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1. fejezet

A mérési eljarasok koncepcionalis
alapjai

1.1. Jel és rendszer a mérési eljarasban

A mérés informdciogyijtésbol és informdcidfeldolgozdsbol all. Az informacidfeldolgozési
eljarésok targyalasahoz a jel- és rendszerelmélet eszkozei biztositanak keretet.

A megfigyelt jelenségre vonatkozo6 informaciot valamilyen jel széllitja. A jelenség
(jel) objektumok kozotti kolesonhatas kisér6je, amely kolesonhatas résztvevsi rend-
szerbe foghatok Ossze. A figyelembe vett kdlcsonhatdsok és kolesonos oOsszefiiggések
kijelolik a rendszert alkoté objektumok halmazat. A rendszer miikodésének leirasaval
a kolcsonhatasokban lejatszodd informdcio- és energiacsere mechanizmusait ragadjuk
meg.

Amikor mérést végziink, a méréeszkoz kolesénhatésba 1ép a mérends objektummal,
azaz rendszerrel van dolgunk. Rendszerint koélcsonhatasok lancolatarél van szo, ennek
megjelenitésére vezetjiik be a jeldtviteli csatorndt (avagy megfigyelési csatornat).

Mérési eljaras: valamely objektum jobb megismerése érdekében végzett informacio-
gytjtés és informéaciofeldolgozas

Jel: egy konkrét jelenség olyan jellemz§je, amely informéaciot hordoz valamely objek-
tumra vonatkozoban

Rendszer: kolcsonhatasok és kolesonos osszefiiggések altal 6sszekapcesolt objektumok
halmaza

Kolcsonhatas: objektumok kolesonos egymasra hatasa altal létrejovs energiafolya-
matok, informacidatadéssal jaro folyamatok

(Irodalom: Schnell 1. kotet, El6szo, Méréselmélet rész bevezetGje, 1.2.3 és 2.1)

1.2. A modellalkotas célja és alapfogalmai

A modell célja ismeretek reprezentdldsa. Az a priori (eleve meglévs) ismeretek Ossze-
gytijtése és rendszerezése, a modellezés munkafeltétel mind a mérés megtervezéséhez
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1. A MERESI ELJARASOK KONCEPCIONALIS ALAPJAI

(mely ponton, hogyan meérjiink, vagy hogyan gerjessziik a rendszert?), mind a megfi-
gyelések feldolgozasahoz.

A rendszerek struktiurajukkal, paramétereikkel illetve adott pillanatbeli allapota-
ikkal egytittesen irhatok le.

Egy kisérlet vizsgalatdhoz a rendszer tartos Osszefiiggéseinek ismerete biztosit ke-
retet. Ezeket az Osszefiiggéseket nevezziik a rendszer struktirdjanak. Ha a modell,
példaul, egy koncentralt paramétert halozat, akkor a strukturélis ismeretek hataroz-
zak meg a hélozat topologiajat. A topologia megadasaval azt feltételezziik, hogy az
ismeretlen rendszer ismert épitGelemekbdl felépithets, és egytttal egy adott modell-
osztalyra szikitjiik le a lehetséges rendszerek halmazéat.

Azokat az értékeket, mennyiségi viszonyokat, amelyek nem allandok, vagy nem
rogzitettek a rendszer paramétereinek hivjuk. Ilyen lehet példéul egy linearis dinami-
kus halozat allapotvaltozos leirasaban az abban szereplé méatrixok nullatél kiilonb6zé
elemei.

Azok a paraméterek, amelyek a rendszeren beliili kdlesonhatésok fliggvényében
valtoznak, és a rendszer pillanatnyi energiaviszonyait, allapotat tiikrozik, dllapotvdlto-
zoknak hivjuk. Ilyen példaul a linearis dinamikus rendszerek taroldinak a tartalma.

Modell: a rendelkezésre allo ismereteink Osszessége
Struktira: a rendszer elemei kozotti tartos Osszefliggések
Paraméter: a tartos Osszefliggések mennyiségi viszonyai

Allapot: kélesonhatasok adott idSpontra vonatkozo viszonyai

(Irodalom: Schnell 1. kétet, 1.1-1.3 fejezetek)

1.3. Modell a mérési eljarasban

A valodi rendszerrdl mar az informaciogytjtés el6tt rendelkeziink bizonyos elézetes (a
priori) ismeretekkel, amelyek kozott egyrészt szelektalunk (bizonyos részleteket elha-
nyagolunk), masrészt rendszereziink, tagolunk. Végeredményben az ismeretlen rend-
szert, ugy képzeljiik el, hogy az bizonyos ismert épitGelemekbdl felépithets. A valo-
sagot a tovabbiakban mér ,ezen az ablakon keresztiil nézziik”, vagyis a mérés célja
ezen modell strukturajanak (S), paramétereinek (a), ill. allapotanak (x) a (teljesebb)
megismerése (1.1. abra).

Amikor a méréeszkozzel megfigyeléseket gytjtiink, figyelembe kell venniink a fizikai
kozeg kiilonboz6 hatasait és az ezekbdl szarmazé pontatlansagokat. Ennek megjeleni-
tGje a modellben a megfigyelési csatorna. Mivel az Osszes kolcsonhatést nem tudjuk
figyelembe venni, ezért altalaban sztochasztikus leképzéssel irjuk le a megfigyelések
megsziiletését. Fz a leggyakrabban azt jelenti, hogy a modellben egy megfigyelési zaj
adodik hozzé az elvileg mérhetd értékekhez (additiv’ zaj).

Osszegezve tehét: a keresett mennyiséghez (pl. ) nem fériink hozza kézvetleniil,
az informaciofeldolgozasnak a szorédd megfigyelésekbdl (y(n)) kell kiindulnia, viszont
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1.3. MODELL A MERESI ELJARASBAN

Paraméterek a | Megfigyelések | Becslések/Dontések
Allapotok — x ! y a (becsiilt paraméterek)
Struktarak s i % (becstilt allapotok)

csatoirna becslési /‘;déntési
(valoszintségi) eljatas
leképkés '
. v J o v J . v J
paraméter/allapot

tér megfigyelési tér becslési/dontési tér
- B J

v~

Modell: a rendelkezésre  Inverz modell: a megfigyelésekbdl
allo ismeretek Gsszessége kovetkeztetiink az dllapotra,

paraméterre
a .<Dé (becsiilt paraméterek)
X % (becstilt allapotok)
szorodés bizonytalansag

1.1. abra. A valosagrol hirt hozo megfigyeléseket (y) az ismereteinket leir6 modell
alapjan szarmaztatjuk. A becsléshez e modell alapjan kell ,yvisszasztirni” a megfigye-
léseket, ezt jelenti az inverz modell. A bizonytalansag nem kiisz6bolhetd ki teljesen a
becslésben.

rendelkeziink egy modellel, amely kifejezi a megfigyelések keletkezésérsl alkotott isme-
reteinket. Az informaciofeldolgozas e modell alapjan kell, hogy ,visszasziirje” a meg-
figyeléseket, vagyis egy ,inverz modell” alapjan tervezheté meg. Ettdl eltéré meggon-
dolasok alapjan is javasolhato eljaras a jelfeldolgozasra, (pl. ,végezziink atlagolast a
megfigyeléseken, mert az csokkenti a szorast”), de ha az valoban jol mikodik, akkor
valahol benne szerepel az a modell, amely alapjan a megfigyelések szarmaztathatok.
A mérés és a modellezés valdjaban elvdlaszthatatlan. A modell mindig beépiil a mérési
eljdrdsba.

A megfigyelések pontatlansiaga nem kiiszobolhetd ki teljes mértékben a feldolgo-
zassal, ezért a pontos érték helyett egy sév lesz az eredmény, amelyet tobbféleképpen
jellemezhetiink. Tehat a keresett mennyiség becslGje (pl. &) mellé mindig tampontot
kell adni a becslé bizonytalansédgat illetGen is. A bizonytalansagot rendszeres és véletlen
hibak okozhatjak, amelyek koziil az utobbiak fokozatosan kiatlagolhatok a feldolgozott
mintak szamanak novelésével.

Megjegyzés: Abban az esetben, ha egy statikus jellemzét, pl. egy stacionarius va-
l6szintiségi valtozo szorasat kell becsiilni, a modellben nem jatszik szerepet az idé.
Ha azonban a modell dinamikus, akkor a modell invertédlasa elvi problémaba iitko-
zik. A modellben el6fordulo késleltetés inverze ugyanis egy ,siettetés” lenne, ami nem
megvalosithato. Igy hat az idébeni késedelmet fel kell vallalni, ami az eredmény hasz-
nalhatosagat korlatozhatja. Példaul visszacsatolt szabélyozasi korben a késedelem 180
fokos fazistolast eredményezhet, ami instabilla teheti a rendszert.

(TIrodalom: Schnell T. kotet, 1.1.5, 1.2.3, 2.1., 2.2. fejezetek)



1. A MERESI ELJARASOK KONCEPCIONALIS ALAPJAI

1.4. Modellillesztés, paraméterbecslés

Ha meérési eredményeink vannak, legtobbszor valamilyen szarmaztatott mennyiséget
szeretnénk meghatarozni: frekvencia, szinusz-amplitado, stb. De hogyan? Az ad hoc
modszerek sokszor segitenek, de cserben is hagyhatnak.

A legkézenfekvébbnek latszd modszer a legkisebb négyzetek modszere. Ez azt je-
lenti, hogy a mért értékeket egy paraméteres modellel kozelitjiik, és a paramétereket
ugy allitjuk be, hogy a modellbdl szamitott és a mért értékek kiilonbségeinek négyze-
tosszegét minimalizaljuk (legkisebb négyzetes vagy LS modszer).

Felmeriil a kérdés, hogy az LS modszer mennyire jo, és nincs-e ennél jobb eljaras?
Erre a vélasz az, hogy amennyiben ismerjiik a megfigyelés modelljét, beleértve a zaj
beépiilését a mért eredményekbe, akkor altalaban van. Ezt maximum likelihood mod-
szernek nevezik. Bizonyos specidlis esetekben az LS modszerre vezet, de nem mindig.

A maximum likelihood mdédszer lényege a kovetkezd.

1. Felirjuk a megfigyelések egyiittes stirtiségfiiggvényét. Ez tartalmazza a meghata-
rozni kivant paramétereket.

2. A fenti fiiggvényt (vagy annak logaritmuséat, ha az egyszertiibb, hiszen a logaritmus-
fiiggvény monoton) maximalizaljuk a paraméterek valtoztatéasaval. A maximali-
zélas gyakran (de nem mindig) derivalassal torténhet.

Példa
Hatéarozzuk meg a kozépérték becslgjét N fliggetlen, normélis eloszlast megfigyelésbaol.
Megoldds

Az egylittes stirtiségfiiggvény a kovetkezs:

1 @ ()

- e 2z 1.1
(V2 o "

Ennek logaritmusat célszert minimalizalni.

L(z,p) = f(z, 1) =

In Lz, 1) = —g In(27) — N In(o) — ;7 S (- ) (1.2)

i=1
Jol latszik, hogy az els6 két tag nem fiigg p-t6l, ezért a harmadik tagot kell maxi-
malizélni, vagyis minimalizalni a

Z (zi — p)? (1.3)

=1

kifejezést (tehat LS problémara jutottunk). Ennek minimuma:

= = Z —2(z —p) = (1.4)
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1.5. A JELEK CSOPORTOSITASA ES LEIRASA

N
vagyis [l = & > 2, a szamtani kozépértek.
i=1

A maximum likelihood becslének nagyon kellemes tulajdonsagai vannak:
e aszimptotikusan torzitatlan (nagy N-ekre a torzitas nulldhoz tart)

e aszimptotikusan hatéasos (leegyszertsitve nagy N-ekre a varianciaja adott isme-
reteket felhasznalva a lehet legkisebb)

e aszimptotikusan normaélis eloszlasu

e cgy fiiggvény becslGje egyenls a becsld fiiggvényével (vagyis mindegy, hogy pl. a
o paramétert, vagy a o2 paramétert becsiiljiik-e, és abbol szamitjuk a masikat)

Mikor jobb egy becslé a masiknal? Két jellemz6t szoktak megvizsgélni: a torzitast
(az a jo, ha egy becsls torzitatlan) és a varianciat vagy szorasnégyzetet (az a jo, ha
egy becslg varianciaja kicsi).

A végeredményképpen kapott becslgt hibajaval szoktak jellemezni. A felhasznélot
azonban elsGsorban nem ez érdekli, hanem az, hogy a keresett érték milyen inter-
vallumba esik nagy valoszintiséggel (hibahatar). Ez az un. konfidencia-intervallum.
Példaként kiszamitjuk a kdzépérték konfidencia-intervallumat.

A késtbbiekben latni fogjuk, hogy az atlagérték varianciaja N-ed része a mintak
variancidjanak: var{fivr,} = o?/N. Ebbél felirhat6 példaul a kovetkezs egyenlGtlenség
a (2,5%,97,5%) savra:

fvL — p
P 2gmy < EMEH ) =0.95. 1.5
(m v W) (1.5)

Ebbdl atrendezéssel felirhato a 95%-os konfidencia-allitas p-re:

. o . o
fint, — Zg?ﬁ%ﬁ < p < pmL — Z2.5%ﬁ : (1.6)

Ezt azért hivjak konfidencia-allitasnak és nem valoszintiségi allitdsnak, mert az
ismeretlen paraméterre ad meg hatarokat: itt nem a jellemzett mennyiség, hanem a
hatdrok a valoszintiségi valtozok.

1.5. A jelek csoportositasa és leirasa

Manapsag, amikor annyi minden digitalis, az els6 kérdés az, hogy idGsorral (minték so-
rozatéaval), vagy folytonos (id6)paramétert jellel van-e dolgunk (a paraméter nemcsak
id6, hanem példéul helykoordinata is lehet — mi a kovetkez§ fejtegetésekben mindig
id6t emlegetiink, de minden paraméterre igazak az allitasok). A digitalis jelfeldolgozas
egyik megkozelitése az, hogy idGsorbol indul ki, és ennek tulajdonsagait és feldolgozasi
lehetGségét vizsgélja a diszkrét idGtartomanyban.

Ebben a targyban abbol fogunk kiindulni, hogy a vizsgalt jelenségek altalaban foly-
tonos idéparamétertiek, és amikor jelfeldolgozasrol beszéliink, akkor a folytonos ideji
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1. A MERESI ELJARASOK KONCEPCIONALIS ALAPJAI

jelek altal hordozott informaciot akarjuk kinyerni. Ebben a megkdozelitésben idGsorunk
akkor van, ha ennek a folytonos idejt jelnek a mintait vizsgéljuk. A ketts ekvivalenci-
ajanak lehetGségeivel foglalkozik a mintavételezés.

A folytonos idejt jelek egy ésszerii csoportositasa lathato az 1.2. abran.

Jelek

Determinisztikus jelek Sztochasztikus jelek

/N

Periodikus jelek Nemperiodikus jelek Stacionarius jelek Nemstacionarius

/\ | /\ /\ jetek

Szinuszos  Altalanos Kvazi peri- Tranziens Ergodikus Nemergodikus
jelek periodikus odikus jelek  jelek jelek jelek
jelek

1.2. abra. A jelek csoportositasa

A felsorolt jelcsoportok lefedik a gyakorlatban eléfordulé jelek legtobbjét.

Amikor jelekrél beszéliink, akkor két dolog szokott keveredni. Egyrészt beszélhe-
tiink a valodi jelekrdl és az Gket 1étrehozo kisérletrdl, mésrészt a jeleket leird matema-
tikai modellekrél. Az alabbiakban mindkettére kisérletet tesziink, de mindig tartsuk
szem el6tt, hogy a kettd§ nem ugyanaz. A matematikai modell absztrakcié, ennek il-
leszkedését a valésdghoz mindig ellendrizni és értelmezni kell.

Ebben a targyban linearis rendszerekkel fogunk foglalkozni, ami azt jelenti, hogy
jelek Osszetevdire egyenként kiszamithato és Osszegezhetd a rendszer valasza (szuper-
pozicio). A modellek tehat a jelek additiv dsszetevdit irjak le, és elegendd az 6sszetevik
egyenkénti vizsgalata.

Az egyes jelek talan legfontosabbnak latszo tulajdonsaga az, hogy a generéld kisér-
letet azonos koriilmények kozott megismételve a kapott jel egybevago-e a kordbbival,
vagy nem. Ha egybevago, akkor determinisztikus (nem véletlenszert) jelrdl beszéliink,
vagyis a jelenség altal meghatéarozott formaja jelrsl (modellje a determinisztikus jel).
Ha ez nem igaz, akkor a jelrsl azt mondjuk, hogy véletlenszeri (modellje a sztochasz-
tikus folyamat).

1.5.1. Determinisztikus jelek

A determinisztikus jel adott formajua, és az aldbbiakban ezt a format probéljuk meg
megfelel6képpen jellemezni. Célszertinek latszik a periodikus jeleket kiilon kezelni, hi-
szen ezek gyakran el6fordulnak, és ezért sokszor van dolgunk veliik.

Periodikus jelek

Periodikus egy jel, ha adott 7}, id6vel eltolva énmagat kapjuk. Ez szépen hangzik,
de a feldolgozas szempontjabol nem elegends. A periodikus jeleket Fourier-sorba is
akarjuk fejteni. Szerencsére a gyakorlatban elfordulé jelek kell6 pontossaggal Fourier-
sorba fejthet6k — elvben vannak ugyan olyan jelek, amelyeknek nincsen Fourier-sora,
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1.5. A JELEK CSOPORTOSITASA ES LEIRASA

vagy van megszamlalhatéan végtelen pontjuk, ahol a sor nem konvergal vagy nem a
jelhez konvergél, de ezek gyakorlati jelentGsége elhanyagolhato. A tovabbiakban olyan
periodikus jelekkel fogunk foglalkozni, melyek Fourier-sora létezik, és ez véges szamu
diszkrét ponttol eltekintve elGallitja a jelet.

A legkézenfekvébb periodikus jel a szinuszjel. Ezt 3 paraméter egyértelmiien meg-
hatarozza:

x(t) = Ay cos(2m f1t + 1) (1.7)

azaz az (Aq, f1,¢1) szamharmas. Ha tudjuk azt, hogy szinuszjellel van dolgunk, a
feldolgozésban ezek meghatarozasa a fontos, hiszen ezek mar egyértelmiien definidljak
a jelet. Mivel azonban a mérésekben a mérési csatorna offszetje és driftje gyakran nem
elhanyagolhato, sokszor egy negyedik mennyiséget is figyelembe vesziink, a DC szintet,
akkor is, ha elvben tiszta szinusszal lenne dolgunk:

x(t) = Ay cos(2m fit + 1) + C (1.8)

Megemlitjiik, hogy a szinuszos jelnek létezik egy masik reprezentacidja is, amelyben a
fazishelyzetet gy vessziik figyelembe, hogy az eltolt szinuszos jelet egy-egy nulla fazisi
szinuszjel és koszinusz-jel Osszegeként allitjuk eld, és igy az A, B, C' paraméterekkel
vett linearis kombinéacioként all el a jel:

x(t) = Acos(2m fit) + Bsin(2n fit) + C (1.9)
Egymassal osszevetve a (1.8) és (1.9) kifejezéseket, kénnyen belathato, hogy A, =
VA2 + B2 és p; = arctan(B/A) + (m ha A <0), illetve A = A;cos(y¢y), és B =
— A sin(pq).
Ennek a forméanak a paraméterbecslésekben van nagy jelentGsége.
A szinuszos jel felirthato két komplex exponencialis jel Osszegeként is, az Euler-
formula felhasznalasaval:

Al COS(27Tf1t + (101) = Clej%Tflt -+ O_le—j27rf1t’ (110)

ahol C; = %eim és C_, = C; (komplex konjugalt).

A szinuszjel matematikai értelemben nem Fourier-transzformélhato. A fejezet mel-
lékletében latni fogjuk azonban, hogy a komplex exponenciélishoz a Dirac-impulzus
felhasznalaséval hozzarendelhets egy Fourier-transzformalt. Igy a (1.10) kifejezés alap-
jan:

F{Aicosrfit+ 1)} = F{Cie/* Nt 4 C_je 72"}
= Ci6(f = f1) + C10(f + f1)

Al : Al —j
= GO )+ eI f) (1)

A szinusz fontos jellemzGje az atvitt teljesitmény. Mivel szivesen kezeljiik a +o00 kozotti
teljes frekvenciatengelyt, altalaban tgy jarunk el, hogy a + f; frekvenciakhoz rendeliink
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1. A MERESI ELJARASOK KONCEPCIONALIS ALAPJAI

Py = A?/4, Py = A2/4 teljesitményt. Latni fogjuk, hogy a tébbi jel feldolgozasakor
ez a hasznos forma.

Az tn. teljesitmény-spektrum, melyet igy definidlunk, a szinusz két fontos jellem-
76jét (A1, f1) tartalmazza, a fazist azonban nem. Még a DC-nek megfelels C? is hoz-
zarendelhets az f = 0 frekvencidhoz.

Amennyiben a periodikus jel osszetett, akkor Fourier-sor formajaban irjuk fel. Mi
a komplex Fourier-sort hasznaljuk, mert igy az eredmények konnyen Gsszevetheték a
komplex Fourier-transzforméacié eredményeivel:

p(t)= > Cpe™™ Nt C = C} (1.12)

k=—o00

A C_;, = C}, feltétel azért fontos, mert ekkor lesz az dsszeg valos.
Konnyen belathato, hogy amennyiben a (1.8) szerinti jelrdl van sz6, akkor a meg-
feleltetés Ay = 2|Cy, @1 = arg(C}), C = Cy, és P, = A?/4 = |C, |
Megemlitjiik, hogy a komplex egyiitthatokat a (1.12) kifejezésben szerepls komplex
exponencialis komplex konjugaltjaval valo szorzassal és integralassal kaphatjuk meg:
T T
1 , 1 . )
C,=— [ z(t)e 2kNt qt = —/ Cy etk hitg=i2mfit qp 1.13
- [ Y (113)
0 0 hk=—o0
Ez azért van igy, mert a T' = 1/f; hosszisagu intervallumban csak ez a fliggvénypar
az, melynek szorzata integralva nem 0 (amit ugy szoktunk kifejezni, hogy a komplex
Fourier-sor bazisfiiggvényei a periddus hossziisdgi intervallumon egymasra mind orto-
gonalisak, hiszen a skaléris szorzatot az egyik fiiggvénynek a masik fiiggvény komplex
konjugéltjaval valo szorzata integraljaként definialjuk):

T
1 j j lhak=n
_ j2rkfit —j2mnfit _
T / ¢ dt { 0 egyébkent. (1.14)

0

A szinuszjelhez hasonléan az Osszetett periodikus jelekhez is hozzarendelheté Fourier-
transzformalt.

]—"{ i Ckeﬂ”’“flf} = i Ced(f — kf1) (1.15)

k=—00

Nem periodikus jelek

Azok a jelek, melyek nem periodikusak, sokfélék lehetnek. Mi két {6 csoportjukkal
foglalkozunk, a majdnem periodikus és a tranziens jelekkel.

Majdnem periodikus jelek

Majdnem periodikusnak neveziink egy jelet akkor, ha periodikus komponensei van-
nak, de ezek Osszege nem periodikus. A gyakorlatban ez példaul akkor fordul els, ha
két szinkronizalatlan periodikus jelgeneréator jelét Gsszeadjuk vagy Gsszeszorozzuk. Igy
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kezelhetjiik azt a szituédciot is, amikor két szinuszos jelosszetevs szinkronizalt ugyan,
de frekvenciaaranyuk nem fejezhets ki két elég kicsi egész szam hényadosaként. A jel
szigoru értelemben periodikus ugyan, de a peridédushossz nagyon nagy.

Matematikai modellként olyan szinuszos Osszetevék véges vagy végtelen Osszegét
hasznaljuk, melyeknek nincs kozos alapharmonikusa vagy ennek 1étezését nem vessziik
figyelembe.

x(t) = Z Cre?™ vt C = Ch, fr = — [ (1.16)

k=—0o0

A majdnem periodikus jelhez is hozzarendelheté Fourier-transzformalt:

f‘{ i Ckej%-fkt} = i Ck5<f — fk) (117)

k=—oc0 k=—0o0

Tranziens jelek
Ha egy determinisztikus jelnek nincsen periodikus Gsszetevije, akkor altalaban feltéte-
lezhetjiik, hogy a jel el6bb-utobb nullava valik.! Ezeket hivjuk tranziens jeleknek. Az
weltinést” matematikailag ugy értelmezziik, hogy ezek a jelek abszolut integrélhatok,
ami egyben azt is jelenti, hogy létezik a Fourier-transzformaltjuk.

A tranziens jelekre értelmezziik Fourier-transzformaltjukat, az in. amplitudo-spekt-
rumot:

F{z(t)} = / z(t)e At = X (f). (1.18)
Amennyiben a tranziens jel négyzetesen is integralhaté (ez nem mindig igaz, de a

gyakorlatban szinte mindig), akkor értelmezhetjiik az un. tranziens korrelaciot:

o0

Ru(r) = /x(t)x(t+r) at (1.19)
Ez a jel szerkezetére nézve ad bizonyos informéaciot. Eszrevehetiink egy nagyon ér-
dekes Osszefiiggést. Ry (7) nem més, mint a jelnek és tiikorképének a konvolucioja.

Ezért Fourier-transzforméltja nem mas, mint az amplitadé-spektrumnak és komplex
konjugaltjanak a szorzata:

FA{Ru(r)} = Fla(-t)x2(t)} = X(HX(f) = |X(H)P (1.20)

Ezt a mennyiséget energia-stirtiségfiiggvénynek is hivjak, és E(f)-fel jelolik. Ennek
az az oka, hogy F(fo)df megadja az f, koriili df savban szallitott energia mennyiségét.

'Ez nem teljesen igaz, hiszen a modulalt jelek példaul nem feltétleniil tartoznak egyik fenti katego-
ridba sem, mégsem tlinnek el, de az azért igaz, hogy a jelek egy fontos csoportja idében elébb-utoébb
nullava valik.
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x(t) y) 2 | o1 hal P
01N O 7 JOdt
(T-= oo}
a)
% 1 é(fo)
2 t W
X ﬂjﬂ 4o |z | fOat IS
7
(T o) (Af—0)
b)
t (t) O P 1] Sto)
-X(—)—"I[] ! (7 TJ0dt 55T
(T-= ) (af=—0)
c)
x(t) )
TN NETAN 9 Re{8., )}
TS 287 [ 50 !
y(t) y't) (T-= o) (Af=—0)
—— 6
d)

1.3. abra. Energetikai spektrumok mérése a) a savteljesitmény mérése b) az

energia-stirtiségfiiggvény mérése c¢) a teljesitmény-siiriségfiiggvény mérése d) a
keresztteljesitmény-strtségfiiggvény mérése
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Ezt kénnyt belatni, ha megvizsgaljuk az ebben a savban (és — fj koriili tiikorképében)
mkods savszirst (1.3b abra).

A savsziiré kimenetének energidja valoban a kévetkezd (felhasznalva a Parseval-
tételt):

o0

E = /y2 t)dt = /yY P df (1.21)

- / IX(NHIFAf = X (f)lPdf + X (=fo)df (1.22)

= (fo)df + E(—fo)df (1.23)

Az energia-striiségfliiggvény nemnegativ, amint az definiciéjabol kovetkezik, és értel-
mezése is sugallja.

1.5.2. Sztochasztikus jelek

Itt egy filozofiai jellegli megjegyzést kell el6re bocsatanunk. Szamunkra a véletlen két
dolgot jelenthet. Egyrészt a kisérletek megismétlésekor eléfordulo ,lathatod ok nélkiili”
ingadozasokat, masrészt a megfelel§ determinisztikus ismeretek hianyabol vagy elha-
nyagolasabol szarmazo bizonytalansagot jelenti. Szamunkra az ok azonban mindegy:
a fontos az, hogy a koriilmények nem definialjak egyértelmtien a kisérlet eredményét.

A sztochasztikus jelek matematikai modellje a sztochasztikus folyamat. Ez a valo-
szintiségi valtozo természetes altalanositasaként foghato fel a legegyszertibben: az elemi
események itt fiiggvények, vagyis minden bekovetkezés egy-egy fiiggvény. Ezeket min-
tafiigguénynek hivjuk. Egy mérés, latszolag a véletlentdl fiigg&en, kiilonféle megfigyelt
fliggvényeket eredményezhet, ezeket az eseteket egy-egy elemi eseménynek tekintjiik,
melyek halmazaihoz valamekkora valoszintiséget rendelhetiink hozza (1d. 1.4 &bra).

A sztochasztikus folyamatot a bekdvetkezhet események halmazan értelmezett va-
l6szintiségi mérték definidlja, mely minden mérheté halmazra megmondja, mennyi a
halmaznak mint eseménynek a bekivetkezési valoszintisége. Igy minden olyan esemény,
amelyhez ilyen halmazt lehet rendelni, valoszintséggel rendelkezik: példaul a [—2, 3]
intervallumon a +1 értéket meg nem haladé fiiggvények halmazénak megadhatd a
bekovetkezési valoszintisége. Az események, és igy a halmazdefiniciok bonyolultak le-
hetnek, a sztochasztikus folyamat mint absztrakt fogalom vonzé, de kezelhetetlennek
latszik. Szerencse, hogy az informaciéfeldolgozés szempontjabol nem maguk az egyes
fliggvények, hanem a folyamat mintafiiggvényeinek Osszességét jellemz6 paraméterek
az érdekesek. Ezért az a priori ismeretek (v. feltételezések), és a konkrét megfigyelé-
sek alapjan a folyamat statisztikai eloszlasair6l kell becsléseket tenni. Ez konnyit a
helyzeten, de sajnos nem eleget.

Ezen nehézségek miatt van nagy jelentGsége az tn. Kolmogorov-féle alaptételnek.
Kolmogorov bebizonyitotta, hogy a fenti definici6 ekvivalens a kivetkezével. A fliggvé-
nyek t idépillanatban felvett értéke legyen z(t). Ez t paraméterd valoszintiségi valtozo,
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1.4. abra. A sztochasztikus folyamat, mint mintafiiggvény-sokasag

hiszen értékét a konkrét bekovetkezés adja meg. Adjuk meg az Osszes x(t) valoszintiségi
valtozo eloszlasat, azutén az Osszes x(ty), z(t2) valoszintségi valtozod par eloszlasat, és
igy tovabb, tgy, hogy az eloszldsok mind kompatibilisek legyenek, vagyis az alacso-
nyabb rendszami eloszlasok a magasabb rendszamuak peremeloszlasai legyenek. A
tétel szerint ez a megadés, és a fenti megadas ekvivalens, vagyis a sztochasztikus fo-
lyamat felfoghaté tgy is, mint egy valosziniiségi valtozd-sorozat, melyet eloszlasaik
egyértelmien definidlnak. Elegends tehat paraméterfiiggs eloszlas-seregben gondol-
kodnunk. Ezek segitségével azutan kiilonb6z6 momentumokat definialhatunk, melyek
mar ésszerd eszkozokkel vizsgalhatok.

Sztochasztikus folyamatoknal a leggyakrabban vizsgalt, sokszor id6fliggé momen-
tumok a kdvetkezsk:

e varhato érték:

pa(t) = E{(t)}

e atlagos négyzetes érték és variancia:
E(t) = E{a?()}, var{z(t)} = 03(t) = V(1) — (1)

e autokorrelacios fiiggvény és autokovariancia-fiiggvény (7 = 0 esetén ezek a fenti
két mennyiséget adjak):
Ry(t,7) = B{a(t)z(t + 1)}, Ca(t,7) = Ra(t, ) — pi3(t)

Stacionarius folyamatok

Az ,0sszes” sztochasztikus folyamat igy még mindig kezelhetetleniil altalanos. Nagy
jelentGsége van viszont azoknak a folyamatoknak, melyek tulajdonsagai az id§ el6re
haladtaval nem valtoznak, hiszen a valésagban is van szép szamu id6ben allandé sta-
tisztikai tulajdonsagu jelenség, melynek modellje lehet az ilyen folyamat. Ezeket a
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folyamatokat (erésen) stacionarius sztochasztikus folyamatoknak hivjuk. Ilyenkor a
felvett valtozok egylittes eloszlasa idGeltolasra nézve invaridns, vagyis az eloszléasok
alakjat csak a valtozok egymaéashoz viszonyitott helyzete szabja meg.

Ez az ismeret nagyban segitheti a mérést, és a mérések alapjan a folyamatrol
alkotott kép kialakitasat. Matematikailag:

le,xg,...x]\] (217 22, ...ZN, t17 t27 tN)
= Fx1,x2,...x1\r(zla 22, .--ZN, t —|— tl,t —|— tg, .t + tN) (124)

a ty,tg, ...ty idépontok tetszéleges megvalasztasa esetén, t-t6l fliggetleniil.

Sajnos eloszlasokat mérni eléggé koriilményes, kiilondsen, ha arénylag nagy pon-
tossagot koveteliink meg. Ezért az el6irt tulajdonsdgokat nemigen lehet ellendrizni.
Redukaljuk tehat az igényeinket a mérhetd mennyiségekre. Ezek a momentumok, a
E{zM} alaku, illetve B{][Y, 2% ()} alakt mennyiségek. Ezek mar ellendrizhetdk is
lehetnek, kiilonosen, ha M < 2. Amennyiben legalabb az els6- és masodrendd momen-
tumok idGinvariansak, a folyamatot gyengén stacionariusnak nevezziik.

A legalabb gyengén stacionérius sztochasztikus folyamatoknal a fenti momentu-
mok idéinvaridnsak (a kovetkezd felsoroldas redundéns, hiszen példaul U2 = R(0),
0% =02 — 12 és var{z} = 0?(t), de a legfontosabb mennyiségeket fel szerettiik volna
tiintetni):

p(t) = p
V() = 2
var{z(t)} = var{z}
o*(t) = o
R(t,7) = R(7)
c(t,r) = C(1) (1.25)

Amennyiben az autokorrelacios fliggvény idinvarians, definidlhatjuk Fourier-transz-
formaltjat:

o0

F{R(1)} = / R(1)e ™7 dr = S(f). (1.26)

—00

Figyeljiik meg, hogy a mintafiiggvények Fourier-transzformélaséval nem kisérleteztiink
(ez altalaban a szokasos értelemben nem is létezik), ehelyett az autokorrelacios fiigg-
vény Fourier-transzformaéltjat vizsgaljuk. A mérési eljarasoknal lesz szé majd arrol,
hogy a véges hossztusagon mért mintafiiggvények azok, amelyek kozvetlen Fourier-
transzformacioval feldolgozhatok, és felhasznalasi lehetGségeiket is megvizsgaljuk.

Az S(f) figgvényt teljesitmény-stirtiségfiiggvénynek is hivjak, mert S(fy)df meg-
adja az fy korili df savban szallitott teljesitmény mennyiségét. Ezt ismét konnytd
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belatni, ha bevezetjiik erre a savra (és — fj koriili tiikorképére) a H(f) savsziirst (1.3c.
abra).

A sévsziir6 kimenetének teljesitménye valoban a kovetkezd, felhasznalva a ,Hiradas-
technika™bol tanult Sy, (f) = See(f)|H(f)|? sszefiiggest:

o0

o= W= Ry(0) = [ S0 (1.27)
= [ suH(E A (1.28)
~ tsm(fo)dﬁsm(—fo)df (1.29)

A (1.26) Osszefiiggést, tudniillik azt, hogy az autokorrelacios fliggvény Fourier-transz-
formaltja nem méas, mint a teljesitmény-stirtségfiiggvény, Wiener-Hincsin Osszefliggés-
nek hivjak.

A teljesitmény-siirtségfiiggvény nemnegativ, amint az a fenti levezetésbdl kdvetke-
zik (a mért teljesitmény nem lehet negativ). Ez a tulajdonsag természetesen valamilyen
formaban meg kell, hogy jelenjen inverz Fourier-transzforméltjaban, az autokorrelacios
fiiggvényben is. S(f) nemnegativitasa ekvivalens azzal, hogy az autokorrelacios fiigg-
vénynek pozitiv szemidefinitnek kell lennie (ha ez nem teljesiil egy adott fiiggvényre,
akkor ez a fiiggvény nem lehet autokorrelacios fiiggvény). Ez azt jelenti, hogy a min-
taibol képzett korrelécids matrix pozitiv szemidefinit:

RO) R(h) R(t) Rity 1)
R(.tl) R(.O) R(:tl) | R(t].v_g) L
R(tx) ... ... R(t) R(0)

Hasonl6 a helyzet az autokovariancia-fiiggvénnyel, és ennek Fourier-transzformaltjaval,
a kovariancia-teljesitmény-siriségfiigguénnyel is, ami nem meglepd, hiszen a két eset
kozott mindossze a kovariancia esetén nulléra transzformélt kozépérték a kiilonbség.

Megemlitjiik, hogy lehetséges két sztochasztikus folyamat egyiittes jellemzése is
(hogy Osszefiiggéstiket is vizsgalni tudjuk, példaul a rendszerek be- és kimenete ko-
zOtti Osszefiiggést). Ehhez definialjuk a keresztkorrelacios fiiggvényt (most mar csak a
stacionérius esetben):

Ryy(7) = E{a(t)y(t +7)} (1.31)

A keresztkorrelacios fiiggvény leirja a két jel k6zotti Osszefiiggést. Definidlhaté Fourier-
transzformaéltja, az Gn. kereszt-teljesitmény-stirtiségfiiggvény is:

Sy (f) = F{Ruy ()} = / Roy(r)e 27 dr (1.32)
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Amennyiben egy linearis rendszer be- és kimenete x(t) ill. y(t), akkor igazak a kovet-
kezG Osszefiiggések:

Suy(f) = Sea(f)H(f) (1.33)
Sye(f) = Suy(f) (1.34)
Sy(f) = Se(HIH()I? (1.35)
R,y (1) = Ryu(7)*h(t) (1.36)
Ry (T) = Ryu(7) % h(—t) (1.37)
Ry.(T) = Ryy(—7) (1.38)
Ryy(17) = Ruu(T) % h(t) * h(—t) (1.39)

A korrelacios fiiggvény és a teljesitmény-stirtiségfiiggvény értelmezése

Az eddigiekben lattuk, hogy a két fiiggvény egyenérték, hiszen Fourier-transzformélt
parok. Azt mondhatjuk, hogy a sztochasztikus folyamat szerkezetérdsl adnak felvi-
lagositast: az utoébbi megmondja, milyen frekvencia kornyékén mekkora a hordozott
teljesitmény. Implicit modon ezt teszi az azonos informacio-tartalmia autokorrelacios
fiiggvény is, de kevéshé koncentralt modon: a szinuszos Gsszetevd azonos frekvenciaju
koszinuszfliggvényként jelenik meg, az ismétlsds jelformak (csucsok) jobban észreve-
het6 ismétldds csticsokként mutatkoznak.

A korrelacios fliggvény kozvetlen fizikai jelentése tgy fogalmazhaté meg, hogy lo-
kalis maximumai arra utalnak: a jelben ismétl6dé komponensek vannak. Kiilondsen
fontos ez a keresztkorrelacié esetén: a keresztkorrelacioban megjelend cstucsok helye és
nagysaga a két folyamat kozotti jelterjedési utak késleltetéseit és fontossdgat mutatjak.

A stacionaritas ellendOrzése

Lattuk, hogy a stacionarités kellemes dolog. Felmeriil azonban a kérdés: egyaltalan
hogyan ellenérizhetd a momentumok idd&invarianciaja? Hiszen ehhez végtelen, vagy
legalabbis nagyon sok realizaciot kellene mérniink és atlagolnunk. Erre gyakran nincsen
lehetGséglink sem, példaul egy mitihold zajos jelét csak egyszer tudjuk megfigyelni.

Ilyenkor fizikai megfontolasok segithetnek. Ha nincs olyan idében valtozo kompo-
nens vagy jelenség, mely a jel jellemzsit id6ben befolyasolja, akkor feltételezhetjiik,
hogy a stacionérius folyamat j6 modell.

Ezzel egyiitt bajban vagyunk, ha a csak egyszer megfigyelhetd jeleket is jellemezni
szeretnénk. Ebben segit az tgynevezett ergodikus hipotézis.

Ergodikus folyamatok

Amennyiben egyetlen realizécio6 all csak rendelkezésiinkre, akkor ésszertinek latszik az a
gondolat, hogy ennek vizsgaljuk meg id6 szerinti atlagait. Mikor lesznek ezek azonosak
a sokasag szerinti atlagokkal?
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Nyilvanvaloan sziikséges feltétel, hogy a folyamat stacionérius legyen. Az ergo-
dicitas azt jelenti, hogy a kovetkezd teljesiil: pl. az els6 két momentumra (gyenge
ergodicitas):

B{z(t)} — g — lim
E{z*(t)} = V2= lim

E{z(t)z(t+7)} — R(r)= lim % / 2Bt + ) dt (1.40)

Az integralas a (0,7) intervallum helyett a (-T/2,T/2) intervallumra is ugyanugy
felirhato.

Szemléletesen annyit mondhatunk, hogy amennyiben x(t) és z(t +ty) valoszintiségi
valtozok ty novelésével egyre fiiggetlenebbé valnak, akkor a mért fiiggvényt megfelelGen
hosszi szeletekre vagva a kapott fliggvénydarabok tgy viselkednek, mintha kiilonb6z6
realizaciokbol szarmaznanak, és ilyenkor az ezek f6l6tt mint sokasag folott végzett atla-
golas ekvivalens a ténylegesen a realizaciok folotti atlagolassal. Ez az allitas kozvetleniil
nemigen ellendrizhetd, de fizikai megfontolasokkal alatamaszthato.

Szemléletesen azt mondhatjuk, hogy az ergodicitas akkor nem teljesiil, ha az egyes
realizaciok valamilyen atlagértékiikben kiilonboznek egyméstol. Mas szoval, a létrehozo
jelenségben van valamilyen memoria, mely realizicionként bedll, és a realizacié soran
megmarad. Ha nincs okunk ilyen memoria létezését feltételezni, akkor az ergodikus
hipotézis altalaban teljestil.

Egyszeri példa memoriaval rendelkezé jelenségekre a kozonséges flip-flop kimeneté-
nek viselkedése a tapfesziiltség bekapcsolasa utan. Ez altalaban véletlenszertien beall,
és ezutan ugy is marad. A kimenet modellje tehat stacionarius, de nem ergodikus szto-
chasztikus folyamat, melynek realizacioi a két konstans fliggvény. Az id§ szerinti atlag
az egyik konstans, mig a sokasag szerinti atlag a két konstans kozotti érték.

Bebizonyithato, hogy ha

T
" il _
jlgrgof/< —?) R(r)dr =0, (1.41)
T

akkor a folyamat az els6 momentumra nézve ergodikus. Ez kicsivel enyhébb feltétel,
mint a fent megfogalmazott ,,x(t) és x(t+ty) valoszintségi valtozok ty névelésével egyre
fiiggetlenebbé véalnak” feltétel, hiszen ha R(7) periodikus 0 atlagértékkel (periodikus
realizécioju sztochasztikus folyamat, lasd lejjebb), akkor az ergodicitas a fiiggetlenné
valas hidnya ellenére is teljesiil, de ez inkabb kivétel. A fiiggetlenné valas (C(1) —
0) mindenesetre elégséges feltétel. Sajnos egyetlen realizacio ismeretében ismét egyik
feltétel sem ellendrizhetd...
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Periodikus realizaci6ju folyamatok

Specialis, de gyakorlatilag fontos folyamatok a periodikus realizdicioji folyamatok. Ez
azt jelenti, hogy a realizalt mintafiiggvények a determinisztikus értelemben periodi-
kusak. Legfontosabb osztalyuk a véletlen iddzitéstd folyamatok osztélya: ezek minta-
fiiggvényei megfelels idGeltolas utan egymassal egybevagok. A periodikus realizacioj,
véletlen id6zitést folyamat egy periodikus jelnek véletlenszertien kivalasztott idGpil-
lanatban megkezdett regisztraciojat modellezi. Matematikailag, ha a mért determi-
nisztikus jel x4(t), akkor a sztochasztikus folyamat mintafiiggvényei a {zq(t + T)}
fliggvények. Itt T valdszintiségi valtozo.

Ez a folyamat felfoghatd tgy is, mint a T valoszintségi valtozd leképezése az
zq(t + T) figgvénnyel. A T valoszintségi valtozo eloszlasanak ismeretében tehat a
sztochasztikus folyamat minden tulajdonsdga meghatarozhato.

Amennyiben xq4(t) periodusideje T, és T egyenletes eloszlast a [to, to + T} inter-
eséllyel elsfordul, és ezért az id6pontok mindegyike azonos szerepet jatszik, a folyamat
stacionarius, s6t, ergodikus is.

Véletlen fazisi szinuszjel
A véletlen id6zitést sztochasztikus folyamat egyik legegyszertibb esete a véletlen fazisu
szinuszjel. Ezt igy irhatjuk le:

x(t) = Ay cos(2r f1(t + 1)) (1.42)
Amennyiben T egyenletes eloszlasu valamely ¢y + (0,1/f1) intervallumon, vagy maés
olyan intervallumon, melynek hossza a periddusidé egész szamu tobbszorose, akkor ez
a folyamat stacionarius és ergodikus is. Sztikebb értelemben ezt a folyamatot nevezik
véletlen fazisu szinusznak. Amennyiben az intervallum hossza mas, akkor a folyamat
nem stacionarius, és igy nem is ergodikus.
A véletlen fazisu szinusz autokorrelacios fiiggvénye a stacionaritas miatt:

R(t) = E{z(t)z(t+ 1)}
E{A;cos(2rf1(t + T))A;cos2rf1(t + T + 7))}

2 2 2t + 2T
B E{A%COS( 7Tf17')+cos(27rf1( t+ +T))}

= A?% cos(2m f17) (1.43)

A fazis tehat a varhato érték képzése miatt kiesik; az eredmény O-ra szimmetrikus
periodikus fliggvény. Ennek Fourier-transzformaltja két szimmetrikusan elhelyezkedd
Dirac-impulzus:

S() = F LR} = 27 - 1)+ Asr + 1) (L4

Talan furcsan hangzik, de a determinisztikus szinuszjelet is fel lehet dolgozni az er-
godikus jelekre vonatkozo kifejezések felhasznélasaval, hiszen felfoghaté tgy, mint egy
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véletlen fazisu szinuszjel egyetlen realizacidja. Mi tobb, a varhato érték, a korrelacio, a
spektrum mind értelmezhetdk, és a véletlen fazisu szinuszjel ergodicitasa miatt megfe-
lels eredmény kaphat6. Ugyanakkor az igy elvégzett kiértékelés nem képes visszaadni
a fix fazis értékét — ezt kiillon modszerekkel hatarozhatjuk meg.

Altalanos periodikus realizacioju, a periodusidé szélességében egyenletes eloszlast
értékkel idézitett fiiggvény esetén az autokorrelacios fiiggvény és a spektralis strd-
ségfiiggveny (1.43) és (1.44) altalanositasai. Ha zq(t) a (1.15) kifejezésnek megfeleld,
akkor

R(7) A2+Z—c0s 2k fi7) = |Co|? + Z l cos(27rl<:f17') (1.45)
T
és
S = A+ (AT (7 = kA + S50 + k1))
k=1
_ |Ck
= |Col*a(f Z o(f —kfr). (1.46)
frore

Normalis eloszlasa folyamatok (Gauss-folyamatok)

A normalis eloszlasu folyamatok azok, melyek tetszéleges paramétert valtozocsoport-
janak (z(t1),z(t2),...x(ty)) egyiittes eloszlasa tobbdimenzios normaélis eloszlas:

Te—1
) = ke (1.47)
NN

ahol X a valoszintiségi valtozok kovariancia-matrixa. Nem elegendd tehat az, hogy
egyetlen valtozo eloszlasa normélis legyen. Hozza kell tenniink, hogy ez a precizség
inkabb elméleti jelentGségli — a gyakorlatban eléforduld, normélis mintaeloszlasu fo-
lyamatok altalaban normalis eloszlast folyamatok. Ennek az az oka, hogy a kézponti
hatareloszlas-tétel kimondhaté sztochasztikus folyamatokra is: a sok, egyenként kis
silyt, tobbé-kevésbé fliggetlen hatas 0sszegeként elGallo folyamatok kozelitsleg Gauss-
folyamatok.

A Gauss-folyamatok specialitdsa, hogy mivel az eloszlasokban csak a varhato ér-
tékek és a kovariancia-méatrix szerepelnek, a folyamat teljes statisztikai jellemzéséhez
elegendd megmérni a varhato értéket és a kovariancia-fiiggvényt (vagy az autokorrela-
cios fliggvényt).

A fehér zaj

A jelfeldolgozasban sokszor megvizsgaljuk az eljarasokat a savkorlatozott fehér zaj
esetére. Ezért errdl is kell ejteniink néhany szot.
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1A. MELLEKLET: A DIRAC-IMPULZUS

A zaj fehérsége azt jelenti, hogy teljesitmény-siirtiségfiiggvénye konstans. A teljes
frekvencia-tartomanyban konstans spektrumu, normalis eloszlasi folyamatot fehérzaj-
folyamatnak, vagy Wiener-folyamatnak (vagy Brown-mozgasnak) hivjak. Ez a folya-
mat absztrakcié eredménye, és a jelfeldolgozasban kozvetleniil nem hasznalhat6. Ennek
az az oka, hogy a végtelen széles spektrum alatti teriilet végtelen, ezért a fehér zaj va-
riancidja végtelen.

A fehér zajjal gerjesztett rendszer kimenetének azonban altalaban véges a savszé-
lessége (illetve az atviteli fliggvénye f novelésével eltiinik), és igy véges a varianciaja
is. Amikor egy rendszer kimenetét vizsgaljuk, akkor nem is kiilonosebben érdekes,
hogy a bemenet végtelen savszélességt, vagy csak a rendszer savszélességéhez képest
nagy a savszélessége: az eredmény ugyanaz. Akkor tehéat, amikor fehér zaj gerjesztés-
r6l beszéliink, akkor egyszertien a vizsgalt rendszer teljes atviteli savjaban egyenletes
gerjesztésre gondolunk.

Hasznos, és jol kezelheté modell viszont a savkorlatozott fehér zaj. Ennek a (£B)
savban konstans a teljesitmény-stiriségfiiggvénye. A varianciat o2-tel jelélve a spekt-
rum magasséga o2 /(2B). Varhato értéke alapértelmezésben nulla, eloszlasat altalaban
normélisnak tekintjiik.

Megkiilonboztetjiik téle az tn. szines zajt: a szinesség egyszertien azt jelenti, hogy
a spektrum értéke a frekvencia fiiggvényében nem konstans.

la. Melléklet: A Dirac-impulzus

A fejtegetésekben tobbszor eldkeriilt a Dirac-impulzus. Mivel ez szigoru értelemben
nem fliggvény, néhény dolgot célszert ezzel kapcsolatban régziteni: milyen értelemben
hasznaljuk, mit jelent, és mit tehetiink vele?

A deltafiiggvényt matematikai precizitassal a disztribuciéelmélet targyalja. Amikor
a Dirac-impulzusrol beszéliink, akkor matematikailag egy olyan tn. disztribiiciorol van
sz0, mely a kovetkezd tulajdonsagu: folytonos g(z) fiiggvény esetén

/ g(x)o(x — xq) dx = g(xq), (1.48)
és emiatt
/ d(x)dx =1. (1.49)

Amig a Dirac-impulzus egy integraljel alatt szerepel, addig a fenti tulajdonsidgok isme-
rete elegendd. Igy van ez akkor is, amikor példaul az inverz Fourier-transzformaltban
Dirac-impulzus szerepel:

/5(f — f)ed? It df = es2mht (1.50)
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Mivel a Fourier-transzformacioé altalaban egy-egy értelmd, ennek inverze, vagyis a
komplex exponencialis fliggvény Fourier-transzformaltja egy Dirac-impulzus kell, hogy
legyen:

F{e Y =5(f = fr). (1.51)
Hasonl6 a helyzet a konvoltuciéval:
/ g(u)d(z —u)du = g(x). (1.52)

Ha a mennyiségeket dimenziokkal kezeljiik, ahogyan a mérnoki szamitéasokban szoktuk,
akkor az (1.49) kifejezésnek megfelelGen §( f) id6dimenzioju kell, hogy legyen (mérték-
egysége s = 1/Hz), illetve precizebben a §(f/ fy) fiiggvényt lenne szabad csak felirnunk,
hiszen a matematikai fliggvények (pl. sin,cos) argumentuma altaldban dimenziotlan.
Az igy felirt fliggvényre nézve igaz az, hogy

e}

T ot/ =1,
] str/mar=r. (1.53)

A rendszerelméletben gyakran hasznaljuk az egységnyi Dirac-impulzust: 6(¢). Ez mege-
gyezéses jelolés, és gy értendd, hogy ennek az impulzusnak az id§ szerinti integralja 1:

o

/ S(t)dt =1. (1.54)

—00

Mérnoki szemponthol a Dirac-impulzust tgy képzelhetjiik el, mint egy ,nagyon kes-
keny” és ,nagyon magas” impulzust, melynek intenzitasa (integralja) éppen 1, és az
integraljel alatt a fenti moédon viselkedik.

1b. Melléklet: Valo6szintiiségi valtozok masodik momen-
tuma

Valoszintiségi valtozok esetén a konstanstol vald atlagos négyzetes eltérés egyszert
alakban kifejezhets. (Megjegyzés: ez a mechanikabol ismert Steiner-tétel megfelelGje:
a tehetetlenségi nyomaték kiszamithato két taghol: 6ssze kell adni a stlypontra szami-
tott tehetetlenségi nyomatékot, és a sulypont és az adott pont tavolsdga négyzetének
tomeggel vett szorzatat.)

Jeloljiik a konstans értéket k-val. Az ettdl vett atlagos négyzetes érték a kivetke-
z6képpen fejezhets ki:
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1C. MELLEKLET: KOMPLEX NORMALIS VALOSZINUSEGI VALTOZOK

E{(¢ -k} = E{(—p+n—Fk?}
= B{¢—p)?+p—k>*+2&—p)(u—Fk}
= o2+ (u—k)?, (1.55)

hiszen (£ — p) varhato értéke 0. Ebbdl azonnal kévetkezik, hogy

e az adott konstanstol valo atlagos négyzetes értéket a szorasnégyzet és a kons-
tansnak a varhato értéktsl valo eltérése négyzetének az Gsszege adja,

e az eltérés négyzetes értéke a varhatod értékre vonatkozoan a legkisebb.

Hasonl6an mutathaté meg az R(7) = C(7) + p? Osszefiiggés is.

1c. Melléklet: Komplex normalis val6szintiségi valtozok

A valészintiségi valtozok specidlis csoportjat alkotjak a komplex értékd valoszintiségi
valtozok. Ezekrdl a valoszintiség-szamitasi alapkonyvek csak futolag emlékeznek meg,
nekiink azonban tobbszor is sziikségiink lesz rajuk.

A komplex értéki valoszintiségi valtozokat tgy kezeljiik, mint a kételemid valoszi-
niiségi vektorvaltozokat, vagyis a kétvaltozos eloszléas- és stirtiségfiiggvényekkel, illetve
az egyvaltozos és vegyes momentumokkal. Komplex értéki valtozok esetén azonban be
tudunk vezetni egy kis egyszertsitést.

Legyen z, és x; két valos valoszintiségi valtozo, és x = x, + jx; legyen egy beldliik
képzett komplex értékid valoszintiségi valtozo. A két valtozo egylittes eloszlasa definialja
a valoszintiségi mez6t. Gauss-esetben az ezekhez sziikséges paraméterek:

weed]p -] o

2oef | Sl e b ] o

Az eloszlas stirtiségfiiggvénye haranggorbe-alakii. Szintvonalai haromfélék lehetnek:

e korok, ha a mellékatlokban nullak vannak (a valos és képzetes rész korrelalatla-
nok), és a féatlokban 1évs elemek egyenldk,

e vizszintes-fliggbleges tengelyi ellipszisek, ha a mellékatlokban nullak vannak, és
a fGatlokban 1évG elemek kiilonboznek,

e ferde ellipszisek egyébként.
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1. A MERESI ELJARASOK KONCEPCIONALIS ALAPJAI

Az els6 két esetben a valos és képzetes rész fliggetlen valoszintiségi valtozok, és az elsd
esetben az eloszlas korkordsen szimmetrikus.

A kétdimenzios normalis eloszlast valoszintiségi valtozd korkérosen szimmetrikussa
transzforméalhato. A

n =12 { Tr = Har } (1.58)
Li — Hazi
valtozo (ahol » 12 a matrix pozitiv definit négyzetgyoke) varhato értéke nulla, kova-
rianciaja pedig
E{nn’} =2 1’552 = E. (1.59)

Komplex valtozora értelmezziik a komplex valtozo varhatod értékét és szordsnégyzetét
is:

oy = var{z} =EB{(@—p)(z — )} =E{lz —pf’} =03, + 05, (1.61)

A 02 mennyiség, mely skalar, nyilvanvaloan nem jellemzi teljes mértékben x viselke-
dését, hiszen ¥ altalaban harom kiilénbo6z6 elemet tartalmaz. Kivétel, amikor tudjuk,
hogy az eloszlés korkorosen szimmetrikus, mert ilyenkor ¥ mellékatloiban nulldk van-
nak, és a f6atlo elemei egyenlsk: 02 = o2, = 02/2.

Szamunkra fontos eset az, amikor szeretnénk két komplex valdszintiségi valtozo
egylittes eloszlasat megvizsgalni (pl. egy rendszer be- és kimenetén mért komplex
Fourier-amplitudokat). Ilyenkor 4 skalar valoszintiségi valtozonk van. A késGbbiekben
belatjuk, hogy mind a bemeneti, mind a kimeneti valtoz6 korszimmetrikus Gauss-
eloszlast, ezért a kovariancia-matrix négy-négy elemét a két variancia meghatéarozza.
A kereszt-tagok szintén specidlisak, és a komplex kovariancidbol meghatarozhatok,
melyet a variancidhoz hasonléan igy definidlunk:

Coy = cov{z,y} = E{(z — )" (y — 1)} (1.62)

A komplex kovariancia lathatéan komplex értéki: azt fejezi ki, hogy a bemenet mek-
kora része, és milyen fazisforgatassal jelenik meg a kimenetben.

A kereszt-tagok kozott tehéat szintén Osszefliggések vannak, melyek miatt a kovarian-
cia-matrix igy néz ki:

0'_923 0 Cxyr Cxyi

2 5 2 2

O O _Czyz Cxyr

— 2 2

E=l., i, 4 (1.63)

2 2 5

Cayi  Cayr 0 Iy

2 2 2

A sziikséges mennyiségek tehat meghatarozhatok (1.60) mind a bemeneti, mind a
kimeneti valtozokra torténd kiértékelésével, és (1.62) kiértékelésével.
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2. fejezet

Mintavételezés

2.1. Analo6g jelek digitalis reprezentacidja

Ahhoz, hogy az analdg jeleket digitalis eszkozokkel, példaul szamitogéppel feldol-
gozhassuk, el&szor véges bitszamon abrazolt szamsorozatokka kell alakitani Sket. Ez
az id6ben és amplitidoban folytonos jel diszkrét forméra hozasat jelenti mindkét
tartoméanyban. Az id6tartoménybeli diszkretizalast mintavételezésnek, az amplitado-
tartomanybelit kvantalasnak nevezziik. Ez a két mivelet altalaban egymés utan tor-
ténik, a mintavételezést leggyakrabban egy mintavevs-tartd (sample-hold) egység, a
kvantalast pedig analog-digitalis atalakitd valositja meg.

A fenti két mitvelet egymassal felcserélhets, és altalaban egymastoél elkiilonitve is
vizsgalhato (2.1. abra). A koévetkezGkben elGszor a mintavételezés, azutan a kvantalas
fontosabb kérdéseit fogjuk targyalni.

2.2. Mintavételezés az id6tartomanyban

Mintavételezéskor az idében folytonos jelnek mintasorozatot feleltetiink meg. Ennek
leggyakoribb modja az, hogy a mintasorozat a jel egyenletes id6kozokben felvett érté-
keit tartalmazza (2.2. abra).

Az abran jol megfigyelhetjiik, hogy az ismét egyenletes tévolsagokban felrajzolt
mintavételi értékek sorozata az eredeti gérbéhez hasonlé benyomaést kelt. Az az ér-
zéstink tamad, hogy megfelel§ interpolacioval az eredeti gorbe szinte hibéatlanul hely-
reallithat6. Annal inkdbb ez a helyzet, minél stiriibb a mintavételezés az eredeti jel
valtozasi sebességéhez képest. Feltehetjiik a kérdést, hogy adott jelet végiil is hogyan
kell mintavételezni, ha a kis hibaju ill. hibatlan helyreéllitast biztositani szeretnénk.

A jel valtozési sebessége a jel spektrumaval van szoros kapcsolatban. Ezért elészor
Fourier-transzformalhato (tranziens) jelekre fogunk szoritkozni és a mintavételezésnek
a Fourier-transzformaltra gyakorolt hatasat vizsgaljuk. Ebben a targyban a Fourier-
transzformécié kovetkezd alakjat hasznaljuk:
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2. MINTAVETELEZES

z(t) (t)
Nﬂ /. N\ /.
N : N !
A - A xq(t)
HMIII', I FIH—L T
2 S
Tim,q(t) Zgm (1)
‘||||., A ‘||||., e
q q
a) b)

2.1. abra. A mintavételezés és kvantalas hatésa a jelekre a) elGszor mintavételezés,
azutan kvantalas b) el@szor kvantalas, azutan mintavételezés

z(t) z(t;)

v

: ‘||||tz
to

2.2. dbra. A mintavételezés szokasos modja

to
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2.2. MINTAVETELEZES AZ IDOTARTOMANYBAN

a(t) m(t) z(t)m(t)

N

2.3. 4bra. A matematikai mintavételezés

X(f)=F{z(t)} = / x(t)e 2t dt (2.1)
A legnagyobb nehézséget az jelenti, hogy a szdmsorozatnak onmagaban zérus a
Fourier-transzformaltja, hiszen csak diszkrét helyeken kiilonbozik nullatol. Ezért az

egyes értékekhez a vizsgalat céljabol Dirac-impulzusokat rendeliink gy, hogy a Dirac-
impulzus-sorozat integralja ne kiilénb6zzon lényegesen az eredeti jel integraljatol:

() = i (1) <t;t) S i 5(

i=—00 i=—00

t— T, ,
Tz ) t=il,  (2.2)

ahol x,,(t) a mintavett jelet reprezentalé Dirac-impulzus-sorozat, z(¢) a mintavétele-
zendd folytonos jel, a t; id6pontok a mintavételezés helyei, és T, a mintavételi tavolsag.

Igy

o0 o0 o0
(e}

/xm(t)dt: 3 a;(m/(;(t—T:'Ts) dt | = i o(t) T, ~ /:c(t)dt. (2.3)

—00 t=—0c0 —00 —00

Az (2.2) kifejezés utolso tagja alapjan a mintavételezés jelelméleti szempontbol
Dirac-impulzus-sorozattal torténd szorzassal modellezhets. Ezt a modellt matematikai
mintavételezésnek nevezziik (2.3. abra). Tegyiik fel, hogy az egyik mintavételezési pont
az origboba esik.

Be lehet latni, hogy a Dirac-impulzus-sorozat Fourier-sorba fejthetd:

()= X e 2:4)

i=—00 k=—o00

és ez utobbi kifejezés méar konnyen Fourier-transzformalhaté, hiszen minden egyes
komplex exponencidlisnak egy-egy Dirac-impulzus felel meg a frekvenciatartomany-
ban:
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2. MINTAVETELEZES

oo T

2.4. 4bra. A mintavételezés hatasa a Fourier-transzformaltra

;c{kio } kZOOcS((f——) ). 25)

Most mér kozvetleniil felirhaté a mintavételezett jel Fourier-transzformaltja:

()

Xn(f) = Flen)} =F {x(t

xS (- ) ) S x(i L) e

k=—o00 k=—00

A mintavételezett jel spektruma tehat az eredeti jel spektrumanak 1 /7 tavolsagban
vett ismétlédéseibdl all (2.4. abra).

Ennek alapjan a folytonos jelhez tartozo X(f) spektrum (és igy a folytonos id6-
fiiggvény) visszaallithatosaganak feltétele a kovetkezd: biztositani kell azt, hogy az is-
métléds spektrumok ne lapolodjanak at, amit ugy lehet elérni, hogy fs = 1/T; értékét
eléggé nagyra valasztjuk. Ilyenkor ugyanis X,,(f)-nek a (—1/(27%),1/(2Ts)) interval-
lumba es6 része pontosan megegyezik X ( f)-fel, azaz ideélis alulateresztd sztirével X (f)
kivaghato X,,(f)-bdl, és inverz Fourier-transzformacioval z(t) is kiszamithato.

Kimondhato tehat az I. mintavételi tétel (id6tartoméanybeli mintavételi tétel):

1. Tétel. Ha egy jel Fourier-transzformdltja sdvkorldtozott, azaz

X(f)=0, ha |f|>B, (2.7)
akkor
fo = 1 > 2B T, < 1 (2.8)
=T 2 . azaz 55 )

esetén a folytonos iddfiggvény hibdtlanul visszadllithatd (azaz a mintavételezéssel nem
veszitink informdciot).
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2.3. AZ IDOFUGGVENY HELYREALLITASA

NANAN
=L/A'RTATAY

-15
0

=

\J

2.5. abra. Szinuszjel hibés mintavételezése. o = mintavételi értékek, fs = 2f;.

A tételt els6 megfogalmazo6irdl elnevezve Shannon-féle tételnek ill. Nyquist-tételnek
is hivjak, az f;/2 frekvenciat Nyquist-frekvencianak is nevezik.

Megjegyzés: Annak, hogy a spektrum mar f = B-nél sem lehet zérustol kilon-
boz6, elvi jelentGsége van. Az természetesen nem baj, ha X(f) itt véges értéki, hi-
szen egyetlen pontban felvett véges fiiggvényérték nem befolyasolna az inverz Fourier-
transzformalt alakjat. Ha azonban itt Dirac-impulzus jelenik meg, ami f; = B frekven-
ciadju szinuszjelnél (mely tagabb értelemben Fourier-transzformélhat6) meg is torténik,
akkor az f; = 2B frekvenciaval mintavételezve sulyos hibat kovetnénk el (2.5. abra).
Szinuszjelre tehat a fentieknek megfelel6 mintavételi el&iras:

fs > 2f1 . (29)

2.3. Az idéfiiggvény helyreallitasa

Az 1. mintavételi tétel levezetése megmutatja, hogy a Fourier-transzformalton keresztiil
hogyan lehet helyreallitani a folytonos idéfiiggvényt. Ha azonban mar tudjuk azt, hogy
a mintavételi tételt betartottuk, akkor a mintavételi értékekbdl a folytonos idéfiiggvény
értékeit kozvetlentil (Fourier-transzformacio nélkiil) is kiszamithatjuk. A megfelels for-
mulahoz példaul az alabbi médon juthatunk el.

A mintavételezett jel spektrumébol az eredeti jel spektruma egy négyszog-ablakkal
val6 szorzés segitségével allithato els:

X(f) = Xpn(f) rect (1/fTs> , (2.10)

ahol

rect (x) = 1 ha |z] < 0.5,
| 0 egyébkeént.

Elvégezve az inverz Fourier-transzformaciot:
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2. MINTAVETELEZES

o(t) = x,(t)x F ! {rect (1/fT>}
- (f: x(iT,)é (t _Tst)> % sinc (wTi)

1=—00

o0

= D a(iTy)sinc (wt_TiTs> : (2.11)

S

1=—00

ahol .
sinc(z) = smx(:ic) : (2.12)

Az (2.11) kifejezést interpoldcids formuldnak nevezziik, mert a mintak kozotti je-
lértékeket a minték felhasznaldsaval interpolalja.

Figyeljiik meg, hogy ¢t # iT, esetén x(t) elGallitasaban az Osszes (végtelen sok)
x(iT}) értékre sziikség van. Gyakorlatilag jo kozelitést ad azonban az, ha mindkét irany-
ban eléggé tavoli x(iTy) értékeket is figyelembe tudunk venni, mert a sinc-fiiggvény még
messzebb mar kicsi.

2.4. Mintavételezés a frekvenciatartomanyban

A szamitogépes adatfeldolgozas soran gyakran at kell térniink az idétartomanybol a
frekvenciatartomanyba. Ilyenkor a frekvenciatengely mentén is csak diszkrét pontok-
ban tudjuk kiszamitani a Fourier-transzformaltat, ezért sziikségiink van a (folytonos)
Fourier-transzformélt megfelelé mintavételezését biztosito tételre is.

Ha észrevessziik, hogy a Fourier-transzformécio és inverze matematikailag azonos
alakt operéciok, akkor a megfelel§ kifejezések szisztematikus cseréjével kozvetleniil
kimondhato a II. mintavételi tétel (frekvenciatartomanybeli mintavételi tétel):

2. Tétel. Ha egy jel iddkorldtozott, azaz csak eqy T iddtartamon belil kilonbozik 0-tol,
akkor spektrumdt (Fourier-transzformdltjat)

Af < % (2.13)

tavolsagokban mintavételezve a spektrum hibdtlanul helyredllithatd (azaz a mintavéte-
lezéssel nem wveszitink informdciot).

Figyeljiik meg, hogy bar 2B szerepét T vette at, a tétel megfogalmazasanal nem
torédtiink a 7' hosszusagu idtartam helyével, ugyanis az 1/Af tavolsdgokban tor-
ténd ismétlések a T idStartam tetszéleges elhelyezkedése esetén sem lapolodnak at.
Nem bajlodtunk az intervallum szélén a Dirac-impulzus kizaréséval sem, hiszen az
id6fiiggvény nem tartalmazhat ilyen anomalidkat.
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2.5. A KOZELITO MINTAVETELI TETEL

2.5. A kozelité6 mintavételi tétel

Az 1. és II. mintavételi tételt ismerve ugy vélhetjiik, hogy a két tételt id6- és savkor-
latozott jelre alkalmazva megoldottuk a mintavételezés problémajat. Sajnos a helyzet
nem ennyire egyszert, ugyanis bebizonyithaté, hogy egy jel és Fourier-transzformaltja
nem lehet egyszerre id6- ill. savkorlatozott, tehat példaul az interpolacios formulé-
ban elvileg nem tekinthetiink el az i — oo hatardatmenettsl. Szerencsére azonban sok
jel adott idétartamon ill. frekvenciasavon kiviil csak elhanyagolhatdéan tér el nullatol.
Ilyen jeleket véges sok adattal jellemezhetiink. Ezt mondja ki a kozelité mintavételi
tétel:

3. Tétel. Ha egy jel eqy T hosszisagu iddtartamon kivil kézelitdleg nulla, és spekt-
ruma 18 kozelitdleg savkorldtozott B sdvkorldttal, akkor

N >2BT (2.14)
adattal kis hibaval jellemezhetd.
Példaul az idétartomanyban:
T T
T 1
s 2B

Ez a tétel biztositja azt, hogy a szamitogépen véges sok adattal szamolva is kielégitd
pontossagi eredményt kaphassunk.

Megjegyzés: Az idGtartomanyban f; = 2B esetén elegendd ennyi adat. Ha azonban
fs > 2B, akkor a T hosszusagu idéintervallumbol N/ = T'f, > N adatot kell venniink,
de ezek az adatok némileg redundansak. A 2BT kifejezés tehat az idéfiiggvénybdl
nyerhets fiiggetlen adatok szamat adja meg.

2.6. A diszkrét Fourier-transzformaci6, interpolaci6
FFT segitségével

A mintavételi tételek ismeretében méar részleteiben is megérthets a diszkrét Fourier-
transzformécio (DFT) alakja.

Induljunk ki a véges Fourier-transzformaltbol és kozelitsiik az integralt téglanyosszeg-
gel:

T N-1
Xr(f) = / w(t)e Pt = Y " w(iTy)e T (2.16)
0 =0

A fenti kifejezést szamitogéppel kiértékelve a Fourier-transzformaltat is diszkrét
pontokban szamitjuk ki. Legyenek ezek a pontok egy Af frekvencialépés egész szami
tObbszoroseinél:
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2. MINTAVETELEZES

N-1
X(EAf) = Zx (1T, )e I2m AT (2.17)

A kérdés most mar csak az, hogy A f mekkora legyen, és k milyen értékeket vegyen
fel ahhoz, hogy ne veszitsiink informéciot.
A frekvenciatartomanybeli mintavételi tétel értelmében

1
Af <. (2.18)

Mivel a feleslegesen stirti mintavétel feleslegesen redundéns adatokat eredményez,
célszertinek latszik a

Af = (2.19)

1
T
valasztas.

Az id6tartomanybeli mintavételezés miatt a spektrum 1/7T; tavolsagokkal periodi-

kus. Ez azt jelenti, hogy

= T
Af T,
pontban kell kiszamitanunk a Fourier-transzformaltat, ami logikusnak tiinik, hiszen N-
pontos regisztratumbol N pontot kiszamitva a fiiggetlen adatok szama nem valtozik.
(A DFT-nél megengediink komplex bemeng adatokat is. Valos bemend adatok esetén
elvben elegendd lenne N/2 komplex pont is, ugyanis a komplex eredmény valos és
képzetes része is fiiggetlen adatot jelent, és valos jel Fourier-transzformaltjara igaz,
hogy X (kAf) = X(—kAf), ezért az N pont fele tartalmaz csak fiiggetlen informéciot. )

Vegyiik észre azt is, hogy a fentiekkel rogzitettiik a kitevékben szerepls Ty A f szor-
zat értékét is:

Np = =N (2.20)

1 1
‘T~ N’
Azt kell még eldontentink, hogy k milyen értékeket vegyen fel (a periodicitas miatt

szabad keziink van). Szimmetria-okokbol k-t is ugyanazokon az értékeken futtatjuk
végig, mint i-t (0 <i < N —1):

TAf =T,~ (2.21)

N-1
=Y 2 NI, k=0,1,...,N 1. (2.22)
i=0
A fenti kifejezésben immar az egyetlen, a fizikai id6vel kapcsolatban 1év6 tényezd
a T szorzo. Ezt a jelfeldolgozéasban éaltalaban egységnyinek szoktak tekinteni (aminek
kovetkezményeképpen a felhasznélt frekvenciatartomany 0 és 1 kozott helyezkedik el),
és ezzel el6ttiink all az immaéar idéfiiggetlen diszkrét Fourier-transzformacio (DFT):

Xp=Y ze N k=01, N-1. (2.23)
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2.7. SZTOCHASZTIKUS JELEK MINTAVETELEZESE

Végiil, ha T egységnyi, akkor Af = 1/N, és igy az inverz DFT:

N-1
1 ok
o=y KR =01 N (24

A DFT-nek létezik a mitveletek ligyes csoportositasan alapuld gyors kiértékels al-
goritmusa is (gyors Fourier-transzformacio, FFT). Ezért a DFT hatékonyan alkalmaz-
hat6 példaul az interpoléacio gyors elvégzésére. Az alapelv nem maés, mint az interpolé-
cios formula levezetésekor bemutatott 1épések gyors végrehajtasa az FFT segitségével
(2.6. abra). A sziikséges miiveletek szama lényegesen kisebb lehet, mint amennyi az
interpolacios formula kiértékeléséhez kell, még akkor is, ha az interpolaciés formula
kiértékeléséhez a sinc fiiggvény értékeit elre kiszamitva, tablazatban taroljuk.

2.7. Sztochasztikus jelek mintavételezése

A mintavételi tételek el6z6 alakjai Fourier-transzformélhato (tranziens, esetleg periodi-
kus) jelekre vonatkoznak. Gyakran kell azonban sztochasztikus jeleket is feldolgoznunk.
Az ezekre vonatkozo tétel bizonyitésa koriilményesebb, ezért itt csak kimondjuk:
Mintavételi tétel sztochasztikus jelekre

4. Tétel. Ha eqy sztochasztikus folyamat teljesitménysiriség-spektruma savkorldato-
zott, azaz

S(f)=0 ha [f|>DB, (2.25)

akkor
1
<
— 2B

kozonként mintavételezve lényegében nem veszitink informdcidt, azaz az interpoldcios
formula négyzetes értelemben konvergdl a folytonos iddfigguény értékeihez:

T (2.26)

lim E <x(t) — > a(iT) sinc <7rt_TiTs)> =0. (2.27)

i=—M 5
Megemlitjiik még, hogy a fenti feltétel az 1. mintavételi tétel miatt a korrelacio-
fliggvény ilyen mintakbol valo helyreéllithatosagat is kdzvetleniil biztositja, hiszen en-
nél X(f) szerepét S(f) veszi at. A mintakbol diszkrét pontokban kiszamithato korre-
lacidértékekbdl tehat a folytonos korrelaciofiiggvény is megkaphato.

2.8. Savkorlatozott jelek mintavételezése

Az eléz6kben ismertetett mintavételi tételek kimondésakor abbol a hallgatolagos fel-
tételezésbdl indultunk ki, hogy a jel spektruma  kitolti” a (—B, B) frekvenciasavot,
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2. MINTAVETELEZES

INTR NI

X FFT

o

v

| —— -

0 X Kiegészités nulldkkal
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N
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o |——————

IFFT
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2.6. abra. Interpolacio FFT segitségével a) az eredeti idéfiiggvény, b) a diszkrét Fourier-
transzformalt ¢) a spektrumok ,széttolasa”, vagyis (r — 1) N db nulla behelyezése utan
kapott eredmény d) az interpolacié eredménye

A

<
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2.9. ALUL- ES TULMINTAVETELEZES

A A

X(f) X (f)

-B B];m \ / fm

szamunkra érdekes sav

2.7. abra. Keskenyséavi jel mintavételezése

ezért itt semmiféle betranszformalodas nem engedheté meg. Ha azonban a jel spekt-
ruma nem ilyen, példaul csak egy ismert keskeny savban kiilonbozik nullatol, akkor
enyhébb feltételt is megfogalmazhatunk: elég azt biztositani, hogy a szamunkra fontos
savba ne transzformaloédjon be teljesitmeény (2.7. abra).

fs alkalmas megvalasztasaval f; < 2B is megengedhetd lehet. Gondosan iigyelniink
kell azonban f; helyes megvalasztasara: kis tévedés is elég lehet ahhoz, hogy a jel
spektruma jelentGsen torzuljon az esetleges betranszformalddéas miatt.

2.9. Alul- és talmintavételezés

A mintavételi tételt nem szabad mereven alkalmazni. El6fordulhatnak olyan mérési fel-
adatok, amikor nem kell minden lehetséges informéaciot kinyerniink az adott hosszusagu
jelbdl, példaul ritkdbb mintavételezéssel is elegendd szamu mintank van megfelelGen
kek egymaéstol statisztikailag fiiggetlenek is, ami az eredmény statisztikai jellemzését
egyszerisiti.

Masrészrél, ha az id6fiiggvény vizsgalatat kell elvégezniink, példaul a vizualis kiér-
tékelésnél, altalaban nem elegendd a mintavételi tétel egyszertd teljesitése (2.8. dbra).

Annak ellenére, hogy az abran lathatd pontsorozat elvben minden informéciot
tartalmaz, a periddusonként alig valamivel tobb, mint 2 mintdbol a szinusz szabad
szemmel nem ismerheté fel. Utdlagos interpoléacio helyett ilyenkor célszertibb a stirtibb
mintavételezés, f; > 2B frekvencidval. Tegyiik még azt is hozza, hogy ha csonki-
tott regisztratumunk van (példaul sztochasztikus jelbdl), akkor a csonka regisztratum
savszélessége a levagas miatt joval nagyobb a teljes (végtelen hosszisagn) jel savszéles-
ségénél, és ezért a teljes jel kisebb savszélessége alapjan mintavételezve a helyreallitas
hibaja nagy lesz a regisztratum széle kérnyékén.

Megemlitjiik, hogy ide tartozik az tn. ekvivalens mintavételezés. Periodikus jeleknél
a mintakat vehetjik eltéré periodusokbol, kicsit eltolt fazishelyzetben: ha az id6zités
pontos, ezekbdl a mintakbol az oszcilloszkop meg tudja jeleniteni a teljes periddust,
annak ellenére, hogy a szigortan vett mintavételi tételt nem tartjuk be.
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2.8. dbra. A tulmintavételezés sziikségességének illusztracioja
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3. fejezet

Kvantalas

A kvantéalasnal — annak ellenére, hogy finom felbontést kvantélasnal a kvantalt jel
erGsen emlékeztet az eredeti jelre — nem lehet biztositani a kvantalatlan jel hibatlan
helyreallitdsat. Ennek egyik legf6bb oka az, hogy a kvantalas nemlinearis mitivelet
még akkor is, ha az A /D konverzionak leginkabb megfelel6 modellt, az un. egyenletes
kvantéalot vizsgaljuk (3.1. abra).

Tehét a mintavételezéssel ellentétben itt nem az a célunk, hogy valamilyen, a min-
tavételezéshez hasonlo feltételt adjunk az egyértelmi visszaallithatosagra. Mit tudunk
tehat garantalni? A valasz az, hogy az eredeti jel momentumai (hatvanyainak varhato
értéke) koziil néhanyat érizziink meg a kvantalt jelben (természetesen példaul digita-
lis jeleknél, ahol csak két amplittidoszint van, teljes visszaallithatosagot jelentene!). A
tervezés soran felmeriils kérdésekre (mely momentumok sziikségesek) az alabb ismerte-
tésre keriilg elmélet adja meg a véalaszt. Példaul egy jel atlagértékének (DC szintjének)
mérésekor csak az els§ rendd momentum pontos atvitelére van sziikség, igy akar egy-
bites kvantélot is alkalmazhatunk.

A kvantélas egyszeriibb tulajdonsigait a mintavételezéssel analég modon targyal-
juk. Ki fog deriilni, hogy formalisan a mintavételezés és a kvantalés lényegében ugyanaz
a matematikai mivelet.

"
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I

3.1. abra. Az egyenletes kvantélo
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3. KVANTALAS

nq(t) = w4(t) — z(?)
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3.2. dbra. Szinuszjel kvantalasa és a kvantalasi hiba

3.1. A kvantalasi hiba vizsgalata

A nemlinearis karakterisztika matematikai leirdsa és vizsgalata nem sok reménnyel
kecsegtet. Ehelyett vegyilik szemiigyre a kvantélt jel és az eredeti jel kiilonbségét, az
tn. kvantéalasi hibat egy egyszert esetben (3.2. abra).

A szinuszjel durva kvantalasakor a kdvetkezé megfigyeléseket tehetjiik:

e A kvantéalasi hiba kozelitSleg fiirészfog alakta azokon a helyeken, ahol a szinuszjel
gorbiilete kicsi. Ez azt jelenti, hogy eloszlésa kozelitéleg egyenletes, és annal jobb
a kozelités, minél kisebb ¢ értéke a szinuszjel amplitudéjahoz képest.

e A kvantélasi hiba alakja nemigen emlékeztet a szinuszjelre, annak ellenére, hogy
determinisztikus transzformacioval kaptuk bel6le. Ennek oka az, hogy a kvan-
talasi hiba az eredeti jelnek a legkozelebbi kvantumszinthez képest lokalis vi-
selkedését irja le. Ezért ha a két jel keresztkorrelacio fliggvényét képezziik, az
varhatoan kicsi lesz, és a kvantumnagysag csokkentésével egyre kisebb.

e A kvantélasi hiba lathatoéan sok felharmonikust tartalmaz, hatarfrekvencidja jo-
val nagyobb, mint az eredeti jelé, és a hatarfrekvencia ¢ csokkentésével egyre
nd.

A fentiek alapjan a kvantalasi hibat célszertinek latszik statisztikai alapon vizsgalni
és a kvantélasra a kovetkezd, an. zajmodellt bevezetni (3.3. abra).

Statisztikai szempontbol az egyenletes kvantald hatasat additiv zajjal modellezziik,
melynek a kovetkez§ tulajdonsagai vannak:

42



3.2. A KVANTALO KIMENETE
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3.3. abra. A kvantalas zajmodellje
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3.4. dbra. Az eredeti és a kvantalt jel stirtiségfiiggvénye

e cgyenletes eloszlasu;
e az eredeti jellel korrelalatlan (esetleg fiiggetlen az eredeti jeltdl);

e fehér spektrumi.

Ez az Gn. zajmodell altalaban akkor alkalmazhaté, ha a ¢ kvantumnagysag elég
kicsi. Kés6bbi fejezetekben ennek a pontosabb feltételeit fogalmazzuk meg.

3.2. A kvantalo6 kimenetének stirtiségfiiggvénye és ka-
rakterisztikus fliggvénye

A jel amplitudéjanak stirtiségfiiggvénye megadja, hogy mely amplitidoszintnek milyen
valoszintisége van. Ez a fliggvény alapvets jelentdségii a kvantalas vizsgalatakor.

Kérdés, hogyan alakul a kvantalt jel amplitadojanak strtségfiiggvénye. A kvantélt
jelbdl ugyanis ezt tudjuk az amplitudé-hisztogram segitségével kozeliteni. Latni fog-
juk, hogy a kvantalt jel strtségfiiggvényét megkapjuk az eredeti jel stirtiségfiiggvényé-
nek sziirésével és mintavételezésével. A stirtiség-, illetve a karakterisztikus fliggvények
hasznalatanak az elénye, hogy a magasabb rendi@ momentumok vizsgalatat is lehetévé
teszl.

Jelolje az eredeti jelet x, a valoszintiség-siirtségfiiggvényét f,(x). Tudjuk, hogy egy
valoszintiségi valtozo karakterisztikus fiiggvénye a valoszintség-striiségfiiggvényének
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3. KVANTALAS

inverz Fourier-transzformaltja. Tehéat
O, (u) = / fo(2)e™ da.

Legyen a kvantalt jel 2’ és valoszintiség-strtiségfiiggvénye f,/(z). Ez utobbi olyan Dirac-
impulzus-sorozat, amelynek elemei az amplitido-tengelyen a megfelels kvantéalasi szin-
teknek felelnek meg.

A 3.4. abran lathatjuk a kvantalas hatasat a valoszintség-strtiségfiiggvényre. Meg-
figyelhetd, hogy a kvantalési 1épcsSknek megfelels teriilettel ,aranyos” Dirac-impulzu-
sokat kapunk. Emlékeztetiink arra, hogy a Dirac-impulzusnak nincs fliggvényértéke,
csak azt tudjuk, hogy az adott tartomanyban az integralja véges. Ebben az esetben
ez azt jelenti, hogy az eredeti jel valoszintség-sirtségfiiggvénynek megfelels teriileté-
vel egyezik meg az adott Dirac-impulzus integralja. Példaul a 0 értéknél elhelyezkedd
Dirac-impulzusra igaz, hogy

oo

a/2
/ xod(z)dr = fu(x) da.

—q/2

A kiilonb6z6 kvantalasi szintekhez (..., —3q/2-t6l —q/2-ig, —q/2-t6l q/2-ig, q/2-
t6l 3q/2-ig, ...) tartozd striiségfiiggvény tehat ,osszehuzodik” egy megfelels Dirac-
impulzus-sorozatta.

Ez a mitvelet egy fontos 1épésben eltér az idGtartoménybeli mintavételezéstsl. Két
lényeges 1épésre bonthato, mégpedig:

e konvoltcié egy négyszog alaka impulzussal,
e mintavételezés (a ,szokdsos” modon).

A mivelet részleteinek bemutatashoz térjiink vissza a 3.4. abrahoz. Az abran is lathato
modon f,/(x)-t, a kvantalt jel valoszintiség-stirtiségfiiggvényét, tehat a Dirac-impulzus-
sorozatot kifejezhetjiik az alabbi médon:

q
2

fola) = b+ q) [ fula)do +6(a) * fu(@)de +

_9g
2

48z —q) / ful@)de + ... =

mq+4

= > 5(1’—mq)/ fe(x)de. (3.1)

)
m=—00 mg—sy

A képletek egyszertisitése céljabol jeloljiik a négyszog alaki impulzust a kdvetkezs
modon:

1 _ 9 q
o ha — 3 <z <{
0, kiilonben.

o) ={
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3.2. A KVANTALO KIMENETE

F igyeljﬁk meg, hogy ennek a fiiggvénynek a terl’ilete 1. Képezziik f,(z) és f.(x) kon-

F@) = £ = [ o= a)fifa)da - / Lo (32)

2

Vezessiik be tovabbéa az alabbi Dirac-impulzus-sorozatot a koévetkezé modon:

c(x) = Y qd(x—mg) (3.3)
Igy tehat 3.1 és 3.3 miatt irhato:
mq—l—%
Z d(z —mq / v)dz = (fo(z) * f(z))c(z).
m=—o0c mg— %

Felhasznéljuk a Dirac-impulzus-sorozat kovetkezd tulajdonsagat:
6(z —mq)g(x) = 6(x — mq)g(mg),
fgy
qur2

(fa(z) * Z d(z —mq) / fo(x)dx

_9
m=—00 2

Végiil folytatva a (3.1) felirast a kovetkezs Osszefiiggést kapjuk:

for() = (ful2) * f(2)) c(2).

Megmutattuk tehat, hogy a kvantélt jel valoszintiség-stirtségfiiggvénye elGallithatod
az eredeti jel valdszintiség-stirtiségfiiggvényébdl egy konvolucios 1épés, majd mintaveé-
telezés segitségével. Az 3.5. abran egy egyszerid esetben is kovethetjiik a kvantalds
lépéseit.

Mi torténik a karakterisztikus fiiggvénnyel? Szamoljuk ki az el6bb bevezetésre ke-
rilt f,(x) fiiggvény inverz Fourier-transzformaltjat:

oo _ 21 .
= / Jo(z)e!" dx = / e dx = sinc%.
oo —a q

q
2

b

Igy tehat — a 3.6. Abran kovethetd lépésekkel — azt kapjuk, hogy a kvantalo kimenetének
karakterisztikus fliggvénye a kovetkezs:

i O, (u+ [¥)sinc (M) Z D, (u+ l2—)smc (q?u + l7r)

l=—00 l=—00

ahol
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3. KVANTALAS

fx()
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fu(x)
1/q
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3.5. abra. A kvantalt jel valoszintiség-striiségfiiggvényének szarmaztatasa: (a) az ere-
deti jel valoszintiség-strtségfiiggvénye, (b) a négyszog alakt pulzus, (¢) a négyszog-
alaki pulzus és az eredeti jel valoszintiség-stirtségfiiggvényének konvolacioja, (d) a
mintavételezés, azaz a modulalé Dirac-impulzus-sorozat, (e) a kvantalt jel valoszintiség-
stirtiségfiiggvénye.

3.1. tablazat. A mintavételezés és a kvantalas egymasnak megfelels valtozoi

mintavételezés 1 ¢
kvantalas m
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3.6. abra. A kvantélt jel karakterisztikus fliggvényének szarmaztatasa
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3. KVANTALAS

3.7. dbra. A kvantalas és az additiv zaj hozzakeverés modellje

A U valtozot tekinthetjiik tgy is, mint a  kvantélasi korfrekvencia”’, a mintavétele-
zés analogidjara. A tovabbi egymasnak megfeleltetheté mennyiségeket a 3.1. tablazat
tartalmazza. ahol 7, m, k, [ indexek, t az idévaltozo, x az amplitidovaltozod, w a =kor-
frekvencia, u a karakterisztikus fiiggvény fliggetlen valtozoja, Ty a mintavételi id6, ¢
a kvantumnagysag, 2 a mintavételi korfrekvencia (27 f;), ¥ a kvantalashoz tartozo
Jkorfrekvencia” a karakterisztikus fiiggvény tartomanyéaban.

3.3. A kvantalas és az additiv zajmodell 6sszehason-
litasa

A 3.1. alfejezetben megemlitettiik, hogy a kvantéalasi hibat lehetséges additiv, egyen-
letes eloszlast zajjal modellezni. Ebben az alfejezetben megvizsgaljuk, hogy milyen
kapcsolat van az additiv zajmodell és az el6z8 részben kapott eredmények kozott.

Tekintsiik tehat a 3.7 abrat. Lathatjuk, hogy az additiv, egyenletes eloszlasu zaj
hozzékeverése esetén a kvantald kimenetének valoszintség-striiségfiiggvénye a kovet-
kez6:

Join(r) = fu(z) * fol2),

hiszen az Osszeadas konvoluciéba megy at a valdszintiség-stirtségfiiggvények esetén.
.. .. ”, P e : 2z z P z : rz 2
Ebben az Osszefiiggésben az egyenletes eloszlast zaj varhato értéke 0, variancidja %.
Ezzel szemben a tényleges kvantéalas utan kapott strtségfiiggvény a kovetkezs:

Jar (:L‘) = forn(:l?)C(:Z:),

felhasznalva az 3.2 Osszefliggést. A képleteket 6sszehasonlitva vilagos, hogy a kvantéa-
las és a zajhozzakeverés nem ugyanaz a miivelet. Az elsG esetben a stirtiségfiiggvény
egy Dirac-impulzus-sorozat, még a masodik esetben a kvantalo kimenetén a stirdség-
fiiggvény altalaban folytonos. A 3.8 abran lathato a két valoszintség-sirtségfiiggvény.
Vil4gos, hogy az additiv zajmodell stirtiségfliggvényét a matematikai mintavételezésnek
alavetve megkapjuk a kvantalas valoszintiség-stirtiségfliggvényét.

Tovabba az additiv zajjal modellezett kvantalé kimenetének karakterisztikus fligg-
vénye:

By () = By (1) D (u) = @z(u>sinc%,

amely megfelel az el6z6ekben kapott eredménynek. Ebben az esetben is lathato a szoros
analogia a mintavételezés és a kvantalas kozott.
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3.8. abra. A kvantélas és az additiv zaj valoszintiség-stirtiségfiiggvénye

3.4. Kvantalasi tételek

Az el6z6 alfejezetekben bemutatott Osszefiiggésekkel mar elég ismeretiink van ahhoz,
hogy kimondjuk a mintavételezési tétel megfelelGjét a kvantalas esetében. Az aldbbi-
akban ismertetésre keriil két tételt nevezziik kvantaléasi tételeknek.

Az eredeti jel ®,(u) karakterisztikus fiiggvény egyértelmi helyreallithatosagahoz
O, (u)-bol sziikséges, hogy a megfelel6 komponensek ®,/(u)-ban ne lapolodjanak at.
Tehat az tgynevezett elsé kvantalasi tétel a kovetkezs:

1. Tétel (I. kvantalasi tétel). Ha az x jel karakterisztikus figguénye ,sdvkorldto-
zott”, azaz

)

®,(u) = 0, ha fu| > 7 = %
akkor

- a O -ben taldlhato ismétlddések nem lapolodnak dt,

- az x karakterisztikus figguénye visszadllithato @, (u)-bdl,

- az x valdszindség-siriségfigguénye visszadllithato f(x)-bdl.

Az els6 kvantélasi tétel kimondja tehat, hogy ha a ¢ kvantumnagysag elég kicsi,

akkor a kvantalt jelbdl egyértelmten helyreallithat6 az eredeti jel. A visszaallitas rész-
leteit a kovetkezs alfejezet targyalja.

Egy masik kvantaléasi tételt is kimondunk, amely az  momentumaira vonatkozik.

2. Tétel (II. kvantalasi tétel). Ha az x jel karakterisztikus figgvénye ,sdvkorldto-
zott”, azaz

2
O, (u) =0, ha ]u\>i—5:@—5,
q

ahol € tetszdlegesen kicsi pozitiv szam, akkor x momentumai visszadllithatok a kvantdlt
jel momentumaibol.
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3. KVANTALAS

3.9. abra. Az interpolaci6 illusztracioja

Fontos megjegyezniink, hogy a II. kvantalési tételnek nincs megfelelGje az idétar-
toméanybeli mintavételezési tételek kozott.

Mit mondanak a kvantalasi tételek? Ahogy a fejezet elején megjegyeztiik, altalaban
nem tudjuk garantalni az eredeti jel visszaallithatosdgat. Ez azt jelenti, hogy altala-
ban a jel valoszintiségi stirtiségfiiggvénye nem korlatos tart6ja és igy nem teljesiilnek az
I. kvantalasi tétel feltételei. Furcsa modon ugyanakkor a feltétel nem teljesiilése nem
zarja ki a helyreédllithatosagot, csak nem garantalja minden jelre. Példaul egy egy-
szerd négyszogjelet mar egy egybites kvantaloval is helyreallithatunk, abban specialis
esetben, ha a kvantalas a szinteket éppen valtozatlanul hagyja.

A TI. kvantalasi tétel nem a stirtiségfiiggvény helyreallitdsara vonatkozik. Mint arra
a legelején utaltunk, bizonyos feltételek teljesiilése esetén — precizen a II. kvantélasi
tétel feltételeirdl van szd6 — a jel megfelel6 momentumai maradnak meg a kvantalas
utén is. A tétel éppen ezt az allitast fogalmazza meg egzakt forméban.

3.4.1. A kvantalt jel visszaallitasa

Amennyiben a ¢ kvantalési 1épcsé annyira kicsi, hogy az 1. kvantalasi tétel feltéte-
leit teljesitjiik, akkor az eredeti x valosziniiség-strtiségfiiggvényét visszaallithatjuk a
kvantalt =’ jel valoszintiség-strtiségfiiggvényébdl. Ez nagyon fontos akkor, ha csak a
kvantalt adatok allnak a rendelkezésiinkre, és ezekbdl kell az eredeti jel bizonyos sta-
tisztikai tulajdonsagait meghatarozni.

Az f.(x)-b6l tehat a f, i, (z) meghatarozasa a célunk. Ezt hasonloan az idétarto-
manybeli mintavételezéshez megtehetjiik sinc-es interpolécioval, ahogyan a 3.9 abran
lathato.

Ezek utan az eredeti x jel valoszintiség-stirtiségfiiggvénye megkaphato, ha az f,.,(z)-
et dekonvolvaljuk f,(z)-szel.

3.5. Sheppard-korrekciék, a momentumok torzitasa

Amennyiben az additiv zajmodell megfelel§ a szamunkra, akkor kénnyen kiszamolhat-
juk, hogy mennyi a kiilonb6z6 momentumok torzitasa.

A TI. kvantalési tétel alapjan a jel karakterisztikus fiiggvényére az u = 0 kérnyékén
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3.5. SHEPPARD-KORREKCIOK, A MOMENTUMOK TORZITASA

a kovetkezs Osszefiiggés teljesiil:

O, (u) = @x(u)sinc%, (3.4)
azaz a kvantalt jel karakterisztikus fiiggvénye itt pontosan olyan alakt, mintha az
eredeti jelhez egy fliggetlen, egyenletes eloszlasti zajt adtunk volna, hiszen fiiggetlen
valoszintiségi valtozok Gsszegzésekor a stirtiségfiiggvények konvolucidjat kell képezniink,
és igy a karakterisztikus fiiggvények szorzédnak. Eszerint a zajmodell els6 két tulaj-
donsaga teljesiil, és a momentumok ko6zotti Osszefiiggéseket a zajmodellbsl meghaté-
rozhatjuk (z, = + ngy).

Elr) = E{r}
) = £l - g

E{x*} = 5{x§}—35{xq}i]—;
(3.5)

Ezek az Ggynevezett Sheppard-korrekciok.

A kvantalési tétel feltételét a gyakorlatban elGforduld jelek legfeljebb kozelitéleg tel-
jesitik (a karakterisztikus fiiggvény korlatos tartoja ellentmond a valoszintség-stirtiség-
fiiggvény korlatos szélességének). Altaldban megadhaté azonban olyan korlat, ami 5-
16tt a karakterisztikus fiiggvény gyakorlatilag nullanak tekinthet6. Igy kaphato példaul
a kovetkezs 6kolszabély: Gauss-jelekre ¢ < o, teljesitése elegends. Pontosabb vizsgala-
tokkal az is megmutathato, hogy példaul a kvantalt és a kvantalatlan Gauss-jel varhato
értékének kiilonbségére jo kozelitéssel a kovetkezd teljestil:

q A7253ﬂ2
£y} — e} < L, (36)
a masodik momentumokra pedig

2 q2 q2 *2E;ﬂ2
E{xq}—g{x}—ﬁ <5t T (3.7)

Mas, kevésbé gyorsan csillapodé karakterisztikus fiiggvényt jelek esetén a kvanta-
lasnak a jelamplitudohoz képest joval finomabbnak kell lennie, igy szinuszjelre a ¢ < A
feltételt teljesiteni kell.

Mint azt az el6z6ekben lattuk az additiv zajmodell nem irja le pontosan a kvantalés
hatasat. Ezért a Sheppard-korrekciok sem érvényesek abban az esetben, ha a kvantalas
,pontos” modelljét alkalmazzuk. Mi itt csak az els6rendd momentum torzitasat fogjuk
megvizsgalni.

Tudjuk, hogy egy valdszintiségi valtoz6 momentumait konnyen megkaphatjuk a
karakterisztikus fiiggvénybdl. Ha n a keresett momentum, akkor

1 d"®,(u)
Jgroodut |,

E{a"} = (3.8)
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3. KVANTALAS

x Lq T xq(t) X Tq t
(t) r | : (t) (t)

d(t) dit) |ng(t)

3.10. abra. Dither alkalmazésa

— 1d 27k . (qu
E{z,} = k:z_:oo Sdu <<I>$ (u - T) sinc <? — k’ﬂ')) -

~ 1dP,(u) 1 & 2k . /qu

— ; du o + 5k_z_oo <q)33 <U T) Sinc <7 k”ﬂ'))
E¢O u=0
1 & 27k q(—1)k1
ez} + - k_zoo . ( ; ) = (3.9)
k0

Figyeljik meg, hogy az elsé momentum torzitatlan méréséhez elegendd

d, (%> =0, k==+1,42,... (3.10)
q

biztositasa is.

3.5.1. Dither hasznalata

Legyen x egyenletes eloszlast a (—3rg, %rq) intervallumon (r egész). Kénnyen belat-
hato, hogy a karakterisztikus fiiggvény

O, (u) = sinc% (3.11)
alaki, ami azt jelenti, hogy a (3.10) feltételt sinc(rmk) = 0 miatt biztositottuk, tehat a
varhato értékek megegyeznek: elég a kvantalt adatokat atlagolni, annak ellenére, hogy
x nem teljesiti a kvantalasi tételben megfogalmazott feltételt. Nincs azonban mindig
ilyen szerencsénk.

Sziikség esetén specialis technika alkalmazéasaval kisebb kvantumszam is elegendé
lehet. Vizsgaljuk meg, mi térténik, ha a bemend jelhez kvantalas el6tt téle statisztika-
ilag fiiggetlen zajt, un. dithert adunk (3.10. dbra).

A kevert jel karakterisztikus fliggvénye a fliggetlenség miatt

B, pa(u) = O, (u)Dy(u) (3.12)

alaki. Ha a dither teljesiti a feltételt, akkor az Osszeg is teljesiteni fogja, hiszen a két
karakterisztikus fiiggvény szorzodik, és @, 4(u) a megfelels helyen nulla lesz, @, (u)
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3.6. A FEHER ZAJSPEKTRUM FELTETELE

értékétol fiiggetleniil. A jelhez hozzdadott ditherrel tehét biztositani lehet a Sheppard-
korrekciok érvényességét. Ugyeljiink azonban arra, hogy a Sheppard-korrekciok ilyen-
kor nem az x jel momentumaira, hanem az = +d jel momentumaira érvényesek, ezért
momentumainak meghatarozasahoz d momentumait is figyelembe kell venni! Példaul:

2

var{zr} = var{z,} — % — var{d}. (3.13)

Ugyanakkor a dither hozzakeverése miatt altalaban a mérések variancidja is né.
Igy példaul a varhato érték becslése esetén, ha kozelitéleg teljesitjiik a kvantaléasi tétel
feltételét, a variancia a kovetkezs:

2
var{z,} = var{z + d + n,} ~ var{z} + % + var{d} . (3.14)

Az esetleg nagy amplitudoja dither er6sen megndvelheti a varianciat, ezért gyakran
specialis technikival ,szabadulnak meg” téle, példaul kvantalas utan a dither értékével
korrigalnak (ha ez rendelkezésre all), vagy kisziirik, ha lehet.

Az audio-technikédban a haromszog-eloszlasu dither az elterjedt (két, kvantumnagy-
sag szélességi egyenletes eloszlast dither konvolicidja). Bebizonyithato, hogy ekkor a
varhato érték torzitatlan, és a variancia is jelfiiggetlen, ami azért fontos, mert kiilon-
ben liiktets zaj jelenhet meg (pl. négyszog-dithernél ténylegesen meg is jelenhet), ami
csendesebb részeknél nagyon zavaro.

3.6. A fehér zajspektrum feltétele

Folytonos idéparaméter esetén a kvantélasi zaj spektruma nem lehet fehér, ugyanis

/ " 5 (f)df = var{n,} = % < o0, (3.15)

—0o0
ami ellentmond annak, hogy a spektrum konstans.

Ugyanakkor a kvantalas szinte mindig mintavételezéssel egyiitt fordul elg. Ha a
mintavételezési frekvencia nem til nagy a kvantalasi zaj hatarfrekvenciajahoz képest,
akkor a kvantalasi zajhoz tartozé ismétl6dé spektrumok atlapolédnak, és az eredd
spektrum mégis kozelitéleg fehér lesz (3.11. abra).

Konkrét esetekre a kévetkezd adodik:

e savkorlatozott Gauss-jelre
Oy

fm<9_Ba
q

e szinuszjelre

A
fm < 3_f1
q

Ezek a feltételek aranylag konnyen teljesithetdk.
A kvantalasi zaj spektruma fehérségének a kovetkezd elényei vannak:
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3. KVANTALAS

Salf) Sulf = fm) Sulf — 2fm)

3.11. dbra. A fehér zajspektrum kialakulasa

e a spektrum alakja nem fiigg a bemend jeltsl, tehdt egyszertien és altalanosan
figyelembe vehetd;

e a kvantalasi hiba teljesitménye egyenletesen el van osztva a frekvenciatengely
mentén, tehat nem tartalmaz zavar6 cstcsokat;

e a kvantalasi zaj mintai korrelalatlanok, ezért az egyszert atlagolés a lehet§ leg-
hatékonyabb a zaj kikiiszoObolésére, és a statisztikai adatfeldolgozasi modszerek
hibaképletei kozvetleniil alkalmazhatok.

3.7. Néhany kiegészit6 megjegyzés

A fenti elmélet idedlis egyenletes kvantéalot feltételezett, és ezt felhasznalva mutattuk
meg példaul azt, hogy a variancia ndvelése aran a torzitas jelent&sen csokkenthets. Ez
valodi A /D konverterek esetén igy nem egészen igaz, ugyanis figyelembe kell venni az
A /D konverter linearitasi hibait is, és szigortuan el kell kertilni a tulvezérlést. Ez durvan
azt jelenti, hogy az A /D konverter altal okozott hibat nem tekinthetjik még a lehetd
legiigyesebb beallitas és adatfeldolgozas esetén sem az LSB értéknél sokkal kisebbnek.
Nagy amplitudoju dither alkalmazésaval ugyanakkor valamennyire megndvelhetjiik az
A /D konverter latszolagos linearitasat (1. de Lotto, 1986).

A zajmodell alapjan érthets, hogy sziiréssel miért nem allithato vissza a kvantélt
jelbdl az eredeti fliggvény. A bemend jel spektruménak ismeretében a legjobb eset-
ben optimaélis sziird tervezhetd (1. Katzenelson, 1962), mely a visszaallitas hibajanak
varianciajat minimalizalja (Wiener- ill. Kalman-sz(rg).
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4. fejezet
Atlagolasi eljarasok

Az atlagolas egy olyan varianciacsokkents eljaras, amely azt feltételezi, hogy a meg-
figyelések (y(n)) egy id6ben nem valtozé (vagy csak lassan valtozo) jelenségrol (x)
hordoznak informaciot, de a megfigyelésekhez a mérési csatornan keresztiil zaj adodik.

25F e,
-] S °,._.,. ................

0.5} RETI

0 10 20 30 40 50

4.1. abra. Konstans érték, melyen szinuszos zaj iil; a megfigyelés nem egész periddust
tartalmaz.

A 4.1 abran lathato jelrészlet egy konstans érték és a hozzadadddo szinuszos zaj
eredGje. Ez a példa azt sugallja, hogy az atlagérték megallapitdsa csupan szamitas
kérdése, hiszen szemre is szétvalaszthatd az eltolasi érték és a szinusz. Ehhez azonban
azt a feltételezést kell tenni, hogy a zaj szinuszos, vagyis, hogy a vizsgalt jelrészleten
kiviil is szinuszosan folytatodik. Vilagos, hogy adhato olyan eljaras, amely a szinuszos
zaj feltételezést hasznalva tetsz6leges paramétert szinusz jelet és eltolasi értéket is kii-
16n tud valasztani véges minta alapjan. Mi torténik azonban, ha ez az eljaras szinusszal
nem modellezhetd zajjal taldlja magat szemben: példaul tobb harmonikus 0sszetevét
tartalmazd vagy nemperiodikus zajjal? Latszik, hogy az atlagérték eldontése nem csak
szamitas kérdése, a kiilonbo6z§ atlagolasi eljarasok kiillonbozé modelleket tételeznek fel.
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4. ATLAGOLASI ELJARASOK

4.1. Idealis atlagolas

Diszkrét jelre az ideélis atlagolast a megfigyelések k£ = 0 idSponttal jelolt kezdetétsl
irjuk fel:

#n) = > y(k) (11)

Az n-edik idépontban kapott eredmény csak az (n — 1)-edik id6pontig bezaroan
tartalmaz megfigyeléseket. Ennek az az értelme, hogy a valés életben mindig véges
id6 alatt tudunk csak eredményt elgallitani. Ha az idének csak diszkrét pontjait te-
kintjiik (ahogyan ez szinkron digitalis halozatok esetén megszokott), akkor az n-edik
idopillanatban allithato el legkorabban az (n — 1)-edik mérésbél szarmazoé mintat is
felhasznal6 eredmény.

4.1.1. Rekurziv kiszamitas

Az n + 1-edik atlagértéket, amelyben mar az n-edik megfigyelés is szerepel, az alabbi
rekurziv forméval az n-edik atlagértékbdl is kifejezhetjiik:

B +1) = nﬂzy SR ) (42)
. =0

= n—+1 E(n )+?y( n) = (4.3)

= () — — i)+ — ) = (4.4

= i)+ — = ly(n) — ()] 7 =0,1,2.. (4.5

Itt és a tovabbiakban, minden rekurziv megadéasnal a kezdeti érték nulla: #(0) = 0.

4.1.2. Predikcios-korrekcios alak

Az atlagértékek egymaést kovetd, folyamatos kiértékelése esetén a rekurziv képlettel vald
szamitas szikségtelenné teszi a régebbi mintak eltdaroldsdt és az ismétlodd részosszegek
ujboli kiszamitdsat. A 4.5 szerinti rekurziv felirassal egyuttal egy altalanos szemléletet
bevezets kifejezéshez jutunk:

tn+1)=  @n) + 500 —in)
Uj értek = Joslas  + Kiigazitas (4.6)
az eddigi az 1j megfigyelés )
tudas figyelembe-
alapjan vételével
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4.1. IDEALIS ATLAGOLAS

Adott predikcios-korrekeios képlet esetén (,predikcié” = joslas, ,korrekcio” = javi-
tas, kiigazitas), a kiértékelésben szerepls legnagyobb idgindex és az 0j becsld idginde-
xeinek kiilonbségét k-val jelolve, k 1épéses prediktorrol ill. joslorol beszélhetiink. Jelen
esetben az idealis atlagolas egylépéses joslast valosit meg.

Megjegyzés: Amennyiben k = 0, akkor sztirésrél, k < 0 esetén simitasrol beszéliink.
Az altalanos szohasznalatban azonban mind a harom esetre alkalmazzuk a ,sztirés’-t,
mivel a jel spektruma megvaltozik.

(Megjegyzés: A késébb elsforduld predikeios-korrekeios képletekben a predikcios
tag nem sziikségszertien a pillanatnyi = becslGje. Az atlagolas soran egy statikus jel-
lemz6t becsiiliink, igy a korabbi becslés megtartasa célravezetd joslasnak bizonyul.)

4.1.3. Az alkalmazott jelolések

Az atlagolast, mint az adatfolyam utjaba iktatott adatkiértékelési folyamatot, abraval
is szemléltethetjiik.
Az abrékon alkalmazott épitGelemeket az alabbi pontokban definialjuk:

e Az adatok iranyitott élek mentén terjednek késleltetés nélkiil. Az élek kotik Gssze
a kiilonboz6 rajzi egységeket.

e Az élek mentén feltiintetett szamok (konstansok) veliik végzett szorzast jeldlnek.
(4.2/b abra)

e Az egy csomopontba befutd élek mentén érkezé adatok Osszegzédnek. Egy cso-
mopontnak elvileg barhany bemenete és kimente lehet. Kivonas (—1)-gyel valo
szorzds és Osszegzés utjan tehets meg. (4.2/a abra)

o Az Osszegzés és szorzas miiveletvégzs elemek, amelyek explicit modon is jelolhe-
t6k. Erre akkor lehet sziikség, ha pl. két jel szorzodik, vagy ki akarjuk hangsu-
lyozni a miiveletvégzést, (pl. megvalositas szempontjabol tekintjiik a hélozatot).
(4.2/c-d abra)

e Az eddig felsorolt épitGelemek nem vezetnek be késleltetést emiatt nem enged-
hets meg, hogy az élek alkotta iranyitott grafban hurok forduljon els). Az id6-
beni egymasutanisag megjelenitésére egyediil a tarolok szolgalnak (4.2/e abra).
A tarolé (memoria) az adott id6pillanatban a bemenetére érkezett adatot a rako-
vetkezG idépillanatban bocsatja a kimenetére. Ennek megfelelGen, ha bemenetén
x(n+1) van, akkor kimenete z(n), ha pedig bemenetén x(n) van, akkor kimenete
xz(n —1).

o Az eddigi jelolések hasznélhatok akkor is, ha a jelcsatorna nem valos skalér,
hanem komplex vagy vektor értéki. A gyakorlati megvaldsitas szempontjabol
természetesen ugyanaz a jelolés egészen mas Osszetettségl miiveletvégzést je-
lenthet ilyenkor (pl. az egyszert szorzas helyett skalar-szorzatot; egyetlen valos
érték helyett egy komplex érték, vagy egy vektor tarolasat). Vektorok esetén a
matematikai apparatus boviil a méatrixszal (A) valé szorzassal, ami ugyancsak
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4. ATLAGOLASI ELJARASOK

vektort eredményez. Ilyenkor szemléletesebb az élek parhuzamosokkal valo jelo-
lése. (4.2/f abra)

L
O~ 0~ o[
f)

4.2. adbra. Jelolések

A meghatarozasok értelmében csak diszkrét idépontokat értelmezhetiink. A felso-
rolt épitGelemekkel diszkrét ideji linearis halozatotok adhatok meg, (ha bemengjelbsl
szarmazo6 mennyiségeket nem szorzunk egymaéssal).

4.1.4. Az idealis atlagolas tulajdonsagai

Az idedlis atlagolas nem maés, mint a varhato érték becslGje annak feltételezésével,
hogy a mintasorozat ergodikus (Id. 6. fejezet).

A 4.3 abran id&tsl fiiggd mennyiséggel szorozzuk a korrekcionak megfelels jelet;
emiatt az idedlis atlagolas id6ben valtozo jelkiértékelési mod.

Egyrészrél, idében el6rehaladva egyre tobb mintat vesziink figyelembe mind ki-
sebb, (de minden mintara azonos) sullyal. A 4.3 képlet szerinti rekurzié alapjan azt is
mondhatjuk, hogy egyre inkabb megbizunk az egyre kevésbé bizonytalan becslénkben,
és ezért egyre kevésbé hagyatkozunk egy tjabb zajos megfigyelésre.

Masrészrél, a régi és az uj megfigyelések egyforma sulyuak, vagyis az atlagérték
csak abban az esetben alkalmazhato eredményesen, ha a becslendd jellemzd valoban
konstans. Egyébként a kiszamitott atlagérték a zaj kikiiszobolése helyett a becsiilendd
paraméter megvaltozéasat fogja elfedni. Tehéat az idealis atlagolés egyaltalan nem képes
a becsiilendé paraméter megvaltozasat kovetni.

Megjegyzés: Ha predikcio helyett sziirést frunk fel (nem jovébeli értéket becsliink,
hanem a jelenlegi értéket), akkor a blokkvazlaton a késleltets elem elél kell kicsatolni

yin) wr  @(n D)

\
—
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P
—
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P
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4.3. dbra. Az ideélis atlagolas blokkvazlata a predikciés alak szerint
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4.2. EXPONENCIALIS ATLAGOLAS

az eredményt, igy ezt jeloljiik & (n)-nel. Az egyenletet tovabbra is a tarolo elgtti pontra

kell felirni: .
z(n) =2(n—1)+ ] [y(n) —&(n—1)] . (4.7)

4.2. Exponencialis atlagolas

Helyezziink az ideélis atlagolas 4.3 szerinti rekurziv képletébe az n idGindextdl fiiggd
sulytényezdk helyére allando silyokat gy, hogy azok Gsszege egyet adjon:

B4 1) = (1— %)i(n) + %y(n) ahol Q > 1 (4.8)

Igy kapjuk az exponencialis vagy ,felejts” atlagolast. Ezt az allandé stlyok miatt egy-
szertl megvalositani, és alabb ismertetendd tulajdonségai is kedvezdk.
A rekurziot kifejtve a kovetkezs eredményhez jutunk:

Bt 1) = %y(n) + (1 - é) #(n) = (4.9)

= %y(n) - (1 — %) %y(n -1+ (1 - %)2 T(n—1) = (4.10)
_ éy(n)Jr (1 - %) %y(n—1)+...+ (1 -~ %)n_l %y(l)Jr (1 - %)n %y(O), (4.11)

azaz (Q > 1 (azaz 1 — % < 1) miatt a régebbi megfigyelések hatvanyozottan csok-

keng sullyal szerepelnek az eredményben. Innen szarmazik az exponencialis atlagolas
elnevezés. Képletesen fogalmazva, a régi megfigyelések idében mind tavolabb keriilve
fokozatosan elfelejtédnek”. Ez a ,felejtés” azonban sosem lesz teljes mértéki, a legko-
rabbi megfigyelés silya is csak a végtelenben tart nulldhoz.

Az exponencidlis atlagolas lényeges elénye, hogy a felejté tulajdonséig altal kovetni
képes a becsiilendd paraméter lassi valtozasait. A becsiilendé paraméter valtozékony-
saga miatt kézenfekvd, hogy az idében hozzank kozelebbi mintak pontosabb informa-
ciot hordoznak a keresett paraméterrsl. A nagyobb sulyok azt tiikrozik, hogy ezeknek
a kozeli mintdknak nagyobb jelentséget tulajdonitunk (4.4 abra). Minél gyorsabb a
paraméter valtozésa, annal gyorsabban avulnak el a mért értékeink, igy a felejtés mér-
tékének megfelels é tényez6t annal nagyobbra, kivetkezésképpen (-t annal kisebbre
kell valasztanunk (pl. @ = 1 szélsGséges valasztassal az atlagolas a legutolsé mért érték
elfogadasava fajul, @ = 2 mellett az el6z6 becslés és az Gj mérés egyforma sullyal esik
latba, éppen szamtani kozepiiket kapjuk, stb.).

Példaként a meteorologiai jelentés allhat. A kiilonb6z6 napszakok hémérséklete
nem jellemezhets egyazon atlagértékkel. Ha tetszéleges pillanatban akarjuk a lassan
valtozo hémérséklet alakulasat egy integralis mennyiséggel jellemezni, el kell kiiloniteni
a méréseinkben szerepls zavar6d hatasokat (pl. széllokések, elhalado felh$ arnyéka) a
napszakok kozotti lassa, folyamatos valtozastol (pl. a nap allasa folyamatosan valtozik,
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4.4. dbra. A k-adik megfigyelés silya az n = 11 idépillanatban exponenciélis atlagolas
és Q = 3 esetén

a talajnak hétarold hatasa van). Az exponencialis atlagolas erre a célra megfelels

eszkoz.
Az exponencialis atlagolas predikcios-korrekcios alakban:

t(n+1)=a(n)+ % [y(n) — z(n)] (4.12)

4.5. abra. Az exponencialis atlagolas blokkvazlata
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4.6. abra. Az exponencialis atlagolas predikcids-korrekcios alakjanak blokkvazlata
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4.3. CSUSZOABLAKOS VAGY MOZGO ATLAGOLAS

4.3. Cstuiszéablakos vagy mozgo atlagolas

Idsben valtozatlan jelkiértékelési modot kapunk tgy is, ha az atlagolasban résztvevs
megfigyelések szaméat korlatozzuk allandé értékre. Minthogy az idében kozeli mintak
nagyobb informaciotartalommal birnak (a jelenlegi allapot-érték a jelenlegihez kozeli
megfigyelésekkel van a legszorosabb Osszefliggésben, hiszen a korabbi megfigyelések
az allapotvaltozd korabbi értékeit tartalmazzak, és a korrelacios fiiggvény csokkenése
miatt ezek csak mérsékelten hasznalhatok a jelenlegi allapot becslésére), az utolsé N
darab mintat hasznaljuk fel:

n—1

B = 3 (k) (113)

k=n—N

ahol N: az atlagolasi szam.

Ezt az eljarast csiiszoablakos v. mozgo atlagoldsnak hivjuk, mert a teljes jelbdl csak
az N minta széles ablakon at lathaté mintakat atlagoljuk, és az ablakot kiértékelésen-
ként egy mintanyival tovabbcsusztatjuk.

N.-T

e L e

inn hTHT HEEEN

-
N

4.7. abra. Az atlagolas stlyai cstiszé ablakként vagnak ki egy részletet a jelbdl.

A mozgb atlagolas ugyancsak szamithatoé rekurziv modon, de a jel utols6 N darab
mintajanak tarolasa sziikséges. Utemenként igy is csak a legutolsé mintét kell eltarolni,
és az N-nel megel6z6t kikiiszobolni (4.8 abra).

n n—1

)= Y yh=y 3 vk )~y - N = (414)
= i) + () — y(n — N) (1.15)

4.4. Frekvenciatartomanybeli jellemzés

A kovetkezd szakaszokban a halézatok és rendszerek témakorének egyes alaposszefiig-
géseit ragadtuk ki.
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L _1A l
N-T A T

4.8. dbra. A mozg6 atlagolés blokkvazlata

=
S

\
=
3
_|_
=

A\ 4
3
A\ 4

4.4.1. Egyenletes mintavételezés, harmonikus-analizis

Id6invarians linearis rendszereknek jol kezelhetd leirasat adhatjuk a frekvenciatarto-
manyban. Ehhez egyenletes mintavételezést kell feltételezniink. Tehat példaul z(n) —
x (t = nTy) ahol Ty a mintavételezés periodusideje. Ty egyuttal a téarolon keresztiilha-
lado jel altal elszenvedett késleltetésnek az idejét is jelenti. Ez a késleltetés a frekven-
ciaval egyenesen aranyos fazistolast eredményez a harmonikus jel6sszetevkon.

Adott frekvenciajiu bemend szinuszjel egy linearis halozat Gsszegzéiben kiillonbo6z6
amplitidokkal és fazisokkal 0sszegzddik, aminek eredményeképpen a kimeneten meg-
valtozott amplitudoju és fazisu, de a bemenettel megegyezs frekvenciaju szinusz jelenik
meg. Egy az elgbbitdl kiilonbozd frekvencidju szinuszos bemendjel az elébbitdl eltérd
fazistolasokkal Osszegzddik a haldzatban, vagyis frekvenciarol frekvencidra valtozik a
halozat atvitele (csillapitasa vagy erdsitése, ill. fazistolasa), amit az atviteli karakte-
risztikdval adhatunk meg.

A szuperpozicio elvét alkalmazva, (amely alapjan a linearis hélozatokat definial-
juk), egyszerre tobb harmonikus komponenssel gerjesztve a rendszert is teljesiil, hogy
adott bemeneti komponens csak azonos frekvenciaji kimeneti komponenst hoz létre,
és megforditva: adott kimend komponens csak a megfelels frekvenciaji bemend har-
monikus komponens fiiggvénye.

4.4.2. Atviteli karakterisztika, atviteli fiiggvény

A rendszer stlyfiiggvényének Z-transzformaltja adja az atviteli fliggvényt. Az egység-
kor mentén (z = /7= pontokban) kiértékelve az atviteli fiiggvényt az atviteli karak-
terisztika pontjait kapjuk.

A taroloelem siulyfiiggvénye példéaul:

ht(n)=460(n—1) (4.16)
Ebbdl az atviteli karakterisztika:
Hr (™) = F{hp(n)} = i §(n —1)e i = =il (4.17)
Az atviteli fiiggvény: B
Hry (2) = Z{hr(n)} = i S(n—1)z"=2z"" (4.18)
n=0
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4.4. FREKVENCIATARTOMANYBELI JELLEMZES

Mintavételezett jelekre tovabba:

wly =2nfTy = 27Ti

fs
ahol w a korfrekvencia, f a frekvencia, T, a mintavétel periédusideje, f; a mintavételi
frekvencia.

Mintavételezett jelek esetén hasznalatos a (dimenzié nélkiili) diszkrét frekvencia

(vagy normalt frekvencia): fi = [T, és a radian dimenzioju w7y szorzat, amely a

(4.19)

diszkrét korfrekvenciat (Vagyxrelativ korfrekvenciat) adja.

A tovabbiakban e ketts koziil, 0j jelolés bevezetése nélkiil, az wTy diszkrét korf-
rekvenciat hasznaljuk, amely azt adja meg, hogy egy mintavételi litem alatt az w
korfrekvencidju szinusz jel fazisa hany radidnnal valtozik meg. Fzzel a valasztassal
képleteinkben kikiiszoboljiik a 27 konstanssal valod szorzast, viszont wTi-ben és annak
abrainkon feltlintetett értékeiben megjelenik a szinusz fiiggvény periédusat ado 2.

— T —

H (jT,) = e=3T:

4.9. dbra. Téroloelem és atviteli karakterisztikaja

|H (jwT;)|

ZH (jwTy)

4.10. dbra. A tarolo amplitudo- és faziskarakterisztikaja

Az eddigi eljarasok atviteli fiiggvénye kozvetleniil kiolvashato a rendszer blokkvéz-
latabol, ha a tarolokat a z~1-gyel vald szorzasnak feleltetjiik meg.

4.4.3. Két egyszerid példa

A kovetkezdkben két egytarolos, visszacsatolas nélkiili rendszer atvitelét vizsgaljuk.
4.4.1 Példa. Az N = 2 paraméterd cstisz6 ablakos atlagolas:

y(n) +y(n —1)
2 )

Fn+1)= (4.20)
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4. ATLAGOLASI ELJARASOK

A Z-transzformaltakat jeloljék:

Z{#(n)} = X(2); Z{y(n)} =Y (2)

Ezekkel: ) 1
N + 2z
2X (2) =Y (2) 5
X 1+ 27! S
() ol el
Y (2) 2 2
CeEe (ejw;s + G%WTS> 3
— vl 5 = 7729 cos (T4 /2)
1
0.8
0.6
S
=
L 0.4}
0.2
0 0 T 2n

Ty

(4.21)

(4.22)

(4.23)

(4.24)

4.11. dbra. N = 2 4atlagolo, abs(cos) alaku, alulatereszté amplitudo-karakterisztikdja

Tegyiik fel, hogy szinuszos bemenettel vizsgaljuk a hélézatot. A karakterisztikara
kapott eredmény nem meglepd, hiszen ha egy szinusz jelet egy késleltetettjével atlago-
lunk, minél nagyobb a frekvenciajuk, annél inkabb eltérs fazisban fognak 6sszegzddni,
mignem wT; = 7 diszkrét korfrekvencia esetén éppen ellenfazisba keriilnek, és kioltjak
egymast. Ennek megfelel6en az alulatereszté karakterisztika atvitele nulla a w7, = 7

helyen (4.11 abra).

4.4.2 Példa. Ha a mintak kiilonbségét képezziik, vagyis minden iitemben a meg-

valtozast figyeljiik,
y(n) = y(n — 1)
2 Y
akkor a kovetkezo feliilatereszté karakterisztikat kapjuk:

.fi?diff(n + 1) =

11—zt

2 )
Xaifr (2) L1 1—27! o—IeTy 1 —e v
Y (2) 2

2Xag (2) =Y (2)

z=eiwTs
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4.5. A MOZGO ATLAGOLAS FREKVENCIATARTOMANYBELI JELLEMZESE

—jwTs jwTs —jwTs
e 2 <€ 2 —€e 2 )
= e_JWTS ] = €]<

J 2j

3
2

1) sin (WT,/2) . (4.28)

s
2

o7

4.12. abra. Kiilonbségképzd tag abs(sin) alaku feliilatereszté amplitudo-karakteriszti-
kija

4.5. A mozgb atlagolas frekvenciatartomanybeli jel-
lemzése

4.5.1. A mozgb atlagolas atviteli fliggvénye
Altalanos N esetén az atlagolas atviteli fiiggvénye a 4.15 rekurziv képlet alapjan:

X (2) =X (2) + %Y (z) (1—27Y), (4.29)

H(z) = ;(((j)) — %z—lll__zz_l . (4.30)

Ugyanakkor a nemrekurziv képletbdl kiindulva:

2X (2) = %Y () (1+z"" 4224+ Zm =Dy (4.31)
H(z) = ;(8 - % ), (4.32)

A kettének nyilvan egyeznie kell, azaz az alabbi oszthatosagnak teljesiilnie kell:

T (L4222 + .+ 2 (4.33)
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4. ATLAGOLASI ELJARASOK

Az azonossig a mértani sor osszegképletébdl adodik.
Az atviteli fiiggvény szamlalojaban ill. nevez§jében szerepld tagok mértani kozepeit
kiemelve:

1 o 1—e N 1 emigels iRl _ iyl
H)| oy = e @B "¢~ —en® 2 O S (4.34)
= N 1 — e dvTs N e Jzwls edzwWTs _ g=izwTs
N
— ie—awTs(H%—%)Sm S wls (4.35)
N sin %wTS
4.5.2. A mozg6 atlagolas amplitadokarakterisztikaja
Az amplitudokarakterisztika:
1 |sin %wTs
[H ()|, _ o, = N | snioT | (4.36)
2 S

A szamléaloban egy N-szer gyorsabb szinusz szerepel, mint a nevezében. Mikozben
a szamlaloban lathato szinusz szaporan ingadozik, a nevezében lathato szinusz éppen
egy negyed periodust tesz meg wTy = 7-ig, azaz értéke 0-t6l 1-ig monoton né (vo. 4.13
abra). Ez a [0;7] szakaszon egy csokkend tendenciaju karakterisztikat eredményez,
amely azonban nem monoton, mert a szamlalé nulla helyein ,leszivasok” talalhatok
(4.14 abra). Az wTy = 0 helyen a szamlald és a nevezd is nulla. Itt éppen egy az
atvitel:

|H (2)|or.—0 =1 (4.37)

Ez tgy is belathato, hogy a szinuszokat hatarértékben az argumentumukkal helyette-
sitjiik, vagy az aldbbiak szerint, a I’Hospital-szabaly alkalmazasaval:

N N N
~ sin SwTy . ScosSwT
lim f— = lim % =N (4.38)
WTi—0 sin swTy w0 5 cos zwTy

4.5.3. A mozgb atlagolas faziskarakterisztikaja

Mivel a 4.35 kifejezésben szerepls exponencialis kitevGje wTy linearis fliggvénye, ezért
a fazismenet linearis. Meredeksége, azaz a futasi idé konstans: —%. Ahol a szinuszok
hényadosa elGjelet valt, ott 7 fazisugrés van, a futasi idé nem értelmezett.

4.5.4. A mozg6 atlagolas szelektivitasa, alkalmazasa

N-re periodikus jelekre, amelyek wTy = k%’r korfrekvenciaji komponensekbdl allnak,
az atlagolas hibatlan, azaz a frekvencia-atvitel nulla. Ezeken a korfrekvencidkon a
szinuszos Osszetevéknek éppen egész szamu periddusa fér bele az atlagolas mozgo ab-
lakaba, igy a teljes periddusokon beliil az ellentétes fazistt pontok péaronként éppen
kiejtik egymast az Osszegzésben. Periodikus zajhatéas pl. a hélozati zavar, amely ilyen
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st (b)-
0/\/\/\/\ /N~ N

0 T 2n 3n
2 T .
(©)
1.5+ b
1 - .
0.5F E
0 0 i 2n 3n
ol

4.13. abra. a) Gyors ill. lasst szinusz b) a szinuszok hanyadosa c) 1/N-nel skalazott
abszolutértéke

modon kikiiszobolhets. Ehhez 50Hz-es halozat esetén T, =20 ms t6bbszorosére kell vé-
lasztani az ablak szélességét. (60 Hz-es, 400 Hz-es halozat esetén értelemszertien annak
megfelelgen.) Mozgo atlagolast valosit meg analog modon a dual-slope A /D atalakito
is.

Az ablakhosszra periodikus zajokkal szemben tehat a mozgd atlagolas ugyanazt az
eredményt adja, mint amit az ideélis atlagérték adna:

g(n) = y(n) (4.39)

A csokkend tendenciaju amplitudokarakterisztika idétartoméanybeli magyarazata
az, hogy a fennmaradé részperiddusok, amelyek a tokéletlen elnyoméast okozzak, rovi-
debbek (v6. 4.15 abra).
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4. ATLAGOLASI ELJARASOK

Magnitude of tf

dB

Phase of tf
T T T T T T T T T U T

degrees
| I
I =
au o a
o O O o
T T T T
1 1 1

1 h 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4.14. abra. Cstsz6 ablakos atlagolas amplitudo- és faziskarakterisztikdja

4.5.5. A mozgb atlagolas polus-zérus képe

Irjuk fel az atlagolas atviteli fiiggvényének gyoktényezos alakjat, amelybsl kozvetleniil
latszik, hogy hol nulla az atvitel (ahol a szamlalonak gyokei vannak, melyeket a nevezd
nem ejt ki):

N-1
1 1—2N 1 N 11 (= 2n)

Lm0
H(z)zﬁz T T =N 571 :N(Z—O)N(z—l) (4.40)

ahol z,, az m-edik komplex egységgyokot jeloli.

N=1, m=0,1,--- ,N—1; (4.41)

t = N =01, N —1; (4.42)

A poélusokat és a zérusokat a Z-sikon abrazolva a rendszer polus-zérus képét kapjuk
(1d. 4.16 abra).

Nyilvanvalo, hogy a 0 frekvencian tapasztalhaté nemnulla atvitelért a polus-zérus
kiejtés felel. Mivel az origon kiviil mashol nem marad poélus, az atvitel szamlaloja és
nevezdje, z~'-ben felirva, oszthat6 egyméssal, igy polinomot kapunk az atvitelre, azaz
véges impulzusvalaszu az atlagolo (1d. 4.16. dbra). Az origoban 16v6 négyszeres polus
nélkiil a hélozat nem lenne megvalosithato.
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T I I

4.15. dbra. Az egész periddusokban az ellenfazist mintak éppen kiejtik egymaést, viszont
a maradék részperiodus esetén nem. a) DC esetén nincs kiejtés, b) egész periodus,
kiejtés, ¢) Tort periodus, maradék.

1 z
0 4
1
-1 0 1

4.16. dbra. A mozgo atlagolas polus-zérus képe (4-szeres polus az origboban, egymaést
kiejt§ polus-zérus par z = 1-ben)
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4. ATLAGOLASI ELJARASOK

4.6. Az exponencialis atlagolas jellemzése a frekven-
ciatartomanyban

4.6.1. Atviteli fiiggvény, amplitudo-karakterisztika, polus-zérus

kép
A 4.8 egyenletbdl az exponencialis atlagoléas atviteli fiiggvénye:
. 1 . 1 X(2) 1/Q
2X(2)=(1—=)X(2)+ =Y(2) = = 4.43

Vagyis az exponencialis atlagolasnak egy (1 — é)—ban elhelyezkedd valos pozitiv
poélusa van. Q)-t minél nagyobbra véalasztjuk, annal kozelebb keriiliink az egységkorhoz
(4.18 abra). Ez a poélus 0 frekvencian emel ki, és hatasa a frekvencia novekedésével
monoton csokken, ami egy monoton alulatereszts karakterisztikat eredményez (4.17
abra). Az amplitudocsics annal keskenyebb és magasabb, minél kizelebb van a poélus
az egyseégkorhoz (QQ — o0).

Az amplitudé karakterisztika:

1/Q
2= (1-1/Q)

|H (2)] =

_ 1/Q | 1/Q
e [T (1 1/Q) e~ (1-1/Q)
1

1
Q \/1 —2(1—-1/Q)cos (WTy) + (1 — 1/@)2

1.2

= 0.6}

(o748

4.17. abra. Exponenciélis atlagolds amplitado-karakterisztikaja

4.6.2. Altalanositas az idealis atlagolasra

Az idedlis atlagolasra nem alkalmazhatunk frekvenciatartoméanybeli lefrast, mivel az
atviteli fliggvény stacionarius kimenetet feltételez, mig az idGvarians sztir6t megvaldsito
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1 z
0 %
-1
-1 0 1

4.18. abra. Exponencialis atlagolés polus-zérus képe

ideélis atlagold kimenetén minden iitemben tjabb tranziensek kezdddnek a paraméter-
valtoztatas miatt. (Igaz, az id§ elérehaladtaval, ez a paramétermodositas egyre fino-
mabb, igy egyre kisebb tranzienst okoz.) Jollehet, a tranziensek miatt nem mondhato,
hogy az idealis atlagolo iitemenként megfeleltethets egy n = @) tényez6jii exponencialis
atlagolonak, az viszont igaz, hogy ha az n-edik litemben rogzitjik a korrekcios sily-
tényez6t, akkor ezzel a megfelel6 exponencialis atlagolora torténik atkapcsolas, és az
annak megfelel§ karakterisztika lesz érvényes az allandosult Gsszetevire. Az idedlis— és
az exponencialis atlagolés ilyen 6tvozését alkalmazzak olyan esetekben az exponencié-
lis atlagolés elinditasahoz, ahol a felejtési tényezé til kicsi és mar az indulast kévet&en
szeretnénk viszonylag torzitatlan atlagértékeket gytjteni.
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5. fejezet

Rekurziv DFT, a megfigyel6elmélet
alapjai

5.1. Bevezetés

A mozgod atlagolas amplitudo-karakterisztikdjanak féhullaméért az atlagolas polusa
felelss, amely kiejt egy zérust. A polust elhagyva fésis sziir6t kapunk.

Az mozgo atlagolo altalanosithato tgy, hogy a polus-zérus kiejtést mindegyik zérus-
ra egyenként megvalositjuk (az atlagold atviteli fliiggvényébdl 21 — 2712, helyettesi-
téssel), az igy kapott sztirékészlet a DFT-sziir6bank.

Az egyes DFT-sziir6k amplitado- és faziskarakterisztikdja QW” eltolastol eltekintve
megegyezik a mozgo atlagolaséval. Allandosult allapotban a DFT-sziirék kimenete a
bemend jel megfelels, komplex Fourier-komponense fazishelyesen.

A megvalositas soran kihasznélhatd, hogy a bemend jel valos, ezért a sztir6bank
komplex egyiitthatoju sziirsi konjugalt paronként osszevonhatok. A valos egytitthatoji
sziirGket példaul masodfoki rezonatortagokkal valosithatjuk meg.

A DFT-sztirés elgallithato tgy is, hogy a kivant Fourier-komponenset az alapsavra
keverjiik, komplex atlagolassal sztirést végziink, majd a sztirt jel spektruméat keverés-
sel visszatoljuk az eredeti frekvenciapozicioba. A visszakeverést elhagyva a harmonikus
komponens komplex Fourier-egyiitthatojat allitjuk els. Ez a Fourier-sorfejté. A modu-
lacioval bemutatott elv a jelspektrum &athelyezése, melyet felhasznal példaul a zoom
FFT eljarés.

A predikcios-korrekcios kiértékelési séman alapul a megfigyelGelmélet. A megfigyels
olyan rendszer, amely képes egy mésik rendszer allapotvaltozo6it lemasolni. Ha sikertil
olyan modellt alkotnunk a megfigyeléseinkhez, amelyekben az allapotvaltozok képvi-
selik a mérendd mennyiségeket, akkor a hibabecsatolds megvalasztasaval tetszéleges
dinamikaju megfigyel6 tervezhetd.

A DFT is elsallithaté megfigyel6 formaban. Ez a megvalositas numerikusan ked-
vez&bb, mint a korabbi struktira, mivel a megfigyels egy globalis visszacsatolést tar-
talmaz, és ezen keresztiil egyszerre valositja meg a polusokat és a zérusokat. Ezzel
a rezonatoros sztrdstrukturaval nemcesak DFT, hanem tetsz6leges lineéris predikcios
eljaréds megvalosithato.

72
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5.2. DFT sziir6 és DFT sorfejt6

s,

szurét.

5.2.1. Fésiis szliro

Ha a csuszoablakos atlagolasbol elhagyjuk a z = 1-ben elhelyezkedd polust, akkor an.
féstis sziir6hoz jutunk (5.1/a abra). A fésts sziir6 N zérusa az egységnek N-edik gyoke,

2N=1 m=01,--- ,N—-1 (5.1)

=N m=0,1,--- ,N—1 (5.2)

a szlir§ N poélusa pedig az origobban van. Ez alapjan a féstis-sziirg atviteli fliggvénye:

P I GE=zm) v

H(Z):Nm((,)z—O)N =N N :N(l—z_N) (5.3)

Ebbdl kozvetleniil adodik a féstis sziiré kimenetét megado egyenlet:

. 1
&p(n) =+ (y(n) —y(n = N)) (5.4)
Megjegyzés: Mivel az éppen beérkezé megfigyelés nem vehets figyelembe a valos
idejd eredményben, ezért a fésts szlir6 onmagaban csak késleltetéssel valosithaté meg.
A mozgo atlagolasban szerepld rezonator bevezet egy ilyen késleltetést (vo. 4.8 abra).
A frekvencia karakterisztika:

H(2)| _yjor. = % (1 — e_jN“’Ts) = %e‘jgﬂ’s (ej%“Ts — e_j%‘*’Ts> =
o 2 N

Az atlagolasnal hozzéavett z = 1 polus az 5.1/b abran lathaté modon (minden 27
hosszt intervallumban) kitor egy fogat a fésts sziir6 karakterisztikajabol.

5.2.2. DFT sziird

A mozgé atlagolashoz hasonldan, a tobbi N-1 egységgyok helyén is kiejthets az adott
zérus, ha a mozgod atlagolas polusat elforgatjuk. A fésts sztir6 m-edik fogat kitorve
savateresztd sziirSkarakterisztikat kapunk (5.1/c abra).

A polus elforgatasahoz 21 — 271z, helyettesitést hajtunk végre az atlagolas at-
vitelét megado egyenletben. A kovetkezd m szerint paraméterezett atviteli fliggvények
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5.2. DFT SZURO ES DFT SORFEJTO

adodnak:
1, 1—(ztz)"
H,(2) = N7 AmT{o e (5.5)
1 1— 2N
= Zml—z—lzm m=0,1,--- ,N—1 (5.6)

Utobbihoz felhasznéaltuk az 5.1 azonossagot.
Az 5.5 szerinti atviteli fliggvényben felismerhetd az alabbi véges mértani sor 6sszeg-
képlete:

1
Hn(z) = 557 am (L4 27 4 (27 2m)? 4 o (27 02m) )

elvégezve a beszorzast, és megforditva a tagok sorrendjét

Ho(z) — %((z1zm)N+...+(zlzm)2+zlzm) (5.7)

kiemelve z¥ =1 — et

Hy(z) = — (27N + 27 Wby Uy pn (V=202 gty (VD) (5.8)

ahol m = 0,1,--- | N — 1. Ebbdl kozvetleniil adodik az idStartoméanyban az alabbi
egyenlet az m. szlir6 kimenetére:

1 o .
() =~ (31— V) y(n = N+ ) e F0 4y (n - 1) e FOD) (59)

A fenti Osszegben szerepl§ silyok, az % skalazastol eltekintve, megegyeznek a 2.23
szerinti DFT sulyaival. Vagyis éppen azt a hatast érjiik el, mintha soros-parhuzamos
atalakitas utan, itemenként elvégeznénk a a 2.23 szerinti DF'T szerinti mtveletet.

Az m paramétert szlir6k Osszessége, melyet sziir6készletnek, vagy sztir6banknak
neveziink, minden iitemben egy N elemi komplex vektort allit el§ a legutols6 N meg-
figyelés alapjan. Hardver megvaldsitéas esetén az N darab sziir6 parhuzamosan szamit-
hatja az eredményt. (1d. 5.2 és 5.3 abra).

A DFT sziir6 amplitido-karakterisztikajat 5.5-bol z = e/*Ts véltozocserével és a
szamlalo, ill. a nevezé mértani kozepének kiemelésével kapjuk:

jN(wTs—z—'"m)

1 - 27 ].
] — = J(WwTi—Fm) | _

[H (2] czerom. = S (5.10)
1 en g€ N (T, — 22 m) sin 5 (WT, — Fm) (5.11)
N eIz WL=%m)  sin L(wT, — Zm) ’

— ie—j%(wTs—%'m) . sin 5 ((.UT - _m) (512)
sin § (w7 — 2m)

75



5. REKURZIV DFT, A MEGFIGYELOELMELET ALAPJAI

io(n + 1)
zh | 27
> < J.- >
1 .
y(n) N Zi(n+1)
L —14 vy z"
N.T - < l -
Yn-N) e
In_1(n+1)
ZN-1 .
A 7
A4
> < i >
[\ _J . J
Y Y
L-a) ot

Fésts sztir6 (zérusok) Rezonatorok (csatornanként egy polus)

5.2. dbra. A DFT-szirs blokkvazlata

fs fs

N x1 -:Z
1 |

1 x

— =i

5.3. dbra. A DFT sztir6bank soros-parhuzamos atalakitast is végez a jelen.
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5.2. DFT SZURO ES DFT SORFEJTO

Az 5.12 és a 4.35 egyenletek Osszevetése alapjan kimondhato, hogy az m-dik DFT
szlrs egy olyan savsziirg, amelynek amplitudo- és faziskarakterisztikaja jellegre azonos
2

a cstszo ablakos atlagoloéval, de savkozepe Srm relativ kérfrekvencian van. A DFT
2

sziir6 ugy viselkedik az Fm frekvenciapozicioban, mint az atlagolé a nulla poziciéban:
mig az atlagolotol azt varjuk, hogy konstans értéket szolgaltasson a kimenetén, addig
a DFT szlir6t6l azt varjuk, hogy a jelbél csak az wTy = %rm korfrekvencidju Fourier-
komponens jusson a kimenetre. Az N-re periodikus diszkrét jeleket a DF'T sztir6bank

Fourier-komponenseire bontja.

5.2.3. Megvalositas valos egyiitthatoji, masodfoki rezonator-
tagokkal

A DFT sztir6k egy-egy 2, = ¢’ Fm polusu un. komplex egyiitthatoju rezonatort foglal-
nak magukban. Az egységkoron elhelyezkeds polus ugyanis azt eredményezi a vissza-
csatolasban, hogy a magéara hagyott rendszer komplex értékd allapotvaltozoja egy
%rm diszkrét korfrekvenciaval forgo fazor lesz, hiszen ennyivel forgatja el iitemenként
a z,-mel valo szorzas. Ha tehat ilyen korfrekvenciaji szinuszos jelet adunk a bemene-
tére, akkor azt csillapitas nélkiil fazisszinkronban Gsszegzi, igy azon a korfrekvencian
végtelen az atvitele, azaz rezonancia 1ép fel.

A rezonatorok bemenetén y' (n) =y (n)—y (n — N) jel van, amely a cstiszo ablakba
bekeriils legijabb minta és a kiesé legrégebbi minta kiilonbsége, azaz az 5.4 egyenletnek
megfelel§ fésts szlir6 kimente. Az egyes rezonatorok kimenetét jelolje z,,(n), atviteli
figgvényét pedig Hry,(2).

A DFT rezonétortagok az m = 0 indext egyszeri atlagolot és az m = %—hez tar-
tozo sziirGt kivéve, komplex egyiitthatot tartalmaznak igy valés bemenetre is komplex
eredményt adnak; amplitudo-karakterisztikdjuk nem paros fiiggvény (vo. 5.1/c abra).
Ennek megfelel6en megvalositasukhoz kételemi vektorokon kellene a komplex szorzas-
nak és Osszeadasnak megfelel6 miiveleteket elvégezni. Ilyen kiszamitas példaul az, ha
valamilyen magas szint programnyelven komplex-miiveleteket tudunk végrehajtatni.
Alacsony szinti realizacionéal azonban nem tekinthetiink el attol, hogy a komplex szé-
mokon értelmezett miiveleteket valos szampéarokon végezziik, valos egyiitthatoja halo-
zattal, és tulajdonképpen nem egy, hanem két valos értékd jelcsatornat kell megvalosi-
tani rezonatortagonként, amelyek egy-egy tarolot tartalmaznak: a valos és a képzetes
rész szamaéara, valamint a kimenet is két valos érték: az eredmény valos része és képzetes
része.

Az alacsony szint megvalositas egyszertisodik, ha kihasznéljuk, hogy a bemend
jel valos-értékid. Ekkor ugyanis a sztir6bank komplex rezonatorai konjugalt paronként
dsszevonhatok (& -re szimmetrikusan: az els6 az N — 1-dikkel stb.), mivel kimeneteik is
komplex konjugéltjai lesznek egymasnak. (A 0-dik és az %—dik rezonétorok eleve valos
egyiitthatojuak, és kiilon-kiilon elséfoku taggal megvalosithatok. )

Legyen

21 (5.13)
m = —m . .
m=N

Az m-dik és N —m-dik komplex rezonétor atvitelének 6sszegébdl a valods részt elGallitd
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csatorna:

22 21271 > z7Lcos p, — 272

1—zpz7t 1 —2z 12!

1

Re{Hun(n)} = (

= 5.14
1 -2z cosp, + 272’ (5.14)

kiilonbségiikbdl a képzetes részt elGallitd csatorna:

1 Zm2 1 z-1z71 27 lsing
Im{ Hy,,(n)} = — _ _Fm - m . (515
miHem(n)} = o (1 el 1- zmlzl) =2 Tcospn o2 1))

A fentiekhez felhasznéltuk, hogy:

P e S (5.16)
valamint az Euler azonossagot:
e’? = cosy + jsin, (5.17)
amellyel
Zm 2 = 200SQm, (5.18)
Zm— 20 = 2jsinep,,. (5.19)

A két csatorna Osszevonva megvalésithato, mivel a nevezdk megegyeznek, vagyis
a visszacsatolasok egyformak. Ahhoz, hogy ezt kihasznaljuk, a kaszkddban el6bb a
nevez6t kell megvalositanunk (5.4 abra). Mivel a két késleltetésorra azonos adatok
jutnak, ezért megcsapolasi pontjaikon is azonos adatok vannak, vagyis a két késleltets
sor Osszevonhato eggyé. Ezt mutatja az 5.5 abra.

Re {&(n)}

» Im {Z,,(n)}

atviteli fv. nevez§je

5.4. abra. A valos és a képzetes jelcsatorna megvalositasa
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v, (n) o
Z" 2
A
N 05 om
A
) 4 i 7 ) 4
-1
A4 ~
4 = » Re{Z,(n)}
Sin @, R

Im {jm (n)}

5.5. abra. Az m-dik mésodfoku rezonatortag egy lehetséges megvaldsitasa

5.2.4. DFT sorfejtés, jelspektrum athelyezése
A DFT-sztir6 kimenetére kapott 5.9 kifejezést megismételjiik:

1 o o
TDFTsztrs = o (y (n—N)+y(n—N+1) e IF™ L 4 y(n—1) 6—3%(N—1)m>

N
(5.20)
Egy kis atalakitas utan ezt kapjuk:

i 2% mn 1 — —jiZZmk
= &N (N Z y(k)e N ) (5.21)

k=n—N

A zarodjelezett, silyozott atlag ugy is elgallithato, hogy a beérkezs y (n) megfigyelé-
seket minden iitemben szorozzuk az eI~ ™" komplex harmonikus jel mintaival, majd
atlagolast végziink. Ezzel éppen a megfelels stulyozéast valositjuk meg minden egyes
iitemben. A két jel idGtartomanybeli Gsszeszorzasat keverésnek hivjuk. A komplex ke-
verdk periodikusan ismétlik komplex hullamformajukat.

A keverés a frekvenciatartomanyban athelyezi a jelet. Legegyszertibben két komplex
harmonikus szorzasan szemléltethetjiik ezt. Legyen y (n) = /15" és w (n) = e~Iw21sn
. Szorzatuk u (n) = y (n) w (n) = /1 Tsnemiweln = eilwi—w2)Tn yaovis a keverés —wy T,
diszkrét korfrekvenciaval athelyezte a jel spektrumat (5.6 abra). Ha az y (n) jel egy
tetszGleges periodikus jel, akkor a keverés minden egyes Fourier-komponensét ugyan-
ennyivel tolja el, tehat ugyaniagy athelyezédik a teljes spektrum. A hiradastechnikai
szohasznalatban a vivével valo keverést modulacionak, az alapsévra keverést demodu-
lacionak nevezik.

A keverést kovets atlagolastol allando értékid kimenetet varunk. A (5.21) egyenlet-
ben az atlagolast egy visszakeverés koveti az e ¥mn modulélo jellel.

Megjegyzés: a DFT-sztir6 levezetésében, és rezonatoros megvaldsitasaban nem hasz-
naltunk keverést, kizarolag a szlirG egyiitthatojat valtoztattuk.
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v .
T T T >
w2 w1 twy w1

5.6. dbra. Spektruméthelyezés modulécioval

1
atlagolo |— Xy (n) W

eI %N
z(n) atlagolo |— X (n) a diszkrét Fourier-sorfejtés
- > egytitthatoja az utols6 N
mérés alapjan
e~ IR (N-1)n

atlagolo |—» Xn_1(n) J

- J

komplex kétcsatornas
kevers  atlagolo (Re, ill. Im)

{

5.7. dbra. DFT sorfejtés

A DFT-sorfejté (5.7 abra) az N-edik egységgyok szerint eltolja a spektrumot ugy,
hogy a vizsgalt frekvencia-osszetevd a 0 frekvenciara keriiljon, majd atlagoléssal elGal-
litja a harmonikus jelkomponens Fourier egyiitthatojat. Megjegyzés: maga a Fourier-
integral hasonl6 struktuaraju:

oo

X(f) = / w(#)e 2, (5.22)
— 0o

azaz komplex keverés, majd alulatereszts sziirés, de véges energiaju jelekre.

A DFT sorfejtés kimenete és a DFT sztir§ kimendjele kozott egy e Fmn_nel végzett
komplex keverés teremt kapcsolatot. Az 5.8 dbran a szorzas el6tti ponton az (ideélis
esetben konstans) Fourier-egytitthato, a szorzas utan a DFT sziir6nek megfelel§ kime-
ndjel jelenik meg.

A DFT komponensek elgallitdsa nyoman kétféle frekvenciatartomanybeli athelye-
zést ismerhettiink meg:

1. SztirGkarakterisztika dthelyezése: A DF'T sziir§ esetén az alulateresztd sziiré frek-
venciatulajdonsagait toltuk el méas savkozépi frekvencidra, a szlir6ben szerepld
egyiitthatok megvaltoztatésaval.
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atlagolo

demodulator kétcsatornds o dulator
atlagold

5.8. dbra. DFT komponens megvalositasa keveréssel

2. Jel spektrumanak éathelyezése: A keverésen keresztiil megvalositott DFT sziir6
esetén a jel eltolasa, atlagolasa, visszatolasa volt az tt.

A jelspektrum dthelyezése egy altalanosan hasznalt elv, amely két megfontoléasbol
lehet el6nyos:

o A rogzitett paraméterekkel megualdsitott jelfeldolgozo eszkozhéz ,yissziik” a spekt-
rumot. Integralt &ramkorok esetén ez azonos aramkori (logikai) blokkokbol vald
épitkezés lehetGségét teremti meg. Miiszer esetében jelentheti azt, hogy egyetlen
jelfeldolgoz6 modul alkalmazhaté tobbféle frekvenciatartomény vizsgalatahoz a
keverést kovetden.

o Az alacsonyabb frekvencidra keverés lehetdsége nagyfrekvencias jelek esetén els-
nyos. Nagy sévszélességl vagy nagy vivéfrekvenciaja jel nagy mintavételi frek-
venciat tesz sziikkségessé, ami meghatarozza az adatfolyam sebességét, és elGirja
a miiveletvégzések gyorsasagat. Bonyolultabb jelfeldolgozasi algoritmusok esetén
keveréssel, majd szliréssel savkorlatozni lehet a jelet, és tjra-mintavételezéssel
alacsonyabb mintavételi frekvencian lehet folytatni a jelfeldolgozast.

5.3. A DFT alkalmazasa spektrumbecsléshez

5.3.1. FFT-analizAtor

Az ablakhosszra periodikus jelekre a DFT el6allitja a jel Fourier-soranak komplex
egyiitthatoit, amelyek abszolut érték négyzete a jel teljesitményspektrumat adjak koz-
vetleniill. A DFT négyzeteit periodogramnak is hivjak. A periodogram hasznalhato
sztochasztikus jelek spektruménak a becslésére is. Ld. Schnell, 24.6.2., 24.8.3 fejezet.
Ezen az elven miikodnek a Fourier-analizatorok, melyek a DFT kiszamitasara kiilon-
boz6 gyors Fourier transzformécios, angol roviditéssel FFT (Fast Fourier Transform)
eljardsokat hasznalnak.

Az FFT algoritmusok olyan szamitasi struktarak, amelyek kihasznéljak a DFT
szimmetrikus és ciklikus tulajdonséagait (1d. Schnell, 24.7.5 fejezet). Mig a 2.23 szerinti
kiszdmitasanal az N darab N tagt 6sszeg szamitasidhoz O(N?) (N? nagysagrendii)
komplex szorzas és Osszeadas sziikséges, addig az FFT-vel, amely faktorizaciok atjan
az 0sszes DFT pontot egyiitt csak szamitja, O(N -log, N) szamitéasi miivelet sziikséges.
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5.9. dbra. Az atlapolasgatlo sziiré karakterisztikajanak betiikrézédése

Fontos, hogy mig a DFT-sziir§ rekurzivan allitja el6 az eredményt, addig az FFT
nem rekurziv. Az FFT blokkos szamitési eljaras, ami azt jelenti, hogy az eljaras felté-
telezi, hogy a szamitds megkezdésekor az 0sszes minta eqyszerre rendelkezésre dll.

Spektrumanalizis esetén nem jelent hatranyt a blokkos kiértékelés, mivel az egy-
méast kovetd iitemek transzforméltjai redundanciat tartalmaznak, (mialatt N minta
keresztiilhalad a DFT-sziirén, azalatt N? kimend minta sziiletik). Ezért spektrum-
becslés esetén elegends N litemenként ,néhanyszor” kiértékelni a transzformaéltat. Ilyen
feltételek mellett az FFT rendkiviil hatékonyan alkalmazhato.

A DFT-sziir6 szamitasahoz titemenként csak O(N) mitiveletet kell végezni a transz-
formalt elGallitasdhoz, de a rekurziv szamitas miatt nem takarithatjuk meg az {itemen-
kénti kiértékelést, ezért N iitemre vetitve a szamitasi igénye O(N?).

A mintavételezés elGtt a vizsgalt jelet savkorlatozni kell. Az analég atlapolasgatlo
szlrdt gy kell megtervezni, hogy a vizsgalni kivant sdvban egyenletes atereszté tarto-
ménya legyen, valamint nagy legyen az elnyomésa abban a savban, amelyik a mintavé-
telezés kovetkeztében éppen ebbe a vizsgalt frekvenciasavba lapolodik be. Az atereszts-
és a zarosav kozotti atmeneti tartomany éppen onmagaba lapolodik be a mintavétele-
zést kdveten.

Az 5.9 dbra egy olyan atlapolasgatlé sziirg jellegre helyes amplitido-karakterisztika-
jat mutatja, amely a mintavételi frekvencia negyedéig terjeds vizsgalati tartoményt
enged meg 80dB el6irt dinamika mellett, azaz a spektrumcsucstol szamitva -80dB
dinamikatartomanyban nem keletkezhetnek hamis Gsszetevik.

Szaggatott vonallal a karakterisztika betiikrézddése lathaté a mintavételezést kove-
tGen, ami ugy értelmezhetd, hogy ha a bemendjel fehér zaj, akkor a sztir6karakterisztika
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altal kivagott jelspektrum a mintavételezés utan a szaggatott vonal szerint tiikrozédik
be.

5.3.1 Példa. Vizsgaljuk meg az elért felbontast FFT esetén. N = 1024 pontos FFT
esetén és az 5.9 abra szerinti alulatereszté sztirével % = 256 értékes pontot kapunk,
mivel a % pontra szimmetrikusan komplex konjugalt értékek talédlhatok, ill. a %. pont
felett az atlapolas miatt nem teljesiil a 80dB-es dinamika. Ha a mintavételi frekvencia
fs = 102,4 kHz, (amivel a vizsgalhato tartomény % = 25,6 kHz,) akkor a felbontés
£ =100 Hz. W

A felbontas (%) novelésére alkalmazhato nagyobb pontszama FF'T, amelynek azon-
ban hatart szab a numerikus pontossag és a rendelkezésre allo szamitasi teljesitmény,
ill. taroloméret. Mivel N ndvelésével nem lehet lényegesen javitani a felbontast, ezért
az f; mintavételi frekvenciat kell csokkenteni. A megoldas az, hogy egyszerre csak
egy kis tartomanyt vizsgalunk; sok esetben egyébként is csak a spektrum jellegzetes
tartomanyai az érdekesek. Ezt a megoldast sédvszelektiv FFT eljarasnak hivjak.

5.3.2. Savszelektiv Fourier transzformacios eljaras

A savszelektiv Fourier transzformacios eljaras (roviden: savszelektiv eljaréas, angolul:
,band selective FFT” v. . zoom FFT”) a jelspektrum athelyezésének elvét hasznalja fel.
Mint a neve is utal ré, egy adott sédvot kivalasztva becsli a jel spektrumat.

Az 5.10 abran nyomon kdvethetd modon a savszelektiv eljaras komplex keverés-
sel az alapsavra helyezi 4t a spektrumban vizsgélni kivant savot, majd ezt kovetGen
alulatereszts sztiréssel korlatozza a spektrumot ennek a savnak a kornyezetére, majd
djramintavételezi a jelet alacsonyabb frekvencidval. Tovabbi tjra-mintavételezéssel, a
spektrumnak mind keskenyebb szelete valik vizsgalhatova az origé6 mind kisebb kor-
nyezetében, egyre kisebb mintavételi frekvencia mellett. Végiil az alacsony mintavételi
frekvencia mellett elvégezhetd FFT-vel megfelels felbontési spektrumbecslés lehet-
séges. A tObblépcsds tjra-mintavételezésre azért van sziikség, mert igy az alapséavi
sziréssel szembeni kovetelmények lényegesen enyhitheték. A — tobbnyire 2-es, 3-as,
5-0s tényezGjd — decimélasok ered§ hanyadosat jelolje: L =[], L.

Az tjramintavételezés (decimalas) soran az alulatereszts sziirés lecsokkenti a jel
savszeélességét, igy ezt kovetden elegends a kimendgjel minden L-dik mintat megtartani
a mintavételi tétel betartasaval, ahol L, a sévszélesség lecsokkentésének mértékétsl
fligg.

A savszelektiv modszer lehetévé teszi, hogy P bemend mintara P pontos FFT
helyett csak egy N = % pontos FFT-t szamitsunk, (azonos ideig gytjtve a mintakat),
amely az eredeti (P pontos) FFT-nek tetszéleges N szomszédos pontjat adja meg.

Mas megviladgitasban: egy N pontos FFT-t alkalmazva, az eljards L-szer pontosabb
felbontéast eredményez (a teljes vizsgalhato savnal L-szer keskenyebb savban és az
eredeti diszkrét jel N - L mintajat feldolgozva), mint az eredeti jel N pontos minta
regisztratuman elvégzett N pontos transzformacio.

Megjegyzés: A fentiekbdl egyértelmt, hogy az eljaras nem tart rovidebb ideig, mint
ha a teljes spektrumot vizsgalnank. A felbontas akarcsak az egyszerid FFT esetében,
az analog jel regisztratum-hosszanak reciprokaval egyenld.
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5.10. abra. A jelspektrum alakulasa a savszelektiv eljarasban

v

cos (w1 Tgn) l
— "\ A/D >é—> "\ | \._

sin (w1 Tyn) l,

5.11. abra. Savszelektiv eljaras blokkvazlata az jra-mintavételezésig

84



5.4. A MODELL BEEPULESE A MERESI ELJARASBA

Megjegyzés: ,decimalas” = ,tizedelés”, de az eljarast tetszéleges aranyi mintaeldo-
bésra hasznaljuk. Ha a savkorlatozo szirést is értjiik alatta, akkor célszert ,decimald
sziirés” kifejezést hasznaljuk.

5.3.2 Példa. Ha egy A fiie. = 1 Hz széles savot kivanunk vizsgélni, akkor az 5.9
abra szerinti feltételek mellett f! = 4 Hz-re csokkenthetd le a mintavételi frekvencia (a
savszelektiv eljarassal). Az FFT-nél példaként vett (83. old) N = 1024 pontos FFT-t
alkalmazva a felbontéas ekkor Af' = ‘110132 ~ (0,004 Hz. A decimalt jel mintavételének
periodusa T}, = % = 0.25 s, ilyen id6kozonként all el egy 4j minta.

A vizsgalathoz az analdg jel T, = 1024 -0, 25 s= 256 s= 4 min 16 s hosszi részletét
sziikséges mintavételezni. Ha az 5.3.1 példahoz (83. old) hasonléan tovébbra is 102,4
kHz mintavételi frekvenciat alkalmazunk (a rendelkezésre allo atlapolasgatlo szird,
vagy a vizsgalni kivant frekvenciasav savkozepe miatt), akkor Gsszesen P = 102,4
kHz-256 s= 25-2%° db minta begy(jtése sziikséges a megadott, igen finom Af = 0,004
Hz felbontashoz. Nem valosidej feldolgozas esetén ennyi mintédnak az eltarolasa is
probléma volna, nemhogy a megfelel6 pontszamu FFT-nek a kiszamitasa. A pontok
hatalmas tomege, a teljes FFT kiszamitésa esetén, az eredményben egyforman jelent-
kezne gf = P, és a vizsgalando sav a teljes spektrumeredménynek csak elhanyagolha-
toan kis részét tenné ki (1 Hz/25,6 kHz). B

Megjegyzés: Berendezésben az els6 djramintavételezésig célhardverrel dolgozzak
fel a jelet. Az azt kovetd, lecsokkent mintavételi iitem mellett szoftver megvalositést
alkalmaznak.

Megjegyzés: Az 5.10 abra c-e. sordban ébrazolt jel mar nem valos-értéki (spekt-
ruma nem péaros ill. paratlan, valos ill. képzetes részii). Ugyanez vehetd észre az 5.11

abran, ahol megjelenik a valos-, és képzetes jelcsatorna.

5.4. A modell beépiilése a mérési eljarasba, a megfi-
gyel6elmélet alapjai

5.4.1. Jelmodell és modellképia

Tegyiik fel, hogy mérends egy x alland6. Ennek modellje az 5.12 abra szerint egy
onmagara visszacsatolt allapotvaltozo lehet, melynek kezdeti értéke, x(0), a keresett
allando. Ugyanigy ennek az allandénak az inverz modellben megvalositott kopidja
is egy 6nmagara visszacsatolt tarolo elem, amelynek azonban a kezdeti értéke, z(0),
tetszéleges. A masolas a predikcios-korrekcios elv segitségével a két rendszer allapot-
valtozoinak eltérésébdl szarmaztatott hiba becsatolasaval hajthato végre az 5.12 dbra
szerint. A predikcio-korrekeio altaldnos sémajat emeli ki az 5.13 abra. M a modell, M
a modellkopia, K a korrekcios stratégia.

Az, hogy a hibat hogyan hasznaljuk fel, nem egyértelmii. Ha azt feltételezziik, hogy
a mérésiink pontos, akkor a hibat kozvetleniil is becsatolhatjuk (g = 1), és egyetlen
lépésben atmasolodik az allapotvaltozo, a tovabbi lépésekben a hiba nulla lesz. Abban
az esetben azonban, ha zaj terheli a mérési csatornat, akkor nem az allapotvaltozot,
hanem annak egy zajos értékét kapjuk minden lépésben. Ha linearisan atlagoljuk a
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] e
A i v-1 A ya
l R g l z(n)

5.12. dbra. A konstans érték egy lehetséges modellje felfedezhets az atlagolasban

: vy—1
M [+ K — ¥ [~
modell : stratégia modellképia

mérési csatorna

5.13. abra. A predikcids-korrekcios séma blokkvazlata

mintakat, vagyis a 4.5 egyenlet szerint g-t %H—re valasztjuk, akkor a zaj kiatlagolodik.

Zaj nélkiili esetben ilyenkor is egy lépésben atmaéasolodik az allapotvaltozo és a tovab-
biakban eltiinik a hiba. Alkalmazhatd g = 5, @) > 1 konstans is, ami az exponenciélis
atlagolasnak felel meg, és igy tovabb.

1
Q’

5.4.2. Megfigyel6 tervezése linearis rendszerhez

A megfigyel6k olyan rendszerek, amelyek egy mésik rendszer allapotvaltozoinak, vagy
az azokbol szarmaztatott mennyiségeknek a meghatarozasara szolgalnak, azaz végsé
soron mérési eljarast valdsitanak meg. A tovabbiakban minddssze a lineéris, idGin-
varians rendszerekre szoritkozunk, és olyan megfigyelére, amely a mérendé rendszer
allapotvaltozoit azonosan mésolja.

Az 5.14 abran lathato rendszer baloldalt egy autonéom (bemenet nélkiili) rend-

. -1
x(n+1 i b x(n+1 X N
0+ ) X () %(n+ 1) —— %(n ;
Z c > G Z C >
/\E N1 i / PN N
u L y(n) —9(n) = -
A ! A
%{—J stratégia %—J
az autonoém rendszer modellje az autoném rendszer kopiaja
x(n+1) =A-x(n) X(n+1) = A-%(n) + Gly(n) — §(n)]

5.14. abra. Linearis, mérendd- és megfigyel§ rendszer
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szert, a szaggatott vonaltél jobbra egy mésik, in. megfigyel§ rendszert tartalmaz. A
megfigyelt N-ed rendd rendszer meghatarozott strukturaju és adott paraméterd (A:
allapotatmenet matrix, C:  kicsatold” méatrix), nem ismerjiik azonban allapotét (x). Az
A éllapotatmenet matrix, és C , kicsatold” méatrix segitségével az alabbi allapotvaltozos
leirasa adhato:

x(n+1) = Ax(n) (5.23)

y (n) = Cx(n) (5.24)

A megfigyels, amely képes kovetni a megfigyelt rendszer allapotat ugy all els, hogy
még egyszer megvalositjuk az autoném rendszert, kiegészitve egy bemenettel. A beme-
netet a két rendszer kimenetének eltérésébdl, vagyis a hibabol képezziik a G ,,becsatold”
matrixon keresztiil. A rendszerkopia allapotvaltozoi a megfigyelt rendszer allapotanak
becsldi, ezért kozvetleniil a becsld jelolést (X, y) alkalmazhatjuk a rendszer leirasakor:

Xx(n+1)=Ax(n)+ G (y(n) —y(n)) (5.25)

y (n) = Cx(n) (5.26)

Visszahelyettesitéssel kikiiszobolhetSk a kimeneti valtozok, és az is latszik, hogy a
megfigyels rendszer allapotatmenet méatrixa (A — GC)

x(n+1)=(A-GOC)x(n)+ Gy(n) = (A —-GC)x(n) + GCx(n) (5.27)

Egészét tekintve a rendszer autoném, és a kdvetési hiba elttinésével paronként meg-
egyez6 allapotvaltozokat kell kapnunk. Az allapotvaltozok kiilonbségeire, vagyis a ko-
vetési hibara differencia-egyenlet irhato fel, melyet hibarendszernek hivunk:

x(n+1)—%(n+1) =Ax(n) —%x(n)) — GC(x(n) —%x(n)) = (5.28)

= (A — GC) (x(n) — %(n)) = (A — GC)"" (x(0) — %(0)) (5.29)

Ha a mérendd rendszer teljesen megfigyelhetd, akkor a G métrix alkalmas megva-
lasztésaval tetszéleges dinamikiji megfigyels létrehozhatd. A gyakorlatban a megfi-
gyel§ sajatértékeit agy allitjak be, hogy a konvergencia gyorsabb legyen, mint a rend-
szer egyéb valtozasai.

5.4.3. Véges lépésben konvergalé megfigyels

A tovabbiakban azokat a megfigyel6ket tekintjiik, amelyek véges 1épésben konvergal-
nak. Az egy- illetve tobblépéses konvergencia esete a C ,kicsatold” matrix alapjan
valaszthato kiilon.

Ha dimx = dimx = N és dimy = M, akkor a métrixok dimenzidira A —GC miatt
dimA = NxN,dimG = NxM és dim C = M x N kell teljesiiljon. Mig a C , kicsatold”
matrix ¢;; elemei azt adjak meg, hogy a kimenetvektor . elemének elgéllitasdéhoz milyen
egyiitthatoval kell venni a j. dllapotot, addig a G ,becsatolé” matrix minden egyes g;;
eleme azt adja meg, hogy a kopia i. allapotanak kiszamitasahoz milyen egyiitthatoval
kell venni a hibavektor j-edik elemét.
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Ha C négyzetes, vagyis annyi kimenete van a megfigyelt rendszernek, ahény &lla-
potvaltozoja van, akkor G is az. Ilyenkor két eset lehetséges: az egyes kimenetek vagy
olyan stlyozott Osszegei az allapotvaltozoknak, hogy beldliik egyértelmien vissza lehet
kovetkeztetni, hogy mik voltak az egyes allapotvaltozok, vagy nem. Ha igen, akkor
nyilvan felithat6 az a G matrix, amellyel ez a visszaalakitds megtehetd, ha nem, ak-
kor bizonyos kimentek feleslegesek, vagyis elhagyasukkal az az eset addédik, amikor
C nem négyzetes. Matematikailag az el6bbi gondolatmenet tgy fogalmazhaté meg,
hogy amennyiben C négyzetes métrix, és sor- illetve oszlopvektorai fliggetlenek, 1éte-
zik C~', amellyel jobbrél szorozva az A — GC = 0 egyenletet G = AC™! adédik.
Vagyis megadhato6 olyan G matrix, amellyel egylépéses konvergencia biztosithato.

Ha C nem négyzetes (és sorok elhagyisaval nem tehetd négyzetes, nemszingularis
méatrixsza), akkor egylépéses konvergencia nem lehetséges. Tovabbi lehetGség a vé-
ges lépésben elérendd konvergencia biztositédsara az, ha a hibarendszer allapotatmenet
métrixa (A — GC)  kontraktiv” jellegii, vagyis az autoném hibarendszer a hibateljesit-
ményt adott szami lépés alatt disszipalni képes. Matematikailag (A — GC)N = 0 kell,
hogy teljesiiljon. Ilyenkor A — GC nilpotens matrix, ami annyit jelent, hogy olyan nem
nulla matrix, mely bizonyos szamu (legfeljebb N — 1) énmagéval torténd szorzas utan,
vagyis bizonyos hatvanykitevés f6lott, nullava valik. A nilpotens matrixok meghatérozo
jellemzGje, hogy valamennyi sajatértékiik nulla. Ez a megallapitas azzal egyenértékd,
hogy a rendszer polusai mind az origoban helyezkednek el, vagyis a rendszer frekven-
ciadtviteli fiiggvénye 27! polinomjaként frhato fel. Ez viszont azt jelenti, hogy véges
impulzusvalaszi (FIR) a rendszer.

Az N lépéses konvergencia, illetve a sajatértékekre vonatkozo tulajdonséig alapjan
G kétféleképpen is szamithato: elGszor fel kell irni parametrikusan az A —GC matrixot,
majd vagy a (A — GC)Y = 0 matrix elemeit kell felirni és megoldani a nullaval val6
egyenlGségeket, vagy az A — GC maétrix karakterisztikus egyenletét kell felirni, és az
abban szerepls 0-t6l N — 1-dik terjedd hatvanyokig az egyiitthatokra felirni a nullédval
val6 azonossagot, majd megoldani az igy kapott egyenletrendszert; a karakterisztikus
egyenletnek ugyanis AV = 0 alaktinak kell lennie.

5.4.1 Példa. Tekintsiink egy masodfokti autoném rendszert, amelynek allapot-
aAtmenet matrixa, ill. ,kicsatold” matrixa:

1 0
A:{o _1}502[11]; (5.30)
Tervezendd a megfigyel6 G matrixa. G = { go } ;
1
o : Atri A — | 1=9 -9
A megfigyeld allapotatmenet matrixa ezzel : A — GC = ; 12y
—g, —1—gq

1—90)*+ 90915 90(g0+ 1)
A — GC 2 _ ( )

( ) { gi(go+g1)  (1+g1)*+ gom
amivel a megfigyel§ allapotatmenet métrixa:

}:0:>90=%; 91 =3

A—GC:[

N[0 =
—_
—~
ot
w
—_
~—

D [0 [ =
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Ha xq, x9, 21, 2o allapotvaltozok kezdeti értékeit rendre a, b, ¢, d -vel jeloljiik, akkor
a rendszer valtozoi, az alabbiak szerint alakulnak:

no Ty I Y y—y ] T To
0 a b a+b a+b—c—d c+d c d
1 a -b a—b a—b—c+d c—d ‘”’b;c_d _“_l’2+c_d
2 a b a+bd 0 a+b a b

A tovabbi lépésekben a hiba azonosan nulla. Erdekes, hogy ha kezdeti allapotok
nullak: #1(0) = ¢ = #2(0) = d = 0, akkor ennél a megfigyelénél az allapotok konver-
gencidjanak bekovetkeztéig az y = 0 kimenet nulla. l

Ha a mérendd rendszernek bemenete is van, akkor mindkét allapotegyenlet kiegé-
sziil, de ,egyforman”; az additiv tagra a szuperpozicio elve érvényes:

X(n+1) = Ax(n) + Gly(n) — y(n)] + Bu(n) (5.32)

x(n+1) = Ax(n) + Bu(n) (5.33)

Megjegyzés: Abban az esetben, ha a megfigyelési csatornan keresztiil a megfigyelt
rendszer kimenetéhez, vagy kozvetleniil az allapotvaltozoihoz zaj adodik, akkor a véges
lépésii konvergencia nem teljesiil. Az elvben véges, tobb lépéses konvergenciat biztositod
rendszer zaj esetén valamivel kedvez6bb tulajdonsagu, mint az egylépéses konvergen-
ciat biztosito, mert a zaj bizonyos fokig kiatlagolodik.

5.4.4. A megfigyel6elmélet alkalmazasa

Az eddigiek alapjan jol lathato, hogy a megfigyelSket jelfeldolgozasi feladatra ugy
tudjuk felhasznalni, hogy:

o clkészitjik a feldolgozandod jelet létrehozo rendszer koncepciondlis (lehetséges)
modelljét, mégpedig gy, hogy a kiértékelés soran meghatérozando paraméterek,
vagy jelkomponensek a koncepcionalis modell allapotvaltozoival legyenek (lehe-
t&ség szerint linearis) kapcsolatban, majd

e létrehozunk egy olyan megfigyel6t, amely a koncepcionélis modell allapotval-
tozoinak, ill. az azokkal kapcsolatban 1év6 mennyiségeknek a meghatarozasara
alkalmas.

5.5. A DFT sziir6 megfigyel6 alakban

A megfigyelG-elméletet alkalmazzuk els6ként DFT sziirg elGallitasara. Ehhez elGszor is
az N-re periodikus jeleknek egy olyan modelljére van sziikség, ahol az allapotvaltozok
az egyes Fourier-komponensek.

A komplex exponencialis jelek lefrhatok megfelels fazisforgatason keresztiil vissza-
csatolt tarolokkal. Ilyenkor a kezdeti allapot, amely egy komplex érték, hatarozza meg
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5.15. abra. Komplex értéki periodikus jelek egy lehetséges modellje.

a jel amplitudojat és fazisat, a visszacsatolas paramétere pedig a jel korfrekvencidjat.
Az N -re periodikus diszkrét jelek N tagu Fourier-sorba fejthetsk, igy az 5.15 abra sze-
rint N darab egytarolés rendszer kimenetének az 6sszegzésével irhatok fel. Az N tarolod
az N harmonikus 0sszetevé modellje, a kezdeti allapotok értékei az adott harmonikus
komponens komplex egyiitthatoi.

A visszacsatolas paramétermatrixa A = diag < zp,21,...2v_1 >, ahol z, =
- 270 , . - 2 .
N m=0,1,...,N — 1, és a kicsatol6” matrix C = [1,1,...,1] .

Vagyis ez az az eset, amikor C nem kvadratikus, és az N db allapotvaltozo a skalar
kimenet N db mintaja alapjan N lépésben ,kényszerithets ki” a ,mésolt” rendszerben:
(A — GC)Y = 0. Igazolhat6, hogy ilyenkor G = +ACT = [+29, +21,..., x2v-1]
Az 5.16 &dbran ez ugy valosul meg, hogy z,,(n + 1) helyett a z,,-mel valo szorzas elé

csatolunk be % sullyal.

5.5.1. Az ,egyenértékiiség”’ bizonyitasa

Az 5.16 dbran lathato megfigyels a DFT-sztir6tsl alapvetGen eltérd struktaraju, jolle-
het ugyanigy N lépésben konvergél, és ugyanigy harmonikus komponenseire bontja a
bemenetére jutd periodikus jelet. Mindkét strukturéra felirva a bemendjel és a Fourier-
komponenseibdl visszaallitott jel kozti atviteli fiiggvényt, belathato a kétféle struktura
segyenértékiisége” (kerekitésmentes megvalositast feltételezve).
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zo(n+1) —do(n+ 1)
Kl
zot Z vy 1 Zoh 7t
l ( ) % ] A
z1(n+1 v Dy
T y(n) 1/N i(n+1) (n)
24 | 7° > > 5 >
A vy 1t Z 1
— T
ry—1(n+1]1) iy a(n+ 1
ZN-1 1
A Z ZNf]‘ Zil
l A . v A
— : et >
_ v o L Vv —
Jellmodell Korrekcits stratégia (12,)  Modellkopia

5.16. abra. Periodikus jelet general6 rendszer modellje, és a DF'T megfigyel6 alakban

A DFT sziir6 esetében az atviteli fiiggvény:

Y(2) 1 N ozt
Y~ -2 mzzo T (5.34)

A megfigyel§ alakban

—

1 zmzfl
Z 1—zmz—1

Y(Z) N m=0
= 5.35
(Z) 1 et Zmz 1 ( )
1+ N Z_:O 1—zmz—1
Ez a negativan visszacsatolt rendszer % atvitelebsl adodik, ahol H (z) a nyilt hurka
atvitel.
Tegyiik fel, hogy
N-1 -1 —N
m N
P e ——— (5.36)
1—2z,2z71 1—2N

m=0
Ekkor 5.34 illetve 5.35 -be visszahelyettesitve, mindkét atvitelre 2= adodik:

Y(2) 1 _ny N2V -N
Y(2) N( - )1 — N~ (5:37)
Y(Z) — 15;71\7 — sz (538)

Y(z) 1+
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Elegendd tehat a feltételt (5.36) bizonyitani.
Felhasznaljuk, hogy az Gsszeg egyes tagjai kifejezhetSk egy végtelen mértani sorként:

Zm2 !

Tt A e G ) e ) L (539)
Az 5.36 feltételben szerepld N tagot 5.39 behelyettesitésével egymés ala kifejtve, eld-
szOr az egymas alatt elhelyezked6 — z azonos hatvanyéat tartalmazo — tagokat Ossze-

gezzik:

w2 (20 e (20 )Y (0 )
227 ¢ (2127 1)+ ot ()N 4 o (2 )N

: : : : (5.40)
vz (a2 D2 4 (a2 DV (a2 )P 4L

0+ 0+ - F Nz NY I NN

Az 6sszegzésnél felhasznaltuk, hogy

N-1
Z Zk _ N ha kZO,N,QN,... (541)
— m 0 egyébként.

(Az 5.39. kifejezést visszahelyettesitve az 5.36 egyenlet baloldali tagjaba, megcse-
réltiik az igy kapott kettds Osszegzés sorrendjét.)

Egy olyan mértani sorhoz jutunk, melynek hanyadosa z=%, &sszegképlete:
- Nz=N
—kN _
N ,;_1 z =1~ (5.42)

Ezzel igazoltuk az 5.36 alatti azonossagot. B

Erdekes az az eredmény, hogy a visszaallitott periodikus jel éppen N-szeres kés-
leltetettje a bemend jelnek. Ez azt jelenti, hogy 0 kezdeti allapotu tarolokkal inditva
a megfigyel6t, az N-re periodikus jel rédkapcsolasa utani N hosszt konvergencia in-
tervallumban az ¢ kimenet azonosan 0, majd ezt kovetGen fazishelyesen egyezik a
bemenettel. (Ez megfigyelhets az 5.4.1 példaban latott megfigyel6nél, ami nem mas
mint egy N = 2 pontos DFT.)

5.5.2. Altalanositas masfajta sztirGkre

A periodikus jelekre kapott megfigyel6 altalanosithaté N-re nem periodikus harmo-
nikus Osszetevsjd jelek esetére is. Ekkor z,, = €/9™, de nem feltétleniil egységgyok.
A tobbszoros gyokoket ellenben kizarjuk. A véges bedllds feltétele, hogy }}:8 po-
linom alakba legyen irhat6. Ennek beallitasahoz szabad paraméterek kellenek. Le-

gyen GT = [roz0 r21...7n_12n-1). (A megfigyels alaka DFT esetén 7, = +;
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m = 0,1,...,N — 1, z, egységgyok volt.) Irjuk 4t ennek megfelelGen az 5.35 atvi-

teli egyenletet (= — r,, csere):

N
N_lr Zmz "t
}A/ — 1—zmz—1
(2) _ _m=o (5.43)
Y(Z) N_lr 2mz~ 1
1+ 2 sz::z*1
(ahol Y(2) a megfigyels bemenete, Y (2) a kimenete, és a kettS beallds utani egyezése
a cél). Y(2)/Y (z) polinom lesz (vagyis véges beallas torténik), ha
B rzme ! 1
1+ Z T v (5.44)

= [T (1 27)

m=0

mert ezt behelyettesitve 5.43 egyenletbe (a nevezébe is és 1-et levonva a szamlaloba
is) a nevezdvel egyszertsiteni lehet.

Az r,, m=0,1,..., N — 1 értékek az 5.44 szerinti résztortre bontési feladat meg-
oldasaként adhatok meg. Mindkét oldalon szorozva az 5.44 egyenletet (1 — zpz~!)-gyel
és z — z;, hatarértékképzéssel adodik 7y :

1
Ty = N_1 B (545)
[T (IT—zpz )
m=0m#k

Ha nem véges beallast szeretnénk, hanem el6irt polusok megvalosulasat, akkor

T pee)
~=0 (5.46)

I'm = —N7

I (=220

k=0,k#m

kell, hogy teljesiiljon, ahol py, k = 0,1,..., M — 1 az el6irt polusokat jeloli. Ezzel
1

M—
[T (1 = prz™?) lesz az 5.43 atviteli fiiggvény nevezdjében.
k=0

A fentiek alapjan altalanos linearis predikcios eljaras megvalosithato a rezonator-
alapt megfigyelG-strukturaval.
irodalom: [Pécelj

5.5.3. A DFT sziir6 és a megfigyel6 alak osszehasonlitasa

A gyakorlatban a véges szamabrazolas miatt pontatlanul megvalositott polusok a DE'T
szirében azt eredményezik, hogy a polus-zérus kiejtés nem tokéletes, mert a zérusok
és a poOlusok megvalositasa egymastol fiiggetlen. Ez silyos numerikus problémékat
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okoz. Az egységkoron kiviil keriils polusok instabilld tehetik a rendszert. A megfigyels
alakban a pontatlan poélusokat az ugyanigy pontatlan zérusok tovabbra is kiejtik.

A megfigyel alak a globalis visszacsatolas folytan a pontatlan paraméterértékeken
tul a szamitasok véges pontossiga okozta kerekitési zajra, és a periodikus jelen iil6
egyéb zajhatésra is kevésbé érzékeny.
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6. fejezet
Digitalis sztir6k

6.1. Bevezetés

Majdnem minden rendszer sziir§. Akar analdg, akar diszkrét rendszereket tekintiink,
atviteli fliggvénytik altalaban nem azonosan 1, ezért a kimenetiikén megjelend jel nem
egyezik meg a bemenetiikre adott jellel. Altalaban a rendszerek atviteli fiiggvénye
nem konstans, ebbdl kovetkezéen dinamikus rendszerek, amelyek energiatarolokat (pl.
tekercs, kondenzator), illetve diszkrét esetben késleltetket tartalmaznak. Ebben az
értelemben sziirének tekinthets a mar korabban megismert mozgoé atlagold vagy expo-
nenciélis atlagolo is. S6t, a diszkrét Fourier-transzformécio is sztirést valosit meg: egy
egybemeneti — tobbkimenetd szlirst.

A felsorolt példakban a kiindulas a mérési eljaras volt, a rendszer atviteli fiiggvénye
kiadodott. A digitalis szlir6k ezzel szemben olyan diszkrét dinamikus rendszerek, ame-
lyek tervezésénél az atviteli fiiggvényt specifikaljuk. A digitélis sziir$ tervezésnek tébb
aga van, ebben a bevezetd jellegl fejezetben azokkal a linearis sztirGkkel foglalkozunk,
amelyeknek csak az amplitidéomenetét specifikiljuk.

Klasszikus értelemben sziirének tekintjiik azokat a rendszereket, amelyek amplittido-
karakterisztikdja feloszthato tun. atereszts-, illetve zarotartoményokra. Az atereszté
tartomanyokban konstans (jellegzetesen egységnyi), a zarotartoméanyokban zérus at-
vitelt irunk elS. Az ilyen elSirast pontosan teljesité rendszer impulzusvalasza azonban
id6ben nem korlétos, ezért a gyakorlatban az atereszts-, illetve zarotartomanyok ko-
zOtt mindig van egy Un. atmeneti tartomany, ahol az amplitidénak 1-nél kisebbnek
kell lennie, tovabba megengediink adott mértéki ingadozast az atereszts-, illetve za-
rotartomanyokban. Ez utobbiban a (zérus koriili) ingadozast elnyomasnak nevezziik.
A specifikiciot szemlélteti egy savsztirén a 6.1. abra. Ennek megfelelGen alul- és feliil-
atereszts, savatereszts és -zaro sziirGket tervezhetiink.

Egy linearis diszkrét ideji rendszer atviteli fliggvénye z-ben racionalis tortfiiggvény:

H(z)= (6.1)

ahol B(z) és A(z) polinomok. Az atviteli karakterisztikahoz 2 = /¥ helyettesitéssel
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1—4

[H(e)]

0 T T T T T
U1 U v Uy T

6.1. dbra. A sztirdspecifikacio. ¥, 3, illetve ¥, 94 rendre az atereszté- illetve zarotar-
tomény hatarai; d1, 0o az ingadozas, illetve az elnyomas.

jutunk, ahol 9 a diszkrét korfrekvencia. A folytonos rendszerekkel valé kapcsolatban:

9= ord (6.2)

fs’
ahol f a frekvencia, f; pedig a mintavételi frekvencia. Lathato, hogy H(J) 2m-ben
periodikus fiiggvény, vagy masként az atviteli karakterisztika fs-ben periodikus.

A H(z)-vel jellemzett sziir§ végtelen vagy véges impulzusvalaszu (IIR vagy FIR)
lehet. IIR esetben B(z) és A(z) tetsz6leges polinom lehet (persze A(z) a stabilitéasi
feltételnek eleget tesz), B(z) egyiitthatoinak szama M, A(z) egyiitthatoinak szama
N. FIR esetben A(z) = zV~!, ahol N — 1 a polinom fokszdma. Ekkor az N — 1 p6lus
az origbban van, az atviteli fliggvény pedig a kovetkezd alakban irhato:

H(z) = 2 "*'B(2) = B'(2). (6.3)

B'(z) szintén polinom, egyiitthatoi B(z) egyiitthatoi forditott sorrendben.
A digitalis sztir6k szamitésa altalaban (6.1) alapjan torténhet:

y(n) = Z bjx(n —1i) — Z a;y(n —1i), (6.4)

ahol z(n) és y(n) rendre a gerjesztés és a valasz mintai az n. idépillanatban, az a; és b;
konstansok pedig rendre A(z) és B(z) egyiitthatoi. Az atiras soran tigyelni kell a helyes
egyiitthato-sorrendre. FIR sziir6k esetén (6.4) a kovetkezSképpen egyszertisodik:

y(n) = Z bix(n —1). (6.5)

A fenti egyenlet szerint a kimenet a bemenet és a b; egyiitthatokészlet diszkrét konvo-
laciojaként all el6. Ez viszont azt is jelenti, hogy a b; egylitthatokészlet valojaban az
adott FIR szlir6 impulzusvélasza is.
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A digitalis sztir6k kozott kitlintetett a szerepe azoknak, amelyeknek linearis a fazis-
menete. Ennek belatésdhoz hasznos definialni az un. csoportkésleltetés (group delay)
fogalmat:

S 20 (6.6)

=
<

ahol () H(z) faziskarakterisztikaja. Ha (1) linearis, azaz a kovetkezd alak:
o) = =k, (6.7)

akkor 7 = k, azaz a szliré tetszéleges frekvencidju bemendgjelet ugyanolyan mértékben
késleltet. Ebbdl kovetkezGen a sziirg alakhti atvitelt valosit meg, amely szdmos alkal-
mazasban (pl. EKG) fontos kévetelmény. Ahhoz, hogy a fazismenet linearis legyen, az
atviteli fiiggvénynek

H(z =¢é) = H(W)e " (6.8)

alaktnak kell lennie, ahol H () valos, vagy képzetes. Az exponencidlis tagnak az id6-
tartomanyban késleltetés felel meg, H()-nak pedig egy zérus koriili szimmetrikus
(képzetes esetben antiszimmetrikus) impulzusvalasz. Kauzalis esetben a késleltetés-
nek olyannak kell lennie, hogy negativ id6pillanatokra az impulzusvélasz zérus legyen.
Ebbdl az is kovetkezik, hogy TIR sztirGvel lineéris fazismenetet elvileg nem lehet meg-
valositani. A gyakorlatban azonban elérhetd, hogy az ateresztd tartoméanyban egy I1R
szlrd is kozelitSleg linearis fazisa legyen.

Az TIR és a FIR sztir6k mind tervezésiiket, mind tulajdonsagaikat, mind pedig
megvalositasukat tekintve jelentGsen eltérnek egymastol, ezért kiilon alfejezetben tér-
gyaljuk 6ket.

6.2. IIR sziirdok tervezése

Digitélis sziir§ tervezésére a legkézenfekvébb modszer, hogy analég sziiréket transz-
formaljunk. (A digitélis sztirck megjelenésekor az analog tervezési modszerek mar jol
kidolgozottak voltak.) Az analdg sziirStervezés lépéseire nincs mod részleteiben ki-
térni, itt csak a legfontosabb 1épéseket ismertetjiik. Ezekkel a klasszikus modszerekkel
csak a BevezetSben emlitett négyféle (alul- és feliilatereszts, savatereszts és -zaro)
karakterisztika tervezhetd.

Approximacio-tipusok

Az egyes approximéciok az ideélis alulatereszté karakterisztikat kozelitik valamilyen
matematikailag definialt moédon. A torésponti frekvencia mindig az w = 1 pont. Ez
a sziirG az un. referens alulateresztd sztirG. Ennek megfelelen a tervezett sziir6hoz
frekvencia-transzformécioval jutunk. Az alabbiakban kozolt atviteli fiiggvények foly-
tonos ideji haldzathoz tartoznak.
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6.2. abra. Butterworth approximaci6 (szaggatott: N = 3, folytonos: N = 7)

Butterworth approximacié

A Butterworth approximacié Taylor-sorral kozeliti az idealis alulatereszts sziirét w = 0
és w = oo esetén. A szlird atviteli karakterisztikdja a kovetkezd:

1

. 2
|H(jw)|” = m7

(6.9)
ahol N a szlir§ fokszama. A szlir§ 3 dB-es pontja w = 1-ben van, és a karakterisztika
derivaltja w = 0-ban nulla. Mivel az atereszté tartoményban az el6iras konstans, a But-
terworth approximaciot maximalisan laposnak is nevezik. |H (jw)| kiilonbéz6 N-ekre
a 6.2. abran lathaté. Minél nagyobb a fokszam, annal élesebb a levagas, azaz adott
specifikacio (ateresztG- és zardtartoméanyi hiba) esetén annal kozelebb lehet egyméashoz
a két tartomény. Mivel szlirGtervezés esetén a specifikacié adott, ennek alapjan meg-
adhato a sziikséges fokszam. Mivel a gorbe (6.9) szerint adott, az atviteli fiiggvény a
frekvencidknak megfelelGen transzformalhato.

Csebisev approximacio

A Csebisev approximacié Taylor-sorral kozeliti az ideélis alulateresztd sziir6t w = oco-
ben, de az atereszts tartomanyban olyan az approximacio, amely a hiba maximumét
minimalizalja (minimax). A sziir§ atviteli karakterisztikaja a kovetkezd:

1

Hjw)| = ————,
HGIl = Traaw)

(6.10)

ahol N a sztir6 fokszéma, € pedig meghatarozza az atereszts tartoméanybeli ingadozast,
ugy, hogy |H(w)| € [1/V/1+4 €%, 1]. Cy(w) az un. N-edrendd Csebisev-polinom, amely
a kovetkezd:

Cn(w) = cos(N arccos(w)). (6.11)

|H (jw)| kiilénb6z6 N-ekre a 6.3. dbran lathato. Az ateresztd tartoméanyban a karakte-
risztika egyenletes ingadozast, és optimalis abban az értelemben, hogy adott fokszam
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1.2

IHGw)|

6.3. abra. Csebisev approximaci6 (szaggatott: N = 3, folytonos: N = 7)

mellett ez a polinom minimalizilja a hiba maximuméat. SziirGtervezés szempontjé-
bol ez azért fontos, mert legtobbszor azt kivanjuk meg, hogy az atvitel tetszéleges,
az ateresztd tartomanyhoz tartozoé frekvencian legyen egy adott kicsiny hibatol el-
tekintve egységnyi. Ha pl. négyzetes értelemben kozelitenénk (v.6. Fourier-sorfejtés:
Gibbs-oszcillacio), akkor a négyzetes hiba ugyan minimalis lenne, de a hiba egyes
frekvencidkon tul nagy lenne. A zarétartomanyban a sztirG a Butterworth karakterisz-
tikdhoz hasonl6an maximalisan lapos, w = oo esetén az atvitel zérus. Adott specifikicid
esetén a hibabol és a két tartoméany kozotti frekvenciakiilonbségbdl kiindulva megad-
hato a sziikséges fokszam, végiil frekvencia-transzformacioval a valodi frekvencidknak
megfelels szird.

Inverz Csebisev approximacio

Az inverz Csebisev approximéacio felcseréli a két tartomanyt: az atereszté tartomany-

ban maximalisan lapos, a zarétartomanyban egyenletes ingadozéast karakterisztikat

eredményez. (6.10)-bdl tgy juthatunk az inverz Csebisev karakterisztikdhoz, hogy w

helyébe 1/w-t irunk, majd ezt kivonjuk 1-b&l. A helyettesités tiikrozi a karakterisztikat

az w = 1 pontra (tartomany csere), azaz a sziiré felillateresztd lesz, ezért kell az 1-bdl

valé kivonas. Igy az inverz Csebisev sziirG atviteli karakterisztikaja a kovetkezs:
e?CR(1/w)

|H(]w)|2 = 1 —{-820]2\[(1/(4))’ (6.12)

ahol N a sziir6 fokszama, € pedig meghatarozza a zarétartoméany-beli ingadozast, ugy,
hogy |H(w)| < 1/v1+¢2 Cy(w) ismét az N-edrendd Csebisev-polinom. |H(jw)]
kiilonb6z& N-ekre a 6.4. dbran lathato. A szirGtervezés az el6z6ekhez hasonlé moédon
torténhet.

Cauer (elliptikus) approximéaci6

Elliptikus approximécié esetében a karakterisztika mind az atereszté tartomanyban,
mind pedig a zaroétartomanyban egyenletes ingadozasu. A sziirG atviteli karakteriszti-
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6.4. abra. Inverz Csebisev approximaci6 (szaggatott: N = 3, folytonos: N = 7)
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6.5. abra. Cauer (elliptikus) approximécio (szaggatott: N = 3, folytonos: N = 7)

kija a kdvetkezs:
1
2 _

142G (W)

ahol N a sziir§ fokszama. G(w) a Csebisev-polinom altalanositasa, szamitasahoz el-
liptikus integralokra van sziikség. A polinom nemcsak w fiiggvénye, igy lehetséges,
hogy a két tartomanyra kiilonbo6z6 ingadozést irjunk els. |H (jw)| kiillonbézs N-ekre
a 6.5. abran lathato. A sziirGtervezés itt is a specifikiaciobol (ateresztd- és zardtarto-
many hatéra, ingadozés-értékek) indul, és bonyolult atalakitas utan kiadodik a G(w)
fiiggvény.

A fenti approximaciok ismertetése csak nagyon vazlatos volt, és elsGsorban az ered-
ményre, a megtervezett sziirg karakterisztikajanak tulajdonsagaira koncentralt. Esze-
rint tehéat (a Csebisev-polinom tulajdonségai miatt) egy adott specifikiciot a Cauer-
szlrd teljesit a legkisebb fokszammal. Annak, hogy mégis hasznalnak egyéb approxi-
mécidkat is, oka lehet egyrészt a maximélisan lapos frekvenciamenet igénye, mésrészt
a sziirck fazismenete. A legkedvez&bb (atereszté-tartomanyban kozel linearis) fazisme-
nete ugyanis éppen a Butterworth-sztirének van, amely azonban magasabb fokszamot

[H (jw)| (6.13)
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igényel adott specifikacié megvalositasahoz; a legkedvezstlenebb fazismenettel viszont
a Cauer-sztirS rendelkezik. Fontos még, hogy numerikus szempontbdl is a Butterworth-
sziir§ a legkedvezdbb, illetve a Cauer-sziirg a legkedvezstlenebb. A Csebisev- (és a
komplexitasban vele megegyez6 inverz Csebisev-) sziir§ a kettd kozott helyezkedik el.
A sziikséges fokszam a specifikacio alapjan kiadodik, becsld képletek alkalmazasaval
vagy — programok hasznélata esetén — probalgatéassal allapithatdé meg.

Frekvencia-transzformacio

A frekvencia-transzforméacio két lépésbal all:

1. a referens alulatereszté sziir§ egységnyi torésponti frekvenciajanak adott frek-
venciara szorzasa, valamint (amennyiben sziikséges):

2. a kivant nem alulatereszt6 karakterisztikdba transzformalas.

A tervezés elején a transzforméacio irdnya forditott.

Alulatereszto—feliilateresztd transzformacid

Mint az inverz Csebisev approximacional méar szerepelt, w helyébe 1/w-t kel helyette-

siteni, vagy altalanosabban a:
1
p=- (6.14)
s
helyettesitést kell alkalmazni, ahol p a referens alulatereszts sziir6 Laplace-transzfor-

maltjanak valtozoja.

Alulatereszt6—savatereszts transzformacio

A transzformacio ebben az esetben a kovetkezd:

2 2
p=’ J;“’O, (6.15)

ahol wy a savkozépi frekvencia, és teljesiil a kdvetkezd egyenlGség:

Wo = waws = /wily, (6.16)

ahol wq, w3, illetve wy, wy rendre a tervezendd savszird ateresztd tartomanyanak, illetve
zardtartoméanyainak hatarat jeloli.

Alulatereszt6—savzaro transzformacio

A transzformacio ebben az esetben a kovetkezd:
S

24+ wy’

p= (6.17)
ahol wy ismét a savkozépi frekvencia, és teljestil (6.16), ahol wy, ws, illetve wy, wy rendre
a tervezendd savzard sziir6 zarotartomanyanak, illetve atereszté tartomanyainak ha-
tarat jeloli.

Fentiek alapjan az analdg sztirGtervezés a kovetkezGképpen zajlik:
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e a specifikicid transzformalésa a referens aluldteresztd specifikacioba
e a kivélasztott approximéacio alapjan a karakterisztika tervezése

e a referens alulatereszts szirs visszatranszformalasa

Ennek a feladatnak a megoldasara programok (pl. Matlab) allnak rendelkezésre, ré-
gebben pedig tablazatokat hasznaltak.

Folytonos atviteli fiiggvények diszkretizalasa

Ahhoz, hogy digitalis szlir6hoz jussunk, a megtervezett analog sziirét (analog atviteli
fiiggvényt) transzformalnunk kell. Keresett tehat, hogy adott H(s) atviteli fiiggvény-
nek milyen H(z) felel meg. Ezzel azért érdemes részletesebben foglalkozni, mert az
atviteli fiiggvények megfeleltetése nem kizarolag a digitélis sziirGk tervezésével kapcso-
latos feladat.

Az elsG lehetGség az tn. impulzus-invarians transzforméacié. Ebben az esetben az
analog rendszer sulyfiiggvényének mintavételezésével kapjuk a diszkrét rendszer im-
pulzusvalaszat, azaz:

h(n) = w(nT), (6.18)
ahol h(n) a diszkrét impulzusvalasz, w(nT') pedig az analog sulyfiiggvény értékeit jeloli
az n’I' idépontokban. A transzforméaci6 stabil s-beli polust stabil z-beli polusba képez
le. Problémat jelent azonban, hogy az illesztés az id6tartomanyban térténik. A min-
tavételezés miatt a sulyfiiggvényre igaznak kell lenni a mintavételi tétel feltételének,
ellenkezd esetben a Fourier-transzformaltak (azaz az atviteli fliggvények) atlapolodhat-
nak, igy a frekvenciatartomanyban optimalizalt sz(ir§ karakterisztikaja a diszkretizalas
utdn nem lesz optimalis. Ha azonban az idGtartoménybeli illesztés a cél, a transzfor-
maci6 jol hasznalhatdo. A MATLAB ezt az illesztést a prony.m fliggvénnyel végzi.

Az analdg sziirék tulajdonsagait az un. bilinearis transzformaci6 6rzi meg. Ezt az
analog atviteli fliggvényben az

_2z-1 s z—1

STzl 2 z+1

helyettesitéssel tehetjiik meg, ahol T, a mintavételi id6koz. Ez a transzforméacio is

stabil s-beli polust stabil z-beli pélusba képez le, azaz az s-tartomany bal félsikjat a z-

tartoméany egységkorének belsejébe képezi le. Ezt szemlélteti a 6.6. abra. A tartomany

hataréat, a jw tengelyt pedig az egységkorre. Ez az impulzus-invaridns transzformacio

esetében is igy volt, itt azonban nincs atlapoldodés. A transzforméacioé ugyanis az analog
frekvenciat a kovetkezSképpen transzformalja:

(6.19)

2 9
= —tan —. 2
w T an o (6.20)
Ezt az Osszefiiggést szemlélteti a 6.7. abra. A (6.2) oOsszefiiggés szerint ¢ = m-nek

w = 27 f;/2 felel meg, itt azonban w = oco. Tehat a frekvenciatengely torzitott, amit a
specifikacidé megadéasanal figyelembe kell venni. Mas oldalrol viszont ez hasznos tulaj-
donsag, igy ugyanis nem lapolédnak at az atviteli fliggvények, a frekvenciatartomany-
beli tulajdonsdgok megérzédnek.
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6.6. Abra. A bilinearis transzformacio

10

0 02t 04t 06t 08t =
9

6.7. 4bra. A bilinearis transzformacié frekvenciatorzitasa
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A komplex atviteli fliggvény mintavételezése: mintavételezés a
frekvencia-tartomanyban

Eléfordul, hogy adott egy (komplex) frekvenciaatviteli fliggvény egy sor pontban, és
egy ezekre illeszkedd digitalis sziirét kivanunk tervezni. Ez lehet a feladat példaul
csatornakiegyenlitéskor, amikor egy sor pontban megmeérjiik az atvitelt, és az atviteli
savban ennek inverzét kivanjuk realizalni.

A feladat egyszerten felirhato: keressiik azt a szlirét, amelyre a

B(z)
Alzy)

kiilonbségek valamilyen értelemben (minimax, négyzetosszeg, stb.) minimalisak. Erre
a legegyszeribb eljaras a kovetkezs: keressiik a

H(f) — k=12 .N (6.21)

=2

Y IH (A=) = Bz (6.22)

k=1

Osszeg minimumat. Ez egy paraméterekben linearis LS feladat, melyet megfelel§ pro-
gramokkal meg lehet oldani. MATLAB-ban ilyenek pl. a invfreqz.m, elis.m fliggvé-
nyek. Egyetlen apré nehézség az, hogy tervezéskor a stabilitast nem lehet garantélni,
ezért kisérletezni kell, esetleg valamennyi késleltetést megengedve.

Osszefoglalas

A fentiekben attekintettiik az IIR sztir6k tervezésének 1épéseit. Fzek — az egyes rész-
feladatok megoldésanak tulajdonsagait is figyelembe véve — a kovetkezok:

e Specifikacié megadasa, és a bilinearis transzformécio frekvenciatorzitasanak meg-
felels elGtorzitasa

e Analdg szlir§ tervezése
e bilinearis transzformécio

IIR sziir6k tervezésére a MATLAB is kinal fiiggvényeket, pl. butter.m, chebyl.m,
cheby2.m, ellip.m. Az egyes fiiggvények analdg és digitélis sztir6k tervezésére egya-
rant alkalmasak.

6.3. FIR sziir6k tervezése

A véges impulzusvélasz a diszkrét rendszerek sajatja. Mig az IIR sziir6k lényegében
ugyanolyan tulajdonsigokkal rendelkeznek, mint anal6g megfelelGik, addig a FIR szi-
rék 1j eszkozt jelentenek a tervezd szamara. FIR szilir6k tervezésére szamos modszer
létezik, itt csak két eljarast ismertetiink.
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6.8. abra. SziirStervezés ablakozéssal. (a) alulateresztd specifikacio, N = 8192; (b)
prototipus szlirg; (c) a sziir§ impulzusvalasza ablakozas nélkiil, M = 75; (d) a sz(ir6
impulzusvélasza Hanning-ablakkal.

Sziirdtervezés ablakozassal

A modszer az un. frekvencia-mintavételi eljaras tovabbfejlesztése. Ahogyan az a Be-
vezetGben is szerepelt, a FIR sziir6k egylitthatoi megegyeznek az impulzusvalaszuk-
kal. Eszerint tehat a specifikicio (mint idedlis atviteli karakterisztika) egyszert inverz
Fourier-transzformacidjaval elGallithato a keresett egyiitthatokészlet. Az alabbiakban
egy célszerd utat mutatunk be ennek gyakorlati megvaldsitasara:

1. A sziir6specifikacié megadasa egy vektorban. A vektor elemei valosak, és szim-
metrikusak a DFT-nek megfelel6 moédon:

D(k) = D(N — k), k=1..N/2, (6.23)

ahol D(k) a specifikacio egy mintaja, N a DFT pontszama és paros. Ez utobbi
nem feltétlentil sziikséges, de a targyaldst megkonnyiti. Nem is megszoritas, mert
N-et célszert nagyra valasztani, a megvalositando sztirg egyiitthatoinak szama-
nal lényegesen nagyobbra. D(0) a sztir6 DC atvitele. A sziirGspecifikaci6 a 6.8.a
abran lathato.

2. IDFT alkalmazéasaval kapunk egy N hossztusagu impulzusvélaszt, amely a pro-
totipus szlré:
ho = IDFT {D} (6.24)
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Ennek az impulzusvalasznak valosnak kell lennie, és szimmetrikusnak a 0 id&pil-
lanatra. Minthogy azonban DFT-t alkalmaztunk, a negativ idének a prototipus
szlir6 masodik felének mintai felelnek meg, ahogyan az a 6.8.b abran lathato.

3. Legyen az M paratlan szdm a megvalositando sziirg egyiitthatoinak szama. (A
tervezés természetesen megoldhaté paros M-re is, de igy lényegesen egyszertib-
bek az Gsszefliggések. Mivel M rendszerint t6bb 10, ez nem okoz gondot.) Az N
mintat csonkolnunk kell ugy, hogy M mintéat is kapjunk, és az el6irt karakterisz-
tikat is minél jobban kozelitsiik. Ezt tigy tehetjiik meg, ha a zérus idépillanatra
szimmetrikusan csonkoljuk a prototipus szlir6t. Mivel a sziir6nek kauzalisnak
kell lennie, el is kell tolnunk tgy, hogy negativ idépillanatokban zérus legyen az
impulzusvélasz, azaz:

M—1 M—1
5 ) ho(N = 1), 70(0), ho(1), - ho(—

h(k) = | ho(N — )| (6.25)

Ez lathato a 6.8.c abran. Az (M — 1)/2 eltolas miatt azonban a sziir§ karak-
terisztikdja nem lesz valos, de a (6.6), (6.7) egyenletek szerint linearis lesz a
fazismenete. A sziir6 karakterisztikdja a D specifikicio és a h(k) impulzusvélasz
N pontos DFT-je alapjan ellenérizhetd.

4. A Gibbs-oszcillacié miatt azonban a karakterisztika a levagasi pontok kozelében
jelendsen eltérhet a specifikaciotol, még nagy M-ek esetében is. Ezt a jelenséget
ablakozassal csokkenthetjiik, ugy, hogy a h(k) vektort megszorozzuk egy alkalma-
san valasztott, szintén M hosszusagu ablakfiiggvénnyel (pl. Hanning-ablakkal):

W (k) = w(k)h(k), k=0.M — 1, (6.26)

ahol w(k) az ablakfiiggvény. A 6.8.d abra az ablakozott impulzusvélaszt mutatja.
A karakterisztika ismét a h*(k) impulzusvalasz N pontos DET-je alapjan ellen-
6rizhets. Ha a sztirg valamilyen tervezési igényt nem elégit ki, az ablakfiiggvény
vagy M értéke modosithato, ilyenkor a 3. és 4. pont szerinti miiveleteket tjra el
kell végezni.

A megtervezett sziir6 az elGirt karakterisztikat a legkisebb négyzetek elvének meg-
felelGen kozeliti, azaz négyzetes hiba integralja minimalis. Ez azonban megengedi azt,
hogy a karakterisztika egyes pontokban jelentGsen eltérjen a specifikiciotol. Az ab-
lakfliggvény ezt a hatast csokkenti, és noveli a zarétartomanyi elnyomast, de a leva-
gés ,Clességét” csokkenti. Ezt szemlélteti a 6.9abra. Az ablakozasos sziirGtervezést a
MATLAB a firl.m, fir2.m fiiggvénnyel tamogatja. Az ablakozasos szlirStervezéssel
természetesen tetszdleges amplitidémenet megtervezhetd.

A szilirGtervezés szempontjabol sokszor optimaélis kozelités a hiba maximumét mi-
nimalizélja. Fz az IIR szlir6k tervezésénél is alkalmazott Csebisev-approximacié. A
kovetkezdkben egy ilyen karakterisztikaja sztird tervezésére alkalmas algoritmust mu-
tatunk be.
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6.9. abra. Az atviteli karakterisztika ablakozas nélkiil (pontozott), és ablakozassal (foly-
tonos)

Sztir6tervezés Remez-algoritmussal

A Remez- (vagy Remes-) algoritmus egyenletes ingadozasu, lineéaris fazisa FIR sztir
tervezésére alkalmas. Az approximacié tehat Csebisev-approximacio, a sztirg atviteli
karakterisztikaja pedig a kovetkezs alaku:

H(Y) = Q) i: cx cos(kv), (6.27)

ahol Q(¥) = 1, cos(¥9/2), sin(¥/2), sin(1)) véalasztas lehetséges, a megvalositando ka-
rakterisztikatol (pl. felillateresztd) fiiggden. A Remez-algoritmus ugy allitja be a ¢
egyiitthatokat, hogy az:

IEW)] = max {W (9)|D(J) — H(J)|} (6.28)

normaval definialt hiba minimalis legyen. A fenti képletben D() a valos specifikacio
és W (V) egy silyozo fliiggvény. Létezik egy egyértelmi ¢, egytitthatokészlet, amelyre
||E(¥)|| miniméalis. A hiba legalabb r +1 helyen felveszi maximumét a 91, 9s, . .., 041,
helyeken, alternalo elGjellel, azaz:

r—1
D(9,,) = ch cos(kvy,) + (=)0, m=1,...,r+1, (6.29)
k=0

ahol ¢ a hiba maximuma. (Az egyszertiség kedvéért W (1)-t egységnyinek tekintjiik.)
Ez egy linearis egyenletrendszer, amely ci-ra megoldhaté. Maga a sztirGtervezési algo-
ritmus egy iteracio, amelynek lépései a kovetkezdk:

1. Fel kell venni egy tetszoleges kezdeti ¥4, 0o, . .., ¥, 11, készletet, és a (6.29) egyen-
let megoldasaval meghatarozni a ¢ egylitthatokészletet és egy 0 értéket (igy
adodik ki az r 4 1 fiiggetlen paraméter).
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IH(®)| [dB]

0 0.2t 0.4n 0.6n 0.8 i
0

6.10. 4bra. Remez-algoritmussal tervezett FIR sztir6

2. Ki kell szamolni H (9)-t elegendden ,stiriin”, kb. 10r szamu pontban, a frekvenci-
atengelyen egyenletesen. Mivel az 1. pontban felvett egyilitthatokészlet altalaban
nem optimélis, kiadodik egy 4j ¥y, 9o, ..., 11, készlet, valamint egy 1j ¢ hiba,
amely kisebb, mint az el6z6.

3. Az 1j frekvenciakészlet és hiba alapjan meghatarozhatd egy 1j ¢, egyiitthato-
készlet, amelyre vonatkozéan megint a 2. pont szerint kell eljarni.

Az eljarast addig kell ismételni, amig a hiba nem névekedik tovabb. Az ehhez a hi-
béhoz tartozo c egylitthatokészlet a sziir§ impulzusvalasza, a hiba pedig az atviteli ka-
rakterisztika ingadozasa. Az algoritmus konvergens, és realis szamitasi igényt tamaszt,
ezért széles korben alkalmazzak. Egy Remez-algoritmussal tervezett FIR sziir6 atvi-
teli karakterisztikaja lathato a 6.10. Abran. A MATLAB ezt az algoritmust a remez.m
fliggvénnyel tamogatja. Az eljaras tetszéleges amplitidomenet megvalositasara alkal-
mas.

6.4. Gyakorlati kérdések

Analb6g vagy digitalis?
Sokszor felmeriil6 kérdés, hogy egy konkrét esetben analdg vagy digitalis sziir6t alkal-

mazzunk. Az alabbi tablazat az analog és digitalis sztir6k néhany elényét és hatranyat
mutatja be:
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H ‘ analog szirsk H ‘ digitalis sziirék H
hatra- pontatlan vagy draga elemek els- nagy pontossig
nyok idGvarians elemek nyok DSP-ben olcso
nagy elektronikus zaj csak kvantélasi zaj
nehezen valtoztathato kénnyen atkonfiguralhato
el6- | nagy frekvencian is alkalmazhat6 || hatrad- | a mintavételi frekvencia korlatozott
nyck egy egyszeri szilrd olcsd nyok analoég rendszerben draga

A technologia fejlgdésével egyre nagyobb mintavételi frekvenciat alkalmazhatunk,
és egyre tobb alkalmazasban valthatjak fel a digitalis sztir6k az analog eszkozoket. Egy
analog rendszerben sokszor nehézkes és feleslegesen draga digitalis sztir6t alkalmazni,
de ha az adott teriileten is megjelenik a digitalis jelfeldolgozas, a digitalis sztir6 elényei
trividlisak (pl. audio alkalmazasok). A jelfeldolgozo rendszerekben alkalmazott véges
szOhosszisag azonban problémakat is okozhat.

FIR vagy 1IR?

Ha maér digitalis sziir§ alkalmazasa mellett dontottiink, beszélniink kell a fenti kérdésrél
is. Az alabbi tablazat ehhez kivan segitséget nyujtani.

H ‘ IR sztirck H ‘ FIR sztrsk H
héatra- stabilitasi problémék els- mindig stabil
nyok tulcsordulés, hatarciklusok nyok nincs tulcsordulas, hatéarciklusok
sokszor nagy paraméter-érzékenység kis paraméter-érzékenység
szines kvantélasi zaj fehér kvantélasi zaj

szamitasigényes implementécio
nemlinearis fazismenet

kis szamitasigényd implementécié
linearis fazismenet tervezhets

fizikai rendszereket jol modellez

els- alacsony fokszam hatra- | nagy egyiitthatoszam (akar tobb szaz)
nyck egyszeri tervezési modszer nyok | sok egyilitthat6 esetén szadmitasigényes

fizikai rendszereket rosszul modellez

Mint lathato, a legtobb esetben célszert FIR sztlir6t valasztani, mert megvaldsitasa
,problémamentesebb”, mint az IIR sziir6ké. Ugyanakkor maga sziirési feladat egyes
esetekben megkivanja, hogy IIR sztirét alkalmazzunk. Ekkor lépnek fel a tablazatban
feltlintetett hatranyok, amelyek szinte kivétel nélkiil az egyiitthatok véges széhosszi-
sdgu abrazolasabol és a szamitasok véges pontossdgabol adodnak.

Példaként megterveztiink egy FIR, illetve egy IIR sziir6t, mindketté ugyanazt a
specifikaciot elégiti ki: a sziir§ savsziirs, amelynek atvitele:

0, ¥=2r[0..0.175], d,= 1073 (—60dB)
|H(¥)| =< 1, ¥ =2r[0.2..0.3], 6, = 0.01 (= 0.1dB) (6.30)
0, ¥ =27[0.325..0.5], 0, =10"% (—60dB)
ahol 0, a zarotartomanyi elnyomas és ¢, az atereszt6-tartomanyi ingadozas. Ezt a speci-

fikaciot egy 115 egyiitthatos FIR sztird elégiti ki, amelyet a MATLAB remez.m fliggvé-
nyével terveztiink meg. Az atviteli karakterisztika a 6.11. abrén lathat6. Megterveztiik
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6.11. abra. A (6.30) specifikiacioval tervezett egyenletes ingadozasu FIR sztirg atviteli
karakterisztikaja

IH(GO)| [dB]
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6.12. abra. A (6.30) specifikacioval tervezett elliptikus IIR sziir§ atviteli karakteriszti-
kija

a (6.30) specifikdcionak megfelels IR sztirét is, a MATLAB ellip.m fliggvényével, te-
hat elliptikus, minden tartomanyban egyenletes ingadozast approximéacioval. Az adott
specifikaciot egy 6-odfoku elliptikus sziird elégitette ki, amelynek atviteli karakterisz-
tikdja a 6.12. abran lathato. A két karakterisztika nagyon hasonlé, hiszen ugyanazt a
specifikaciot elégitik ki, a legfontosabb kiilonbség azonban az, hogy az IIR sziir6 fazisa
nemlinedris. A fokszam alapjan (ha a fazis nem széamit) egyértelmi lenne az IIR sziir
elénye, de numerikus okokbol sokszor mégis inkabb a FIR sziir6t valasztjak. Ennek
hétterére az alabbiakban tériink ki.

A FIR és IIR sztir6k implementéacioé szempontjabol is elkiiloniilnek. Mig a FIR sz-
réket szinte kivétel nélkiil a (6.5) egyenlet szerint szamithatjuk, addig IIR esetben ritka,
hogy a (6.4) egyenlet szerinti (in. direkt) szamitas megfelels lenne. Az a; egyiitthatok
pl. a nevezépolinomot valositjak meg (6.1)-ban. A gyokok és az egyiitthatok kozotti
Osszefiiggés erdsen nemlinearis, és kis egyiitthato-valtozashoz is nagy gyok-eltérés is
tartozhat. Ezért el6fordulhat, hogy a megtervezett sziir6é kvantalt egyiitthatoi mar la-
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6.13. abra. A kvantalas hatésa a tervezés és a miikodés soran

bilis rendszert eredményeznek. Minél nagyobb a fokszam, annal nagyobb ez a veszély.
De ha stabil is marad a rendszer, el6fordulhat, hogy nem teljesiti a specifikacidt. To-
vabbi probléma, hogy a kiszamitas soran felléps kvantalési hiba tgy halmozodhat,
hogy a rendszer labilissa valik. Ezeket a lehetGségeket foglalja Ossze a 6.13. ébra.

A fenti problémak miatt a H(z) atviteli fliggvény megvalositasara specialis strukti-
rakat alkalmaznak. Egy gyakori megoldas, hogy az atviteli fliggvényt méasodfoku ténye-
z6kre bontjak, és ezeket a masodfoku blokkokat mar direkt médon meg lehet valositani.
Jo tulajdonsigokkal rendelkeznek az un. lattice, illetve hullamdigitalis és rezondtoros
sziir6k. A miikddtetés sordan altalaban célszert olyan kerekitési stratégiat alkalmazni,
amely a kerekitendd szam abszolut értékét csokkenti. Ha a fenti példédban szerepls
6-odfoku elliptikus IIR sziir6 megvaldsitasara fixpontos jelfeldolgoz6 processzort al-
kalmazunk, a biztonsidgosnak tekinthetd rezonatoros struktara kb. 70 utasitésciklust
igényel. A FIR sziir6 esetében egyiitthatonként egy utasitasciklus elegendd, azaz kb.
120. Lathato, hogy eltint a nagysagrendi kiilonbség. Mindig meg kell azonban vizs-
galni, hogy melyik a legkedvez6bb eset, mert valds ideji implementacié esetén ennek
igen nagy a jelentsége.
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7. fejezet

Atlagolasi eljarasok statisztikai
jellemzése, ablakozasi eljarasok

7.1. Bevezeto

Az eddigiekben az atlagolasi eljarasokat, és a mozgo atlagoléas altalanositasédnak tekint-
het6 DF'T eljarasokat vizsgalva megallapithattuk, hogy maguk az eljarasok valamilyen
modellt feltételeznek.

A mozgo atlagolas ill. a DFT esetében azt lattuk, hogy amennyiben ez a modell
megfelel a ,valosdgnak”, akkor az eljarés tokéletes eredményt szolgéltat: az N-re perio-
dikus zajt tokéletesen kisztri, és a mérendd konstans értékét (DFT esetében a Fourier-
komponenset ill. a Fourier-egyiitthatot) pontosan szolgaltatja. Amennyiben azonban a
megfigyelt jel nem ismétlédik az ablakhosszra periodikusan (vagy azért, mert egyalta-
lan nem periodikus, vagy, mert periodikus ugyan, de periédusa nem osztoja N-nek), a
sziirés nem tokéletes, a DFT-sorfejté pedig nem a Fourier-egytitthatokat szolgaltatja.

Végeredményben a hiba oka a véges adatmennyiségen végzett szamitasban, illetve
az ennek kovetkeztében nem tokéletesen szelektiv frekvenciatartomanybeli amplitido-
karakterisztikaban keresendd.

A kovetkezSkben elGszor azt vizsgéljuk meg, hogy az eredményt hogyan befolya-
solja a sztochasztikusan modellezhetd zaj (az idGtartoméanybeli jelreprezentaciora szo-
ritkozva).

Ezt kovetSen azokat a hibajelenségeket vizsgaljuk meg a frekvenciatartomanyban,
amelyek periodikus jelekre végzett, nem megfelel6 ablakhosszisagti mozgo atlagolas,
ill. DFT esetén lépnek fel. Ezek a hibajelenségek a spektrumszivargis és a picket
fence (léckerités)-hatas. Részbeni kikiiszobolésiikre kiilonféle ablakozasi modszereket
mutatunk be. Sztochasztikus jelek feldolgozasakor ugyanezek a jelenségek hasonléan
fellépnek, a bemutatott ablakozasi modszerek ezekben az esetekben is alkalmazhatok.
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7.2. Az atlagolasok statisztikai jellemzése

Az atlagolési eljarasokat vizsgéalva arra vagyunk kivancsiak, hogy a méréseinket ter-
hel6 sztochasztikus, additiv zaj hatasat mennyire sikeriil altaluk elnyomni, és milyen
pontossaggal tudjuk megbecsiilni a mérendé jellemz6t, amely egy determinisztikus,
konstans érték. A megfigyelések modellje tehat:

y(k) =z +n(k) (7.1)

ahol z a keresett mennyiség, és n(k) a zajmintak.

Az datlagolds a megfigyelések varhato értékének becsldje, vagyis maga is a statisztikai
jellemzés eqy eszkize. Altalaban mintak idébeni sokasagat atlagoljuk, felhasznalva,
hogy a folyamat (gyengén) stacionarius és ergodikus:

n—1
1
Bly(n)} = lim — 3" y(k) (72)
k=0
Legyen nulla varhato értéki a zaj:
E{n(k)} =0 (7.3)
Ekkor
E{y(n)} = (7.4)

Véges ideji atlagolas eredményeként kapott & becsld egy valdszintségi valtozo,
statisztikai paramétereit elvileg a realizdciok sokasdgdbol hatarozhatjuk meg, vagyis
ugyanazt a mérést tobbszordsen lefolytatva tobb atlagolas eredményét kellene atlagol-
nunk.

Ehelyett a kovetkezGkben feltételezziik a megfigyelések gyenge stacionaritasat, va-
lamint els6- és masodrendi statisztikai jellemzGinek ismeretét és ezek fiiggvényeként
szamitjuk ki az atlagérték varhato értékét és varianciajat.

Azt az esetet itt nem targyaljuk, amikor csak maguk, a megfigyelések allnak ren-
delkezésre (véges szamban), és azokbol kell a statisztikai jellemzdéket becsiilni (pl. em-
pirikus szoras stb.).

7.2.1. Varhato érték

Az idealis atlagolas esetén (4.1 egyenlet), a becslg varhato értéke:

E i)} = S B {y(k)) = 2 (75)

Ilyen esetben, vagyis ha a becsl§ varhato értéke megegyezik a becsiilt értékkel, azt
mondjuk, hogy a becslés torzitatlan.
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Az olyan becslés, amelyre E{z} # x, torzitott. A torzitds mértéke:

b=E{z(n)} —= (7.6)

Exponencialis atlagolas esetén a varhato érték:

B (i (n)) = (1 . 1>n_ 1E{y<0>}+(1 - 1)n_ Ly e - 1)

Q Q Q Q Q
(7.7)
Mivel E {y(k)} = x, ezért
A 1\"
E{&(n)} = [1 - (1 - —) } x (7.8)
Q
A becsls torzitott, de a torzitas az idé miltaval nulldhoz konvergal:
1 n

b:—(1—§> r—0,ha n— oo (7.9)

Az ilyen becslést aszimptotikusan torzitatlannak nevezzik.

Megjegyzés: Mint a frekvencia-tartomanybeli jellemzésnél mar belattuk az expo-
nencialis atlagolo egy egy-iddallandos rendszer, amelynek a folytonos idGtartomanyban
egy RC alulatereszts sztirg felel meg (7.1 abra). Ez utobbinak az atmeneti fiiggvénye
1 — e "/(BC) gzerint aszimptotikusan tart 1-hez, tehat az exponencialis 4tlagolohoz ha-
sonl6an a kimenet csak a végtelenben éri el a nulla id6pontban belépé allando jelszintet.

R

— }—9—

7.1. abra. RC tag

A mozg6 atlagolasra ugyanaz irhato fel, mint az idedlis dtlagoldsra, csupan annyi
a kiilonbség, hogy n helyett N tagot Gsszegziink, ami viszont a varhato értékre nézve
nem okoz kiilonbséget az eredményben.

A becsld torzitottsaga vagy torzitatlansaga még nem jelenti azt, hogy pontos vagy
pontatlan a becslés, hiszen a varhatoérték-képzés miatt ezek a vizsgalatok csak végte-
len szamu elvégzett mérés sokasagarol szélnak. Ahhoz, hogy tampontot kapjunk arrél,
hogy az egyedi mérésiink mennyire meghizhaté, a sokasag eloszlasarol tébbet kell mon-
dani.
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Ha meg tudnénk adni a becsl§ stirtiségfiiggvényét, akkor az teljes mértékben jelle-
mezné a realizaciok sokasagat, ehhez azonban a zajrol is ilyen mélységii feltételezéseket
kellene tenni; ezért csak a becsld szorasanak vizsgalatara szoritkozunk.

A mérési eredményiink tehat a becsiilt érték és annak szorasa lehet. (A szoras
helyett, a mérés kiterjesztett bizonytalansdgat, vagy konfidencia intervallumokat is
lehet hasznalni a bizonytalansdg megadasara.) A lényeges az, hogy a becsilt érték
onmagdban még nem meérési eredmény, hiszen a becsld mindig valoszintiségi valtozo.
Mivel a mért jelet sztochasztikusan modelleztiik , igy a véletlen szerepe soha nem
kiiszobolhets ki teljes mértékben a mérési eredménybdl.

7.2.2. Variancia

A variancia a varhato értéktsl vett eltérés négyzetes varhato értéke, amely megegyezik
az els6- és masodrendd momentumok kiilonbségével, hiszen

var{#(n)} = E{(2(n)—E{2(n)})*} (7.10)
= E{3*(n) — 22(n)E {2(n)} + E* {2(n)}}
= E{#*(n)} - E* {2(n)} (7.11)

A szords (o) a variancia négyzetgyoke, dimenzioja megegyezik az argumentumbeli

mennyiségével:
Om) = v/ var{(n)}. (7.12)

A szoéras szemléletesen a valoszintségi valtozo amplitudojanak atlagos ingadozasat adja
meg, az effektiv értékhez hasonlé mennyiség.

Eddigi feltételezéseinket most tjabbakkal egészitjiik ki (gyenge stacionaritas + a
zaj fehérsége):

var {n(k)} = o2 (7.13)
E{n(k)n(j)} = 0, k#j (7.14)

Ezekbdl kovetkezden:
E{y(k)y(j)} = { Bl )} = ing,}{ ; j.Q tow k= (7.15)

Az elsé feltétel (7.13) a zaj szorasanak idébeni allandosagat jelenti. A masodik fel-
tétel (7.14) a zaj eltérd idépontbeli mintainak korrelalatlansagat irja els. Ez azt jelenti,
hogy a zaj mintai egymastol fliggetlen valdszintiségi valtozok, a realizaciok sokasagat
tekintve, egymastol fiiggetleniil valtoznak, nem ,cibaljdk egymaést”. A stacionaritést
figyelembe véve ez azt is jelenti, hogy az autokorrelacios fiiggvénye a nullaban a szo6-
rasnégyzet (02), egyébként nulla. Az autokorrelacios fiiggvény Fourier transzformalt-

jaként kapott spektrum azonosan ;}%, vagyis fehér. A fehér zaj feltétele (7.14) teljesiil
altalaban a legnehezebben, hiszen a zaj egymést kovetd mintai stirti mintavételezés
esetén Osszefligghetnek. (Ez akkor kovetkezik be, ha a zaj savszélességére tulteljesitjiik

az 1. mintavételi tétel szerinti feltételt. Ld. 2. fejezet; Schnell, 24.3.1. fejezet.)
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Az idealis atlagolas esetén a becslé méasodik momentuma:

E{#*(n)} =FE (% iy(k)) = %E (i y(k)) (7.16)

A konnyebb attekinthetség kedvéért az # tényez6t mellézziik a tovabbi levezetésben:

E <"‘ y(k:)) = F (i(w%—n(k))) = (7.17)

k=0 k=0
n—1 n—1
= E{Z (x +n(k)) (a:+n(l))} = (7.18)
k=0 1=0
n—1 n—1
= F { z® + an(k) + xn(l) + n(k)n(l)} = (7.19)
k=0 1=0
n—1 n—1 n—1
= F {n2x2 +2n Z xn(k) + Z n(kz)n(l)} = (7.20)
k=0 k=0 1=0
n—1
= n’2? +0+ (E{n*(k)}) = n*s® + nop, (7.21)
k=0
Ezzel a 7.16 kifejezés eredménye:
1 — ’ 1 o2
) _ _ 2.2 2y _ 2 n
E{#*(n)} = EE (; y(k)) == (n’z* 4+ nol) = 2° + ot (7.22)
A variancia a 7.11 kifejezését felhasznalva a kévetkezs adodik:
ar {i(n)} = %, = (7.23)
V. =5 Oin) = Jn .

Vagyis a 7.1, 7.3, ill. 7.13-7.14 feltételek teljesiilése esetén (1) az idealis atlagolas n
aranyaban csokkenti a varianciat, illetve y/n ardnyaban a szorast.

Megjegyzések

1. A 7.10 képlet szerinti kiszamitas tulajdonképpen egyszeriibbre adodik. Ennek vé-
gigszamolasat az olvasora bizzuk. A A 7.11 képlet olyan esetben lehet elény6sebb,
ha pl. x sztochasztikus, és/vagy a megfigyelési egyenlet nem lineéris.

2. Abban az esetben, ha a zaj varhato értéke nem nulla, de tovabbra is stacionarius,
akkor az eddigi feltételezéseket megtartva, de y(k) = x+nyonst. +1(k) megfigyelési
egyenletbdl indulhatunk ki, ez azonban csak a varhato értéket befolyasolja a
varianciat nem.
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3. Korrelalt mintak esetén a variancia-csokkenés mértéke altalaban kisebb, hiszen
a keresztszorzatok varhato értékei nem nullék, igy nem tiinnek el a 7.20 6sszeg-

zésbdl:
E { n(k)n(l)} +E {Z (n<k))2} (7.24)

k=0

3
3

4. A korreldlatlansag pl. Ggy biztosithatjuk, ha minden L. mintat dolgozzuk csak
fel, amelyek kozott a korrelaciéo mér elhanyagolhaté. A frekvenciatartomanyban
az figyelheté meg, hogy a mintavételi frekvencia csokkentésével a zaj spektruma
egyre inkabb atlapolodik, és kozel a egyenletessé valik.

5. Ha a mintavételezés lecsokkentésével sériilne a hasznos jel (pl. nem atlagolast
végziink, hanem DFT-t, és nem konstans mennyiséget, hanem egy periodikus
jelet mériink), akkor eljarhatunk gy, hogy minden rendelkezésre allo (korrelalt)
mintat feldolgozunk ugyan, de az eredmény szérasardl legfeljebb annyit tétele-
ziink fel, mint amennyit minden L. minta feldolgozaséaval értiink volna el.

Mozgb atlagolas esetére ugyanaz a variancia irhato fel, mint az idealis atlagolaséra,
de n — N helyettesitéssel. Korreldlatlan zaj esetére tehat:
o2
var {Z(n)} = < (7.25)
N
Az id6tartoméanyban megfogalmazva: az ablakhosszal forditottan aranyos a variancia-
csokkenés. A frekvenciatartoméanyban ugyanez ugy figyelheté meg, hogy az eredetileg
Jfehér” zajspektrumbol, a sztir6karakterisztika altal ,kivagott” zajteljesitmény, egyenes
aranyban all a sinc karakterisztika f6hullaméanak szélességével; mikdzben a savkozépre
es6 hasznos jelosszetevs nem sériil.

A bemenet teljesitménye:

E{u*(n)} =2 +0o} (7.26)
A kimeneté (v6. 7.22 egyenlet):
52
E{#*(n)} =2+ N (7.27)

vagyis N novelésével az atlagérték melldl ,elttinik” a zaj.
Az eredmények DFT-re és periodikus hasznos jelre is kiterjeszthetdk.

Megjegyzés: Periodikus jelek esetén tovabbi lehetSség az, hogy az egyméstol peri-
6dusnyi tavolsagra 1évé mintakat atlagoljuk egyméssal, és ezt elvégezziik a peridodus
minden mintajara. Osszességében tehat periodusokat atlagolunk. (1d. Schnell, 24.3.5
fejezet) M periodus atlagolasa az eredményt tekintve megfelel annak, mintha a pe-
riodushossz (N) tobbszorosére (M - N) végeznénk DFT-t, de csak minden M-edik
DFT-pontot értékelnénk ki, és a tobbit 0-nak tekintve transzformalnénk vissza IDFT-
vel.
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Exponencialis atlagolas varianciaja. A variancia 7.10 képletét hasznalva:

var{#(n)} = E{(2(n)- E{i(m})Q} =
- o {(E]-2) " geemo] o)}
_ 5 { ( (1 - %)% <n<k>>) -
- 1 2n
_ 2<Q — f ) o2, (7.28)

2n 1_ 1_l2n 1_ _lQn
))2@2@(225@2“) 2(@—f)' (7.29)

VR
Q| —
~
(Y]
— —
| |
— |
— —_
| |
Q=

Q=

2n
Felhasznélva a 7.26 és 7.11 egyenleteket, és azt, hogy lim (1 — l) = 0, a vari-

n—00 Q
ancia idében aszimptotikusan beall az alabbi hatarértékre:

0.2

nhi{)lo var {Z(n)} = 20 = . (7.30)

A variancidk alapjan a mozgé atlagolas és az exponencialis atlagolas kozel egyen-
értékid korrelalatlan mintak esetén, ha N = 2@Q) — 1.

irodalom: [Schnell| 5.1.4, 5.1.5, 24.3.1, 24.3.4, 24.3.5 fejezetek

7.2.3. Korrelalt mintak Atlagolasa
Az eddigiekben korreldlatlan mintak atlagolasat vizsgaltuk. A korrelalatlansag azon-
ban a mintavételtdl fiigg, és nem mindig tudjuk biztositani, hogy a mintak ténylegesen

korrelalatlanok legyenek. Ezért meg kell vizsgalnunk a bonyolultabb esetet is.
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var{Z(n)} = E{(2(n)—2)’}

N <y<k>—x>)

1 n—1 n—1
_ n—E{ <y<k>—x><y<m>—x>}

k=0 m=0
_ ni CSTE{((k) - 2)(y(m) — @)}
k=0 m=0

ST k) (7.31)

k=0 m=0

Eszrevehetjiik, hogy ha m — k konstans, akkor ugyanazokat az értékeket kell dssze-
geznlink. Ezeket Osszeszamolva:

var{Z(n)} = Z Cyy(p)(n — |p|)

p= 1)

_ Z C,(p ( %‘) (7.32)

p—*(n 1)

Ezt a kifejezést megvizsgalhatjuk két szélsé esetben. Ha a mintavételezés ritka,
vagyis az autokovariancia fiiggvény a p # 0 helyeken méar elhanyagolhato (korrelalatlan
mintak), akkor a C'(0) = o2 Gsszefiiggés miatt visszakapjuk a korabban kiszamitott
var{Z(n)} = o2 /n kifejezést.

Szamunkra most fontos eset az, ha n joval nagyobb, mint C'(p) nullatoél kiilénb6zs
részének szélessége. Ekkor a jobb oldali tényez6 C(p) fontos értékeinél gyakorlatilag 1,
és kozelitSleg C'(p) mintainak 6sszegét kapjuk. Ha a mintavételi tételt C'(7)-ra betart-
juk, az Gsszeget a mintavételi intervallum szélességével beszorozva, ez jol kozeliti C(7)
integraljat, ami megegyezik S.(0) értékével:

1 Se(0
var{z(n N Z Cyy(p) = =~ ; ) : (7.33)
p=—(n—1)

Ez a kifejezés egyben a folytonos kozépértékbecslé kozelité varianciaja is ha a
regisztratum-hossz elég nagy ahhoz, hogy ennyi id6 alatt C'(7) elttinjék, hiszen a min-
tak Osszege Ty-vel szorozva a T' hosszisagu integralt adja.

Vizsgaljuk meg most (7.33) értékét savkorlatozott fehér zajra. A variancia mege-
gyezik a savszélesség és S.(0) szorzataval, vagyis

0.2

2BT

var{z(n)} ~ (7.34)
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Kiszamitottuk tehat a variancia értékét savkorlatozott fehér zajra, mind stird min-
tavételezés, mind folytonos atlagolas esetére. Ez a kifejezés jellemz§ az atlagolasi elja-
réasokra: az atlagolas nélkiili értéket (02) osztjuk a BT szorzattal. A 2BT szorzatrol
egyébként tudjuk, hogy megegyezik az ekvivalens mintaszdmmal, és igy ismét a o2 /n
kifejezéshez jutunk.

A (7.34) kifejezés egyébként nem csak savkorlatozott fehér zajra alkalmazhato.
Eszrevehetjiik, hogy a savszélességet igy vezettiik be a kifejezésbe:

02

S.(0) = —. 7.35
0)= o~ (7.35)
Mas jelekre az ekvivalens sdvszélességet hasznalhatjuk, ennek mintéjara:
[ sanar
o2 oo o?
B, = = , L ~ . 7.36
25.(0) 25.(0) var{#(n)} ~ 557 (7.36)
5 §Snct®)
78 %
f
B
b)

7.2. abra. Az egyenértékd fehér zajjal valo helyettesités (az ekvivalens séavszéles-
ség definicioja) a) a helyettesits zaj autokorrelacios fiiggvénye b) a helyettesits zaj
teljesitmény-stirtiségfiiggvénye c¢) helyettesités a frekvenciatartoméanyban

A fenti kifejezések alapjan abréazolhatjuk a variancia mintaszam-fiiggését, allando
regisztratum-hossz esetén (vagyis a névekvs mintaszam egyre stirtibb mintavételezést
jelent).

Ez a viselkedés ismét altaldban jellemz6 az atlagolasi eljarasokra: fiiggetlen mintak
esetén a variancia 1/n-nel aranyosan csokken addig, amig el nem érjik az n = 2BT
hatart, vagyis azt az értéket, amelytél kezdve betartjuk a mintavételi tételt. Innen
kezdve a mintak stiritése nem hoz informaciétdbbletet: a variancia nem csokken tovabb.
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'R T=50-Tg Be=1/4T,
5+ N:ZBQT:ZS
01}
5t 0.039
L i i ! /ZBIQTZFS L L ] »>
1 2 5 10 2 5 1002 5 1000
N
b)

7.3. abra. A variancia mintaszam-fiiggése exponencialis kovariancia-fiiggvény esetén.
Az idallando T = 1, a regisztratum-hossz T, = 50. B, = 1/4, 2B.T = 25.
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7.3. A DFT tulajdonsagai, a periodogram

Ahhoz, hogy képiink legyen arrol, hogy a transzformélt jeleknek milyen tulajdonsé-
gai vannak, célszert megvizsgalnunk a folytonos és a diszkrét Fourier-transzformacio
eredményének tulajdonsagait kiilonb6z6 bemeneti jelek esetére. Kezdjiik egy folytonos
négyszogjellel, melynek értéke 1 a +£7'/2 értékek kozott.

W(f) = Flu(t)} = / rect <%) oIl gt
[ejQWft:|T/2
—j2nf T2
e_jﬂ-fT P ejﬂ—fT
—j2nf
sin(m fT)
mf

= Tsinc(nfT). (7.37)

Amennyiben a négyszogjelet eltoljuk tgy, hogy a (0,7") intervallumban legyen,
akkor a szamitas hasonlo, de az eredmény e ~/™/7-vel szorzodik:

Wor(f) = F{wor (1)} = / rect (#) e 2™t dt = eI T Tsine(n fT)  (7.38)

Vizsgaljuk most meg a 0,7y, 27, ...(N — 1)T} helyeken mintavételezett négyszog
Fourier-transzformaltjat!

°O N-1

i =) = [ 3o () et

N-1
_ 2 : T 92nfiTs
S
i=0

1 — e J927fNTs
e ImINTs sin(w fNT,)
e=imITs 7% sin(nw fT})
— oI (N-DTLp sin(m f N'T5) .
° sin(7fT,)

(7.39)

Eszrevehetjiik, hogy ha T = NT, és T, — 0, akkor Wa(f) — Wor(f), ahogy el is
varhatjuk.
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Azt is megfigyelhetjiik, hogy Wy(f) kifejezése majdnem teljesen megegyezik a diszk-
rét egység-sorozat DFT-jével az f = % helyeken, minddssze el kell hagyni a T szor-
z0t:

N—-1

—i9mk—L T

Wae = EGJWNTslS
=0

1— efj27rk

[

e ™ sin(rk)
I sin(7£)
sin(mk)

)

Ezek alapjan mar konnytd meghatarozni egy véges hosszusagu szinuszjel Fourier-
transzformaéltjat, hiszen az nem mas, mint egy végtelen hosszisagu szinuszjel és egy
ablakfiiggvény szorzata.

e—jwk%

. (7.40)

2

sin(m

F {wor (t) Ay cos(2m f1t + 1)}
= e 7™ T T sine(r fT) * <%ejw5(f — fi) + %e_jwl(s(f + f1)>
= ej’r(ffl)Tej“‘”%T sinc(m(f — f1)T)
+e—jw(f+f1)Te—jsa1%T sinc(m(f + f1)T) (7.41)

Megfigyelhetd, hogy az ablakfiiggvény Fourier-transzformaltja van megismételve a
szinusz frekvenciajanal és ennek minusz egyszeresénél. A pozitiv oldalon a fézis pozitiv
irdnyba forgat, a negativ oldalon negativ irdnyba.

A mintavételezett szinusz Fourier-transzformaltja hasonlé:

F{wq (t) Ay cos(2mfit + 1)}

— o ITf(N=1)T; S—in(ﬂfNTs) é Je1 _ é —jp1
e T sin(r fT) 5 o(f— )+ 5 © S(f+ f1)
e v A sin(w(f — f1)NT5)
— o Im(f=f)N-DT L jeor N
’ 2" " Nsin(a(f - )T
tenn At o sin(e(f + fi)NT)
gr(f+)N-DT 21 (—jer N 42
e 2 ¢ *Nsin(r(f + f1)7T) (742)

Ebbdl kiszamithato, a DFT eredménye is: lattuk, hogy el kell hagyni egy T} szor-
z6t, és elvégezni az f — % fs valamint f; — fi4fs helyettesitéseket (fiq a diszkrét
frekvencia, (0, fs/2) kozott):
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: k
Xk = e JW(N f1a)(N— 1)A1 ]golNSHl(ﬂ-(N_fld)N)

2 N sin(m(£ — fia))
: k
et ha -0 AL oy 5 ST + fra)N) (7.43)
2 Nsin(r(£ + fiq))

Jol lathato, hogy a DF'T eredménye a =+ f1-nél megismételt négyszog Fourier-transzforméltjanak
mintavételi értékeibdl all. Speciélis eset az, amikor a mintavételezés koherens, (vagyis
fia az 1/N egész szamu tobbszorose, azaz a szinuszbol egész peribdusokat mértiink),
mert ekkor az fiq = % helyettesitéssel

Xk _ efjfr(kfkl)T

el AlN ha k = k;

= —mé‘zizv ha k = —k, (7.44)
0 egyébként.

Ebben az esetben tehat, ha véletlen fazistu szinuszjelrsl Van2szc’), akkor X} eloszlasa
egyenletes a %N sugaru kor folott, tehat varianciaja (%N ) . Valos és képzetes része
korrelalatlan, de nem fiiggetlen egymastol.

Ha a mintavételezés nem koherens, (vagyis fiq nem az 1/N egész szamu tobb-
szorose, akkor a helyzet sokkal bonyolultabb, mert az Gsszes helyen lesz valoszintiségi
valtozo (ezt szivargasnak hivjuk, lasd kés6bb), a k;-hez legkozelebb es6 vonal is kisebb,
mint a %N érték (picket fence vagy léckerités-hatas), és raadasul a korszimmetrikus
eloszlas sem igaz, mert a negativ oldalrol beszivargd, a fazis novekedtével ellenkezd
iranyban forgé tagok ezt elrontjak.

Ha a feldolgozott jel folytonos spektrumu, akkor mésképpen kell szdmolnunk.

o ki
Xk = E xiefj%rﬁ
ki

= Z T cos(QWN) —J Z T Sln(QWN)

i=0 =0

= {—Jn. (7.45)

Ez adott k-ra egy komplex értéki valoszintségi valtozo. Valos és képzetes részérsl
azt mondhatjuk el, hogy amennyiben a mintafiiggvény normélis eloszlasu folyamat-
bol szarmazik, akkor ezek eloszlasa is normalis, ha mégsem, akkor pedig a kozponti
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hatareloszlas tétele miatt kozelitSleg az. A szinusszal illetve koszinusszal vald szorzas
miatt a varhato értékiik nulla, variancidjuk jo kozelitéssel azonos, és korreldlatlanok.
Osszefoglalva: &€ — jn korszimmetrikus normalis eloszlast.

A variancia is kiszamithato:

var{ X} = E{X.X;}

=0 =0
N—-1
= Y (N —|m)R(m)e >
m=—(N-1)
N—-1
- N Z N — ‘m’R(m) —jQTFkTm
m=—(N-1)
~ NS(k), (7.46)

feltéve, hogy a kozelitések helyesek: betartjuk a mintavételi torvényt, és a regisztratum-
hossz eléggé nagy R(m) valtozo részének lefedéséhez. Ezek szerint ismerjiik £ és 7
varianciajat is:

var{¢} ~ var{n} =~ gS(k‘) (7.47)

Azt is konnytd belatni, hogy kiilonb6z6 k értékekre az X, valtozok a kiilénbozé
frekvenciaju szinuszok ortogonalitasa miatt egyméstol kozelitsleg fiiggetlenek.

7.3.1. A periodogram

A fentiekben lattuk, hogy egy véges hossziisagu regisztratum Fourier-transzforméltjanak
variancidja folytonos spektrumu jeleknél kézvetlen kapcsolatban van a spektrummal.
Valoban, az

S(k) = 1% (7.48)

kifejezés varhato értéke folytonos jeleknél kozelitGleg a teljesitmény-stirtiségfiigg-
vénnyel egyenls. Ez azért is kézenfekvs, mert az energia-stirtiségfiiggvény és a teljesit-
mény-striségfiiggvény fizikai értelmezése nagyon hasonlo, ezért kézenfekvd, hogy az
energia-stirtiségfiiggvény definicios Osszefiiggéséhez hasonléan a teljesitmény-stirtség-
fliggvényt is meg tudjuk hatarozni.

A pontos érték ugy szamithato ki, hogy a (7.46) kifejezésben elhanyagolt haromszog-
ablakot (Bartlett-ablakot) figyelembe vessziik:

B{S(k) | = {S(k)} * F {walm)} (7.49)
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A varhato érték tehat az ,jigazi” spektrum és a frekvenciatartomanybeli Bartlett-
ablak konvolucioja. Ennek az a kovetkezménye, hogy az éles cstucsok szétkenGdnek, a
meredek élek pedig ellapulnak.

A variancia meghatarozasihoz azt kell meggondolnunk, hogy

—X5- (7.50)

Ebbdl pedig az kovetkezik, hogy a variancia

var {g(k;)} ~ <%k))2var {3} = S*(k) (7.51)

Vagyis a variancia 100%, tehat a periodogramot valahogy atlagolni kell. Két egy-
szerd lehet&ségiink van erre:

e A periodogramot tébbszor egymaéas utdn mért regisztratumokra kiszamitjuk, és
az eredményeket atlagoljuk (Welch-modszer).

e A periodogramot sok pontra, nagy felbontéssal kiszamitjuk, és a szomszédos
vonalcsoportokat atlagoljuk (Bartlett-modszer).

A periodogramot a fentiekben folytonos spektrumu jelekre vezettiik be. Mivel a
véletlen fazist szinusznak szintén van teljesitmény-stirtségfiiggvénye, azt gondolhat-
nank, hogy a periodogram szinuszos jelre is hasznalhat6. Irjuk fel tehat a szinuszjel
DFT-jébsl meghatarozhatod periodogramot.
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1 ——
S(k) = NXka

= L [t nawen A g S — f1a)N)

N 2 Nsin(w(ﬁ — fia))
_i_ejﬂ'(%ﬂLfld)(N*l)éejgol Sln(. ( + fld) )
2 N sin(7 (N + fia))

k
x| e JTF(N f1a)(N-1) A1 Jszm(ﬂ(N;fld)N)
2 N sin(m (N fia))

_i_e*jﬂ(%Jrfm)(N*l) ée*jw

AQ
+2IN cos(p1 + 27 fra(IN — 1))

y sin(ﬂ(% — fia)N) sin(m (% + f1a)N)
Nsin(r(E — fiq)) N sin(r(£ + f1))

(7.52)

Ebben a kifejezésben a varianciat a harmadik tag képviseli. Mivel az ablakfiiggvé-
nyek keresztszorzata kicsi, a szinuszjel periodogramjanak kicsi a varianciaja, illetve ha
a fazis fix (egyetlen fiiggvény), akkor a fazishelyzetbdl szarmazo hiba kicsi. Ebbdl az
kovetkezik, hogy szinusz detektélasara a periodogram kivaléan alkalmas, mert nincs
esélye annak, hogy a cstucs elttinik.

A varhatoé értékben tehat itt is a Bartlett-ablak Fourier-transzformaltja jelenik
meg, mégpedig a szinusz Fourier-transzforméltjaban 1évé két Dirac-delta helyén.

Hozza kell tenniink, hogy ugyanakkor a szinusz periodogramja csak tavolrol em-
lékeztet a két Dirac-deltat tartalmazo teljesitmény-strtségfiiggvényre. Két cstcs van
ugyan benne, de ezek véges szélességtiek és véges magassaguak. Ezért itt a hibat nem
a két fiiggvény kiilonbségeként kell értelmezniink, hanem tgy, hogy a periodogrambol,
felismerve a szinuszos tartalmat, ki kell szamitanunk a szinusz paramétereit, és ezek
hibajat érdemes vizsgalnunk.

Ha a periodogram a teljesitmény-stirtiségfiiggvény becslGje, akkor ennek inverz
Fourier-transzforméltja az autokorrelacios fiiggvény becslGje. Ez azért fontos, mert
az FFT gyorsasaga a DFT tobbszori kiértékelését is nagyon gyorssé teszi.

Vizsgaljuk meg tehat a periodogram inverz Fourier-transzformaltjanak a varhato
értékeét. Mivel altalanosan akarunk vizsgalodni, a kereszt-spektrum becslgjét vizsgaljuk
meg.
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k=0

1 {Nl 1 (Nl . N-1
- —_FE - .IPGJQWWP Yoo j27TN> 6]27”16\;}

N k=0 N =0 4=0

1 N-1 N-1 1

- ks ki

= ~ (N = [s]) Ry (s)e™72™N | 7N

N k=0 s=—(N-1) N

;| NoloNa | e
-5 (1= 50 Roygoperrese. (7.5

Az utolso el6tti 1épésben az s = ¢ — p helyettesitést végeztiik el.

A k szerinti 6sszegzésben az exponencialis tényezdk (a komplex egységgyokok) csak
akkor nem ejtik ki egymaést, ha (i — s) az N-nek egész szamu tobbszorose: esetiinkben
(it —s) =0 vagy (i —s) = N. Ilyenkor viszont az N tag Osszegzésével az 1/N szorzo
kiesik, és a kovetkezdt kapjuk:

E {ny(z)} = (1 - N) Roy(i) + 7 By(i = N), i=0,1,2, . N~1.  (754)

Azt kaptuk, hogy a haromszog alakt Bartlett-ablakkal stlyozott korrelacios fiigg-
vény bal oldala ramésolodik a jobb oldalra (7.4. dbra).

AR(D)

PN

7.4. dbra. A cirkuléaris korrelacié varhatod értéke, és ennek keletkezése az egymasra
masol6do korrelaciodarabokbol

Ha a korrelacios fiiggvény a (—7/2,7/2) intervallumon kiviil elhanyagolhato (il-
letve mér konstans: p?), tehat elegendSen hosszi regisztratumot dolgoztunk fel, ez az
atmasolodéas nem zavard. Ha azonban R,, szélesebb (példaul periodikus komponens
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esetén egyaltalan nem valik konstanssa), akkor az egymasra mésolodas kellemetlen
torzitast okoz.

Vizsgaljuk meg, mibdl is szarmazik az Osszemésolodas! A minta regisztratum az
iT, pontokban adott (T' = NT, id6tartam), és igy Fourier-transzformaltja is N-pontos.
X}, és Y}, ennek megfelelGen a k/T helyeken van kiszamitva (,mintavételezve”). A frek-
venciatartoményban elvégzett szorzasnak azonban konvolicié felel meg az id&tarto-
méanyban, és igy egy 27T hosszusagu korrelacios fiiggvénynek kellene megkapnunk a
DFT-jét. Ezt viszont a k/(2T") helyeken kellene mintavételezni, azaz a spektrumra si-
riibben lenne sziikség. Nem tartjuk tehat be a mintavételi torvényt. Mit lehet tenni?
A kovetkezd lehetGségeink vannak:

e Interpolaljuk az { X} és {Y} sorozatokat. A sorozatok cirkulérisak, ezért cirku-
larisan interpolalunk - ez ekvivalens az alabb ismertetett nullakkal valé kiegészi-
téssel, ezért ez egy lehetség, de végrehajtasa tobb szamitast igényel.

e Az idStartoméanyban kiegészitjiik a minta-regisztratumokat Ndarab 0-val, és igy
2N-pontos DFT-t hajtva végre megkapjuk a kivant pontokban a transzformal-
takat, majd a spektrumbecslét.

e Egy lehetséges megoldés az is, hogy az idéfiiggvényt T'/2 hosszra csonkoljuk.

A nullakkal valo kiegészitéssel a korbefordul6 sorozatba annyi nullat iktatunk, hogy
a korbefordulas cirkularis jellege a nulldkkal valo szorzas miatt eltinjon (7.4a. abra).

A cirkularis konvolucié fellépte egyébként analog azzal a megfigyeléssel, hogy mig
a folytonos Fourier-transzforméacié a konvoluciot és a szorzast valoban egymasba viszi
at, a DF'T a frekvenciatartoménybeli szorzast az tn. cirkuléris konvolicionak felelteti
meg.

A korrelacio becslGje ezzel majdnem készen van, de a Bartlett-ablakkal még min-
dig osztanunk kell. Mivel kis szdmmal osztva a variancia nagyon megnéne, a +7'/2
intervallumban végezziik csak el az osztést.

7.3.2. A korrelaciébecsl varianciaja

A korabbiakban lattuk, hogy a periodogram varianciaja nagy: 100%. Arra szamitha-
tunk, hogy az inverz Fourier-transzformalt variancidja szintén nagy.

Vizsgaljuk meg el6szor az egyszerd szorzat: x(i)xz(i + m) varianciajat. Normaélis
eloszlas esetén a négyszeres szorzat varhato értéke egyszeriien kifejezhetd:

E{ZE11}2$3JZ4} = E{I1[L’2}E{I3[E4}
+E{z123} E{xoxs} + E{z124}E{xox3} — 2p1 o3ty . (7.55)

Ennek felhasznalasaval:

var{z(i)z(i +m)} = E{2*(i)z*(i +m)} — R*(m)
Ul + R*(m) — 2u*
= C*(0) 4+ 2u*C(0) + C*(m) + 2u*C(m) . (7.56)
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Ebbél azonnal lathato, hogy m = 0 esetén a variancia kb. 20 (200%), nagy m
esetén pedig fele ekkora. Ez azt jelenti, hogy a variancia nagysagrendben ugyanakkora
minden késleltetés esetén.

Azt is be lehet latni, hogy savkorlatozott fehér zaj esetén a T hosszisagu atlago-
lassal szamitott variancia kb. 1/(2BT) aranyban csokken.

Ezekbdl méar ki tudjuk szamitani a varianciat, de a korrelacié-becslét még nem tud-
juk jellemezni, hiszen a kiilonb6z6 késleltetésekhez kapott becslk Osszefiiggése nem is-
mert. A korrelacidobecslénél az a helyzet, hogy a szomszédos pontokhoz tartozo becslék
ergsen korrelaltak. Emiatt a mért pontok az emberi szem szamara fliggvénnyé allnak
Ossze, pedig az abra nagy részén a hullamzas a varianciabél szarmazik (7.5).

b S(f)

7.5. abra. A variancia megjelenése a korrelacio és a spektrum becslGjében

Mivel ez veszélyes érzékcsalodas, jelezniink kell a felhasznal6é szaméara. Ennek leg-
ésszeriibb modja a konfidencia-savok kijelzése (vagyis azon hatarok kijelzése, melyek
kézé az ismert variancia esetén az igazi fiiggvény jo eséllyel beleesik, 7.6. édbra). Ezt
sajnos a korrelatorok tobbsége ma még nem teszi meg.

7.4. Ablakozasi eljarasok

Ebben a fejezetben elGszor a szivargas és a léckerités-hatas egy a fentieket szemléletben
kiegészits leirdsat adjuk, majd megvizsgéljuk csokkentésiik modjat.

Az idealis atlagérték meghatarozasa a DC komponens mérését jelenti, minden més
frekvencia kisziirésével. Ehhez a frekvenciatartoményban egy végteleniil keskeny alu-
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......... a valodi gbérbe

a mért gorbe

———~ konfidenciahatdrok

7.6. abra. A konfidencia-sév kijelzése korrelacio-becslésben

latereszt karakterisztika tartozik. A valosdgban véges szamu (N) minta alapjan kell
becslést tenni, és a véges megfigyelési hossz miatt a frekvenciafelbontas véges. Ezt
a tényt elfogadva arra toreksziink, hogy olyan mérészamot kapjunk, amely kielégits
modon jellemzi a jel spektruménak 7.7 abran lathato, véges szélességii tartomanyat.

7.7. abra. Jelspektrum egy véges keskenységi savja

Az N-pontos mozg6 atlagolas sztirGkarakterisztikidjanak atereszté tartomanya nem
korlatozodik a kivant savra: a fGsav 2%” széles, nem egyenletes, és un. oldalsavok is
vannak. A véges felbontason tul, tehét, tovabbi engedményeket kell tenni, de amint
azt az ablakozasi modszereknél latni fogjuk, kiillonb6z6 kompromisszumok koézott va-
laszthatunk.

7.4.1. Spektrumszivargas és picket fence jelenség

A 7.8 dbra egy furcsa jelenségre hivja fel a figyelmet. Egy % relativ frekvenciaju diszk-
rét koszinusz 256 mintajat allitottuk els (21 periodust). FFT-t végezve a pontokon,
a 256-pontos DF'T vonalai %, k =0,1,...,127 frekvencidknak felelnek meg, tehat
a koszinusz frekvencidja DFT-vonalra esik. Az eredmény a 256-tal vald skélazastol
eltekintve megadja a koszinusz Fourier-egyiitthatoit (1d. 7.8/a abra).

Ezutén olyan esetet allitottunk els, amikor a koszinusz frekvencidja DFT-vonalak
kozé esik. A koszinusz frekvenciajanak modositasa helyett a DE'T pontszamat csokken-
tettiik felére. Ezzel az tj DFT-vonalak Ekg = %, k=0,1,...,63 frekvenciakra esnek.
A % frekvencidju komponens és parja DFT vonalak kézé esnek. Ha a 7.7 abra szerinti
felbontassal tudnank jellemezni a spektrumot, akkor csak a koszinusz frekvenciajaban

lenne bizonytalansag, ettdl eltekintve az eredmény a valdédi spektrumot tikrézné. A
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7.8. abra. a) fT = Z- normalt frekvenciaja koszinusz jel 256 pontos DFT-je. b-c)

Spektrumszivargas és picket fence jelenség a jel 128 pontos DFT-je esetén, az els6 128
ill. a mésodik 128 mintat transzformélva; (amplitudé lathato)

DFT ellenben a 7.8/b ill. 7.8/c abran lathato eredményt adja. Az el6bbi esetben a
jel els6 128 mintajara végeztiink FFT-t, a masodik esetben a 64+ [1:128] mintékra.
Az els6 eset mintéi egy koszinusznak, a masodiké egy szinusznak felelnek meg (21 - 90
fokos fazistolas).

Két jelenséget tapasztalunk:

1. Az eredeti jelspektrum egyes komponenseinek teljesitménye tévoli frekvencidkra
is ,atszivarog” (I1d. 7.8/b-c abra), a DFT-frekvencidkra koncentralt teljesitmény
azonban egyaltalan nem (I1d. 7.8/a 4bra).

2. Az eredeti jelspektrum DFT-vonalak kozé es6 cstcsai elvesznek.

Az el6bbit spektrumszivdrgdasnak a masodikat picket fence (léckerités-) hatasnak
nevezik. A spektrumszivargas azért veszélyes, mert a nagyobb amplitadoju frekvenci-
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akomponensek elfedhetnek szomszédos, kisebb amplitiid6ju komponenseket. A picket
fence hatas pedig az egyes komponensek amplitidojara nézve megtéveszta.
A 7.8/b-c abran az is lathato, hogy a spektrumszivargés jelensége a véletlen fazistol

fiigg.

A jelenségek létrejottét tobbféleképpen is lehet értelmezni, de a korabbi fejezetek
alapjan a legkézenfekvibb, ha a DFT-t, mint sztir6bankot tekintjiik.
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normalt frekvencia (f7T)

7.9. abra. Spektrumszivargas és picket fence jelenség: (a) egy szinuszos jel spektruma,
(b-i) a DFT-sztir6bank sztir6karakterisztikai (N = 8), (j) a sztir6kimenetek teljesitmé-
nye a megfelels savkozépen abrazolva (szaggatottal a valodi teljesitmény-spektrum).

A 7.9 ébra egy szinuszos jel amplitidé spektrumat, alatta pedig az egyes savszi-
r6k karakterisztikdjat mutatja N = 8 esetén, a normalt frekvencia fliggvényében. A
legalso tengely mentén az egyes savsziirGk kimenetén megjelend jel teljesitményét tiin-
tettiik fel, mindegyik értéket a szliré savkozepének megfelels frekvencia folott. Ez a
jel teljesitmény-spektruménak becslje, melyen nyilvanvalo a szivargas hatéasa; (szag-
gatott vonallal az eredeti teljesitményspektrumot is feltiintettiik).
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A szivargas ugy jon létre, hogy mindegyik szlirs, a karakterisztikdkon jelzett mo-
don, csak véges mértékben csillapitja a jel két komplex harmonikus komponensét. A
két egymasra ortogonalis jelkomponens teljesitményét Osszegezve kapjuk az adott sav
eredd teljesitményét. (jelek ortogonalitasa: 1d. Schnell, 2.3. fejezet)

A szivargas tehat a sziirkarakterisztikak atfedése ill. periodikus ,leszivasai” miatt
jon létre, a picket fence hatas pedig azért, mert a karakterisztikik nem elég ,laposak”
a sawkozep 2 (k £ ) kdrnyezetében.

Megjegyzés: A picket fence jelenség méas sztir6bank esetén is el6fordulhat, spekt-
rumszivargas azonban hasonld formaban nem jelentkezik: Mivel a DFT-sztirék ka-
rakterisztikija az atereszté savon kiviil nem monoton csokkend, ezért a szinuszos jel
frekvenciajat monoton valtoztatva a spektrumszivargas elébb csokken, majd noévek-
szik, vagy forditva; savkozéphez érve pedig teljesen megsziinik. Ez a fajta érzékenység
nem jelentkezik azoknal a sztir6bankoknal, amelyek sztirGkarakterisztikai levagnak (1d.
Schnell 24.77. &bra).

7.4.2. Ablakozas

A mozgod atlagolas amplitudo-karakterisztikdja kapcsan mar megvizsgaltuk, hogy a
frekvenciatartomanybeli szelektivitas hogyan feleltetheté meg az idGtartomanybeli fel-
dolgozasnak: a 4.15 abra alapjan szinuszos jelekre belattuk, hogy az oldalsdvokon &t-
szivargd teljesitményt az ablakban latszod6é nem egész szamu periddus okozza. Ezért
arra kell torekedni, hogy elnyomjuk az ablakban latszodo6 részperivdusokat.

Az egyszertiiség kedvéért a mozgd atlagolasra szoritkozunk, az eredmények értelem-
szertien a tobbi DFT poziciora is kiterjeszthetsk.

Ha nem egyenletes silyokkal atlagoljuk a mintakat, hanem példaul a szélek felé
fokozatosan csokkend siillyal, akkor az ablakhosszon egész-szamu periodust tartalmazo
jel, ill. nem egész-szamu periddust tartalmazo jel kozotti ,kiilonbozdség” csokken. Az
amplitudo-karakterisztika oldalsavjai csokkennek. A modszert ablakozdsnak nevezik, a
stulyok megvalasztasara kiilonbozd ablakfiigguények javasolhatok.

Az atlagolés helyébe silyozott atlagolas 1ép: eddig minden minta egyforma % sullyal
szerepelt, most kiillonboz6 {wy} silyok. A torzitatlansag feltétele stacionarius jelek

esetén:
N-1
wy, = 1 (7.57)
k=0
mivel:
N-1 N-1
E{i(n)} => wE{yln—N+k)} =2 w (7.58)
k=0 k=0

A torzitatlansag értelmében 0 frekvencian a sziirg atvitele 1.

A Hanning ablak:

2
wHanning(”) = _[1 ~+ cos —Trn], — <n< (759)

N
N N 2

N
2
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Az ablak a kiértékelés idépontjara szimmetrikus, igy Fourier-transzformaltja valos ér-

tékd, az wy sulyok Osszege 1. Az ablak a szélek felé egyre kevésbé veszi figyelembe a
mintakat, mig kdzepén a négyszogletes ablakhoz képest éppen kétszeres sullyal.

Az ablakfiiggvény a periodikus ,emelt koszinusz” és az azt NT id6tartoményra kor-
latozo, diszkrét-idejl, négyszogletes ablak szorzata. Ezért az ablak karakterisztikaja
az ,emelt koszinusz” vonalas spektrumanak és a négyszogletes ablak Fourier transzfor-
maltjanak konvolaciojaként all els (1d. 7.10 és 7.11 abra):
1 sin §(wTy + 37) 1 sin Swly 1 sin§(wT} — %)

2N sin ST, +3) N sinjwT, 2N sin s(WT, — 2)

A harom Osszetevs eredGjeként, a négyszogletes ablak karakterisztikajahoz képest,

f{wHanning} -

(7.60)

A A
1
1 1 sin %wT
N E ; N sin wT
t wT
le N S 27
< »| N

NT

7.11. abra. Az ablak spektruma korlatozés nélkiil és négyszogletes ablakkal szorozva

j:%r—nél eltiinnek a leszivasok, tehat a frekvenciafelbontas romlik, viszont az ellentétes
fazist oldalhullamok Gsszege kisebb oldalhullamokat eredményez, ezért a spektrum-
szivargas csokken. Mivel a f6hullam is szélesebb, ezért a maximaélis amplitidohiba is
csokken.

Tovéabbi felharmonikusok felhasznélasédval mas ablakok is tervezhetdk, igy példaul a

Flat-top ablak, amely minimalizalja a maximalis amplitido-hibat adott szamu egyiitt-
N
sin EwTs

hato mellett. Az aldbbi Flat-top ablak Fourier transzformaltja kilenc ——3—= jellegd
2 S
komponens linearis kombinacioja:
4
2 N N
Ag—l—;Akcosﬁﬁk-n; —5§n§§ (7.61)
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A héarom ablaktipus jellemz6 adatai (v6. 7.12 &bra ):

Ablak fiiggv. | Oldallengés Oldallengés Zajsavszélesség | Max. ampl. hiba
maximuma | hatdrmeredekség (relativ) két pozicio kozott
Négyszogletes -13dB -20dB/D 1 3.9dB
Hanning -32 dB -60 1.5 1.4 dB
Flat-top -90,5 dB 0 >3 <0,1dB
(7.62)
100 = 5 - 10
3.9dB | N / l\rlax.\amphtﬂdéhlba
\ / \ PR
. / L \ Max, oldalsav Oldalsiyests
/ \\« I
10k ,/ \\1 ",/ \\ / ol -20dB/dekad |
\| [/
Col I
/ |
|
l
107 J 107 E
|
\
1073 107k ‘
|
|
4 ‘ ‘ 4 ‘ ‘
i 0.1 0.2 0.3 00 10! 102
normalt frekvencia (f77) savkozép aranyaban

7.12. abra. Az ablakfiiggvények frekvenciatartomanybeli jellemzéi (a négyszogletes ab-

lak példajan)

Ha az ablak karakterisztikdja egységnyi varianciaju fehérzaj teljesitménystrtiség-
spektrumabol éppen % teriiletet vag ki (az fT € [—0.5,+0.5] tartomanyon), akkor
ekvivalens zajsavszélessége egységnyi. (A négyszogletes ablak zajsavszélessége a 7.25

egyenletbdl kovetkezGen 1.)
Az ekvivalens zajsavszélességet tehat ugy szamithatjuk ki, hogy a karakterisztika

négyzetét a relativ frekvencia szerint integraljuk a [—0.5, +0.5] tartomanyon, és szor-
zunk N-nel. A Parseval-tétel értelmében az integrdl megegyezik a silyok négyzet-
osszegével. Egységnyi zajsavszélességhez tehat a stlyok skilazésa:

=

1
2 = —
0 Wi = 5 (7.63)

i

Az ablakfiiggvények relativ zajsavszélessége megadja, hogy a 7.57 szerinti skalazés
mellett a stlyok négyzetosszege hanyszor nagyobb a a 7.63 szerinti skaldzassal kapott
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stlyok négyzetdsszegénél, vagyis ~-nél.:

N-1
N-1 w Z ’LU;%
k k=0
Brel - N Z N1 - Nﬁ (764)
B=0 | Y7 wy (E wk)
k=0 k=0

Sztochasztikus jelek teljesitménysiirtiség-spektrumanak becslése esetén is alkalmaz-
hato ablakozas (1d. Schnell, 24.8.3. fejezet). Ha a 7.57 szerinti skalazast alkalmaztuk a
sulyokra, akkor az ablak relativ zajsavszélességével le kell osztani az eredményt ahhoz,
hogy helyesen skalazott spektrumot kapjunk. Természetesen egyszertibb és egyenér-
tékd megoldas, ha eleve a 7.63 szerinti skalazast alkalmazzuk.

A DFT ablakozéssal:

X = N wkx(k)e_j%km (7.65)

Megjegyzés: Az ablakozas mivelete egyenértékii modon elvégezhetd a frekvencia-
tartomanyban is. Ekkor az idékorlatozas nélkiili ablakfiiggvény spektruméval kell cir-
kularis konvoltciot végezni a négyszogletes idGablakkal korlatozott jel spektruman.
Hanning ablak esetén, ez a megoldas bizonyos esetekben elényodsebb is, mint az id6-
tartoményban elvégezni a beszorzast. Ha ugyanis N ketté hatvanya, akkor a Hanning
ablak esetében a konvolicidhoz nem kell szorozni, csak helyiértéket 1éptetni, és Ossze-
gezni. (Mas ablakfiiggvényeknél az idStartomanybeli kiértékelés elényosebb, kivétel
olyan jelfeldolgozasi esetekben, ahol a jel eleve a frekvenciatartomanyban all rendel-
kezésre.)

Megjegyzés: TervezhetSk a fentiektdl eltérd modon is ablakok, ha a periodikus
leszivasok elérése nem célkitiizés. A Kaiser ablak példaul a kivant savon kivil esé
teljesitményt minimalja (kozelitsleg).
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8. fejezet
Modellillesztés

8.1. Bevezetd

Az el6z6 fejezetekben bemutatott eljarasokban felfedezhets volt a jel modellje:

o Az atlagolast allandonak feltételezett paraméter becslésére hasznaljuk, és valo-
ban felfedezhets benne az allandé érték egy modellje (5.12 &bra).

e A DFT-sziir6 tartalmazza az N-re periodikus diszkrét harmonikus jelek modell-
jeit (v6. 5.15, 5.2 abréakat).

o A megfigyel§ elvet hasznalo struktarak a jelmodellbdl indulnak ki, és a modell és
kopidja kozotti hibat hasznaljak fel az allapotparaméterek lemasolasahoz. (5.14
és 5.16 abrak).

A modellillesztés egyrészt az elGbbieket kiegészitd, masrészt azokhoz hasonlo fela-
dat.

,Kiegészitd” abban az értelemben, hogy az eléz6ekben ismertnek feltételezett mo-
dellparaméterek (esetleg modellstruktira) meghatarozéasa a cél. Azt a modellillesztési
feladatot, amikor a megfigyeléseinkre legjobban illeszkedd rendszert a topologidjaval
és fokszamaval megadott modellosztalyon beliil, a modellparaméterek valtoztatasaval
keressiik, paraméterbecslésnek nevezziik.

Ugyanakkor a paraméterbecslés az allapotbecsléshez ,hasonld” feladat is.

Az eljarasban itt is megvaldsul egy modellkopia, és a rendszer ill. az illesztett mo-
dell kimeneteinek eltérését minimalizéljuk valamilyen hibakritérium szerint, hasonléan,
mint a megfigyel6nél; (ott a pontos modellkopia, és a zajmentes megfigyelés miatt a
,nulla eltérés” volt a cél).

Egyes esetekben elsfordulhat, hogy egyazon feladat megoldhato6 tgy is, mint para-
méterbecslés, és gy is, mint allapotbecslés, hiszen ugyanazon mennyiség megmérésé-
hez sokféle moédon rendelhetiink modellt: az egyik esetben az ismeretlen mennyiség
paramétere, a mésik esetben allapotvaltozoja lehet a modelliinknek. Ehhez megenged-
hetjiik a modell paraméterek idGbeli valtozasat is.
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A paraméterbecslés és az allapotbecslés kozotti hasonlosdgokat szemlélteti az alabbi
példa, amelyben c és x(n) szerepe felcserélddik a kétféle becslésben, de az ismeretle-
nekben tovabbra is lineéris a feladat, és hasonlo rekurziv Osszefliggések adodnak:

Mérendé modell Modellkopia Modellkopia
(megfigyelGelmélet) (paraméterbecslés)
x(n+1)=A-x(n) | X(n+1)=A-%(n)+ korrekci6 | x(n) ismert
c = konst. c ismert ¢(n+ 1) = &(n) + korrekcio
yin+1)=c'-x(n) | g(n+1)=c" %(n) g(n+1)=2e%(n)-x(n)

Formailag hasonlo, predikcids-korrekcios kifejezéseket kapunk a becslésre. A kii-
lonbség az, hogy nem az allapotvaltozok méasolodnak, hanem a stlyparaméterek val-
toznak, ,hangolodnak”. Az A maéatrix helyébe pedig egységmaétrix keriil, mivel a para-
méterekrdl azt feltételezziik, hogy idében allandok.

A korrekcié, melyet ebben az Osszehasonlitdsban nem részleteztiink, jelentésen kii-
lonbozik a modellillesztés esetében amiatt, hogy sztochasztikus megfigyelésekbdl in-
dulunk ki. (Megjegyzés a megfigyelénél bemutatott modellstruktira is kiegészithetd
zajbemenettel: 1d. Schnell, 4. fejezet: Kalman-sziirs.)

A modellillesztési feladatok két nagy csoportjat célszerd megkiilonboztetni:

Identifikacié (meghatarozas): Identifikicio esetén fix objektumot vizsgalunk, ezért
tobbnyire stacionaritast feltételezhetiink; sok adat begytijtésére van lehetGség.
Gyakran a gerjesztést is mi hatarozhatjuk meg. Nagy pontossagu, de nem gyors
valaszideji eredmény a cél. Méréssel, azonositassal kapcsolatos feladatokra jel-
lemzaé.

Adaptacio (kovetés): A kovetés valos idejii kovetelményt tdmaszt: tlinjon el gyorsan
a hiba, az ,egyiittmozgas” a fontos. A rendszerparaméterek pontos megfeleltet-
hetGsége a valosag és a modell kozott nem elsérendt szempont, s6t sokszor a
kénnyebben kezelhetd strukturara és paraméterkészletre térés a cél (ugy, hogy a
lényeges miikddési tartomanyban hasonloan viselkedd modellt kapjunk.) Szaba-
lyozassal, kovetéssel kapcsolatos feladatokra jellemzs.

A jelen fejezetben bemutatott modszerek elvileg mind a kétféle feladatcsoporthoz
alkalmazhatok. A modszerek alkalmazhatosagat egy adott feladatban tobbek kozott a
felsorolt szempontok ill. koriilmények fiiggvényében itélhetjiik meg.

8.1.1. A fejezet tartalma

A regresszio-szamités és a modellillesztés feladatanak alapstrukturaja megegyezik (8.1
abra). Ezért el6szor bemutatjuk egy egyszert, linearis regresszio kiszamitasat. Ezutan
megmutatjuk, hogy altaldnos modellillesztési problémék széles kore esetén, a modell-
struktura kettévalasztasaval olyan paramétereket tudunk elkiiloniteni (8.3 dbra, 8.17 és
8.18 egyenletek), amelyek becslésére linearis regresszio irhato fel. Ezt az altalanos pa-
raméterbecslési probléméat vizsgalva levezetjiik a Wiener-Hopf egyenletet (8.23), amely

139
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négyzetes hibakritérium esetén az optimélis paraméter-beallitast adja meg a megfigye-
lések statisztikai paramétereinek fliggvényében. (Ez utobbiakat méréssel tudjuk csak
megbecsiilni.)

A Wiener-Hopf egyenletbdl kiindulva gradiens-alapi, iterativ eljarasokat vezetiink
le a paramétervaltoztatasra, amelyek kiilonb6z6 mélységt statisztikai ismereteket hasz-
nalnak fel, ill. ezeket — kiillonb6z6 moédon — a megfigyelések alapjan folyamatosan be-
csiilik.

A linearis regresszio esetében a hibafeliilet kvadratikus, és a minimum elhelyez-
kedését adja meg a Wiener-Hopf egyenlet. Az iterativ eljardsok konvergencidjanak
vizsgalatahoz a hibafeliilet elhelyezkedésérdl és alakjarol kell pontosabb képet nyerni.
Ehhez a regresszios vektor autokorrelacios matrixanak diagonél alakra transzforma-
lasat kell elvégezni, és a sajatvektorokkal parhuzamos koordindtairanyok szerint kell
felirni az iteraciot.

Ha a linearis regresszio feladatatol eltériink, a hibafeliilet nem marad kvadratikus.
Ekkor a hibafeliilet véges Taylor-sorfejtésével a korabbi eredmények kiterjesztheték
ugyan, tehéat az iterativ eljarasok tovabbra is alkalmazhatok, de a kozelitést figyelembe
kell venni az iteracios paraméterek megvalasztasdnal, és a konvergencia teljesiilése nem
vizsgalhato egyszerten.

Ezt a kiterjesztést felhasznalva bemutatunk adaptiv végtelen impulzusvalaszi rend-
szereket. Az els6 alapeset (n. ,Equation Error” modszer) linearis regressziora vezeti
vissza a feladatot, a masodik (an. ,Output Error” modszer) pszeudo-lineéris regresszio
megoldéasat keresi.

8.2. Regresszio-szamitas

A regresszio-szamitds feladata fliggd €s fliggetlen valtozok kézdtti kézvetlen determinisz-
tikus kapcsolat meghatdrozdsa. Ez a modellillesztésnek egy specidlis esete (8.1 dbra).

ln (noise)

u Yy
g(u,n)

kritérium-fiiggvény

, ()

optimumkeresés

8.1. abra. A regresszid-szamitas, mint a modellillesztés egy specidlis este.

A zaj miatt az y fligg6 és u fliggetlen valtozo kozotti kapcesolat a keresett determi-
nisztikus Osszefiiggés mellett sztochasztikus komponenst is tartalmaz.
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Az illesztends modell, § = g(u) (determinisztikus fiiggvénykapcsolat), nem ugyan-
ugy van beagyazva a kornyezetbe, mint az eredeti rendszer, y = g(u,n), hanem pl.
szamitoégépen futd szimulécid, vagy miiszer belsejében talalhatd aramkor, ezért nem
reprodukalhaté a zaj hatésa. Ebbdl adodoan csak kozelitGleg megegyezd kimenetet
szolgaltato rendszer adhaté meg.

Approximécié esetén meg kell hatarozni, hogy mi szamit optimalisnak. Ez szub-
jektiv dontés eredménye, amit pragmatikus szempontok befolyasolnak.

A tovabbiakban a minimalizdland6 koltségfiiggvény, vagy hibakritérium, legyen:

c=E{y-9"tv-9} (8.1

A négyzetes kritériumfiiggvény elényos tulajdonsigokkal rendelkezik: egyrészt al-
kalmazasaval az optimumfeladat megoldasa matematikai szempontbol tobbnyire ked-
vezs, masrészt a négyzetes hibanak a hibateljesitmény vagy hibaenergia révén fizikai
értelmezés is adhato.

Az illesztés tipikusan szabad paraméterek beallitasat jelenti (u, y) parok segitségé-
vel. Altalaban sok méréshez (u, y parok) kevés paramétert rendeliink (g-t allitjak), igy
a zaj hatasa nagyrészt kikiiszobolhetd (8.2 dbra).

Az [u, g(u)] gorbe az y valtozo u-ra vonatkoztatott regresszids girbéje; ha u vek-
tor, akkor [u, g(u)] regresszids feliilet. u a regresszios valtozo. (1d. Schnell, 5.4. fejezet;
Prékopa).

20 20 20

y "A" kisérlet y "B" kisérlet ¥ "B" kisérlet
10
0
g(u) = 3.9u — 2.35 g(u) = 3.9u — 2.35
-10 -10
0 2 44y 0 2 4, 0 2 4 u

8.2. abra. ,,A” kisérlet: linearis karakterisztika + Gauss zaj, ,,B” kisérlet: négyzetes ka-
rakterisztika + Gauss zaj, a) az ,,A” ponthalmazra illeszthet modell teljesen specifikalt
jellemzdk vagy lineéris regresszio esetén, b) a ,B” ponthalmazra illeszthetd modell tel-
jesen specifikalt esetben ¢) a ,B” ponthalmazra linearis regresszioval illesztheté modell
(A regresszios egyenes éppen elfedi az ,A” ill. a ,B” kisérlet kozotti kiilonbséget).

8.2.1. Regresszi6o-szamitas teljesen specifikilt statisztikai jel-
lemzG6kkel

Teljesen specifikalt statisztikai jellemzokrsl akkor beszélhetiink, ha ismerjik u és y
egylittes valoszintiség strtségfiiggvényét: f,,(u,y), vagy azzal ekvivalens leirasat, min-
den idépillanatra.
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A regresszio-szamitassal kapott g(u)-nak olyannak kell lennie, hogy

e = E{y— )} (5.2
atlagos, négyzetes hiba minimalis legyen. Ez az tin. Bayes becslési probléma:
9 (u) = E{ylu} (8.3)

8.2.2. Regresszié-szamitas részben specifikilt statisztikai jel-
lemzdékkel

Gyakoribb eset, hogy nem ismerjiik az egyiittes eloszlast, csak véges szami momen-
tumét, igy részben specifikalt statisztikai jellemzSk mellett kell regresszio-szamitést
végezni.

A modellel szemben tamasztott fontos gyakorlati szempontok:

Szamithatosag: Az alkalmazott eljaras a véalaszidd kovetelmények betartasa mellett
konvergéljon.

Statisztikai jellemzdk ismerete: A paraméterillesztés ne igényelje olyan statiszti-
kai jellemzdk ismeretét, amelyek nem becsiilhet6k meg megfelels pontossaggal a
megfigyelésekbdl (Pl 2-od fokunél magasabb rendd momentumok ne szerepelje-
nek az eljarasban.)

Linearis regresszio:
Legyen a determinisztikus fliggvénykapcsolat egy linearis egyenlet, melynek b; pa-

raméterei az ismeretlenek:
g(u) = by + bu (8.4)

Ezen a fliggvényhalmazon beliil keressiik az optimalis modellt. (A 8.2 4dbra szerint
ez megegyezhet az altalaban vett optiméalis megoldassal — a) eset —, de altalaban csak
szuboptimalis megoldast jelent — c) eset.)

Minimalizalandoé:

e=E{(y—9)’}=E{(y—b —bu)’} = min. (8.5)
0,01

Mivel a hibafeliillet — a hibédnak a paramétersik feletti fiiggvénye — kvadratikus,
ezért pontosan egy minimumbhelye van, ahol viszont a fiiggvény értéke nem feltétlen
nulla. A minimumot tehat differencialassal kereshetjiik:

Oz /AN
%J~4E{@—wa@}—o (8.6)

Elgszor a by szerinti parcialis derivaltra irjuk fel a nulla-feltételt (a varhatoérték
képzés és az Osszegzés sorrendjét felcserélve):

Oe
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Ez egy kétismeretlenes (bg, b1 ), lineéaris egyenlet, amelyet atrendeziink, és F {u}-vel
szorzunk, hogy by E' {u} majd késébb kiejthets legyen.

E{y} = bo+0E{u} | -E{u} (8.8)
E{u} E{y} = b {u}+bE* {u} (8.9)

Ezutan a masik paraméter, b, szerinti parcialis derivaltra is felirjuk a feltételt:

o = =2 (B {u} W {uh — uE {u}) =0 (8.10)

Ebbdl is egy kétismeretlenes, linearis egyenletet adodik (8.11), amelybdl az elézsleg
kapott 8.9 egyenletet kivonva, a by ismeretlent kikiiszoboljiik:

E{uy} = boE{u}+0bE {u’} (8.11)
E{uy}t — E{u} E{y} = bi(E{u’} — E*{u}) (8.12)

Ebbdl by kdzvetleniil adodik, by pedig kifejezhetd elvégezve by behelyettesitését a 8.8
egyenletben:

y o~ Pluyy — E{u} E{y}
1 E{u?} - B2 {u}

bo = E{y}—bE{u}=

(8.13)

E{y} E{v’} — E{u} E {uy}
E{u?} — E2 {u}

(8.14)

A linearis regresszi6 két lényeges elénye:
1. A by és by ismeretlenekben lineéris a modell, igy explicit megoldas adhato.

2. Az u-ban els6fokt egyenlet és a négyzetes hibakritérium miatt csak elsé- és ma-
sodrendii momentumok sziikségesek a becsléshez.

Ez utoébbi azért lényeges kérdés, mert a momentumok becslése véges szamu adat
alapjan csak véges pontossaggal torténhet. Jollehet, elvileg a bemenetet meghatéro-
zott statisztikai jellemzdkkel tudjuk gerjeszteni, (ilyen esetben ezek eleve ismertek), a
kimenetet is tartalmazé momentumok a modellezendd rendszertdl is fliggnek, igy azo-
kat csak méréssel tudjuk megbecsiilni. Minél magasabb rend momentumot probalunk
becsiilni, annal tobb adatra van sziikség, vagy nagyon bizonytalan lesz a momentum
becslGje.

Altalanosabb modellek:

N-ed foku polinomialis regresszio:
G(u) =Y b (8.15)

El6nye: paramétereiben linearis modell. (A bemenetre nézve nemlinearis). Hatranya:
a momentumok 2/N-ed rendig kellenek.
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T6bb kimenetii/bemenetii modell

A linearis regresszio altalanosithato tobb bemeneti, esetleg tobb kimenett rend-
szerre is.
Paramétereiben nemlinearis modell

A paraméterekben nemlinearis 0sszefliggés is hasznalhaté matematikai modellként.
Ekkor két széls6 vélasztas lehetséges: vagy linearis regressziova alakitjuk valtozocseré-
vel a feladatot (1d. Horvath, 4.1. fejezet), vagy nemlineéris regressziot kell végezniink.

8.3. Adaptiv linearis kombinator

A modellillesztés feladatat ugyanaz az ébra (8.1) irja le, mint a regresszidét. Az illesz-
tend6 modell:

Y= g(u) = Q(W, u)? (816)

ahol u a bemendjel, wI' = [wp, w1, ..., wy_1] az allithaté paraméterekbsl dsszealli-
tott vektor. A g(w,u) jelolés azt fejezi ki, hogy a modell a w stlyvektoron keresztiil
valtoztathato, adaptalhato.

Az adott probléméban felvet6dd modellt tgy hozzuk létre, hogy a modell dinamikus
és/vagy nemlinedris tulajdonsagu részeit rogzitjik (f(u)), és kiilonvéalasztjuk a modell
adaptalhato részétdl (8.3 abra). Az adaptalhato rész paramétereinek (w) becslése egy
linearis regresszios feladat.

8.3. dbra. Adaptiv linearis kombinator

A modell rogzitett része a bemengjelbdl elsallitja az x regresszios vektort (elemei
a regresszios valtozok), amely a halozat adaptalhato részének bemenete:

x = f(u) (8.17)

M—-1

j(n) =w'(n)x(n) = Y wi(n)z;(n) (8.18)

i=1
ahol M a regresszios vektor hossza. Ez a skalar szorzat tébb kimenet esetén (y;)
altalanos matrix-vektor szorzattd boviil: §(n) = WT(n)x(n). Tébb bemenet esetén

x = f(u).

Az adaptiv linearis kombinator két meghatarozé tulajdonsaga:

1. az adaptdlhato rész paramétereiben linedris,

2. a paramétervdltoztatds véges memoridji hatdssal jdar.

144



8.3. ADAPTIV LINEARIS KOMBINATOR

(Megjegyzés: A linedris regresszio eléz6leg targyalt egyszert esete az adaptiv line-
aris kombinator egy eseteként is felirhato, ahol x* = [ 1 u |, wl = by by |.)

A korabbi regresszios példahoz hasonloan itt is az atlagos négyzetes hibat (a hiba
négyzetének varhato értékét) minimalizaljuk:

e(n)=F { (y(n) — WTX(TL))Q} = (8.19)

=E{y’(n)} - 2\E {y(n XT(TL)}JW + WT\E {x(n)xT(n)}JW (8.20)
= E{y*(n)} — 2p’w + w' Rw, (8.21)

ahol

p' = E{y(n)x'(n)}
R = E{x(n)x"(n)}

a kimenet és a regresszios vektor kozti keresztkorrelacios vektor, illetve a regresszios
vektor autokorrelacios matrixa. Az autokorrelaciés méatrix f6atlojaban a vektor egyes
elemeinek négyzetes varhatoértéke all, tobbi eleme pedig a sor- és oszlopindexnek meg-
felels regresszios valtozok kozotti keresztkorrelaciot adja meg. Feltételezziik a rendszer
bemenetének és kimenetének mésodrendi stacionaritasat, ezért R és p fiiggetlen n-tél.

Az atlagos, négyzetes hiba kifejezésében a w vektor mogiil elhagytuk az idéindexet,
mivel egyelére nem adaptaljuk a sulyokat, hanem az optimalis, fix beéllitasra keresiink
kifejezést. A minimumot differencialassal keressiik:

Oe
—_9 2 = .22
5 p+2Rw=0 (8.22)

Ennek megoldasa:
Wopt = R7'P (8.23)

Ez a Wiener-Hopf egyenlet, amely zart alakban megadja az egyetlen optimum
helyét. Erdemes osszefoglalni, hogy milyen feltételek vezettek erre az eredményre: A
(1) paramétereiben linearis modell, (i7) az atlagos négyzetes hibakritérium, valamint
(7i1) a masodfokt momentumok stacionaritasa, egyiitt kvadratikus (w-ben masodfoki)
hibafeliilethez vezettek, amelynek gradiense w linearis fiiggvénye. Igy az optimalis
paraméter-beéllitasra, amelyet a gradiens V(n) = 0 feltétele egyértelmiien megad, a
Wiener-Hopf egyenlet adodott.

Visszahelyettesitve 8.23-et 8.21-be:

Emin = E{y*(n)} —p"R7'p = E{*(n)} — p" Wopt- (8.24)

Ehhez felhasznaltuk az alabbi két algebrai azonossagot, és az R matrix szimmetri-
ajat:

1. (AB)" = BTAT,
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2. AA~! =1, ahol I az egységmatrix
3. RT=R,igy R°T=R!
A hiba kifejezésében (8.21) elkiilonitve e,,;,-t, mint konstans eltolasi értéket:
e(n) = emin + [Wopt — W(n)]"R[Wope — w(n)]. (8.25)

Ha a paramétertér origojat az optimumba toljuk el, vagyis az optimumhoz képest
Sbajékozodunk”, akkor az 1j koordinatavektor:

v(n) = w(n) — Wopt (8.26)

nem més, mint a paraméterhiba. A paraméterhiba fliggvényében a kimenet atlagos,
négyzetes hibaja:
e(V) = emin + V' Rv (8.27)

A hibafeliilet tehét a paramétersiktol vett e, eltolasu (hiper)paraboloid, amelynek
formajat az R matrix hatarozza meg.

Mivel R a regresszids vektor autokorrelacidos matrixa, ezért 8.27 és 8.28 alapjan
egyértelmi, hogy a kvadratikus hibafeliilet alakja, és fétengelyeinek elhelyezkedése,
csak a bemenet mintaitol fligg. A modellezett rendszertdl csak a hibafeliilet origotol
valo eltolasa (Wopt €S Emin, azaz a minimumbhely és a minimum értéke fiiggenek.

A gradiens vektor:

V = 2(Rw(n)—p)
_ gvi(&)) (n) = 2R [W(n) — Wop]
= 2Rv(n) (8.28)

A harom kifejezés kozvetleniil adodik a hiba megfelels kifejezéseinek (8.21,8.25,8.27)
differencialaséaval.
A 8.4 abra kétdimenzios paramétervektor esetén mutatja a hiba-paraboloidot.

hibafeliilet (paraboloid)

Smt:? %arameterek sikja

Wopt

8.4. dbra. A hibafeliilet a paramétervektorok altal kifeszitett sik felett
A hibaparaboloid alapsikkal parhuzamos metszetei ellipszisek (8.5 dbra), amelyek

az elmetszés magassaganak megfelel§ hibat eredményezd paraméter-beallitasok mér-
tani helyét adjak meg. Kiilonb6z6 magassagokban elmetszve a paraboloidot, tébb ilyen
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W,

n

8.5. abra. Izokritérium gorbék: a hibafeliilet metszeteinek vetiilete. Fétengelyek.

WA

A\t

8.6. dbra. Koordinaték eltolasa és forgatasa

ellipszist kapunk, amelyeket a paramétersikra vetitve egy a hiba értékével paraméte-
rezett gorbesereg adodik. A gorbesereget alkotoé koncentrikus ellipszisek fGtengelyei
egybeesnek, de a sik koordinatatengelyeihez képest altalanos helyzetben helyezked-
nek el. A fétengelyiranyok kitlintetett szerepét az adja, hogy ezekben az iranyokban a
hiba-paraboloidon fekvé barmely pontban a negativ gradiens mindig az optimum felé
mutat. Igy ezen pontokbol kiindulva a gradiensek mentén megfelelen nagyot lépve az
optimumba érkezhetiink, vagy afelé ,ereszkedhetiink”.

8.3.1 Példa. Legyen

x'(n) = [zo(n) x1(n)] = |sin %n sin 2Ww(n —1) (8.29)
y(n) = 2cos %Tn (8.30)
wl(n) = [wo(n) wy(n)] (8.31)
g(n) = wo(n)xe(n)+ wi(n)xi(n) (8.32)
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Megjegyzés: A feladat megfogalmazhato tgy is, hogy csak a bemendgjel adott, pl.
n, és akkor a modell fix részére is (8.3 abra) Otletet kell talalni: egy kés-

2
leltets elemre vezetve az u(n) jelet éppen a x (n) allithat6 els (8.7 dbra). A rendszer,

u(n) = sin 5
amit modelleziink, egy 90 fokos fazistolast végez a szinuszon.
uln)= sin(z—TE nJ wy () ()= 2cos 2n
VU ae | Ha)=2co5 S
> )
\ { o
A g

-1

o) %%(”) ‘

8.7. dbra. A példaban szerepl6 adaptiv linearis kombinéator.

>

$0)= ), ) ) )

A varhatoértéket az egész szamu periddusra vett atlagértékként szamitjuk. (Ez
egyenértéki azzal, mintha véletlen kezd6fazis szerepelne az argumentumban, és erre

nézve képeznénk a varhatoértéket). Felhasznalva, hogy sin® a = 0.5 (1 — cos 2a), illetve

= —2sinasin g :
2
: >} — 0.5, (8.33)

cos (a4 ) — cos (a — 3)
E{xQ}:E sin? 2—7Tn =05-E<1—cos|2—n
0 N ' N
illetve
2
E{zor1} = E{r120} = F {sin (—n) sin (ﬁﬂ (n+ 1)) } = (8.34)
2 2
~ 0.5E {cos (—”) — cos (WW (2n + 1)) } = 0.5 cos <—) . (8.35)
Ezzel
- 0.5 0.5 cos%7r
R = [ 0.5 cos%’r 0.5 } ’ (8.36)
4 0.5 —0.5cos 2=
R = sinQQN7r { —0.5 cos%r 0.5 } : (8.37)
Mivel
Bd2cos (250 ) sin (220 ) b = B Lsin (2 =0 (8.38)
cos | mpn ) sin | wn ) o = sin n)e=0, )
ezeért 5
.27
p = [0, —sin N], (8.39)
és
E{y*(n)} =2 (8.40)
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Az atlagos, négyzetes hiba és az optimalis paraméter-beallitas:

e(n) = 0.5 (wi(n) + wi(n)) + wo(n)wi(n) - cos %T + 2w (n) sin QWW + (2, , (841)

~~~
N 7 ng 7 +E{y*(n)}
wT (n)Rw(n) —2pTw(n)
2 2
ngt = [ tan%’ _si1f12W7r ] : (842)

Megjegyzés: wope mellett e, = 0. Vagyis egy koszinusz mintai a megfelel§ szinusz
egymast kévet§ mintaibol egyszert silyozott Osszegzéssel elGallithatok.

Megjegyzés: 1/N éppen azt adja meg, hogy milyen gyorsan valtozik a jel. Ha na-
gyon sirtin mintavételezziik a jelet, akkor két egymast kéveté mintabol numerikus
problémék miatt nem tudjuk elallitani a koszinuszt, ezért a gyakorlatban nem igy
allitjuk el6 a fazistolast. B

A 8.5 és a késébbi dbrdkon a fenti példdval végzett szimuldciok eredménye szerepel.
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8.4. Iterativ modellillesztés

Az eléz6ekben adaptiv strukturakat mutattunk be, és kimutattuk, hogy paraméte-
reiben linearis modell és négyzetes hibakritérium mellett (feltételezve a masodrendi
stacionaritast) a modellparaméterek optimalis megvalasztasa egy kvadratikus hibafeli-
letre megfogalmazott szélsGérték-keresési feladat. A hibafeliilet teljes ismerete mellett
az optimum helyét explicit médon megadja a Wiener-Hopf egyenlet, és a paraméter-
beallitas egyetlen 1épésben megtehets. A tovabbiakban olyan szélsGérték-keress el-
jarasokat mutatunk, amelyek képesek a hibafeliilet részleges ismerete mellett, tobb
lépésben, iterativ modon elvezetni a minimumhoz.

Melyek azok a részleges ismeretek, amelyek a gyakorlatban rendelkezésre allhatnak?

A regresszios vektor (x) és a kimenet (y) korrelacioja elére semmiképpen sem is-
mert, hiszen y a mérendé objektumtol fiigg, ezért p, és igy kozvetetten a gradiens is,
legfeljebb mérésbdl becsiilhetd meg az adott idépontig befolyt megfigyelések alapjan.

Az adott paraméter-beallitas melletti gradiens példaul numerikus differencialassal
szamithat6. Ehhez kiilonbo6z6 irdnyokban kis mértékben modositani kell a paraméter-
beallitast, és rogzitett paraméterek mellett megfelels szami megfigyelést kell Gssze-
gytjteni. Az atlagos, négyzetes hibat mindegyik paraméter-beéllitasra meg kell ezek-
b&l becsiilni, majd az egyes koordinatairanyok szerinti (kozelité) meredekségeket ki
kell szamitani.

Mas lehet a helyzet a regresszids vektor autokorrelacios matrixaval, R-rel, mivel
az nem fligg a mérendd rendszertl. Mivel a regresszids vektort a bemenetbdl allitjuk
el (8.17), ezért ha a bemenet (u) egy altalunk megvalasztott gerjesztés, amelybdl ki
tudjuk szamitani R-et, akkor az elvileg teljes mértékben ismert, s6t, altalunk meg-
valaszthato. Ebben az esetben olyan optimalizacios algoritmust alkalmazunk, amely
felhasznalja R ismeretét (lasd majd: Newton modszer).

Elsfordulhat azonban, hogy a rendszer gerjesztése mérhets ugyan, de téliink flig-
getlen tényezdk kozremiikodésével sziiletik. Ebben az esetben hasonlé a helyzet R-rel
mint p-vel ill. a gradienssel: legfeljebb a megfigyeléseinkbdl becsiilhets. Jelentds le-
het az eltérés azonban abban, hogy mennyire pontosan tudjuk egyiket vagy masikat
meérni, ill. becsiilni. FEzek és egyéb gyakorlati koriilmények (szamitasi teljesitmény, a
paraméterek viszonylagos allandésaga ill. valtozékonyséaga) fiiggvényében méas és més
iteracios algoritmus javasolhato.

Megjegyzés: Mivel az atlagos, négyzetes hiba, illetve a gradiens az iterécié modja-
tol fiiggetleniil tébbféle modon is becsiilhetd, viszont tobbnyire jo kozelitése a valodi
értéknek, ezért a becslés tényét nem jeloljiik (nincs ,,””), hanem tgy tekintjiik, mintha
egy masik algoritmustol készen kapnank a valodi értéket. (Szimulacio esetén ténylege-
sen a valodi értéket hasznaljuk.) Azokban az esetekben azonban (1d. LMS algoritmus),
amelyekben a becslés valamely pillanatnyi érték elfogadasat jelenti, vagyis természe-
ténél fogva pontatlan, és az algoritmus részét képezi, ott a becsld jelolést hasznaljuk
(, V7).

150



8.4. ITERATIV MODELLILLESZTES

8.4.1. Newton méodszer

A hibagradiens 8.28 szerinti kifejezését %R_l—zel balrél szorozva, és felhasznalva a
Wiener-Hopf egyenletet adodik, hogy:

%R*V(n) = W(n) — Wopt (8.43)

Wopt = W (1) — %R_IV(TL) (8.44)

Mivel V(n) nem pontos (esetleg R™' sem az), ezért iteraciova alakitjuk a fenti
kifejezést:
w(n+1)=w(n)—puR*V(n) (8.45)

% helyébe a u lépéskoz-paraméter (,batorsagi” tényezs) lép. Ezt nevezik Newton mdd-
szernek. A paraméterhiba alakuldsa w,p kivonasaval irhato fel:

wn+1)—we = wWn)—we —uR™T V(n) =
——
2R[w(n)—wopt]

= (1 =2u)[w(n) — Wop]

Azaz,
v(in+1) = (1-2u)v(n) = (1 —2u)""v(0) (8.46)

Ebbdl is lathato, hogy p = % valasztassal elvben egylépéses konvergencia érhetd el,
(ha R™! és V(n) pontos). Az eljaras konvergens, ha 0 < pu < 1. Ekkor a paraméter-
hiba minden f6tengelyirdnyban egyformén, (1 —2u) ardnyban csokken lépésenként (8.8
abra).

8.4.2. A legmeredekebb lejt6 modszere

Ennél a moédszernél a korrekcié a legmeredekebb lejté iranyaban, a negativ gradiens
mentén torténik:
Wy = w(n) —uV(n) (8.47)

R és p nem szerepel a képletben; tulajdonképpen nem hasznaljuk ki, hogy kvad-
ratikus a hibafeliilet, csupén azt, hogy egyetlen lokalis minimuma van, (azaz egyetlen
pontban 0 a gradiens). Ebbdl kévetkezGen, ha minden tjabb pontbdl a negativ gra-
diens mentén mozdulunk, akkor egyre lejjebb keriilve, végiil a minimum koérnyezetébe
érkeziink. (Az, hogy mennyire kozelitjiilk meg a minimumot, x4 megvalasztasatol fiigg.)

Ugy is tekinthetjiik az eljarast, mintha a Newton modszert (8.45) alkalmaznank, de
a hibafeliilet pontos ismeretének hianyaban R = R™! = I vélasztéssal kellene élniink,
ahol I az egységmatrix. Ez azt jelenti, hogy nincsenek kitlintetett irdnyaink, a metszék
ellipsziseket koroknek feltételezziik; mikozben a hibaparaboloid, amin mozgunk nem
ilyen, igy ez az eljaras kevésbé hatékony, mint a Newton modszer (R ismeretében). Ha
valoban R = I, akkor a két eljaras egyenértéki: ekkor mindegyik paramétervektorra
egyforméan érzékeny a hiba (1d. 8.49 egyenlet.).
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A Newton modszerhez képest a szamitas egyszertisodik, mert a pR matrixszal valo
szorzas helyett skalarral szorozzuk a gradienst (v6. 8.45 és 8.47 egyenlet).

Megjegyzés: Talan meglepGen hangzik, hogy a gradiens menti (tehat legmerede-
kebb) ereszkedés nem eredményezi a legrovidebb utat a minimumba, jollehet minden
pillanatban a legnagyobb ereszkedést biztositoé iranyba mozdul. Két tényez6 magya-
razza, hogy az eljaras nem ,optimélis™

1. Tegyiik fel, hogy folytonosan ereszkediink. Igaz ugyan, hogy minden pillanatban
a pillanatnyilag legnagyobb ereszkedést biztositoé iranyba lépiink, de ha ismer-
nénk a hibafeliilet alakjat, akkor ,latnank” merre van a minimum, és a hibafeliilet
mentén abba az iranyba mozognank, még ha adott pillanatban, adott ponton az
nem is biztositja a maximélis ereszkedést. A hibafeliilet globalis ismerete te-
hat azt jelentené, hogy olyan irdnyba mozdulhatnank, amely a teljes titvonalat
tekintve a leggyorsabb ereszkedést biztositja. A Newton modszer pontosan ezt
teszi, feltéve, hogy R pontosan ismert.

2. Ha a hibafeliiletet nem ismerjiik, akkor sem biztos, hogy a legmeredekebb lejté
modszere optimalis. Az ereszkedés ugyanis nem folytonos, mint elébb feltételez-
tiikk, hanem diszkrét 1épésekben torténik. Azaz, jollehet, az ellépés pillanatdban
még a negativ gradiens irdnyba mozdulunk, de ahova érkeziink, ott mar mas
irdnyba, esetleg éppen ellentétes iranyba mutat a gradiens. Az ereszkedés, ezért
oszcillaciokon keresztiil valosul meg. Ez ellen ugy védekezhetiink, ha a negativ
gradiens mentén toreksziink ugyan lépni, de ismerve az el6z6 1épéseket elkertiljiik
az oszcillaciot. Pl. A konjugalt iranyok modszere N-dimenzios kvadratikus feliile-
ten elvileg N lépésben eléri a minimumot, amihez lépésenként az adott pontbeli
gradiens mellett az el6z6 lépés iranyat is felhasznalja. (Ld. [Horvath| 3. fejezet;
|[Rozsal)

A paraméter-hiba alakulasa:
W(n+1) — Wopt = W(n) — Wepe — puV(n) = [I — 2uR][W(n) — Wopt) (8.48)

v(in+1) =[I-2uR]v(n) = [I - 2uR]" v(0) (8.49)

A fenti egyenletekben a (I—2uR) tényez6 mutatja, hogy az egyes paraméterek nem
egymastol fiiggetleniil javulnak, hanem keresztcsatolasban, vagyis az egyik paraméter
modositasa kihat a kovetkezd lépésben a tobbi moédositasara. Ennek eredményeképpen
a paraméterhiba egyes elemei egyméshoz képest nem egyforma, és idében nem egyen-
letes aranyban csokkennek az adaptéacié soran, egyes lépésekben egy-egy paraméter
hibaja néhet is (I1d. 8.9 &bra). E kozben a négyzetes hiba monoton csokken (Id. 8.10
abra).

A 8.49 kifejezés alapjan a konvergencia nehezen vizsgalhato. Milyen vélasztassal
biztosithat6 az eljaras konvergenciaja? Hogyan javithatok a koriilmények a konvergen-
cia gyorsitasdhoz? Ezek a kérdések az R matrix sajatértékeinek ismeretében valaszol-
hatok meg, a kovetkez6 szakaszban ezt vizsgéaljuk meg.
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8.8. abra. Kezdeti gradiens, és paraméteradaptacio illusztralasa két sily esetén; leg-
meredekebb lejté (L.L.), ill. Newton modszerrel

5 o)
4l
3
2
!
O : o
18 vo()
2 20 40 60 80 100

n

8.9. ébra. A relativ paraméterhiba alakulasa L.L. modszer esetén. Amig w; hibéja
dominél, addig wy karara javul.

8.4.3. Az R matrix diagonalizalasa; a szélsGérték-keresés kon-
vergenciajanak vizsgalata

A kovetkezdkben az R matrixot diagonal-alakra transzformaljuk. Mivel R szimmetri-
kus, ezért ez biztosan megtehets. Az egyszertibb targyalas kedvéért azt is feltételezziik,
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8.10. 4bra. A kimenet atlagos, négyzetes hibaja, £(n), exponencialisan csokken, el6bb
A1, majd Ay, sajatértékek altal meghatarozott idéallando szerint.

hogy a matrix sajatértékei egyszeresek (!).
Keressiik azokat a q,,, m = 0,1,..., N — 1 (nem nulla) vektorokat, amelyekkel

(R — AD)q,, = 0. (8.50)

(Ennek a A-val paraméterezett homogén egyenletrendszernek akkor van a trivialistol
kiilonb6z6 megoldasa, ha az egyiitthatomatrix rangja alacsonyabb a matrix rendjénél:
rang(R — A\, I) < N. Vagyis olyan A\ paraméter sziikséges, amellyel a métrix determi-
nansa 0.) Elsgként tehat meghatarozzuk a

det[R — AI] = 0. (8.51)

karakterisztikus egyenlet gyokeit. Ezek az R matrix Ag, A1, ... Ay_1 sajatértékei (mint
kikotottiik egymastol kiillonbozdek), amelyekkel egyenként elvégezve a visszahelyette-
sitést 8.50-be, rang(R — A\I) = N — 1 lesz, és skalazastol eltekintve (hiszen 8.50 bar-
mely értékkel beszorozhato) rendre meghatéarozhatok a q,, vektorok, R sajatvektorai.
Ezekre teljestil:

Rq,, = A\nQm m=20,1,...,N —1 (8.52)

A sajatvektorok normajat egyre valasztjuk, (igy mar egyértelmi a megoldas).
Az N oOsszefiiggést matrixalakban megadva:

Rlqoqs. - - qN_J] = [Elo‘h- .. Qy_q) diag < Ao, A, Anog > (8.53)
Q Q A
azaz:
RQ = QA, (8.54)

Ebbdl felirhato a Q-val végzett hasonlosagi transzforméacio, amellyel az R métrixot
diagonal-alakra hozzuk:

R=QAQ'=QAQ" (8.55)
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A 8.55 egyenlet R diagonal-alakja. A masodik egyenlGségben azt hasznaltuk ki, hogy
Q ortogonalis, azaz QTQ = I. A Q matrix ortogonalitisa a sajatvektorok ortonor-
maltsagabol (ortogonalitasabol és normaltsagabol) kovetkezik. A sajatvektorok orto-
gonalitésa az alabbiak szerint bizonyithato:

a/R" = (Rq)" = \iq/ (8.56)
Rq; = Ajq; (8.57)
Ezeket jobbrol ill. balrdl szorozva
q; R"q; = \iq; q; (8.58)
q; Rg; = A\jq] g (8.59)

R = RT miatt az egyenletek baloldali tagjai egyformak. Mivel a sajatértékek kii-
16nbozéséget végig feltételeztiik: \; # \;, ezért qf q; = 0 kell, hogy teljesiiljon, vagyis
a sajatvektorok egymasra ortogonalisak.

Mivel R = E{xx'}, ezért tetszbleges a vektorra teljesiil al Ra > 0. Ezt a tu-
lajdonsagot pozitiv szemidefinitségnek nevezik, és egyenértéki azzal, hogy R minden
sajatértéke nem negativ: A\; > 0.

A matematikai levezetésben kapott diagonél-alakot (8.55) az alabbiakban felhasz-
naljuk a szélsGérték-keress eljarasok konvergenciajanak a vizsgalatéara:
Megismételve a hiba 8.25 szerinti kifejezését:

e(n) = emin + [W(n) — Wopt]TR[W(n) — Wopt] = (8.60)
= emin + VI (N)RV(n) = epin + V! (n)QAQ v(n) = (8.61)
= emin + [QTV())TAIQTV(R)] = i + VT (n) AV (n) (8.62)
ahol
v(n) = Q'v(n). (8.63)

Osszességében nemesak az origot toltuk el, hanem a koordinatasikokat is elforgat-
tuk. A gradiens kifejezése ebben a koordinatarendszerben:

V'(n) = 2Av" (n) = 2[\ov), M), .., A0y )" (8.64)
Az R matrix sajatvektorai a hibaparaboloid fétengelyiranyait adjik meg. Az 1j
koordinata rendszerben az ellipszis f6tengelyei mentén egyenletesen ereszkediink (8.11

abra). A legmeredekebb lejté modszere esetén a paraméterhiba tengelyenként a mere-
dekségnek megfelel§ gyorsasagban csokken (vo. 8.49):

v(n+1)=[I-2uAlv(n) = (I—-2uA)v"(0) (8.65)
Ez az egyenlet fontos elvi eredmény a 1épéskoz paraméter meghatarozasihoz.
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8.11. abra. A transzformalt koordinata tengelyek mentén egyenletesen csokken a hiba;
(Newton és L.L. modszer esetén egyarant, de L.L. modszer esetén a két tengely mentén
kiilonb6z6 héanyadossal)

Mivel a 8.65 kifejezésben szerepld (I—2uA) méatrix diagonalmatrix, ezért az egyen-
letrendszer fiiggetlen skalar egyenletekre esik szét:

vl (n41) = (1=2uAn)v), () = (1=2u\,)" ! (0) = r" 1! (0) m=0,1,...,N—1

(8.66)

Ez formailag ugyanaz a probléma, mintha egyelemi regresszios vektor, azaz skalar

regresszios valtozo (z) lenne, kévetkezésképpen skalar lenne az autokorrelacios matrix”
(R = \) Tekintsiik ezért most ezt az esetet:

w(n+1) =w(n) —pV(n); ahol V(n) =2\ (w(n) — wop(n)) (8.67)

vagyis A egyben a hibaparabola gorbiilete is, vagyis derivaltjanak a meredeksége.

v'(n+1) = (1—=2u\)v'(n) = (1 —2u\)"0'(0) = r"T/(0) (8.68)
ahol v'(n) = v(n) = w(n) — wept, hiszen skalar esetben diagonalizalasrol, illetve
koordinatasik-forgatasrol nem beszélhetiink. Az eljaras konvergal, ha |r| = |1 —2u)| <
1. Ebbél

1
0<p<s (8.69)
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Specialis esetek: 0 < pu < % tulesillapitott
[= 5 kritikusan csillapitott (8.70)
5x < p <y alulesillapitott

U‘/ w U
NS

lassan egy lépés ide-oda

<z M=ax  m<k<3

8.12. abra. A konvergencia alapesetei

Visszatérve az altalanos esetre (8.66), ott 0 < p < ﬁ kell, hogy teljesiiljon, mivel a
legmeredekebb irany szabja meg, hogy mekkorat léphetiink.

A konvergencia eddigi vizsgalataban feltételeztiik R ill. a \; sajatértékek ismertét,
ami a valosagban nem teljesiil, ezaltal azonban betekintést nyertiink a probléméba. Az
eredmények bizonyos ¢vatossagra intenek p megvalasztasaban, és mint latni fogjuk,
ajabb otleteket vetnek fel az eljarasok finomitésara.

A sajatértékek ismertének hidnyaban, példaul, felhasznélhatjuk, hogy
Amax < > Am = tr[A] = tr[R], (8.71)

amely a matrix nyoma (angolul: trace, innen a jelolés), azaz diagonal-elemeinek Gsz-
szege, és hasonlosagi transzformacioval szemben invarians paraméter (fiiggetlen a bazis
megvalasztasatol). Igy R diagonél-elemeibél (azaz x elemeinek négyzetes varhatoér-
tékeibdl), R teljes ismerete, és sajatérték-szamitas nélkiil egyszeriien adhato (a sziik-
ségesnél valamivel szigorubb) korlat a 1épéskoz tényezdre:

0<pu< ﬁ (8.72)

Adaptiv, transzverzalis sz(iré esetén, amikor a regresszios vektort egy késleltetGsor
allitja el6 v mintaibol, akkor elegendé a bemendjel teljesitményét becsiilni, mivel:

I
trf[R]  ME{u?}

ahol M a regresszios vektor hossza. (8.73)

R ismeretében x = f(u) helyett x = f (u) = T f(u) regresszios vektort allithatné
el6 a modell rogzitett része, ahol T = A_%QT. (Mint lattuk R pozitiv szemidefinit
matrix, igy A, > 0, és létezik a sajatértékek négyzetgyokeibsl alkotott Az diagonal
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matrix, amivel R2= QA%.) A T transzformacioban QT végzi az ortogonalis kompo-
nensekre bontast (avagy geometriailag a forgatést), A~z pedig teljesitmény-normélast
hajt végre.

R—F {x’x’T} _E {Tx (Tx)T} — E{Txx"T7} = TRT” = A"*Q"QAQ"QA > =1
(8.74)
Ugy is eljarhatunk, hogy a kisebb teljesitményti komponenseket kevésbé lényeges-
nek tekintjiik, és elhagyjuk. Ez a f6komponens-analizis ill. jeltémorités lényegében a
Karhunen-Loéve transzformécio.

R hidnyaban jollehet, nem tudjuk a bemenetet ugy transzformélni, hogy a reg-
resszios vektor elemei korrelalatlanok legyenek, de elényben részesithetjiik az olyan
modelleket, ahol f(-), vagyis a rogzitett rész valamilyen ortogonalis transzformaciot
tartalmaz, mint példaul a DFT.

Legyen példaul f(-) eredetileg egy késleltetGsor, vagyis ekkor egy transzverzalis
sziirg sulyait adaptaljuk. Modositsuk f(-)-et ugy, hogy a regresszios vektoron DFT-t
végziink minden titemben. Az igy kapott f(-) egy DFT-sztir6bank, melyet az 5. feje-
zetben bemutatott moédon tobbféleképpen, hatékonyan megvalosithatunk. Ekkor az 14j
regresszios vektor egyes elemei az u(n) bemenet kiilonb6z6 frekvenciasavba esé kom-
ponenseitdl fiiggnek, igy kozel korreldlatlanok lesznek. A fennmarado korrelaltséag a
spektrumszivargas kovetkezménye. Ezutan a regresszios valtozok négyzetét pl. expo-
nencialisan atlagolva, becsiilni tudjuk az egyes komponensek teljesitményét, és minden
csatornan norméalést végezhetiink. A normélast ugyancsak a rogzitett f(-) részének te-
kintjik. Figyeljiik meg ezek utan, hogy f(-) e két modositasaval, hogyan valtozik a
hibafeliilet, amelynek minimumét a stlyadaptacioval keressiik (8.13 abra).

Wi Wi W1

a) b) c)

8.13. abra. Izokritérium gorbék a) a DFT transzformacié nélkiil b) a DFT transzfor-
mécio alkalmazéséaval c¢) a teljesitmény-normalas utén

8.4.4. LMS mobdszer

Helyettesitsiik az eddigi modszereknél nehézséget okozo statisztikai paramétereket a
pillanatnyi be- és kimenetekbdl szamitott mennyiségekkel. Ezaltal a bonyolult szdmi-
tast, illetve az informéaciohianyt megkeriiljiik. Az atlagos négyzetes hiba helyett (¢(n))
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minimalizéljuk a pillanatnyi hiba négyzetét:

é(n) = ly(n) —g()]* = [y(n) — w" (n)x(n)]* (8.75)

a derivalt helyett pedig értelmezziik a pillanatnyi derivaltat:

(n) = () = —2[y(n) — w' (n)x(n)]x(n) = —2e(n)x(n) = —2x(n)e(n) (8.76)

ahol e(n) = y(n) — g(n) a pillanatnyi eltérés a kimenetek kozott. A legmeredekebb
lejt6 modszeréhez hasonloan (vo. 8.47 egyenlet):

w(n+1) = w(n) — uV(n) = w(n) + 2ue(n)x(n) (8.77)

Ez az un. LMS modszer. A paraméterhiba alakulasa:

W(” + 1) — Wopt = W (TL) — Wopt — - i (878)
2x(n)xT (n)[w(n) = Wopt]

= [ 2ux(n)x" (n)][W(n) — Woy] (8.79)

vin+1) = [I - 2ux(n)x’ (n)]v(n) = H(I — 2ux(k)x (k)]v(0) (8.80)

k=0
amely kapcsolatba hozhato a legmeredekebb lejté modszerére kapott képlettel, felis-

merve, hogy: A
R = x(n)x’ (n) (8.81)

~
pillanatnyi becslé

Ha feltétételezhetjiik, hogy az egymast kovets x(n) regresszios vektorok korrela-
latlanok, és R stacionarius, 8.80 varhatoértékét képezve egyszertien adodik, hogy a
paramétervektor varhatoértéke ugyantgy konvergél, mint a legmeredekebb lejts (L.L.)
modszerével:

E{v(n+1)} = (I—-2uR)"*'v(0) (8.82)

Az LMS eljarasban a pillanatnyi becslés miatt a modositas is nagyon pontatlan
lesz, gyakorlatilag el6fordul, hogy kozel sem a negativ gradiens iranyaban mozdulunk
a hibafeliileten. A pontatlan korrekciok idébeni sokassaga azonban atlagolodik, és ere-
dében az optimum felé vezet. Ehhez regresszios vektor stacionaritasat kellett feltéte-
lezniink, ezért az LMS algoritmus korlatozottabb koérben alkalmazhat6, mint az L.L.
modszer, viszont a becsiilt paraméter esetleges valtozasat jobban képes kovetni. Ahol
a regresszios vektor és a kivant valasz minden 1épésben rendelkezésre all, ott altaldban
az LMS modszer elénydsebb valasztés az L.L. modszerrel szemben.

A pillanatnyi derivalt mentén nagyon kis 1épésben szabad korrigélni. A viszonyok
modellezhetSk additiv zajjal:

V(n) =V(n) + zaj (8.83)
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8.14. abra. Paraméter adaptaci6 LMS modszer esetén. (A korabbi példaban szerep-
16 szinuszos bemenethez negyed akkora teljesitményti fehér zajt adtunk a szimulacio
soran; emiatt modosul a hibafeliilet)

14
120 | g s

101

min

0 10 20 30 40 50
8.15. édbra. A pillanatnyi gradiens miatt az LMS az optimum kériil bolyong.

Az optimum kozelében a zaj dominél, hiszen ott V(n) ~ 0, igy az eljaras konver-
genciaja elgbb lelassul, majd le is &ll, és a minimumhely kornyezetében bolyong (8.14
abra). Ez azt jelenti, hogy a hiba minimalis értékét nem érjiik el (8.15).

Megjegyzés: Olyan esetben ez a tulajdonsag elényos is lehet, ahol a hibafeliilet nem
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kvadratikus, hanem lokalis minimumok is léteznek, amint az a végtelen impulzusvala-
szi adaptiv rendszereknél el6fordul (1d. a késébbiekben). Ilyenkor a pillanatnyi gradi-
ens zajszeri viselkedése és az ebbdl kovetkezd bolyongas elviheti a paraméter-beallitast
a lokalis minimum koézelébdl, és igy esély nyilik a globalis minimum megtalaléséra.

A fenti jelenségbdl ad6dé maradékhiba-tobblet sztochasztikus jellegti. Az adaptécio
konvergencidja utdn megmaradé6 atlagos, négyzetes hiba, €., és az elvileg elérhetd
minimalis érték, ey, kozotti hanyadost nevezik angolul ,misadjustment™nek.

8.4.5. Kombinalt médszerek

a-LMS modszer:

wn+1)=w(n)+a«a (8.84)

A paraméterhiba alakulasa:
- x(k)x" (k)
k=0

Az LMS modszerhez képest p helyét T veszi at. Vagyis lépésenként nor-

maljuk a korrekciot, igy elkeriiljiik ||x(n)|| 1ngad(()z)aséubc’)l eredd egyenl6tlen paraméter
modositasokat, és kozelitSleg érvényes lesz, hogy a konvergencia 0 < a < 1 valasztas-
sal biztosithat6. Ez utobbi éllitas az LMS moédszer konvergenciajahoz hasonlé modon,
(8.85) varhato értékének felirasaval lathato be. A teljes bizonyitashoz, melyet itt nem
végziink el, fel kell hasznalni, hogy E{ T) x(n)} = tr ww < ﬁ Vagyis az el6z6 sza-
kaszban kapott eredményt hasznaljuk fel (8.72-8.73 egyenletek).

LMS-Newton modszer:

w(n+1) = w(n) + 2uR'e(n)x(n) (8.86)

A paraméterhiba alakulasa:

n

v(n+1) =[] - 2uR™" x(k)x" (k)] (8.87)

R-et ismertnek feltételezziik, de a gradiens helyett pillanatnyi gradienst haszné-
lunk. Mivel a moédszer szamithatosaga, és konvergencia-tulajdonsaga igen jo, viszont
R ismeretét feltételezi, ezért altalaban megkozelitends etalonnak tekintik ezt az eljé-
rast, és idedlis-paraméterbecslési eljarasként is szokas emliteni.

LMS-Newton moédszer, R rekurziv becslésével kombinalva:

Az eljaras nem valtozik:
w(n+1)=w(n)+2uR " (n + 1)e(n)x(n) (8.88)
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csupan kiegésziil az ismeretlen R adatokbol torténd rekurziv becslésével:

Rn+1) = (1-v)R(n)+vx(n)x'(n) (8.89)
= R(n) + v[x(n)x’(n) — R(n)], (8.90)

ahol v = 0.01...0.1 Erdemes 6sszevetni (8.89)-t az exponencialis atlagolassal (4.8). (v
megfelel6 megvalasztasaval az idealis atlagolasnak megfelelGen is lehet becsiilni.)

Valojaban R™!(n)-re van sziikségiink, ezért kozvetleniil ezt szamitjuk. R~ (n) ite-
rativ szamitasa 8.89-nek megfelelGen, a Sherman-Morrison-féle képlet alapjan:

R 'x(n)xT(n)R(n)
i +xT ()R (n)x(n)

R 'n+1)= R '(n) — (8.91)

1—v

A nevezében 4ll6 tagok skalarok. Ha R™1(0) = oI akkor egyszer sem kell matrixot
invertalni, ami a végrehajtand6 miiveletek szama szempontjabol nagyon elényos.

8.5. Altalanosabb kritériumfiiggvény Taylor sorfejtése

Nem kvadratikus hibafeliilet esetén a Wiener-Hopf egyenlet nem adja meg az opti-
mumot, igy az eddig bemutatott gradiens-alapt, iterativ algoritmusok konvergenciaja
nem garantalt. Az eljardsokban alkalmazott modell a valodi hibafeliiletet véges Taylor-
sorfejtéssel kozeliti.

Legyen egy altalanos hibakritérium fiiggvény:

Cly,9) = Cly,g(w)) = C(w) (8.92)

amely a paramétervektor iterativ allitasaval lépésenként véltozik: C(w(n)).

(Megjegyzés: Az eddigiekben a hibakritérium C(y,9) = E {(y — @)2} volt, melyet
e jelolt; C(w) (8.21) szerint kvadratikus volt.)

Végezziink sorfejtést w = w(n) kornyezetében:

1

C(w) = C(w(n)) + grad” C(w(n))[w — w(n)] + §[W —w(n)]"H[w — w(n)] (8.93)

ahol 90
gradC(w(n)) = w az elsé derivalt, (8.94)

W
H= OgradCi(w(n) a masodik derivalt. (8.95)
ow

grad” = [8%1, 8%2, } . Megjegyzés: az eddigi jelolésekben V = grad” C(w(n)). Li-

nearis modell esetén kvadratikus a hibafeliilet, igy ekkor a sorfejtés pontosan harom-
tagu, és megfelel 8.21 egyenletnek. Ekkor H = 2R, tehat kvadratikus feliilet esetén
a masodik derivalt adlland6. Ha magasabb rendd a feliiletet, akkor nem, vagyis min-
den 1épésben mas és més kvadratikus feliiletet illesztiink az adott pontra az elsd és a
masodik derivalt alapjan, és ennek minimuma felé léphetiink.
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8.5.1. Modellillesztés a Taylor-sorfejtett kritériumfiiggvény
alapjan
a) eset

C(w) Taylor soranak elsé két tagjat figyelembe véve, (tehat linearis feliiletet il-
lesztve,) w — w(n + 1) behelyettesitéssel keressiik w(n + 1) -t, amelyre:

Cw(in+1))=0 (8.96)
C(w(n)) +grad” C(w(n))[w(n +1) —w(n)] =0 (8.97)

Utobbibol kaphato:
w(n+1) = w(n) — Cw(n) gradC(w(n)); (8.98)

grad” C(w(n))gradC(w(n))

ahol a tort nevezGje és szamlaloja is skalar.

Ez az in. Newton-Raphson modszer.

A tapasztalatok szerint az optimumtdél téavol kedvezden viselkedik, az optimumhoz
skozeli” eredményessége pedig attol fiigg, hogy C(wep) = 0 teljesiil-e, hiszen ebbdl
vezettiik le az eljarast.

b) eset
A masik lehetdség az, hogy a sorba fejtett C'(w) minimumat derivalassal keressiik.

gradC(w(n+ 1)) = 0 = gradC(w(n)) + H(w(n))[w(n + 1) — w(n))]; (8.99)
Ebbél a Newton-modszer adodik:
w(n +1) = w(n) — H (w(n))gradC(w(n)) (8.100)

Megjegyzés: A 8.44 egyenlethez képest az % szorz6 a korrekcios tagbol itt hianyzik,
mert a 8.93 Taylor-sorban szerepel.

A kovetkezd szakaszban bemutatott pszeudolineéris regresszié hibafeliilete nem

kvadratikus, a gradiens eljarasok alkalmazasa ezért a Taylor-kozelitésen alapulnak.

8.6. Adaptiv végtelen impulzusvalaszii rendszerek

Abban az esetben, ha végtelen impulzusvélaszi sziir6 visszacsatold silyait adaptél-
juk, akkor a linearis regressziohoz felirasaban hasonlo feladatot, in. pszeudolineéris
regressziot kell megoldanunk:

g(n) = z_: ag(n)u(n — k) + Z_ br(n)g(n — k) = w’ (n)x,4(n), (8.101)
k=0 k=1
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ahol:
w’(n) = [ag(n),a1(n),...,an_1(n);bi(n),ba(n),...bxy_1(n)], (8.102)

Xy 5(n) = [u(n),u(n—1),...,u(n—M+1);4(n—1),5(n—2),...,5(n—N+1)]. (8.103)

Azért nem tekinthets valodi lineéris regressziénak a feladat, mivel a regresszios
vektor implicit médon fiigg a regressziot meghatarozo paraméterektdl, igy nem is sta-
cionarius.

Az implicit fiiggés altal az adaptiv linearis kombinétor strukturajahoz képest az
elére rogzitett f(u) valojaban w(n) fiiggvénye, a by, paraméterek megvaltoztatasa pedig
végtelen tranzienseket indit el a sz(ir6 kimenetén. (Emlékeztetsiil: Az adaptiv linearis
kombinator két alapvetd tulajdonsaga az allithaté paraméterektsl valo linearis fiiggés

P

u(n)

——

w(n)

8.16. abra. Adaptiv IIR sz(iré: az implicit fliggések miatt a paramétervéltoztatas vissza-
hat az regresszios vektor fixnek tekintett elGallitaséra.

Megjegyzés: a 8.102 szerinti regresszios vektor (egyben allapotvektor) kozvetleniil
adodik a differencia-egyenletbdl. Ez a struktira a szliré egyik megvalositiasa, melyet
gy kapunk, ha kaszkéddban el6bb az el6recsatolo részt, majd a visszacsatolo részt valo-
sitjuk meg. Ettd] kiilonb6z struktirakat most nem tekintiink. A jobb attekinthetGség
kedvéért azonban megemlitjiik, hogy a kaszkad felcserélésével (linearis, idGinvarians
esetben ez megtehetd), a két részrendszer allapotvaltozoi sszevonhatok, és egy direkt
strukturahoz jutunk.

Megjegyzés: Az IIR sziir6k paraméteradaptéacioja stabilitasi problémakat is felvet,
hiszen az adaptacio soran a polusok (dtmenetileg) az egységkoron kiviil keriilhetnek.
Erre a problémara a kovetkez6kben nem tériink ki.
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8.6.1. Visszavezetés FIR problémara (EE)

A kovetkez§ eljaras lényege az, hogy ragaszkodunk a hiba implicit fliggésektsl mentes
felirasahoz. Paramétereiben lineéris, valodi linearis regressziot oldunk meg. Ehhez gya-
korlatilag egy FIR sziirG sulyait kell adaptélni. Az eljaras angol elnevezése: Equation
Error (EE) Formulation, vagyis ,egyenlet-hiba feliras”.

Az illesztendd modell atviteli fiiggvénye:

V) AR NE)
U(z) 1—=DB(z) D(z)

(8.104)

A kimenetek eltérése: e, amelynek atlagos vagy pillanatnyi négyzetes értékét (£-t)
kell minimalizalni:

e(n) = y(n) —y(n); (8.105)
Ebbe helyettesitve g(n) kifejezését:

e(n) = y(n) — (An(2)u(n) + Bu(2)g(n — 1)) (8.106)

(A fenti egyenletben keverednek az idétartomanybeli, illetve z-tartomanybeli jelolések:
a 271 itt késleltetés operatorként értelmezhets, amellyel formalisan szorozzuk a jelet
(ol 2 y(n)).

Az implicit fiiggés ugy kiiszobolhetd ki, ha §(n)-t olyan mennyiséggel helyettesitjiik,
amely kozeliti g(n)-et, de elgallitasaban nem jatszanak kozre a regressziot meghatarozo
paraméterek. Mivel g(n)-nal y(n)-t kozelitjik, és ez utobbi nem fiiggvénye a modell-
paramétereknek, ezért helyettesitsiik ezt §(n) helyébe. Ld. 8.17 abra. Az igy kapott
segyenlet-hiba” (e.) az eredeti hiba (e) szlirt valtozata:

eeln) = y(n) = (Au(2)u(n) + Bu(2)y(n — 1)) = Du(2)y(n) — Na(2)u(n)
— Du(2)y(n) — Du(2)ii(n) = Du(2) - e(n) (8.107)

A sztrt hiba, e, pillanatnyi vagy atlagos négyzetes értéke az eddig targyalt iterativ
modszerekkel minimalizalhato, és a konvergenciara az ott megfogalmazottak tovabbra
is érvényesek, mivel a hibafeliilet kvadratikus.

A regresszios vektort lecseréltiik, igy val6jaban az alabbi FIR rendszer optimélis
paraméter-beallitasat szamitjuk ki (1d. 8.18 abra):

g(n)pr = Z_ ag(n)u(n — k) + Z_ br(n)y(n — k) = w’ (n)Xuy(n) # W (n)xy;(n)

(8.108)
ahol
x! (n) = [u(n),uln—1),...,u(n—M+1);y(n—1),y(n—2),...,y(n—N+1)]. (8.109)

uy
V6. (8.103), (8.101). Mivel az eredeti hibakritériumtol eltértiink, igy széamolni kell
azzal, hogy kozelités esetén az optimalis paraméter-beallitas torzitott lesz.

A hibaminimalizalashoz a FIR rendszert miikddtetjiik, de a tovabbi jelfeldolgozas
szamara az azonos paramétert IIR rendszer allitja el§ a kimenetet (vo. a 8.17 és 8.18
ébrékat, g 7A @FIR)-
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8.18. abra. Az ,EE” adaptaciéban felfedezheté FIR rendszer.

8.6.2. A kimeneti hiban alapul6é modellillesztések (OE)

Mig az el6bbi modszer ez egyik végletet képviselte, miszerint oldjunk meg valodi li-
nearis regressziot, a kimeneti hibdn alapuldé modszer a masik végletnek tekinthetd,
miszerint ragaszkodjunk az eredetileg értelmezett hibahoz (8.105 egyenlet, 8.19 abra),
vallalva az IIR rendszer implicit paraméterfiiggéseit.

A paraméter-optimalizalashoz az eddigi gradiens alapu eljarasok moédositott val-
tozatait alkalmazzuk. Az egyszeriiség kedvéért tekintsiik az LMS eljarast, amelyben
csak a gradiens szamitasa moédosul az el6bbiekhez képest:

A

w(n+1)=w(n)—uV(n) (8.110)
A hiba £(n) = [y(n) — g(n)]®. A gradiens:

S (n) = —2¢(n) 211 (8.111)
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8.19. abra. Az eredeti pszeudolinearis feladatnak megfelels hibaértelmezés (,OE”, ua.
8.16 &bra)

amelyben az implicit fliggések miatt:

v _ [ 99(n) 0f(n) 94(n)  9y(n) 9y(n)
grad’ g(n) = Dao(n)’ Ban(n)’ " Bapa(n) Boy(m) " m (8.112)
Kifejtve minden paraméterre:
0g(n) _ Ny Q80— )
Far(n) (n—k)+ ; bi(n) S0 (8.113)
4(n) 8y (n— z)
For(n) )+ Z bi(n (%k (8.114)

nonkauzalis kifejezések adodnak, amelyek nem szédmithatok sztirGszertien, ezért a ko-
vetkezG kozelitésekhez folyamodunk:

9 —i) . Oin )
day(n) day(n —1)’
oin—1) _ Ojn—1).

amivel a gradiensvektor kozelits szamitasa sziirészertien miikodik (8.20 &dbra). Lassan
kell valtoztatni az ay, b, paramétereket, hogy a fenti kozelitésekkel elkovetett hiba ne
legyen tul nagy. Mivel a pillanatnyi hibabol indulunk ki (LMS), ezért eleve indokolt az
ovatossag p megvalasztasanal. A gyakorlatban mindegyik by stuly adaptélasahoz kii-
16nb6z6 1épéskoz tényezot alkalmaznak, és ezeket az iteracié soran modositjak; (ebben
az esetben (8.110)-ben u helyét egy id6ben valtoz6 diagonalméatrix veszi at).

A fenti eljaras bonyolult, hiszen idévarians sztirést kell végezni minden egyes para-
méter szerinti derivalt kiszamitasahoz. Kétféle egyszertisités vethets fel:
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95(n) 95(n)
u(n — k) . dar(n)  g(n —k) ) Dby (1)
— .o [ — " o [

8.20. abra. Az egyes derivaltak meghatarozasa sztiréssel

1. Elhagyjuk a konvolucios tagot a 8.113-8.114 kifejezésekbdl, vagyis grady(n) ~

168

X,y kozelitést alkalmazunk. Az igy kapott eljaras ugyan kiilénbozik az Equation
Error modszertdl, hiszen ott y(n)-t, y(n)-tel helyettesitettiik, mig itt az implicit
fliggés marad, de formailag ugyanazt az LMS eljarast alkalmazzuk.

. Ugy is egyszertisithetiink, ha az id&varians sziirést elvégezziik ugyan a;-re ill.

bi-re, de a tobbit mér ezekkel becsiiljiik. Ehhez azt hasznéljuk fol, hogy az egyes
sziir6k (8.20 abra) bemenetei egymasnak késleltetettjei. Ezt a késleltetést he-
lyezziik at a kimenetre. Igy egyetlen sziirést végziink, és a kimenet késleltetettjei
adjak meg az érzékenységeket. Ez a sorrendcsere szabadon megtehetd lenne id6-
invarians sziirés esetén, ebben az esetben azonban kozelitést kovettiink el. Az
egyes paraméterekhez tartozo gradiensekre nem azonos idépontbeli sziirGegyiitt-
hatokkal végezziik a sztirést. (Ld. b6vebben Horvath: 4.12. ébra.)



Irodalomjegyzék

Irodalom a 2. fejezethez

[1] Cooley, J. W. and Tukey, J. W., An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, Vol. 19, No. 90, pp.
297-301. 1965.

[2] Jerry, A. J., The Shannon Sampling Theorem — Its Various Extensions and
Applications: A Tutorial Review. Proc. IEEE, Vol. 65, No. 11, pp. 1565-1596.
1977.

[3] Kollar I., ,Jelanalizis feladatgyjtemény”. BME jegyzet, Miegyetemi Kiado, Bu-
dapest, 2001. 260 p. 51441.

[4] Nyquist, H., Certain Topics in Telegraph Transmission Theory. AIEE Transac-
tions, Vol. 47, pp. 617-644. 1928.

[7] Schnell, L., Jelek és rendszerek méréstechnikaja (jegyzet-forméban: III. kotet,
Mitegyetemi kiado, 514 352). Az ebben a segédletben nem téargyalt, a mintavéte-
lezéssel, és kvantalassal kapcsolatos anyag nagy részét tartalmazzak a kovetkezd
részek: 24. fejezet bevezetés; 24.1.1; 24.3.1; 24.3.5; 24.10.1-2-4.

[6] Shannon, C.E., Communication in the Presence of Noise. Proc. IRE, Vol. 37, pp.
10-21. 1949.

Irodalom a 3. fejezethez

[1] De Lotto, I. and Paglia, G. E., Dithering Improves A/D Converter Nonlinearity.
IEEE Trans. on Instrumentation and Measurement, Vol. IM-35, No. 2, pp. 170-
177. 1986.

[2] Dobrowiecki, T., Modelling a Quantizer — Models and Possible Approaches.
Periodica Polytechnica Ser. Electrical Engineering, Vol. 28, Nos. 2-3, pp. 159-
172. 1984.

[3] Katzenelson, J., On Errors Introduced by Combined Sampling and Quantization.
IRE Trans. on Automatic Control, Vol. AC-7, pp. 58-68. 1962.

169



IRODALOMJEGYZEK

[4] Kollar, I., Statistical Theory of Quantization: Results and Limits. Periodica Poly-
technica Ser. Electrical Engineering, Vol. 28, Nos. 2-3, pp. 173-190. 1984.

[5] Kollar, I., The Noise Model of Quantization. Proc. 1 IMEKO TC4 Sympo-
sium ,,Noise in Electrical Measurements”, Como (Italy), June 19-21, 1986. Bp.
OMIKK-Technoinform, 1987. pp. 125-129.

[6] Kollar 1., ,Quantization Noise”. Akadémiai doktori értekezés, Budapest, 1996.
416 p.

[5] Schnell, L., Jelek és rendszerek méréstechnikija (jegyzet-forméaban: III. kotet,
Mitegyetemi kiado, 514 352). Az ebben a segédletben nem téargyalt, az atlagolés-
sal, a DFT-vel, és a periodogrammal kapcsolatos anyag nagy részét tartalmazza:
24.3.1; 24.3.5; 24.4.2: A korrelaci6 indirekt elvi mérése; 24.6.2; 24.8.2; 24.8.3.

[8] Sripad, A. B. and Snyder, D. L., ,A Necessary and Sufficient Condition for Quan-
tization Errors to Be Uniform and White.” IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP-25, No. 5, pp. 442-448. 1977.

[9] Widrow, B., A Study of Rough Amplitude Quantization by Means of Nyquist
Sampling Theory. Sc.D. Dissertation, M.I.T. Elec. Eng. Dept., Electronics Sys-
tems Lab., Cambridge, Mass., 1956.

[10] Widrow, B., ,A Study of Rough Amplitude Quantization by Means of Nyquist
Sampling Theory.” IRE Trans. on Circuit Theory, Vol. CT-3, Dec. 1956, pp.
266-276.

[11] Widrow, B., ,Statistical Analysis of Amplitude-Quantized Sampled-Data Sys-
tems.” Trans. AIEE, Vol. 79, Part II. Appl. and Ind., No. 52, pp. 555-568. 1961.

[12] B. Widrow, I. Kollar and M.-C. Liu, ,Statistical Theory of Quantization”. IEEE
Trans. on Instrumentation and Measurement, Vol. 45, No. 2, pp. 353-61, Apr.
1996.

Irodalom a 4-5-7-8. fejezetekhez

[1] Schnell L. ed., Jelek és rendszerek méréstechnikdja I.,111., Miegyetemi Kiado,
1994 (jegyzetazonosito: 51435, 514 352)
2. fejezet: Péceli G., Jelek és rendszerek
5. fejezet: Dobrowiecki T., Mérési adatok feldolgozdsdnak alapvetd mdodszeres
24. fejezet: Kollar 1., Jelanalizdtorok

[2] Luenberger, D.G., ,An Introduction to Observers’, IEEE Trans. on Automatic
Control, Vol. AC-16, No.6, 1971

[3] Hostetter, G. H., ,Recursive Discrete Fourier Transformation”, IEEE Trans. on
Acoustics, Speech and Signal Processing, Vol. ASSP-28, No. 2., 1980.

170



IRODALOMJEGYZEK

[4] Péceli G.,,,A Common Structure for Recursive Discrete Transforms”, IEEE Trans.
on Clircuits and Systems, Vol. CAS-33, No.10, 1986.

[5] Horvath G., et al, Neurdlis hdlozatok és miszaki alkalmazdsaik, Miegyetemi Ki-
ado, Budapest, 1998 (jegyzetazonositd: 55034). 4. fejezet: Horvath G., Vérko-
nyiné Koczy A., Tanulds

[6] Prékopa A., Valdszintségelmélet, Miszaki Konyvkiado, Budapest, 1962

[7] Widrow, B. and S. D. Stearns, Adaptiv Signal Processing, Prentice-Hall, New
Jersey, 1985.

[8] Rabiner, L. R. and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, New Jersey, 1975.

[9] Rozsa P., Linedris algebra és alkalmazdsai, Tankonyvkiado, Budapest, 1991.

Irodalom a 6. fejezethez

[1] Simonyi E., ,Digitdlis szirék. A digitdlis jelfeldolgozds alapjai”, Miszaki Konyv-
kiad6, Budapest, 1984.

[2] T. W. Parks, C. S. Burrus, , Digital Filter Design”, John Wiley & Sons, Inc., New
York, 1987.

[3] Herpy M., Berka J-C., ,Aktiv RC szirdk”, Miszaki Konyvkiado, Budapest, 1981.

[4] MATLAB. The Language of Technical Computing, The MathWorks, Inc., 1987-
2004.

171



