenged-
hetjük a modell paraméterek időbeli változását is.
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A paraméterbecslés és az állapotbecslés közötti hasonlóságokat szemlélteti az alábbi
példa, amelyben c és x(n) szerepe felcserélődik a kétféle becslésben, de az ismeretle-
nekben továbbra is lineáris a feladat, és hasonló rekurzív összefüggések adódnak:

Mérendő modell Modellkópia Modellkópia
(megfigyelőelmélet) (paraméterbecslés)

x(n + 1) = A · x(n) x̂(n + 1) = A · x̂(n) + korrekció x(n) ismert
c = konst. c ismert ĉ(n + 1) = ĉ(n) + korrekció
y(n + 1) = cT · x(n) ŷ(n + 1) = cT · x̂(n) ŷ(n + 1) = ĉT(n) · x(n)

Formailag hasonló, predikciós-korrekciós kifejezéseket kapunk a becslésre. A kü-
lönbség az, hogy nem az állapotváltozók másolódnak, hanem a súlyparaméterek vál-
toznak, „hangolódnak”. Az A mátrix helyébe pedig egységmátrix kerül, mivel a para-
méterekről azt feltételezzük, hogy időben állandók.

A korrekció, melyet ebben az összehasonlításban nem részleteztünk, jelentősen kü-
lönbözik a modellillesztés esetében amiatt, hogy sztochasztikus megfigyelésekből in-
dulunk ki. (Megjegyzés a megfigyelőnél bemutatott modellstruktúra is kiegészíthető
zajbemenettel: ld. Schnell, 4. fejezet: Kálmán-szűrő.)

A modellillesztési feladatok két nagy csoportját célszerű megkülönböztetni:

Identifikáció (meghatározás): Identifikáció esetén fix objektumot vizsgálunk, ezért
többnyire stacionaritást feltételezhetünk; sok adat begyűjtésére van lehetőség.
Gyakran a gerjesztést is mi határozhatjuk meg. Nagy pontosságú, de nem gyors
válaszidejű eredmény a cél. Méréssel, azonosítással kapcsolatos feladatokra jel-
lemző.

Adaptáció (követés): A követés valós idejű követelményt támaszt: tűnjön el gyorsan
a hiba, az „együttmozgás” a fontos. A rendszerparaméterek pontos megfeleltet-
hetősége a valóság és a modell között nem elsőrendű szempont, sőt sokszor a
könnyebben kezelhető struktúrára és paraméterkészletre térés a cél (úgy, hogy a
lényeges működési tartományban hasonlóan viselkedő modellt kapjunk.) Szabá-
lyozással, követéssel kapcsolatos feladatokra jellemző.

A jelen fejezetben bemutatott módszerek elvileg mind a kétféle feladatcsoporthoz
alkalmazhatók. A módszerek alkalmazhatóságát egy adott feladatban többek között a
felsorolt szempontok ill. körülmények függvényében ítélhetjük meg.

8.1.1. A fejezet tartalma

A regresszió-számítás és a modellillesztés feladatának alapstruktúrája megegyezik (8.1
ábra). Ezért először bemutatjuk egy egyszerű, lineáris regresszió kiszámítását. Ezután
megmutatjuk, hogy általános modellillesztési problémák széles köre esetén, a modell-
struktúra kettéválasztásával olyan paramétereket tudunk elkülöníteni (8.3 ábra, 8.17 és
8.18 egyenletek), amelyek becslésére lineáris regresszió írható fel. Ezt az általános pa-
raméterbecslési problémát vizsgálva levezetjük a Wiener-Hopf egyenletet (8.23), amely
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négyzetes hibakritérium esetén az optimális paraméter-beállítást adja meg a megfigye-
lések statisztikai paramétereinek függvényében. (Ez utóbbiakat méréssel tudjuk csak
megbecsülni.)

A Wiener-Hopf egyenletből kiindulva gradiens-alapú, iteratív eljárásokat vezetünk
le a paraméterváltoztatásra, amelyek különböző mélységű statisztikai ismereteket hasz-
nálnak fel, ill. ezeket – különböző módon – a megfigyelések alapján folyamatosan be-
csülik.

A lineáris regresszió esetében a hibafelület kvadratikus, és a minimum elhelyez-
kedését adja meg a Wiener-Hopf egyenlet. Az iteratív eljárások konvergenciájának
vizsgálatához a hibafelület elhelyezkedéséről és alakjáról kell pontosabb képet nyerni.
Ehhez a regressziós vektor autokorrelációs mátrixának diagonál alakra transzformá-
lását kell elvégezni, és a sajátvektorokkal párhuzamos koordinátairányok szerint kell
felírni az iterációt.

Ha a lineáris regresszió feladatától eltérünk, a hibafelület nem marad kvadratikus.
Ekkor a hibafelület véges Taylor-sorfejtésével a korábbi eredmények kiterjeszthetők
ugyan, tehát az iteratív eljárások továbbra is alkalmazhatók, de a közelítést figyelembe
kell venni az iterációs paraméterek megválasztásánál, és a konvergencia teljesülése nem
vizsgálható egyszerűen.

Ezt a kiterjesztést felhasználva bemutatunk adaptív végtelen impulzusválaszú rend-
szereket. Az első alapeset (ún. „Equation Error” módszer) lineáris regresszióra vezeti
vissza a feladatot, a második (ún. „Output Error” módszer) pszeudo-lineáris regresszió
megoldását keresi.

8.2. Regresszió-számítás

A regresszió-számítás feladata függő és független változók közötti közvetlen determinisz-
tikus kapcsolat meghatározása. Ez a modellillesztésnek egy speciális esete (8.1 ábra).

� �
2

−1

u

n (noise)

g(u, n)

ĝ(u)

y

ŷ

kritérium-függvény

optimumkeresés

8.1. ábra. A regresszió-számítás, mint a modellillesztés egy speciális este.

A zaj miatt az y függő és u független változó közötti kapcsolat a keresett determi-
nisztikus összefüggés mellett sztochasztikus komponenst is tartalmaz.

140



8.2. REGRESSZIÓ-SZÁMÍTÁS

Az illesztendő modell, ŷ = ĝ(u) (determinisztikus függvénykapcsolat), nem ugyan-
úgy van beágyazva a környezetbe, mint az eredeti rendszer, y = g(u, n), hanem pl.
számítógépen futó szimuláció, vagy műszer belsejében található áramkör, ezért nem
reprodukálható a zaj hatása. Ebből adódóan csak közelítőleg megegyező kimenetet
szolgáltató rendszer adható meg.

Approximáció esetén meg kell határozni, hogy mi számít optimálisnak. Ez szub-
jektív döntés eredménye, amit pragmatikus szempontok befolyásolnak.

A továbbiakban a minimalizálandó költségfüggvény, vagy hibakritérium, legyen:

ε = E
{

(y − ŷ)T (y − ŷ)
}

(8.1)

A négyzetes kritériumfüggvény előnyös tulajdonságokkal rendelkezik: egyrészt al-
kalmazásával az optimumfeladat megoldása matematikai szempontból többnyire ked-
vező, másrészt a négyzetes hibának a hibateljesítmény vagy hibaenergia révén fizikai
értelmezés is adható.

Az illesztés tipikusan szabad paraméterek beállítását jelenti (u, y) párok segítségé-
vel. Általában sok méréshez (u, y párok) kevés paramétert rendelünk (ĝ-t állítják), így
a zaj hatása nagyrészt kiküszöbölhető (8.2 ábra).

Az [u, ĝ(u)] görbe az y változó u-ra vonatkoztatott regressziós görbéje; ha u vek-
tor, akkor [u, ĝ(u)] regressziós felület. u a regressziós változó. (ld. Schnell, 5.4. fejezet;
Prékopa).

2

g
regr

(u)=u
2

2

g
regr

(u)=3.9u-2.35

2

g
regr

(u)=3.9u-2.35ĝ(u) = 3.9u − 2.35 ĝ(u) = u2 ĝ(u) = 3.9u − 2.35

"B" kísérlet"B" kísérlet"A" kísérlet

uuu

yyy

0

0

0

0

0

0

20 2020

10 1010

-10 -10-10
4 44

8.2. ábra. „A” kísérlet: lineáris karakterisztika + Gauss zaj, „B” kísérlet: négyzetes ka-
rakterisztika + Gauss zaj, a) az „A” ponthalmazra illeszthető modell teljesen specifikált
jellemzők vagy lineáris regresszió esetén, b) a „B” ponthalmazra illeszthető modell tel-
jesen specifikált esetben c) a „B” ponthalmazra lineáris regresszióval illeszthető modell
(A regressziós egyenes éppen elfedi az „A” ill. a „B” kísérlet közötti különbséget).

8.2.1. Regresszió-számítás teljesen specifikált statisztikai jel-
lemzőkkel

Teljesen specifikált statisztikai jellemzőkről akkor beszélhetünk, ha ismerjük u és y
együttes valószínűség sűrűségfüggvényét: fu,y(u, y), vagy azzal ekvivalens leírását, min-
den időpillanatra.

141



8. MODELLILLESZTÉS

A regresszió-számítással kapott ĝ(u)-nak olyannak kell lennie, hogy

ε = E
{
(y − ŷ)2} (8.2)

átlagos, négyzetes hiba minimális legyen. Ez az ún. Bayes becslési probléma:

ĝ (u) = E {y|u} (8.3)

8.2.2. Regresszió-számítás részben specifikált statisztikai jel-
lemzőkkel

Gyakoribb eset, hogy nem ismerjük az együttes eloszlást, csak véges számú momen-
tumát, így részben specifikált statisztikai jellemzők mellett kell regresszió-számítást
végezni.

A modellel szemben támasztott fontos gyakorlati szempontok:

Számíthatóság: Az alkalmazott eljárás a válaszidő követelmények betartása mellett
konvergáljon.

Statisztikai jellemzők ismerete: A paraméterillesztés ne igényelje olyan statiszti-
kai jellemzők ismeretét, amelyek nem becsülhetők meg megfelelő pontossággal a
megfigyelésekből (Pl. 2-od fokúnál magasabb rendű momentumok ne szerepelje-
nek az eljárásban.)

Lineáris regresszió:

Legyen a determinisztikus függvénykapcsolat egy lineáris egyenlet, melynek bi pa-
raméterei az ismeretlenek:

ĝ(u) = b0 + b1u (8.4)

Ezen a függvényhalmazon belül keressük az optimális modellt. (A 8.2 ábra szerint
ez megegyezhet az általában vett optimális megoldással – a) eset –, de általában csak
szuboptimális megoldást jelent – c) eset.)

Minimalizálandó:

ε = E
{
(y − ĝ(u))2} = E

{
(y − b0 − b1u)2} =⇒ min

b0,b1
. (8.5)

Mivel a hibafelület – a hibának a paramétersík feletti függvénye – kvadratikus,
ezért pontosan egy minimumhelye van, ahol viszont a függvény értéke nem feltétlen
nulla. A minimumot tehát differenciálással kereshetjük:

∂ε

∂bi

= −2E

{

(y − ĝ)
∂ĝ

∂bi

}

= 0 (8.6)

Először a b0 szerinti parciális deriváltra írjuk fel a nulla-feltételt (a várhatóérték
képzés és az összegzés sorrendjét felcserélve):

∂ε

∂b0

= −2 (E {y} − b0 − b1E {u}) = 0 (8.7)
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Ez egy kétismeretlenes (b0, b1), lineáris egyenlet, amelyet átrendezünk, és E {u}-vel
szorzunk, hogy b0E {u} majd később kiejthető legyen.

E {y} = b0 + b1E {u} | · E {u} (8.8)

E {u}E {y} = b0E {u} + b1E
2 {u} (8.9)

Ezután a másik paraméter, b1 szerinti parciális deriváltra is felírjuk a feltételt:

∂ε

∂b1

= −2
(
E {uy} − b0E {u} − b1E

{
u2
})

= 0 (8.10)

Ebből is egy kétismeretlenes, lineáris egyenletet adódik (8.11), amelyből az előzőleg
kapott 8.9 egyenletet kivonva, a b0 ismeretlent kiküszöböljük:

E {uy} = b0E {u} + b1E
{
u2
}

(8.11)

E {uy} − E {u}E {y} = b1(E{u2} − E2{u}) (8.12)

Ebből b1 közvetlenül adódik, b0 pedig kifejezhető elvégezve b1 behelyettesítését a 8.8
egyenletben:

b1 =
E {uy} − E {u}E {y}

E {u2} − E2 {u} (8.13)

b0 = E {y} − b1E {u} =
E {y}E {u2} − E {u}E {uy}

E {u2} − E2 {u} (8.14)

A lineáris regresszió két lényeges előnye:

1. A b0 és b1 ismeretlenekben lineáris a modell, így explicit megoldás adható.

2. Az u-ban elsőfokú egyenlet és a négyzetes hibakritérium miatt csak első- és má-
sodrendű momentumok szükségesek a becsléshez.

Ez utóbbi azért lényeges kérdés, mert a momentumok becslése véges számú adat
alapján csak véges pontossággal történhet. Jóllehet, elvileg a bemenetet meghatáro-
zott statisztikai jellemzőkkel tudjuk gerjeszteni, (ilyen esetben ezek eleve ismertek), a
kimenetet is tartalmazó momentumok a modellezendő rendszertől is függnek, így azo-
kat csak méréssel tudjuk megbecsülni. Minél magasabb rendű momentumot próbálunk
becsülni, annál több adatra van szükség, vagy nagyon bizonytalan lesz a momentum
becslője.

Általánosabb modellek:

N-ed fokú polinomiális regresszió:

ĝ(u) =
N∑

i=0

biu
i (8.15)

Előnye: paramétereiben lineáris modell. (A bemenetre nézve nemlineáris). Hátránya:
a momentumok 2N -ed rendig kellenek.
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Több kimenetű/bemenetű modell
A lineáris regresszió általánosítható több bemenetű, esetleg több kimenetű rend-

szerre is.
Paramétereiben nemlineáris modell

A paraméterekben nemlineáris összefüggés is használható matematikai modellként.
Ekkor két szélső választás lehetséges: vagy lineáris regresszióvá alakítjuk változócseré-
vel a feladatot (ld. Horváth, 4.1. fejezet), vagy nemlineáris regressziót kell végeznünk.

8.3. Adaptív lineáris kombinátor

A modellillesztés feladatát ugyanaz az ábra (8.1) írja le, mint a regresszióét. Az illesz-
tendő modell:

ŷ = ĝ(u) = ĝ(w, u), (8.16)

ahol u a bemenőjel, wT = [w0, w1, . . . , wN−1] az állítható paraméterekből összeállí-
tott vektor. A ĝ(w, u) jelölés azt fejezi ki, hogy a modell a w súlyvektoron keresztül
változtatható, adaptálható.

Az adott problémában felvetődő modellt úgy hozzuk létre, hogy a modell dinamikus
és/vagy nemlineáris tulajdonságú részeit rögzítjük (f(u)), és különválasztjuk a modell
adaptálható részétől (8.3 ábra). Az adaptálható rész paramétereinek (w) becslése egy
lineáris regressziós feladat.

u u
ĝ(u)

ŷ
f(u) w

ŷ = wTx

x = f(u)

8.3. ábra. Adaptív lineáris kombinátor

A modell rögzített része a bemenőjelből előállítja az x regressziós vektort (elemei
a regressziós változók), amely a hálózat adaptálható részének bemenete:

x = f(u) (8.17)

ŷ(n) = wT (n)x(n) =
M−1∑

i=1

wi(n)xi(n) (8.18)

ahol M a regressziós vektor hossza. Ez a skalár szorzat több kimenet esetén (yj)
általános mátrix-vektor szorzattá bővül: ŷ(n) = WT (n)x(n) . Több bemenet esetén
x = f(u) .

Az adaptív lineáris kombinátor két meghatározó tulajdonsága:

1. az adaptálható rész paramétereiben lineáris,

2. a paraméterváltoztatás véges memóriájú hatással jár.
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(Megjegyzés: A lineáris regresszió előzőleg tárgyalt egyszerű esete az adaptív line-
áris kombinátor egy eseteként is felírható, ahol xT =

[
1 u

]
, wT =

[
b0 b1

]
.)

A korábbi regressziós példához hasonlóan itt is az átlagos négyzetes hibát (a hiba
négyzetének várható értékét) minimalizáljuk:

ε(n) = E
{(

y(n) − wTx(n)
)2
}

= (8.19)

= E
{
y2(n)

}
− 2 E

{
y(n)xT (n)

}

︸ ︷︷ ︸

pT

w + wT E
{
x(n)xT (n)

}

︸ ︷︷ ︸

R

w (8.20)

= E{y2(n)} − 2pTw + wTRw, (8.21)

ahol

pT = E{y(n)xT (n)}
R = E{x(n)xT (n)}

a kimenet és a regressziós vektor közti keresztkorrelációs vektor, illetve a regressziós
vektor autokorrelációs mátrixa. Az autokorrelációs mátrix főátlójában a vektor egyes
elemeinek négyzetes várhatóértéke áll, többi eleme pedig a sor- és oszlopindexnek meg-
felelő regressziós változók közötti keresztkorrelációt adja meg. Feltételezzük a rendszer
bemenetének és kimenetének másodrendű stacionaritását, ezért R és p független n-től.

Az átlagos, négyzetes hiba kifejezésében a w vektor mögül elhagytuk az időindexet,
mivel egyelőre nem adaptáljuk a súlyokat, hanem az optimális, fix beállításra keresünk
kifejezést. A minimumot differenciálással keressük:

∂ε

∂w
= −2p + 2Rw = 0 (8.22)

Ennek megoldása:
wopt = R−1p (8.23)

Ez a Wiener-Hopf egyenlet, amely zárt alakban megadja az egyetlen optimum
helyét. Érdemes összefoglalni, hogy milyen feltételek vezettek erre az eredményre: A
(i) paramétereiben lineáris modell, (ii) az átlagos négyzetes hibakritérium, valamint
(iii) a másodfokú momentumok stacionaritása, együtt kvadratikus (w-ben másodfokú)
hibafelülethez vezettek, amelynek gradiense w lineáris függvénye. Így az optimális
paraméter-beállításra, amelyet a gradiens ∇(n) = 0 feltétele egyértelműen megad, a
Wiener-Hopf egyenlet adódott.

Visszahelyettesítve 8.23-et 8.21-be:

εmin = E{y2(n)} − pTR−1p = E{y2(n)} − pTwopt. (8.24)

Ehhez felhasználtuk az alábbi két algebrai azonosságot, és az R mátrix szimmetri-
áját:

1. (AB)T = BTAT,

145



8. MODELLILLESZTÉS

2. AA−1 = I, ahol I az egységmátrix

3. RT = R, így R−T = R−1

A hiba kifejezésében (8.21) elkülönítve εmin-t, mint konstans eltolási értéket:

ε(n) = εmin + [wopt − w(n)]TR[wopt − w(n)]. (8.25)

Ha a paramétertér origóját az optimumba toljuk el, vagyis az optimumhoz képest
„tájékozódunk”, akkor az új koordinátavektor:

v(n) = w(n) − wopt (8.26)

nem más, mint a paraméterhiba. A paraméterhiba függvényében a kimenet átlagos,
négyzetes hibája:

ε(v) = εmin + vTRv (8.27)

A hibafelület tehát a paramétersíktól vett εmin eltolású (hiper)paraboloid, amelynek
formáját az R mátrix határozza meg.

Mivel R a regressziós vektor autokorrelációs mátrixa, ezért 8.27 és 8.28 alapján
egyértelmű, hogy a kvadratikus hibafelület alakja, és főtengelyeinek elhelyezkedése,
csak a bemenet mintáitól függ. A modellezett rendszertől csak a hibafelület origótól
való eltolása (wopt és εmin, azaz a minimumhely és a minimum értéke függenek.

A gradiens vektor:

∇ = 2 (Rw(n) − p)

=
∂ε(n)

∂w(n)
(n) = 2R [w(n) − wopt]

= 2Rv(n) (8.28)

A három kifejezés közvetlenül adódik a hiba megfelelő kifejezéseinek (8.21,8.25,8.27)
differenciálásával.

A 8.4 ábra kétdimenziós paramétervektor esetén mutatja a hiba-paraboloidot.

εmin

wopt

hibafelület (paraboloid)

paraméterek síkja

8.4. ábra. A hibafelület a paramétervektorok által kifeszített sík felett

A hibaparaboloid alapsíkkal párhuzamos metszetei ellipszisek (8.5 ábra), amelyek
az elmetszés magasságának megfelelő hibát eredményező paraméter-beállítások mér-
tani helyét adják meg. Különböző magasságokban elmetszve a paraboloidot, több ilyen
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8.5. ábra. Izokritérium görbék: a hibafelület metszeteinek vetülete. Főtengelyek.
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8.6. ábra. Koordináták eltolása és forgatása

ellipszist kapunk, amelyeket a paramétersíkra vetítve egy a hiba értékével paraméte-
rezett görbesereg adódik. A görbesereget alkotó koncentrikus ellipszisek főtengelyei
egybeesnek, de a sík koordinátatengelyeihez képest általános helyzetben helyezked-
nek el. A főtengelyirányok kitüntetett szerepét az adja, hogy ezekben az irányokban a
hiba-paraboloidon fekvő bármely pontban a negatív gradiens mindig az optimum felé
mutat. Így ezen pontokból kiindulva a gradiensek mentén megfelelően nagyot lépve az
optimumba érkezhetünk, vagy afelé „ereszkedhetünk”.

8.3.1 Példa. Legyen

xT (n) = [x0(n) x1(n)] =

[

sin
2π

N
n sin

2π

N
(n − 1)

]

(8.29)

y(n) = 2 cos
2π

N
n (8.30)

wT (n) = [w0(n) w1(n)] (8.31)

ŷ(n) = w0(n)x0(n) + w1(n)x1(n) (8.32)
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Megjegyzés: A feladat megfogalmazható úgy is, hogy csak a bemenőjel adott, pl.
u(n) = sin 2π

N
n, és akkor a modell fix részére is (8.3 ábra) ötletet kell találni: egy kés-

leltető elemre vezetve az u(n) jelet éppen a xT (n) állítható elő (8.7 ábra). A rendszer,
amit modellezünk, egy 90 fokos fázistolást végez a szinuszon.

8.7. ábra. A példában szereplő adaptív lineáris kombinátor.

A várhatóértéket az egész számú periódusra vett átlagértékként számítjuk. (Ez
egyenértékű azzal, mintha véletlen kezdőfázis szerepelne az argumentumban, és erre
nézve képeznénk a várhatóértéket). Felhasználva, hogy sin2 α = 0.5 (1 − cos 2α), illetve
cos (α + β) − cos (α − β) = −2 sin α sin β :

E
{
x2

0

}
= E

{

sin2

(
2π

N
n

)}

= 0.5 · E
{

1 − cos

(

2
2π

N
n

)}

= 0.5, (8.33)

illetve

E {x0x1} = E {x1x0} = E

{

sin

(
2π

N
n

)

sin

(
2π

N
(n + 1)

)}

= (8.34)

= 0.5E

{

cos

(
2π

N

)

− cos

(
2π

N
(2n + 1)

)}

= 0.5 cos

(
2π

N

)

. (8.35)

Ezzel

R =

[
0.5 0.5 cos 2π

N

0.5 cos 2π
N

0.5

]

, (8.36)

R−1 =
4

sin2 2π
N

[
0.5 −0.5 cos 2π

N

−0.5 cos 2π
N

0.5

]

. (8.37)

Mivel

E

{

2 cos

(
2π

N
n

)

sin

(
2π

N
n

)}

= E

{

sin

(

2
2π

N
n

)}

= 0, (8.38)

ezért

p = [0,− sin
2π

N
], (8.39)

és
E{y2(n)} = 2. (8.40)
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Az átlagos, négyzetes hiba és az optimális paraméter-beállítás:

ε(n) = 0.5
(
w2

0(n) + w2
1(n)
)

+ w0(n)w1(n) · cos
2π

N
︸ ︷︷ ︸

wT (n)Rw(n)

+ 2w1(n) sin
2π

N
︸ ︷︷ ︸

−2pT w(n)

+ 2
︸︷︷︸

+E{y2(n)}

, (8.41)

wT
opt =

[
2

tan 2π
N

− 2
sin 2π

N

]

. (8.42)

Megjegyzés: wopt mellett εmin = 0. Vagyis egy koszinusz mintái a megfelelő szinusz
egymást követő mintáiból egyszerű súlyozott összegzéssel előállíthatók.

Megjegyzés: 1/N éppen azt adja meg, hogy milyen gyorsan változik a jel. Ha na-
gyon sűrűn mintavételezzük a jelet, akkor két egymást követő mintából numerikus
problémák miatt nem tudjuk előállítani a koszinuszt, ezért a gyakorlatban nem így
állítjuk elő a fázistolást. �

A 8.5 és a későbbi ábrákon a fenti példával végzett szimulációk eredménye szerepel.
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8.4. Iteratív modellillesztés

Az előzőekben adaptív struktúrákat mutattunk be, és kimutattuk, hogy paraméte-
reiben lineáris modell és négyzetes hibakritérium mellett (feltételezve a másodrendű
stacionaritást) a modellparaméterek optimális megválasztása egy kvadratikus hibafelü-
letre megfogalmazott szélsőérték-keresési feladat. A hibafelület teljes ismerete mellett
az optimum helyét explicit módon megadja a Wiener-Hopf egyenlet, és a paraméter-
beállítás egyetlen lépésben megtehető. A továbbiakban olyan szélsőérték-kereső el-
járásokat mutatunk, amelyek képesek a hibafelület részleges ismerete mellett, több
lépésben, iteratív módon elvezetni a minimumhoz.

Melyek azok a részleges ismeretek, amelyek a gyakorlatban rendelkezésre állhatnak?

A regressziós vektor (x) és a kimenet (y) korrelációja előre semmiképpen sem is-
mert, hiszen y a mérendő objektumtól függ, ezért p, és így közvetetten a gradiens is,
legfeljebb mérésből becsülhető meg az adott időpontig befolyt megfigyelések alapján.

Az adott paraméter-beállítás melletti gradiens például numerikus differenciálással
számítható. Ehhez különböző irányokban kis mértékben módosítani kell a paraméter-
beállítást, és rögzített paraméterek mellett megfelelő számú megfigyelést kell össze-
gyűjteni. Az átlagos, négyzetes hibát mindegyik paraméter-beállításra meg kell ezek-
ből becsülni, majd az egyes koordinátairányok szerinti (közelítő) meredekségeket ki
kell számítani.

Más lehet a helyzet a regressziós vektor autokorrelációs mátrixával, R-rel, mivel
az nem függ a mérendő rendszertől. Mivel a regressziós vektort a bemenetből állítjuk
elő (8.17), ezért ha a bemenet (u) egy általunk megválasztott gerjesztés, amelyből ki
tudjuk számítani R-et, akkor az elvileg teljes mértékben ismert, sőt, általunk meg-
választható. Ebben az esetben olyan optimalizációs algoritmust alkalmazunk, amely
felhasználja R ismeretét (lásd majd: Newton módszer).

Előfordulhat azonban, hogy a rendszer gerjesztése mérhető ugyan, de tőlünk füg-
getlen tényezők közreműködésével születik. Ebben az esetben hasonló a helyzet R-rel
mint p-vel ill. a gradienssel: legfeljebb a megfigyeléseinkből becsülhető. Jelentős le-
het az eltérés azonban abban, hogy mennyire pontosan tudjuk egyiket vagy másikat
mérni, ill. becsülni. Ezek és egyéb gyakorlati körülmények (számítási teljesítmény, a
paraméterek viszonylagos állandósága ill. változékonysága) függvényében más és más
iterációs algoritmus javasolható.

Megjegyzés: Mivel az átlagos, négyzetes hiba, illetve a gradiens az iteráció módjá-
tól függetlenül többféle módon is becsülhető, viszont többnyire jó közelítése a valódi
értéknek, ezért a becslés tényét nem jelöljük (nincs „ˆ”), hanem úgy tekintjük, mintha
egy másik algoritmustól készen kapnánk a valódi értéket. (Szimuláció esetén ténylege-
sen a valódi értéket használjuk.) Azokban az esetekben azonban (ld. LMS algoritmus),
amelyekben a becslés valamely pillanatnyi érték elfogadását jelenti, vagyis természe-
ténél fogva pontatlan, és az algoritmus részét képezi, ott a becslő jelölést használjuk
(„∇̂”).
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8.4.1. Newton módszer

A hibagradiens 8.28 szerinti kifejezését 1
2
R−1-zel balról szorozva, és felhasználva a

Wiener-Hopf egyenletet adódik, hogy:

1

2
R−1∇(n) = w(n) − wopt (8.43)

wopt = w (n) − 1

2
R−1∇(n) (8.44)

Mivel ∇(n) nem pontos (esetleg R−1 sem az), ezért iterációvá alakítjuk a fenti
kifejezést:

w (n + 1) = w(n) − μR−1∇(n) (8.45)
1
2

helyébe a μ lépésköz-paraméter („bátorsági” tényező) lép. Ezt nevezik Newton mód-
szernek. A paraméterhiba alakulása wopt kivonásával írható fel:

w(n + 1) − wopt = w(n) − wopt − μR−1 ∇(n)
︸ ︷︷ ︸

2R[w(n)−wopt]

=

= (1 − 2μ)[w(n) − wopt]

Azaz,
v(n + 1) = (1 − 2μ)v(n) = (1 − 2μ)n+1v(0) (8.46)

Ebből is látható, hogy μ = 1
2

választással elvben egylépéses konvergencia érhető el,
(ha R−1 és ∇(n) pontos). Az eljárás konvergens, ha 0 < μ < 1. Ekkor a paraméter-
hiba minden főtengelyirányban egyformán, (1−2μ) arányban csökken lépésenként (8.8
ábra).

8.4.2. A legmeredekebb lejtő módszere

Ennél a módszernél a korrekció a legmeredekebb lejtő irányában, a negatív gradiens
mentén történik:

wn+1 = w(n) − μ∇(n) (8.47)

R és p nem szerepel a képletben; tulajdonképpen nem használjuk ki, hogy kvad-
ratikus a hibafelület, csupán azt, hogy egyetlen lokális minimuma van, (azaz egyetlen
pontban 0 a gradiens). Ebből következően, ha minden újabb pontból a negatív gra-
diens mentén mozdulunk, akkor egyre lejjebb kerülve, végül a minimum környezetébe
érkezünk. (Az, hogy mennyire közelítjük meg a minimumot, μ megválasztásától függ.)

Úgy is tekinthetjük az eljárást, mintha a Newton módszert (8.45) alkalmaznánk, de
a hibafelület pontos ismeretének hiányában R = R−1 = I választással kellene élnünk,
ahol I az egységmátrix. Ez azt jelenti, hogy nincsenek kitüntetett irányaink, a metszék
ellipsziseket köröknek feltételezzük; miközben a hibaparaboloid, amin mozgunk nem
ilyen, így ez az eljárás kevésbé hatékony, mint a Newton módszer (R ismeretében). Ha
valóban R = I, akkor a két eljárás egyenértékű: ekkor mindegyik paramétervektorra
egyformán érzékeny a hiba (ld. 8.49 egyenlet.).
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A Newton módszerhez képest a számítás egyszerűsödik, mert a μR mátrixszal való
szorzás helyett skalárral szorozzuk a gradienst (vö. 8.45 és 8.47 egyenlet).

Megjegyzés: Talán meglepően hangzik, hogy a gradiens menti (tehát legmerede-
kebb) ereszkedés nem eredményezi a legrövidebb utat a minimumba, jóllehet minden
pillanatban a legnagyobb ereszkedést biztosító irányba mozdul. Két tényező magya-
rázza, hogy az eljárás nem „optimális”:

1. Tegyük fel, hogy folytonosan ereszkedünk. Igaz ugyan, hogy minden pillanatban
a pillanatnyilag legnagyobb ereszkedést biztosító irányba lépünk, de ha ismer-
nénk a hibafelület alakját, akkor „látnánk” merre van a minimum, és a hibafelület
mentén abba az irányba mozognánk, még ha adott pillanatban, adott ponton az
nem is biztosítja a maximális ereszkedést. A hibafelület globális ismerete te-
hát azt jelentené, hogy olyan irányba mozdulhatnánk, amely a teljes útvonalat
tekintve a leggyorsabb ereszkedést biztosítja. A Newton módszer pontosan ezt
teszi, feltéve, hogy R pontosan ismert.

2. Ha a hibafelületet nem ismerjük, akkor sem biztos, hogy a legmeredekebb lejtő
módszere optimális. Az ereszkedés ugyanis nem folytonos, mint előbb feltételez-
tük, hanem diszkrét lépésekben történik. Azaz, jóllehet, az ellépés pillanatában
még a negatív gradiens irányba mozdulunk, de ahova érkezünk, ott már más
irányba, esetleg éppen ellentétes irányba mutat a gradiens. Az ereszkedés, ezért
oszcillációkon keresztül valósul meg. Ez ellen úgy védekezhetünk, ha a negatív
gradiens mentén törekszünk ugyan lépni, de ismerve az előző lépéseket elkerüljük
az oszcillációt. Pl. A konjugált irányok módszere N -dimenziós kvadratikus felüle-
ten elvileg N lépésben eléri a minimumot, amihez lépésenként az adott pontbeli
gradiens mellett az előző lépés irányát is felhasználja. (Ld. [Horváth] 3. fejezet;
[Rózsa])

A paraméter-hiba alakulása:

w(n + 1) − wopt = w(n) − wopt − μ∇(n) = [I − 2μR][w(n) − wopt] (8.48)

v(n + 1) = [I − 2μR]v(n) = [I − 2μR]n+1v(0) (8.49)

A fenti egyenletekben a (I−2μR) tényező mutatja, hogy az egyes paraméterek nem
egymástól függetlenül javulnak, hanem keresztcsatolásban, vagyis az egyik paraméter
módosítása kihat a következő lépésben a többi módosítására. Ennek eredményeképpen
a paraméterhiba egyes elemei egymáshoz képest nem egyforma, és időben nem egyen-
letes arányban csökkennek az adaptáció során, egyes lépésekben egy-egy paraméter
hibája nőhet is (ld. 8.9 ábra). E közben a négyzetes hiba monoton csökken (ld. 8.10
ábra).

A 8.49 kifejezés alapján a konvergencia nehezen vizsgálható. Milyen választással
biztosítható az eljárás konvergenciája? Hogyan javíthatók a körülmények a konvergen-
cia gyorsításához? Ezek a kérdések az R mátrix sajátértékeinek ismeretében válaszol-
hatók meg, a következő szakaszban ezt vizsgáljuk meg.
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8.8. ábra. Kezdeti gradiens, és paraméteradaptáció illusztrálása két súly esetén; leg-
meredekebb lejtő (L.L.), ill. Newton módszerrel

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

v
1
(n) 

v
0
(n) 

n 

8.9. ábra. A relatív paraméterhiba alakulása L.L. módszer esetén. Amíg w1 hibája
dominál, addig w0 kárára javul.

8.4.3. Az R mátrix diagonalizálása; a szélsőérték-keresés kon-
vergenciájának vizsgálata

A következőkben az R mátrixot diagonál-alakra transzformáljuk. Mivel R szimmetri-
kus, ezért ez biztosan megtehető. Az egyszerűbb tárgyalás kedvéért azt is feltételezzük,
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8.10. ábra. A kimenet átlagos, négyzetes hibája, ε(n), exponenciálisan csökken, előbb
λ1, majd λ0, sajátértékek által meghatározott időállandó szerint.

hogy a mátrix sajátértékei egyszeresek (!).
Keressük azokat a qm, m = 0, 1, . . . , N − 1 (nem nulla) vektorokat, amelyekkel

(R − λI)qm = 0. (8.50)

(Ennek a λ-val paraméterezett homogén egyenletrendszernek akkor van a triviálistól
különböző megoldása, ha az együtthatómátrix rangja alacsonyabb a mátrix rendjénél:
rang(R − λmI) < N . Vagyis olyan λ paraméter szükséges, amellyel a mátrix determi-
nánsa 0.) Elsőként tehát meghatározzuk a

det[R − λI] = 0. (8.51)

karakterisztikus egyenlet gyökeit. Ezek az R mátrix λ0, λ1, . . . λN−1 sajátértékei (mint
kikötöttük egymástól különbözőek), amelyekkel egyenként elvégezve a visszahelyette-
sítést 8.50-be, rang(R − λI) = N − 1 lesz, és skálázástól eltekintve (hiszen 8.50 bár-
mely értékkel beszorozható) rendre meghatározhatók a qm vektorok, R sajátvektorai.
Ezekre teljesül:

Rqm = λmqm m = 0, 1, . . . , N − 1 (8.52)

A sajátvektorok normáját egyre választjuk, (így már egyértelmű a megoldás).
Az N összefüggést mátrixalakban megadva:

R[q0q1. . .qN−1
︸ ︷︷ ︸

Q

] = [q0q1. . .qN−1
︸ ︷︷ ︸

Q

] diag < λ0, λ1, . . . λN−1 >
︸ ︷︷ ︸

Λ

(8.53)

azaz:
RQ = QΛ, (8.54)

Ebből felírható a Q-val végzett hasonlósági transzformáció, amellyel az R mátrixot
diagonál-alakra hozzuk:

R = QΛQ−1 = QΛQT (8.55)
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A 8.55 egyenlet R diagonál-alakja. A második egyenlőségben azt használtuk ki, hogy
Q ortogonális, azaz QTQ = I. A Q mátrix ortogonalitása a sajátvektorok ortonor-
máltságából (ortogonalitásából és normáltságából) következik. A sajátvektorok orto-
gonalitása az alábbiak szerint bizonyítható:

qT
i RT = (Rqi)

T = λiq
T
i (8.56)

Rqj = λjqj (8.57)

Ezeket jobbról ill. balról szorozva

qT
i RTqj = λiq

T
i qj (8.58)

qT
i Rqj = λjq

T
i qj (8.59)

R = RT miatt az egyenletek baloldali tagjai egyformák. Mivel a sajátértékek kü-
lönbözőségét végig feltételeztük: λi 
= λj, ezért qT

i qj = 0 kell, hogy teljesüljön, vagyis
a sajátvektorok egymásra ortogonálisak.

Mivel R = E{xxT}, ezért tetszőleges a vektorra teljesül aTRa ≥ 0. Ezt a tu-
lajdonságot pozitív szemidefinitségnek nevezik, és egyenértékű azzal, hogy R minden
sajátértéke nem negatív: λi ≥ 0.

A matematikai levezetésben kapott diagonál-alakot (8.55) az alábbiakban felhasz-
náljuk a szélsőérték-kereső eljárások konvergenciájának a vizsgálatára:

Megismételve a hiba 8.25 szerinti kifejezését:

ε(n) = εmin + [w(n) − wopt]
TR[w(n) − wopt] = (8.60)

= εmin + vT (n)Rv(n) = εmin + vT (n)QΛQTv(n) = (8.61)

= εmin + [QTv(n)]TΛ[QTv(n)] = εmin + v′T (n)Λv′(n) (8.62)

ahol
v′(n) = QTv(n) . (8.63)

Összességében nemcsak az origót toltuk el, hanem a koordinátasíkokat is elforgat-
tuk. A gradiens kifejezése ebben a koordinátarendszerben:

∇′(n) = 2Λv′T (n) = 2[λ0v
′
0, λ1v

′
1, . . . , λN−1v

′
N−1]

T (8.64)

Az R mátrix sajátvektorai a hibaparaboloid főtengelyirányait adják meg. Az új
koordináta rendszerben az ellipszis főtengelyei mentén egyenletesen ereszkedünk (8.11
ábra). A legmeredekebb lejtő módszere esetén a paraméterhiba tengelyenként a mere-
dekségnek megfelelő gyorsaságban csökken (vö. 8.49):

v′(n + 1) = [I − 2μΛ]v′(n) = (I − 2μΛ)v′n+1(0) (8.65)

Ez az egyenlet fontos elvi eredmény a lépésköz paraméter meghatározásához.
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8.11. ábra. A transzformált koordináta tengelyek mentén egyenletesen csökken a hiba;
(Newton és L.L. módszer esetén egyaránt, de L.L. módszer esetén a két tengely mentén
különböző hányadossal)

Mivel a 8.65 kifejezésben szereplő (I−2μΛ) mátrix diagonálmátrix, ezért az egyen-
letrendszer független skalár egyenletekre esik szét:

v′
m(n+1) = (1−2μλm)v′

m(n) = (1−2μλm)n+1v′
m(0) = rn+1v′

m(0) m = 0, 1, . . . , N−1
(8.66)

Ez formailag ugyanaz a probléma, mintha egyelemű regressziós vektor, azaz skalár
regressziós változó (x) lenne, következésképpen skalár lenne az „autokorrelációs mátrix”
(R = λ) Tekintsük ezért most ezt az esetet:

w(n + 1) = w(n) − μ∇(n); ahol ∇(n) = 2λ (w(n) − wopt(n)) (8.67)

vagyis λ egyben a hibaparabola görbülete is, vagyis deriváltjának a meredeksége.

v′(n + 1) = (1 − 2μλ)v′(n) = (1 − 2μλ)n+1v′(0) = rn+1v′(0) (8.68)

ahol v′(n) = v(n) = w(n) − wopt, hiszen skalár esetben diagonalizálásról, illetve
koordinátasík-forgatásról nem beszélhetünk. Az eljárás konvergál, ha |r| = |1−2μλ| <
1. Ebből

0 < μ <
1

λ
(8.69)
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Speciális esetek: 0 < μ < 1
2λ

túlcsillapított
μ = 1

2λ
kritikusan csillapított

1
2λ

< μ < 1
λ

alulcsillapított
(8.70)

lassan egy lépés ide-oda

μ < 1
2λ

μ = 1
2λ

1
2λ

< μ < 1
λ

8.12. ábra. A konvergencia alapesetei

Visszatérve az általános esetre (8.66), ott 0 < μ < 1
λmax

kell, hogy teljesüljön, mivel a
legmeredekebb irány szabja meg, hogy mekkorát léphetünk.

A konvergencia eddigi vizsgálatában feltételeztük R ill. a λi sajátértékek ismertét,
ami a valóságban nem teljesül, ezáltal azonban betekintést nyertünk a problémába. Az
eredmények bizonyos óvatosságra intenek μ megválasztásában, és mint látni fogjuk,
újabb ötleteket vetnek fel az eljárások finomítására.

A sajátértékek ismertének hiányában, például, felhasználhatjuk, hogy

λmax <
∑

λm = tr [Λ] = tr [R] , (8.71)

amely a mátrix nyoma (angolul: trace, innen a jelölés), azaz diagonál-elemeinek ösz-
szege, és hasonlósági transzformációval szemben invariáns paraméter (független a bázis
megválasztásától). Így R diagonál-elemeiből (azaz x elemeinek négyzetes várhatóér-
tékeiből), R teljes ismerete, és sajátérték-számítás nélkül egyszerűen adható (a szük-
ségesnél valamivel szigorúbb) korlát a lépésköz tényezőre:

0 < μ <
1

tr[R]
(8.72)

Adaptív, transzverzális szűrő esetén, amikor a regressziós vektort egy késleltetősor
állítja elő u mintáiból, akkor elegendő a bemenőjel teljesítményét becsülni, mivel:

1

tr[R]
=

1

ME{u2} ahol M a regressziós vektor hossza. (8.73)

R ismeretében x = f(u) helyett x
′

= f
′

(u) = T ·f(u) regressziós vektort állíthatná
elő a modell rögzített része, ahol T = Λ− 1

2QT . (Mint láttuk R pozitív szemidefinit
mátrix, így λm ≥ 0, és létezik a sajátértékek négyzetgyökeiből alkotott Λ

1
2 diagonál
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mátrix, amivel R
1
2 = QΛ

1
2 .) A T transzformációban QT végzi az ortogonális kompo-

nensekre bontást (avagy geometriailag a forgatást), Λ− 1
2 pedig teljesítmény-normálást

hajt végre.

R′=E
{

x
′

x
′T
}

= E
{

Tx (Tx)T
}

= E
{
TxxTTT

}
= TRTT = Λ− 1

2QTQΛQTQΛ− 1
2 = I

(8.74)
Úgy is eljárhatunk, hogy a kisebb teljesítményű komponenseket kevésbé lényeges-

nek tekintjük, és elhagyjuk. Ez a főkomponens-analízis ill. jeltömörítés lényegében a
Karhunen-Loève transzformáció.

R hiányában jóllehet, nem tudjuk a bemenetet úgy transzformálni, hogy a reg-
ressziós vektor elemei korrelálatlanok legyenek, de előnyben részesíthetjük az olyan
modelleket, ahol f(·), vagyis a rögzített rész valamilyen ortogonális transzformációt
tartalmaz, mint például a DFT.

Legyen például f(·) eredetileg egy késleltetősor, vagyis ekkor egy transzverzális
szűrő súlyait adaptáljuk. Módosítsuk f(·)-et úgy, hogy a regressziós vektoron DFT-t
végzünk minden ütemben. Az így kapott f(·) egy DFT-szűrőbank, melyet az 5. feje-
zetben bemutatott módon többféleképpen, hatékonyan megvalósíthatunk. Ekkor az új
regressziós vektor egyes elemei az u(n) bemenet különböző frekvenciasávba eső kom-
ponenseitől függnek, így közel korrelálatlanok lesznek. A fennmaradó korreláltság a
spektrumszivárgás következménye. Ezután a regressziós változók négyzetét pl. expo-
nenciálisan átlagolva, becsülni tudjuk az egyes komponensek teljesítményét, és minden
csatornán normálást végezhetünk. A normálást ugyancsak a rögzített f(·) részének te-
kintjük. Figyeljük meg ezek után, hogy f(·) e két módosításával, hogyan változik a
hibafelület, amelynek minimumát a súlyadaptációval keressük (8.13 ábra).

a) b) c)

w0

w1

w0

w1

w0

w1

8.13. ábra. Izokritérium görbék a) a DFT transzformáció nélkül b) a DFT transzfor-
máció alkalmazásával c) a teljesítmény-normálás után

8.4.4. LMS módszer

Helyettesítsük az eddigi módszereknél nehézséget okozó statisztikai paramétereket a
pillanatnyi be- és kimenetekből számított mennyiségekkel. Ezáltal a bonyolult számí-
tást, illetve az információhiányt megkerüljük. Az átlagos négyzetes hiba helyett (ε(n))
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minimalizáljuk a pillanatnyi hiba négyzetét:

ε̂(n) = [y(n) − ŷ(n)]2 = [y(n) − wT (n)x(n)]2 (8.75)

a derivált helyett pedig értelmezzük a pillanatnyi deriváltat:

∇̂(n) =
∂ε̂(n)

∂w(n)
= −2[y(n) − wT (n)x(n)]x(n) = −2e(n)x(n) = −2x(n)e(n) (8.76)

ahol e(n) = y(n) − ŷ(n) a pillanatnyi eltérés a kimenetek között. A legmeredekebb
lejtő módszeréhez hasonlóan (vö. 8.47 egyenlet):

w(n + 1) = w(n) − μ∇̂(n) = w(n) + 2μe(n)x(n) (8.77)

Ez az ún. LMS módszer. A paraméterhiba alakulása:

w(n + 1) − wopt = w (n) − wopt − μ · ∇̂
︸︷︷︸

2x(n)xT (n)[w(n)−wopt]

(8.78)

= [I − 2μx(n)xT (n)][w(n) − wopt] (8.79)

v(n + 1) = [I − 2μx(n)xT (n)]v(n) =
n∏

k=0

(I − 2μx(k)xT (k)]v(0) (8.80)

amely kapcsolatba hozható a legmeredekebb lejtő módszerére kapott képlettel, felis-
merve, hogy:

R̂ = x(n)xT (n)
︸ ︷︷ ︸

pillanatnyi becslő

(8.81)

Ha feltétételezhetjük, hogy az egymást követő x(n) regressziós vektorok korrelá-
latlanok, és R stacionárius, 8.80 várhatóértékét képezve egyszerűen adódik, hogy a
paramétervektor várhatóértéke ugyanúgy konvergál, mint a legmeredekebb lejtő (L.L.)
módszerével:

E{v(n + 1)} = (I − 2μR)n+1v(0) (8.82)

Az LMS eljárásban a pillanatnyi becslés miatt a módosítás is nagyon pontatlan
lesz, gyakorlatilag előfordul, hogy közel sem a negatív gradiens irányában mozdulunk
a hibafelületen. A pontatlan korrekciók időbeni sokassága azonban átlagolódik, és ere-
dőben az optimum felé vezet. Ehhez regressziós vektor stacionaritását kellett feltéte-
leznünk, ezért az LMS algoritmus korlátozottabb körben alkalmazható, mint az L.L.
módszer, viszont a becsült paraméter esetleges változását jobban képes követni. Ahol
a regressziós vektor és a kívánt válasz minden lépésben rendelkezésre áll, ott általában
az LMS módszer előnyösebb választás az L.L. módszerrel szemben.

A pillanatnyi derivált mentén nagyon kis lépésben szabad korrigálni. A viszonyok
modellezhetők additív zajjal:

∇̂(n) = ∇(n) + zaj (8.83)
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8.14. ábra. Paraméter adaptáció LMS módszer esetén. (A korábbi példában szerep-
lő szinuszos bemenethez negyed akkora teljesítményű fehér zajt adtunk a szimuláció
során; emiatt módosul a hibafelület)
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8.15. ábra. A pillanatnyi gradiens miatt az LMS az optimum körül bolyong.

Az optimum közelében a zaj dominál, hiszen ott ∇(n) ∼ 0, így az eljárás konver-
genciája előbb lelassul, majd le is áll, és a minimumhely környezetében bolyong (8.14
ábra). Ez azt jelenti, hogy a hiba minimális értékét nem érjük el (8.15).

Megjegyzés: Olyan esetben ez a tulajdonság előnyös is lehet, ahol a hibafelület nem
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kvadratikus, hanem lokális minimumok is léteznek, amint az a végtelen impulzusvála-
szú adaptív rendszereknél előfordul (ld. a későbbiekben). Ilyenkor a pillanatnyi gradi-
ens zajszerű viselkedése és az ebből következő bolyongás elviheti a paraméter-beállítást
a lokális minimum közeléből, és így esély nyílik a globális minimum megtalálására.

A fenti jelenségből adódó maradékhiba-többlet sztochasztikus jellegű. Az adaptáció
konvergenciája után megmaradó átlagos, négyzetes hiba, ε∞, és az elvileg elérhető
minimális érték, εmin, közötti hányadost nevezik angolul „misadjustment”-nek.

8.4.5. Kombinált módszerek

α-LMS módszer:

w(n + 1) = w(n) + α
e(n)x(n)

xT (n)x(n)
(8.84)

A paraméterhiba alakulása:

v(n + 1) =
n∏

k=0

[

I − α
x(k)xT (k)

xT (k)x(k)

]

(8.85)

Az LMS módszerhez képest μ helyét α
xT (n)x(n)

veszi át. Vagyis lépésenként nor-
máljuk a korrekciót, így elkerüljük ‖x(n)‖ ingadozásából eredő egyenlőtlen paraméter
módosításokat, és közelítőleg érvényes lesz, hogy a konvergencia 0 < α < 1 választás-
sal biztosítható. Ez utóbbi állítás az LMS módszer konvergenciájához hasonló módon,
(8.85) várható értékének felírásával látható be. A teljes bizonyításhoz, melyet itt nem
végzünk el, fel kell használni, hogy E{ 1

xT (n)x(n)
} = 1

tr(R)
< 1

λmax
Vagyis az előző sza-

kaszban kapott eredményt használjuk fel (8.72-8.73 egyenletek).

LMS-Newton módszer:

w(n + 1) = w(n) + 2μR−1e(n)x(n) (8.86)

A paraméterhiba alakulása:

v(n + 1) =
n∏

k=0

[I − 2μR−1 x(k)xT (k)
︸ ︷︷ ︸

R̂

] (8.87)

R-et ismertnek feltételezzük, de a gradiens helyett pillanatnyi gradienst haszná-
lunk. Mivel a módszer számíthatósága, és konvergencia-tulajdonsága igen jó, viszont
R ismeretét feltételezi, ezért általában megközelítendő etalonnak tekintik ezt az eljá-
rást, és ideális-paraméterbecslési eljárásként is szokás említeni.

LMS-Newton módszer, R rekurzív becslésével kombinálva:

Az eljárás nem változik:

w(n + 1) = w(n) + 2μR−1(n + 1)e(n)x(n) (8.88)
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csupán kiegészül az ismeretlen R adatokból történő rekurzív becslésével:

R(n + 1) = (1 − ν)R(n) + νx(n)xT (n) (8.89)

= R(n) + ν[x(n)xT (n) − R(n)], (8.90)

ahol ν = 0.01 . . . 0.1 Érdemes összevetni (8.89)-t az exponenciális átlagolással (4.8). (ν
megfelelő megválasztásával az ideális átlagolásnak megfelelően is lehet becsülni.)

Valójában R−1(n)-re van szükségünk, ezért közvetlenül ezt számítjuk. R−1(n) ite-
ratív számítása 8.89-nek megfelelően, a Sherman-Morrison-féle képlet alapján:

R−1(n + 1) =
1

1 − ν
R−1(n) − R−1x(n)xT (n)R−1(n)

1
1−ν

+ xT (n)R−1(n)x(n)
(8.91)

A nevezőben álló tagok skalárok. Ha R−1(0) = ε0I akkor egyszer sem kell mátrixot
invertálni, ami a végrehajtandó műveletek száma szempontjából nagyon előnyös.

8.5. Általánosabb kritériumfüggvény Taylor sorfejtése

Nem kvadratikus hibafelület esetén a Wiener-Hopf egyenlet nem adja meg az opti-
mumot, így az eddig bemutatott gradiens-alapú, iteratív algoritmusok konvergenciája
nem garantált. Az eljárásokban alkalmazott modell a valódi hibafelületet véges Taylor-
sorfejtéssel közelíti.

Legyen egy általános hibakritérium függvény:

C(y, ŷ) = C(y, ŷ(w)) = C(w) (8.92)

amely a paramétervektor iteratív állításával lépésenként változik: C(w(n)).
(Megjegyzés: Az eddigiekben a hibakritérium C(y, ŷ) = E

{
(y − ŷ)2} volt, melyet

ε jelölt; C(w) (8.21) szerint kvadratikus volt.)
Végezzünk sorfejtést w = w(n) környezetében:

C(w) ∼= C(w(n)) + gradT C(w(n))[w − w(n)] +
1

2
[w − w(n)]TH[w − w(n)] (8.93)

ahol

gradC(w(n)) =
∂C(w(n))

∂w
az első derivált, (8.94)

H =
∂gradC(w(n))

∂w
a második derivált. (8.95)

gradT =
[

∂
∂w1

, ∂
∂w2

, ...
]

. Megjegyzés: az eddigi jelölésekben ∇ = gradT C(w(n)). Li-

neáris modell esetén kvadratikus a hibafelület, így ekkor a sorfejtés pontosan három-
tagú, és megfelel 8.21 egyenletnek. Ekkor H = 2R, tehát kvadratikus felület esetén
a második derivált állandó. Ha magasabb rendű a felületet, akkor nem, vagyis min-
den lépésben más és más kvadratikus felületet illesztünk az adott pontra az első és a
második derivált alapján, és ennek minimuma felé léphetünk.
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8.5.1. Modellillesztés a Taylor-sorfejtett kritériumfüggvény
alapján

a) eset
C(w) Taylor sorának első két tagját figyelembe véve, (tehát lineáris felületet il-

lesztve,) w → w(n + 1) behelyettesítéssel keressük w(n + 1) -t, amelyre:

C(w(n + 1)) = 0 (8.96)

C(w(n)) + gradT C(w(n))[w(n + 1) − w(n)] = 0 (8.97)

Utóbbiból kapható:

w(n + 1) = w(n) − C(w(n))

gradT C(w(n))gradC(w(n))
gradC(w(n)); (8.98)

ahol a tört nevezője és számlálója is skalár.
Ez az ún. Newton-Raphson módszer.
A tapasztalatok szerint az optimumtól távol kedvezően viselkedik, az optimumhoz

„közeli” eredményessége pedig attól függ, hogy C(wopt) = 0 teljesül-e, hiszen ebből
vezettük le az eljárást.

b) eset
A másik lehetőség az, hogy a sorba fejtett C(w) minimumát deriválással keressük.

gradC(w(n + 1)) = 0 = gradC(w(n)) + H(w(n))[w(n + 1) − w(n))]; (8.99)

Ebből a Newton-módszer adódik:

w(n + 1) = w(n) − H−1(w(n))gradC(w(n)) (8.100)

Megjegyzés: A 8.44 egyenlethez képest az 1
2

szorzó a korrekciós tagból itt hiányzik,
mert a 8.93 Taylor-sorban szerepel.

A következő szakaszban bemutatott pszeudolineáris regresszió hibafelülete nem
kvadratikus, a gradiens eljárások alkalmazása ezért a Taylor-közelítésen alapulnak.

8.6. Adaptív végtelen impulzusválaszú rendszerek

Abban az esetben, ha végtelen impulzusválaszú szűrő visszacsatoló súlyait adaptál-
juk, akkor a lineáris regresszióhoz felírásában hasonló feladatot, ún. pszeudolineáris
regressziót kell megoldanunk:

ŷ(n) =
M−1∑

k=0

ak(n)u(n − k) +
N−1∑

k=1

bk(n)ŷ(n − k) = wT (n)xu,ŷ(n), (8.101)

163



8. MODELLILLESZTÉS

ahol:

wT (n) = [a0(n), a1(n), . . . , aM−1(n); b1(n), b2(n), . . . bN−1(n)], (8.102)

xT
u,ŷ(n) = [u(n), u(n−1), . . . , u(n−M+1); ŷ(n−1), ŷ(n−2), . . . , ŷ(n−N+1)]. (8.103)

Azért nem tekinthető valódi lineáris regressziónak a feladat, mivel a regressziós
vektor implicit módon függ a regressziót meghatározó paraméterektől, így nem is sta-
cionárius.

Az implicit függés által az adaptív lineáris kombinátor struktúrájához képest az
előre rögzített f(u) valójában w(n) függvénye, a bk paraméterek megváltoztatása pedig
végtelen tranzienseket indít el a szűrő kimenetén. (Emlékeztetőül: Az adaptív lineáris
kombinátor két alapvető tulajdonsága az állítható paraméterektől való lineáris függés
és a paraméterváltoztatás véges memóriájú hatása.) Az adaptív lineáris kombinátor
szerkezetével ad összehasonlítást a 8.16 ábra.

ŷ(n)

w

u(n)
w(n)

fix

8.16. ábra. Adaptív IIR szűrő: az implicit függések miatt a paraméterváltoztatás vissza-
hat az regressziós vektor fixnek tekintett előállítására.

Megjegyzés: a 8.102 szerinti regressziós vektor (egyben állapotvektor) közvetlenül
adódik a differencia-egyenletből. Ez a struktúra a szűrő egyik megvalósítása, melyet
úgy kapunk, ha kaszkádban előbb az előrecsatoló részt, majd a visszacsatoló részt való-
sítjuk meg. Ettől különböző struktúrákat most nem tekintünk. A jobb áttekinthetőség
kedvéért azonban megemlítjük, hogy a kaszkád felcserélésével (lineáris, időinvariáns
esetben ez megtehető), a két részrendszer állapotváltozói összevonhatók, és egy direkt
struktúrához jutunk.

Megjegyzés: Az IIR szűrők paraméteradaptációja stabilitási problémákat is felvet,
hiszen az adaptáció során a pólusok (átmenetileg) az egységkörön kívül kerülhetnek.
Erre a problémára a következőkben nem térünk ki.
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8.6.1. Visszavezetés FIR problémára (EE)

A következő eljárás lényege az, hogy ragaszkodunk a hiba implicit függésektől mentes
felírásához. Paramétereiben lineáris, valódi lineáris regressziót oldunk meg. Ehhez gya-
korlatilag egy FIR szűrő súlyait kell adaptálni. Az eljárás angol elnevezése: Equation
Error (EE) Formulation, vagyis „egyenlet-hiba felírás”.

Az illesztendő modell átviteli függvénye:

Ŷ (z)

U(z)
=

A(z)

1 − B(z)
=

N(z)

D(z)
(8.104)

A kimenetek eltérése: e, amelynek átlagos vagy pillanatnyi négyzetes értékét (ε̂-t)
kell minimalizálni:

e(n) = y(n) − ŷ(n); (8.105)

Ebbe helyettesítve ŷ(n) kifejezését:

e(n) = y(n) − (An(z)u(n) + Bn(z)ŷ(n − 1)) (8.106)

(A fenti egyenletben keverednek az időtartománybeli, illetve z-tartománybeli jelölések:
a z−1 itt késleltetés operátorként értelmezhető, amellyel formálisan szorozzuk a jelet
(pl. z−1y(n)).

Az implicit függés úgy küszöbölhető ki, ha ŷ(n)-t olyan mennyiséggel helyettesítjük,
amely közelíti ŷ(n)-et, de előállításában nem játszanak közre a regressziót meghatározó
paraméterek. Mivel ŷ(n) -nal y(n)-t közelítjük, és ez utóbbi nem függvénye a modell-
paramétereknek, ezért helyettesítsük ezt ŷ(n) helyébe. Ld. 8.17 ábra. Az így kapott
„egyenlet-hiba” (ee) az eredeti hiba (e) szűrt változata:

ee(n) = y(n) − (An(z)u(n) + Bn(z)y(n − 1)) = Dn(z)y(n) − Nn(z)u(n)

= Dn(z)y(n) − Dn(z)ŷ(n) = Dn(z) · e(n) (8.107)

A szűrt hiba, ee, pillanatnyi vagy átlagos négyzetes értéke az eddig tárgyalt iteratív
módszerekkel minimalizálható, és a konvergenciára az ott megfogalmazottak továbbra
is érvényesek, mivel a hibafelület kvadratikus.

A regressziós vektort lecseréltük, így valójában az alábbi FIR rendszer optimális
paraméter-beállítását számítjuk ki (ld. 8.18 ábra):

ŷ(n)FIR =
M−1∑

k=0

ak(n)u(n − k) +
N−1∑

k=1

bk(n)y(n − k) = wT (n)xuy(n) 
= wT (n)xuŷ(n)

(8.108)
ahol

xT
u,y(n) = [u(n), u(n−1), . . . , u(n−M+1); y(n−1), y(n−2), . . . , y(n−N+1)]. (8.109)

Vö. (8.103), (8.101). Mivel az eredeti hibakritériumtól eltértünk, így számolni kell
azzal, hogy közelítés esetén az optimális paraméter-beállítás torzított lesz.

A hibaminimalizáláshoz a FIR rendszert működtetjük, de a további jelfeldolgozás
számára az azonos paraméterű IIR rendszer állítja elő a kimenetet (vö. a 8.17 és 8.18
ábrákat, ŷ 
= ŷFIR).
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−1

ismeretlen rsz.
y(n)

Nn(z)

Dn(z)

1
Dn(z)

v(n)

csatorna

ee(n)

ŷ(n)

u(n)

8.17. ábra. A szűrt hiba előállítása („EE”). (v(n) a megfigyelési zaj)

−1

ismeretlen rsz.
y(n)

An(z)

Bn(z)

v(n)

csatorna

ee(n)
u(n)

ŷFIR(n)

8.18. ábra. Az „EE” adaptációban felfedezhető FIR rendszer.

8.6.2. A kimeneti hibán alapuló modellillesztések (OE)

Míg az előbbi módszer ez egyik végletet képviselte, miszerint oldjunk meg valódi li-
neáris regressziót, a kimeneti hibán alapuló módszer a másik végletnek tekinthető,
miszerint ragaszkodjunk az eredetileg értelmezett hibához (8.105 egyenlet, 8.19 ábra),
vállalva az IIR rendszer implicit paraméterfüggéseit.

A paraméter-optimalizáláshoz az eddigi gradiens alapú eljárások módosított vál-
tozatait alkalmazzuk. Az egyszerűség kedvéért tekintsük az LMS eljárást, amelyben
csak a gradiens számítása módosul az előbbiekhez képest:

w (n + 1) = w (n) − μ∇̂(n) (8.110)

A hiba ε̂(n) = [y(n) − ŷ(n)]2. A gradiens:

∇̂(n) = −2e(n)
∂ŷ(n)

∂w(n)
(8.111)
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8.19. ábra. Az eredeti pszeudolineáris feladatnak megfelelő hibaértelmezés („OE”, ua.
8.16 ábra)

amelyben az implicit függések miatt:

gradT ŷ(n) =

[
∂ŷ(n)

∂a0(n)
,

∂ŷ(n)

∂a1(n)
, . . . ,

∂ŷ(n)

∂an−1(n)
,

∂ŷ(n)

∂b1(n)
, . . . ,

∂ŷ(n)

∂bn−1(n)

]

. (8.112)

Kifejtve minden paraméterre:

∂ŷ(n)

∂ak(n)
= u(n − k) +

N−1∑

i=1

bi(n)
∂ŷ(n − i)

∂ak(n)
(8.113)

∂ŷ(n)

∂bk(n)
= ŷ(n − k) +

N−1∑

i=1

bi(n)
∂ŷ(n − i)

∂bk(n)
(8.114)

nonkauzális kifejezések adódnak, amelyek nem számíthatók szűrőszerűen, ezért a kö-
vetkező közelítésekhez folyamodunk:

∂ŷ(n − i)

∂ak(n)
≈ ∂ŷ(n − i)

∂ak(n − i)
;

∂ŷ(n − i)

∂bk(n)
≈ ∂ŷ(n − i)

∂bk(n − i)
;

amivel a gradiensvektor közelítő számítása szűrőszerűen működik (8.20 ábra). Lassan
kell változtatni az ak, bk paramétereket, hogy a fenti közelítésekkel elkövetett hiba ne
legyen túl nagy. Mivel a pillanatnyi hibából indulunk ki (LMS), ezért eleve indokolt az
óvatosság μ megválasztásánál. A gyakorlatban mindegyik bk súly adaptálásához kü-
lönböző lépésköz tényezőt alkalmaznak, és ezeket az iteráció során módosítják; (ebben
az esetben (8.110)-ben μ helyét egy időben változó diagonálmátrix veszi át).

A fenti eljárás bonyolult, hiszen idővariáns szűrést kell végezni minden egyes para-
méter szerinti derivált kiszámításához. Kétféle egyszerűsítés vethető fel:
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8. MODELLILLESZTÉS

u(n − k)
1

Dn(z)
1

Dn(z)

∂ŷ(n)
∂ak(n) ŷ(n − k)

∂ŷ(n)
∂bk(n)

8.20. ábra. Az egyes deriváltak meghatározása szűréssel

1. Elhagyjuk a konvolúciós tagot a 8.113-8.114 kifejezésekből, vagyis gradŷ(n) ≈
xuŷ közelítést alkalmazunk. Az így kapott eljárás ugyan különbözik az Equation
Error módszertől, hiszen ott y(n)-t, ŷ(n)-tel helyettesítettük, míg itt az implicit
függés marad, de formailag ugyanazt az LMS eljárást alkalmazzuk.

2. Úgy is egyszerűsíthetünk, ha az idővariáns szűrést elvégezzük ugyan a1-re ill.
b1-re, de a többit már ezekkel becsüljük. Ehhez azt használjuk föl, hogy az egyes
szűrők (8.20 ábra) bemenetei egymásnak késleltetettjei. Ezt a késleltetést he-
lyezzük át a kimenetre. Így egyetlen szűrést végzünk, és a kimenet késleltetettjei
adják meg az érzékenységeket. Ez a sorrendcsere szabadon megtehető lenne idő-
invariáns szűrés esetén, ebben az esetben azonban közelítést követtünk el. Az
egyes paraméterekhez tartozó gradiensekre nem azonos időpontbeli szűrőegyütt-
hatókkal végezzük a szűrést. (Ld. bővebben Horváth: 4.12. ábra.)
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