
2. gyakorlat

Történelem
Az SQL alapjait az IBM-nél fektették le, még az 1970-es években. Elvi alapja a relációs
adatmodell.
Az SQL nyelv deklaratív nyelv, ezért alapvetően más, mint a megszokott C++ vagy Java.

DDL (Data Definition Language) – Adat definíciós utasítások
Ide tartoznak az adatbázis létrehozásához, átalakításához tartozó utasítások.

• CREATE - az adatbázisban valamilyen elem, pl. tábla, elsődleges vagy külső kulcs, view,
létrehozása
• ALTER – minden, amit a CREATE-tel létrehoztunk, ezzel módosítható
• DROP - ezzel meg törölhető

DML (Data Manipulation Language) – Adatkezelő utasítások
Ide tartoznak az adatbázisban tárolt adatokhoz közvetlenül kapcsolódó utasítások

• INSERT - a definiált adatbázisba ezzel az utasítással helyezhetők el adatok
• UPDATE - ezzel meg frissíthetők
• DELETE - vagy törölhetők
• SELECT - talán az egész SQL legfontosabb utasítása: ezzel tudunk az adatbázisból adatokat
lekérdezni
Egyebek
Számos beépített függvény található. Általában a feladatokat ezeknek a segítségével érdemes
megoldani.
Lehet definiálni saját függvényeket és eljárásokat is, később ezekről is lesz szó gyakorlatokon.

I. Rész – CREATE

CREATE TABLE táblanév
(<attribútum típus[megszorítás]>
[,[attribútum típus[megszorítás]
[, stb]]
);
<kötelező paraméter> [opcionális paraméter]

Pl.:

CREATE TABLE dolgozo(
nev VARCHAR2(40),
kor NUMBER,
munkakor VARCHAR2(60)
);

A leggyakoribb Oracle adattípusok:
zárójelben (szélesség) – hány karakter hosszú
VARCHAR(size) – változó hosszú, max 2000byte
VARCHAR2(size) -változó hosszú, max 4000byte
CHAR(size) – fix hosszú
(NCHAR(size) – nemzeti karakterek is)
NUMBER - számok
DATE – dátum és idő (!!) típus - legfeljebb az ember az időt nem használja, de erre külön
figyelni kell!
ezen kívül még számos egyéb típus:
http://docs.oracle.com/cd/B28359_01/server.111/b28318/datatype.htm
Megszorítások (constraints):
NOT NULL – Az adott oszlopban nem lehet ’NULL’ érték.
UNIQUE – Az oszlopban lévő összes érték különböző
CHECK – Az oszlopban lévő összes érték megfelel valamilyen kritériumnak
PRIMARY KEY – Egyértelműen azonosítja a táblázatban az adott sort
FOREIGN KEY – Az adott érték valamelyik táblázatban elsődleges kulcs

1. Feladat. Hozd létre az alábbi táblákat sql-ben! Melyik oszlopnak mi lesz a típusa?

patient

patient_id p_name sex admission_date alzheimer_diagnosis

P1500 Irvin Brody male 24-10-2004 mild

P9700 Clifton Norman male 02-08-2010 severe

P9500 Arden Rodger female 04-09-2010 moderate

P4000 Harland Wilbur male 17-06-2008 moderate

P8000 Henry Kip male 28-07-2009 severe

http://docs.oracle.com/cd/B28359_01/server.111/b28318/datatype.htm

treatment

Treatment_id Patient_id Drug DCost Adm_time consultant

T001 P1500 Donepezil 57 24-10-2004 21:18:27 Dr. Green

T002 P9700 Memantine 128 02-08-2010 Dr. Green

T003 P1500 Donepezil 55 31-10-2004 09:12:43 Dr. Green

SQL kód megformázása itt:
http://www.dpriver.com/pp/sqlformat.htm

II. Rész – ALTER
- új attribútum felvétele egy adott táblához
- attribútum törlése egy adott táblából
- megszorítás (constraint) hozzáadása a táblához
ALTER TABLE táblanév
<ADD attrib típus megszorítás [, attrib típus megszorítás]
| MODIFY attribnév adattípus megszorítás[, attribnév adattípus megszorítás]
| DROP COLUMN attribnév>;
Példák:
ALTER TABLE Tanar ADD szuletesiev NUMBER(4);
ALTER TABLE dolgozo DROP COLUMN kor;
ALTER TABLE dolgozo MODIFY szemelyiszam PRIMARY KEY;

1. Feladat. A patient táblához add hozzá az age attribútumot!

patient_id p_name sex admission_date alzheimer_diagnosis age

P1500 Irvin Brody male 24-10-2004 mild 46

P9700 Clifton Norman male 02-08-2010 severe 85

P9500 Arden Rodger female 04-09-2010 moderate 72

P4000 Harland Wilbur male 17-06-2008 moderate 69

P8000 Henry Kip male 28-07-2009 severe 73

2. Feladat. Módósítsd úgy a patient táblát, hogy a p_name attribútum megadása kötelező

legyen!
3. Feladat. A treatment nevű táblából töröld a consultant attribútumot!

http://www.dpriver.com/pp/sqlformat.htm

III. Rész – DROP

DROP TABLE táblanév [CASCADE CONSTRAINT][PURGE];
pl.
DROP TABLE Tanar;
DROP TABLE dolgozo PURGE - eldobja a táblát és nem rakja kukába
DROP TABLE Tanar CASCADE CONSTRAINT - eldobja a táblát és a függőségeket is.

4. Feladat. Töröljétek a patient táblát!

IV. Rész – INSERT

A létrehozott táblába ezzel lehet adatot elhelyezni.
INSERT INTO táblanév [(attr1[,attr3[,attrx]])] VALUES (ertek[,ertek[,ertek]]);

pl.:
INSERT INTO dolgozo (nev, kor, munkakor) VALUES ('Béla', 40, 'Raktáros');
INSERT INTO dolgozo VALUES ('István', 32, 'Targoncás');

Dátum attribútum megadásához lehet használni a to_date() függvényt!
CREATE TABLE temp_date(
 a DATE
)
INSERT INTO temp_date (a) VALUES(
 to_date('1962-05-20', 'yyyy-mm-dd')
);

5. Feladat. Töltsétek fel az alábbi adatokkal a korábban definiált táblát (ha töröltétek, akkor
hozzátok újra létre)!

patient_id name sex age admission_date alzheimer_diagnosis

P1500 Irvin Brody male 46 24-10-2004 mild

P9700 Clifton Norman male 85 02-08-2010 severe

P9500 Arden Rodger female 72 04-09-2010 moderate

P4000 Harland Wilbur male 69 17-06-2008 moderate

P8000 Henry Kip male 73 28-07-2009 severe

V. Rész – INSERT

SELECT:
Ha csillagot írunk (attribnevek helyett), akkor mindent felsorol.
SELECT attribnevek
FROM tablanevek
[WHERE feltételek];
Részletesebben:

SELECT oszloplista (mit szeretnénk látni a kimeneten - projekció)
FROM táblalista (miből szeretnénk látni, eddig a kötelező rész)
WHERE logikai kifejezés (mivel szűrünk - szelekció)
ORDER BY logikai rendezés (csökkenő-növekvő sorba rendez)

Példa:
SELECT * FROM dolgozo;

6. Feladat. Milyen recordok vannak a patient táblában?
7. Feladat. Válaszd ki a patient_id, név és alzheimer_diagnozis oszlopokat!
8. Feladat. Listázd ki a 70 évesnél öregebb betegek adatait!
9. Feladat. Listázd ki a betegeket az aktuális életkorukkal („age” mező: életkor az első

felvételkor)
10. Feladat. Listázd ki azokat a pacienseket koruk szerint csökkenő, sorrendbe rendezve

(azonos kor esetén névsorban), akik 2005.01.01. után kerültek felvételre!

VI. Rész – Update, Delete
1. Update

Ha ǀalaŵilyeŶ ƌeĐoƌdot fƌissíteŶüŶk kell, pl. ŵegǀáltozott a ďeteg Ŷeǀe, akkoƌ az update paƌancsot lehet

haszŶálŶi:

UPDATE table_name
SET column1=value1,column2=value2,...
WHERE some_column=some_value;

Pl.:

UPDATE dolgozo
SET name = 'Géza'
WHERE name = 'Károly'

2. Feladatok

a. P9500 azoŶosítójú ďeteg diagŶózisa ŵegǀáltozott moderate-ƌől seǀeƌe-ƌe. EŶŶek ŵegfelelőeŶ
fƌissítsd az adatďázist!

b. OpĐioŶális: Fƌissítsd az életkoƌt úgy, hogy az aktuális életkoƌt mutassa, ne pedig a felǀételkoƌit!
;Aktuális dátuŵ: SYSDATE)

3. Delete
SziŶtéŶ gyakoƌi, hogy egy ƌekoƌdot, ǀagy ƌekoƌdokat töƌölŶi kell az adatďázisďól.

DELETE FROM table_name
WHERE some_column=some_value;

Pl.: Az összes Káƌoly Ŷeǀű dolgozó töƌlése:

DELETE FROM dolgozo
WHERE name = 'Károly'

4. Feladatok

a. Töƌöld az összes ŶőŶeŵű ďeteget!
b. A Henry Kip Ŷeǀű ďeteg ŵeghalt, töƌöld az adatďázisďól!
c. Töƌöld az össze ƌekoƌdot a táďláďól! ;Wheƌe klóz elhagyhatóͿ

VII. Rész – Where klóz (CONT’)
1. Pattern matching

Akkoƌ haszŶáljuk, ha valamilyen karakterŵiŶtázatot akaƌuŶk ŵegtalálŶi. Például azt kéƌdezzük, hogy
ŵely dolgozókat híǀják KáƌolyŶak. Ezt fejezhetjük ki a LIKE kulĐsszóǀal.

'%' – tetszőleges és ďáƌŵilyeŶ hosszúságú stƌiŶggel ǀaló egyezés ;Figyeleŵ, Ŷeŵ a pl. keƌesésekŶél ǀagy
reguláƌis kifejezésekďeŶ szokásos ’*’)

'_' – egyetleŶ kaƌakteƌďeŶ ǀaló egyezés ;Figyeleŵ, Ŷeŵ a szokásos ’?’!)

Pl.:

SELECT *

FROM dolgozo
WHERE name LIKE '%Károly%'

Ha aƌƌa ǀagyuŶk kíǀáŶĐsiak, hogy melyek azok a nevek, aŵik 'A' ďetűǀel kezdődŶek és a kettőǀel
ƌáköǀetkező kaƌakteƌ is 'A':

SELECT *
FROM dolgozo

WHERE name LIKE 'A_A%'

2. Feladatok pattern matching-hez
Ha az összes ƌekoƌdot töƌölted koƌáďďaŶ, akkoƌ a ǁikiŶ léǀő sƋl sĐƌipt alapjáŶ ǀisszatöltheted az adatokat
a táďláďa.

a) Mik az 'ar' vagy 'Ar' kaƌakteƌeket taƌtalŵazó ďetegek adatai?

b) Mi az azoŶosítója és a koƌa a ' HeŶƌy' stƌiŶggel kezdődő ďetegekŶek?

3. Null értékek kezelése
SQL-ďeŶ, ha Đsak ŵáshogy Ŷeŵ ƌeŶdelkezüŶk, lehetŶek 'NULL' éƌtékek. Ekkoƌ azoŶďaŶ az összehasoŶlító

opeƌátoƌokat ;<>,=,<) és a függǀéŶyeket óǀatosaŶ kell haszŶálŶi. Eƌƌe ŵegoldás az IS NOT NULL és az IS
NULL haszŶálata.

SELECT *
FROM patient

WHERE name IS NULL

4. Feladatok null-ok kezeléséhez:
a) Hozzatok létƌe, ŵajd töltsetek fel egy táďlát úgy, hogy a köǀetkező adatokat taƌtalmazza, majd

ǀálasszátok ki azokat a ƌeĐoƌdokat, aŵelyek Đost attƌiďútuŵa Ŷeŵ 'üƌes'!

Treatment_id Patient_id Cost

T001 P1500 55

T002 P9700 129

T003 P1500

T004 P1500 57

T005 P9500

T006 P4000 81

T007 P4000 82

T008 P8000 82

b) OpĐioŶális: ǀálasszátok ki az összes ƌekoƌdot, de úgy, hogy a Cost ŵezőďeŶ hiáŶyzó éƌtékeket
0-ǀal helyettesítitek! ;HaszŶáld az Ŷǀl;Ϳ függǀéŶytͿ

c) Mit ad ǀissza a köǀetkező lekéƌdezés?

SELECT *

FROM treatmentvar
WHERE cost < 60
 OR cost >= 60;

