DBMS Funkcionalis

fuggések

Forras:
http://www.tutorialspoint.com/dbms/database_nor
malization.htm




Functional Dependency

* Functional dependency (FD) is a set of constraints
between two attributes in a relation. Functional
dependency says that if two tuples have same
values for attributes Al, A2,..., An, then those two

tuples must have to have same values for attributes
B1, B2, ..., Bn.

* Functional dependency is represented by an arrow
sign (=) that is, X=>Y, where X functionally
determines Y. The left-hand side attributes

determine the values of attributes on the right-
hand side.



Trivial Functional Dependency

e Trivial - If a functional dependency (FD) X 2> Y
holds, where Y is a subset of X, then it is called a
trivial FD. Trivial FDs always hold.

* Non-trivial - If an FD X = Y holds, where Y is not a
subset of X, then it is called a non-trivial FD.

* Completely non-trivial - If an FD X = Y holds,
where x intersect Y = @, it is said to be a completely
non-trivial FD.



Normalization

* If a database design is not perfect, it may contain anomalies, which are
like a bad dream for any database administrator. Managing a database
with anomalies is next to impossible.

 Update anomalies - If data items are scattered and are not linked to
each other properly, then it could lead to strange situations. For
example, when we try to update one data item having its copies
scattered over several places, a few instances get updated properly
while a few others are left with old values. Such instances leave the
database in an inconsistent state.

* Deletion anomalies - We tried to delete a record, but parts of it was left
ulndeleted because of unawareness, the data is also saved somewhere
else.

. Inselft anomalies — We tried to insert data in a record that does not exist
at all.

* Normalization is a method to remove all these anomalies and bring the
database to a consistent state.



First Normal Form

* First Normal Form is defined in the definition of relations (tables) itself.
This rule defines that all the attributes in a relation must have atomic
domains. The values in an atomic domain are indivisible units.

Course Content
Programming Java, c++
Web HTML, PHP, ASP

* We re-arrange the relation (table) as below, to convert it to First Normal
Form. Each attribute must contain only a single value from its pre-
defined domain.

Course Content
Programming Java
Programming C++

Web HTML
Web PHP
Web ASP




Second Normal Form

* Before we learn about the second normal form, we
need to understand the following -

* Prime attribute — An attribute, which is a part of the
prime-key, is known as a prime attribute.

* Non-prime attribute — An attribute, which is not a part
of the prime-key, is said to be a non-prime attribute.



Second Normal Form

* |f we follow second normal form, then every non-prime attribute should be fully
functionally dependent on prime key attribute. That is, if X - A holds, then there should
not be any proper subset Y of X, for which Y - A also holds true.

Student_Project

Stu_ID Proj_ID Stu_Name Proj_Name

N— S

* We see here in Student_Project relation that the prime key attributes are Stu_ID and
Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be
dependent upon both and not on any of the prime key attribute individually. But we find
that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj _ID
independently. This is called partial dependency, which is not allowed in Second Normal
Form.

Student

Stu_ID Stu_Name Proj_ID
Project

Proj_ID Proj_Name

* We broke the relation in two as depicted in the above picture. So there exists no partial
dependency.



Third Normal Form

* For arelation to be in Third Normal Form, it must be in Second Normal form
and the following must satisfy -

* No non-prime attribute is transitively dependent on prime key attribute.
* For any non-trivial functional dependency, X - A, then either -

* Xis asuperkey or, Student_Detail

e Ais prime attribute.
Stu_ID Stu_Name City Zip

N

* We find that in the above Student_detail relation, Stu_ID is the key and only
prime key attribute. We find that City can be identified by Stu_ID as well as
Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,
Stu_ID - Zip = City, so there existstransitive dependency.

* To bring this relation into third normal form, we break the relation into two
relations as follows -
Student_Detail
Stu_ID Stu_Name Zip

ZipCodes
Zip City




Boyce-Codd Normal Form

* Boyce-Codd Normal Form (BCNF) is an extension of
Third Normal Form on strict terms. BCNF states that -
* For any non-trivial functional dependency, X - A, X must be a
super-key.

* In the above image, Stu_ID is the super-key in the
relation Student_Detail and Zip is the super-key in the
relation ZipCodes. So,

* Stu_ID - Stu_Name, Zip
* and
* Zip > City

e Which confirms that both the relations are in BCNF.



