
DBMS Funkcionális 

függések
Forrás: 

http://www.tutorialspoint.com/dbms/database_nor
malization.htm



Functional Dependency

• Functional dependency (FD) is a set of constraints 
between two attributes in a relation. Functional 
dependency says that if two tuples have same 
values for attributes A1, A2,..., An, then those two 
tuples must have to have same values for attributes 
B1, B2, ..., Bn.

• Functional dependency is represented by an arrow 
sigŶ ;→Ϳ that is, X→Y, ǁhere X fuŶĐtioŶallǇ 
determines Y. The left-hand side attributes 
determine the values of attributes on the right-
hand side.



Trivial Functional Dependency

• Trivial − If a fuŶĐtioŶal depeŶdeŶĐǇ ;FDͿ X → Y 
holds, where Y is a subset of X, then it is called a 
trivial FD. Trivial FDs always hold.

• Non-trivial − If aŶ FD X → Y holds, ǁhere Y is Ŷot a 
subset of X, then it is called a non-trivial FD.

• Completely non-trivial − If aŶ FD X → Y holds, 
ǁhere ǆ iŶterseĐt Y = Φ, it is said to ďe a ĐoŵpletelǇ 
non-trivial FD.



Normalization

• If a database design is not perfect, it may contain anomalies, which are 
like a bad dream for any database administrator. Managing a database 
with anomalies is next to impossible.

• Update anomalies − If data iteŵs are sĐattered aŶd are Ŷot liŶked to 
each other properly, then it could lead to strange situations. For 
example, when we try to update one data item having its copies 
scattered over several places, a few instances get updated properly 
while a few others are left with old values. Such instances leave the 
database in an inconsistent state.

• Deletion anomalies − We tried to delete a reĐord, ďut parts of it ǁas left 
undeleted because of unawareness, the data is also saved somewhere 
else.

• Insert anomalies − We tried to iŶsert data iŶ a reĐord that does Ŷot eǆist 
at all.

• Normalization is a method to remove all these anomalies and bring the 
database to a consistent state.



First Normal Form

• First Normal Form is defined in the definition of relations (tables) itself. 
This rule defines that all the attributes in a relation must have atomic 
domains. The values in an atomic domain are indivisible units.

• We re-arrange the relation (table) as below, to convert it to First Normal 
Form. Each attribute must contain only a single value from its pre-
defined domain.



Second Normal Form

• Before we learn about the second normal form, we 
Ŷeed to uŶderstaŶd the folloǁiŶg −
• Prime attribute − AŶ attriďute, ǁhiĐh is a part of the 

prime-key, is known as a prime attribute.

• Non-prime attribute − AŶ attriďute, ǁhiĐh is Ŷot a part 
of the prime-key, is said to be a non-prime attribute.



Second Normal Form
• If we follow second normal form, then every non-prime attribute should be fully 

fuŶĐtioŶallǇ depeŶdeŶt oŶ priŵe keǇ attriďute. That is, if X → A holds, theŶ there should 
Ŷot ďe aŶǇ proper suďset Y of X, for ǁhiĐh Y → A also holds true.

• We see here in Student_Project relation that the prime key attributes are Stu_ID and 
Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be 
dependent upon both and not on any of the prime key attribute individually. But we find 
that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj_ID
independently. This is called partial dependency, which is not allowed in Second Normal 
Form.

• We broke the relation in two as depicted in the above picture. So there exists no partial 
dependency.



Third Normal Form

• For a relation to be in Third Normal Form, it must be in Second Normal form 
aŶd the folloǁiŶg ŵust satisfǇ −
• No non-prime attribute is transitively dependent on prime key attribute.

• For any non-triǀial fuŶĐtioŶal depeŶdeŶĐǇ, X → A, theŶ either −
• X is a superkey or,

• A is prime attribute.

• We find that in the above Student_detail relation, Stu_ID is the key and only 
prime key attribute. We find that City can be identified by Stu_ID as well as 
Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally, 
Stu_ID → )ip → CitǇ, so there existstransitive dependency.

• To bring this relation into third normal form, we break the relation into two 
relations as follows −



Boyce-Codd Normal Form

• Boyce-Codd Normal Form (BCNF) is an extension of 
Third Norŵal Forŵ oŶ striĐt terŵs. BCNF states that −
• For any non-triǀial fuŶĐtioŶal depeŶdeŶĐǇ, X → A, X ŵust ďe a 

super-key.

• In the above image, Stu_ID is the super-key in the 
relation Student_Detail and Zip is the super-key in the 
relation ZipCodes. So,

• Stu_ID → Stu_Name, Zip

• and

• )ip → CitǇ

• Which confirms that both the relations are in BCNF.


