

Analitikus és egyéb hasznos

függvények Oracle 11g alatt

1 TARTALOMJEGYZÉK

1 Tartalomjegyzék ... 2

2 Bevezetés ... 3

3 Az analitikus függvényekről általánosan .. 3

3.1 Az ORDER BY rész .. 3

3.2 A PARTITION BY rész .. 3

3.3 Az ablak_definíciós rész ... 4

3.3.1 ROW típus esetén ... 4

3.3.2 RANGE típus esetén .. 4

4 Analitikus függvények használata .. 5

4.1 A LAG és a LEAD függvények ... 5

4.1.1 Példa a LAG és a LEAD függvények használatára .. 5

4.2 A ROW_NUMBER, RANK és DENSE_RANK függvények ... 6

4.2.1 Példa a ROW_NOMBER, RANK és DENSE_RANK függvények használatára 6

4.2.2 Futtatási tervek a DENSE_RANK használata esetén ... 7

4.3 A FIRST_VALUE és a LAST_VALUE függvények .. 9

4.3.1 Példa a FIRST_VALUE használatára .. 9

4.4 A KEEP FIRST és a KEEP LAST kulcsszavak ... 9

4.4.1 Példa a KEEP FIRST használatára .. 10

4.5 A ratio_to_report függvény ... 10

4.5.1 Példa a ratio_to_report függvény használatára ... 10

4.6 A NTILE függvény ... 11

4.6.1 Példa az NTILE függvény használatára .. 11

4.7 A PARTITION BY záradék az aggregációs függvények után .. 11

4.7.1 Példa a PARTITION BY záradék használatára .. 12

4.8 Példa a ROW típusú ablakdefiníció használatára.. 12

4.9 Példa a RANGE típusú ablakdefiníció használatára .. 13

5 Egyéb hasznos függvények ..13

5.1 A LISTAGG függvény .. 14

5.1.1 Példa a LISTAGG függvény használatára ... 14

5.2 A WIDTH_BUCKET függvény .. 14

5.2.1 Példa a WIDTH_BUCKET függvény használatára .. 15

6 Konklúzió ..15

7 Irodalomjegyzék ..16

2 BEVEZETÉS

Napjaink informatikai környezete lehetővé teszi az információk nagy mennyiségű

tárolását, és az ezekben történő gyors keresést. Erre alapozva egyre nagyobb

szerepet játszanak a döntés támogató rendszerek az élet minden területén. A

vezetők egyre nagyobb mértékben támaszkodnak az évek során felhalmozódott

adatok elemzéséből származó információkra. Az adatok elemzése többnyire

erőforrás igényes művelet, ezért a relációs adatbázis kezelő rendszerek különböző

eszközökkel támogatják a nagy mennyiségű adatok analízisét.

Jelen dokumentum az Oracle 11g által nyújtott néhány eszközt és azok használatát

taglalja példákon keresztül. Ezen eszközök nagy részét a szaknyelv analitikus

függvényeknek nevezi.

3 AZ ANALITIKUS FÜGGVÉNYEKR ŐL ÁLTALÁNOSAN

Az analitikus függvények általános formája a következő:

Függvény_név(arg1,..., argn) OVER ([PARTITION BY < ...>] [ORDER BY <....>] [<ablak_definíció>])

Az analitikus függvények kiértékelése az összes join és a where ágon felsorolt

feltételek kiértékelése után történik meg.

A formula az alkalmazni kívánt függvény nevével és annak paramétereivel kezdődik.

A továbbiakban részletezni fogom a formula egyes részeit, majd példákon keresztül

megnézzük azok használatát.

3.1 Az ORDER BY rész

Egy partíción belül a rekordok sorrendjét az order by rész segítségével tudjuk

befolyásolni. Egyes függvények (pl.: Lead, Lag, Rank, stb.) kimenetét befolyásolja a

rekordok partíción belüli sorrendje, másokét nem (pl. Sum, Avg, Min, stb.)

Az order by rész általános formája a következő:

ORDER BY <sql_kif> [ASC|DESC] NULLS [FIRST|LAST]

Az [ASC | DESC] résszel tudjuk befolyásolni, hogy a halmaz rendezettsége növekvő

vagy csökkenő legyen.

A NULLS [FIRST | LAST] résszel pedig azt mondjuk meg, hogy a rendezettség

szerint a null értékek a halmaz elejére vagy végére kerüljenek.

3.2 A PARTITION BY rész

A partition by használatával az eredmény halmaza csoportosítható, mely csoportokon

aggregációk hajthatók végre. Jogosan merül fel a kérdés, hogy akkor mi a különbség

a partition by záradékkal ellátott analitikus függvény és egy group by záradékkal

ellátott lekérdezés között.

A legfontosabb különbség talán az, hogy míg a group by záradékkal ellátott

lekérdezés select ágán nem szerepelhet olyan oszlop definíció, amely nem szerepel

a group by ágon, addig az analitikus függvényeknél nincs ilyen megkötés, viszont az

aggregáció ugyan úgy elvégezhető. Azaz az analitikus függvények úgy végzik el a

csoportosítást és rajtuk az aggregációt, hogy a megjelenő eredményhalmaz

ténylegesen nem lesz csoportosítva.

3.3 Az ablak_definíciós rész

Néhány analitikus függvény támogatja az ablak_definíció használatát, melynek

segítségével tovább szűkíthetjük a partíción belüli rekordok számát, oly módon, hogy

a partíción belül meghatározzuk az ablak kezdetét és a végét. Ezeket a határokat az

aktuális sorhoz képest relatívan tudjuk megadni. Kétféle ablaktípus létezik, a ROW és

a RANGE.

Az ablak definíció általános szintaxisa a következő:

[ROW | RANGE] BETWEEN <kezd őpont_kif> AND <végpont_kif>

ahol a <kezdőpont_kif> a következőképpen nézhet ki:

(UNBOUNDED PRECEDING | CURRENT ROW | <sql_kif> [PRE CEDING | FOLLOWING])

ahol a <végpont_kif> a következőképpen nézhet ki:

(UNBOUNDED FOLLOWING | CURRENT ROW | <sql_kif> [PRE CEDING | FOLLOWING])

3.3.1 ROW típus esetén

Az UNBOUNDED PECEDING jelentése az aktuális sort megelőző partíción belüli

első sor. Ennek analógiájára az UNBOUNDED FOLLOWING az aktuális sort követő

partíción belüli utolsó sort fogja jelenteni.

A CURRENT ROW az aktuális sort jelenti.

Az <sql_kif> PRECEDING az aktuális sort <sql_kif>-el megelőző sort, az <sql_kif>

FOLLOWING pedig az aktuális sort követő <sql_kif>-dik sort jelenti, ahol az <sql_kif>

értékének pozitív egésznek kell lenni.

A kezdőpontnak mindig kisebbnek kell lenni a végpontnál.

3.3.2 RANGE típus esetén

A RANGE típus esetén a szintaxis ugyan az mint a ROW típus esetén, csupán

értelmezésbeli különbség van, valamit további megkötések, melyek a következők.

• Az order by záradék csak egy kifejezést tartalmazhat.

• A <kezdőpont_kif> és a <végpont_kif>-ben szereplő <sql_kif> típusának

úgymond kompatibilisek kell lenni az order by záradékban szereplő kifejezés

típusával. Ez azt jelenti, hogy ha a kifejezés típusa number, akkor az order by

kifejezésnek number vagy date típusúnak kell lenni. Ha a kifejezés egy

intervallum típus, akkor az order by kifejezésnek date típusúnak kell lenni.

A RANGE típus értelmezésében a kezdő és a végpont nem más, mint az order by

által meghatározott oszlop aktuális értékének a kifejezéssel történő eltolása.

4 ANALITIKUS FÜGGVÉNYEK HASZNÁLATA

4.1 A LAG és a LEAD függvények

A LAG és a LEAD függvények segítségével egy halmaz bármely során állva elkérhetjük

egy az általunk definiált rendezési reláció szerinti az adott sort x-el megelőző (Lag) illetve

követő (Lead) sor egy oszlopának értékét.

LEAD (<sql_kifejezés>, <eltolás>, <alapértelmezett_ érték>)

OVER ([PARTITION BY <...>] [ORDER BY <....>])

LAG (<sql_kifejezés>, <eltolás>, <alapértelmezett_é rték>)

OVER ([PARTITION BY <...>] [ORDER BY <....>])

Mindkét függvénynek 3 paramétere van:

• sql kifejezés: Egy szabványos sql kifejezés, mely ki lesz értékelve a megelőző

vagy a következő soron.

• eltolás: Egy egész szám, mely megmondja hány sorral megelőző illetve követő

soron értékelődjön ki az első paraméter.

• alapértelmezett érték: Egy alapértelmezett érték mely akkor kerül visszaadásra,

ha a kiértékelt kifejezés eredménye null.

4.1.1 Példa a LAG és a LEAD függvények használatára

Tegyük fel, hogy szükségünk van a dolgozók nevének és fizetésének listájára abc

sorrendben úgy, hogy minden sorba oda kell írnunk azt is, hogy az előző és a

következő sorban mennyi volt a fizetés. Amennyiben nincs megelőző vagy következő

sor úgy 0-t írjunk a megfelelő helyre. Ez a probléma a következőképpen oldható meg.

SELECT dolg.név "Név",

dolg.fizetés "Fizetés",

LAG(dolg.fizetés,1,0) OVER (ORDER BY dolg.név) "El őző sor fizetése",

LEAD(dolg.fizetés,1,0) OVER (ORDER BY dolg.név) "Kö vetkező sor fizetése"

FROM aa dolg;

A lekérdezés eredménye a következő:

4.2 A ROW_NUMBER, RANK és DENSE_RANK függvények

A függvények szintaxisa a következő:

ROW_NUMBER () OVER ([PARTITION BY <...>] [ORDER BY <....>])

RANK () OVER ([PARTITION BY <...>] [ORDER BY <....>])

DENSE_RANK () OVER ([PARTITION BY <...>] [ORDER BY <....>])

Az említett függvények mindegyike egy sorszámot ad az eredmény halmaz minden egyes

sorának egy rendezési relációt alapul véve. A rendezési relációt a már fentebb említett

order by záradék segítségével tudjuk definiálni. Az eltérés a sorszámok kiosztásába van,

melyet a következő szabály határoz meg.

• ROW_NUMBER() : A row_number esetén a sorszámok szigorúan monoton

növekvő sort alkotnak, ahol az N. elem a halmazban az N. sorszámot kapja.

• RANK() : A rank esetén a sorszámok monoton növekvő sort alkotnak. Abban az

esetben különbözik a row_number-től, ha a rendezési reláció szerint a halmaz

tartalmaz azonos sorokat. Ilyen esetben, ha az N. és az N+1. elem a rendezési

reláció szerint egyenlő, akkor az N. és az N+1. elem is N. sorszámot kapja,

azonban a rendezési reláció szerinti következ N+2. eltérő elem az N+2.

sorszámot kapja.

• DENSE_RANK() : A dense_rank esetén a sorszámok monoton növekvő sort

alkotnak. Ez is abban az esetben különbözik a row_number-től, ha a rendezési

reláció szerint a halmaz tartalmaz azonos sorokat. Abban különbözik a rank

függvénytől, hogy itt a rendezési reláció szerinti következő N+2. eltérő elem az

N+1. sorszámot kapja.

4.2.1 Példa a ROW_NOMBER, RANK és DENSE_RANK függvé nyek

használatára

A három függvény segítségével rangsoroljuk a dolgozókat, a fizetésük szerinti

rendezettségük alapján.

SELECT row_number() OVER(ORDER BY dolg.fizetés) row _number,

rank() OVER(ORDER BY dolg.fizetés) rank,

dense_rank() OVER(ORDER BY dolg.fizetés) dense_rank ,

dolg.név,

dolg.fizetés

FROM aa dolg;

A lekérdezés eredménye a következő:

Amennyiben ugyan ezt a rangsorolást a telephelyen belül szeretnénk megtenni, úgy

használnunk kell a partition by záradékot.

SELECT row_number() OVER(PARTITION BY dolg.telep OR DER BY dolg.fizetés) row_number,

rank() OVER(PARTITION BY dolg.telep ORDER BY dolg.f izetés) rank,

dense_rank() OVER(PARTITION BY dolg.telep ORDER BY dolg.fizetés) dense_rank,

dolg.név,

dolg.fizetés,

dolg.telep

FROM aa dolg;

Ezesetben az eredmény a következő:

4.2.2 Futtatási tervek a DENSE_RANK használata eset én

A dense_rank függvény jól használható a következő probléma megoldásához. Adjuk

vissza azokat a szolgáltatásokat, amelyeket azon a napon rögzítettek, amikor az utolsó

rögzítés történt. Az általános megoldás a következőképpen néz ki.

SELECT ID

FROM service s1

WHERE TRUNC(s1.rec_time) = (SELECT MAX(TRUNC(s2.rec _time))

FROM service s2);

Ha megnézzük a végrehajtási tervet, jól látszik, ami a lekérdezésből várható, hogy a

service tábla kétszer is végig lesz olvasva teljesen. Egyszer, mikor kiválasztjuk a

maximumát a rögzítési időknek, majd még egyszer mikor kiválasztjuk a maximum alapján

az aznapi rögzítéseket.

Nézzük hogyan oldható meg ez a probléma a DENSE_RANK használatával.

SELECT ID

FROM (SELECT ID,

DENSE_RANK() OVER(ORDER BY TRUNC(s.rec_time) DESC N ULLS LAST) rnk

FROM service s)

WHERE rnk = 1;

Ha most is megnézzük a végrehajtási tervet látjuk, hogy eltűnt az egyik TABLE ACCESS

FULL sor.

Természetesen a table access full egy index elhelyezésével elkerülhető, azonban a

hangsúly az egyszeri végrehajtáson van, hisz a lekérdezés nem mindig ilyen egyszerű,

hiszen a service tábla helyett használhatnánk akár egy nézetet is ami 10 tábla

összekapcsolásából áll elő. Ebben az esetben már nem mindegy hogy hányszor olvassuk

végig a táblát.

A fentebbi példá kipróbáltam egy 3 470 680 sort tartalmazó táblán. A rec_time oszlopon

nem volt index.

A futási idő az első megoldás esetén 10,657 sec.

A futási idő a második megoldás esetén 8,938 sec.

4.3 A FIRST_VALUE és a LAST_VALUE függvények

A first_value és a last_value függvények a képzett csoport meghatározott sorrendjének

első illetve utolsó rekordjának megfogására szolgál.

Szintaxisa a következő:

FIRST_VALUE(<sql_kifejezés>) OVER ([PARTITION BY <. ..>] [ORDER BY <....>[<ablak_definíció>]])

LAST_VALUE(<sql_kifejezés>) OVER ([PARTITION BY <.. .>] [ORDER BY <....>[<ablak_definíció>]])

4.3.1 Példa a FIRST_VALUE használatára

Adott a következő probléma. Írassuk ki telephelyenként a dolgozók fizetésének a

telephely legkisebb fizetésétől való eltérését.

SELECT t.név "Név",

 t.telep "Telephely",

 t.fizetés "Fizetés",

 t.first_v "Legkisebb fiz.",

 t.fizetés - t.first_v "Eltérés"

FROM (

 SELECT dolg.név,

 dolg.telep,

 dolg.fizetés,

 first_value(dolg.fizetés) OVER(PARTITIO N BY dolg.telep ORDER BY dolg.fizetés) first_v

 FROM aa dolg)t;

Az eredményhalmaz a következőképpen néz ki:

4.4 A KEEP FIRST és a KEEP LAST kulcsszavak

Ezen két analitikus függvény elég speciális és valószínűleg használatuk sem lesz túl

gyakori, azonban szükség esetén rengeteg fáradtságtól megkímélheti a programozót. A

függvények szintaxisa is eltér az általános formától.

A szintaxis a következő:

Függvénynév() KEEP (DENSE_RANK FIRST ORDER BY <sql_ kif>) OVER ([PARTITION BY <...>])

Függvénynév() KEEP (DENSE_RANK LAST ORDER BY <sql_k if>) OVER ([PARTITION BY <...>])

Látható, hogy az order by záradék kikerült az over() részből és átkerült a FIRST vagy a

LAST kulcsszó után. Az over() rész csupán a partition by záradékot tartalmazza. A

DENSE_RANK pedig jelen esetben egy kulcsszó nem a már előzőekben tárgyalt

függvény, még sem véletlen a hasonlóság.

A függvény a következőképpen működik. A partition by záradék által meghatározott

csoportot rangsorolja a dense_rank-nál leírt szabályok alapján, majd a rangsorolás

szerinti első (FIRST esetén) vagy utolsó (LAST esetén) rangsorba eső rekordokon

végrehajtja az aggregáló függvényt.

4.4.1 Példa a KEEP FIRST használatára

Adott a következő probléma. Írassuk ki minden dolgozóhoz a telephelyén dolgozó

legalacsonyabb szintű dolgozók átlagfizetését.

SELECT dolg.név,

 dolg.telep,

 dolg.szint,

 dolg.fizetés,

 AVG(dolg.fizetés) KEEP (DENSE_RANK FIRST OR DER BY dolg.szint)

 OVER (PARTITION BY dolg. telep) Avg_fiz_szint

FROM aa dolg

ORDER BY dolg.telep, dolg.szint

A lekérdezés eredménye a következőképpen néz ki:

4.5 A ratio_to_report függvény

A függvény szintaxisa a következő:

RATIO_TO_REPORT(<sql_kifejezés>) OVER ([PARTITION B Y <...>])

A ratio_to_report függvény egy halmaz minden elemére megmondja, hogy azok hány

százaléka a halmaz elemeinek összegének. A halmaz méretét a partition by

záradékkal tudjuk szabályozni, a halmaz értékeit pedig paraméterül kapja a függvény.

A függvény nem támogatja az order by záradékot és az ablak definíciót sem.

4.5.1 Példa a ratio_to_report függvény használatára

SELECT d.*,

 ratio_to_report(d.a2) over (partition by d. a1) as ratio_to_report

FROM test d

A lekérdezés eredménye a következő:

4.6 A NTILE függvény

A függvény szintaxisa a következő:

NTILE(kosarak száma) OVER ([PARTITION BY <...>] ORD ER BY<…>)

Az NTILE függvény a rendezettséget alapul véve a partíció elemeit a paramétereként

kapott számú kosárba osztja szét. Amennyiben a partíción belül a sorok száma nem

többszöröse a kosarak számának, úgy mindig az alacsonyabb sorszámú kosarak

kerülnek először feltöltésre.

4.6.1 Példa az NTILE függvény használatára

A példa a dolgozókat osztja szét telephelyenként 3 kosárba, a dolgozók nevének

sorrendje alapján.

SELECT dolg.név "Név",

 dolg.telep "Telephely",

 NTILE(3) OVER (PARTITION BY dolg.telep ORDE R BY dolg.név) "Kosár"

FROM aa dolg

A lekérdezés eredménye a következő:

Az eredményben látható, hogy a Debreceni partícióban az egyes kosárban került az

osztást követően kimaradt egy elem.

4.7 A PARTITION BY záradék az aggregációs függvénye k után

Bármelyik csoportosító függvény után használhatjuk a partition by záradékot. A partition

by segítségével a csoportosító függvényünket végrehajthatjuk a csoportosítás egy

részcsoportján.

A partition by szintaxisa a következő:

{SUM | AVG | MAX | MIN | COUNT | ... } OVER ([PART ITION BY sql_kif1[,...]])

4.7.1 Példa a PARTITION BY záradék használatára

Adott a következő feladat. Határozzuk meg, hogy a beosztások össz fizetése mennyivel

tér el az ugyan azon telephelyen található legmagasabb összfizetéssel rendelkező

beosztástól.

SELECT t.beosztás "Beosztás",

t.telep "Telephely",

t.sfiz "Össz. fizu",

t.msfiz "Tel. beosz. max fizu",

t.msfiz - t.sfiz "Eltérés"

FROM (SELECT dolg.beosztás,

dolg.telep,

sum(dolg.fizetés) sfiz,

MAX(SUM(dolg.fizetés)) OVER (PARTITION BY dolg.tele p) msfiz

FROM aa dolg

GROUP BY dolg.beosztás, dolg.telep

ORDER BY dolg.telep) t

A lekérdezés eredménye a következő:

4.8 Példa a ROW típusú ablakdefiníció használatára

Nézzünk néhány példát arra, hogy a mit kapunk eredményül az egyes esetekben, ha

a telephelyet választjuk partíciónak és a fizetés a sorrend. Sajnos a példa nem túl

életszerű, de a cél az egyszerűségen és a követhetőségen volt.

SELECT dolg.név "Név",

 dolg.telep "Telephely",

 dolg.fizetés "Fizetés",

 COUNT(*) OVER (PARTITION BY dolg.telep ORDE R BY dolg.fizetés

 ROWS BETWEEN 3 PRECEDING

AND 1 FOLLOWING) "El őz 3 - Köv 1",

 COUNT(*) OVER (PARTITION BY dolg.telep ORDE R BY dolg.fizetés

 ROWS BETWEEN UNBOUNDED PRECEDING

AND CURRENT ROW) "El őz - Aktuális",

 COUNT(*) OVER (PARTITION BY dolg.telep ORDE R BY dolg.fizetés

 ROWS BETWEEN 3 PRECEDING

AND 1 PRECEDING) "El őz 2 - Előz 1",

 COUNT(*) OVER (PARTITION BY dolg.telep ORDE R BY dolg.fizetés

 ROWS BETWEEN 1 FOLLOWING

AND 3 FOLLOWING) "El őz 1 - Köv 3"

FROM aa dolg

ORDER BY dolg.telep, dolg.fizetés

A lekérdezés eredménye a következő:

4.9 Példa a RANGE típusú ablakdefiníció használatár a

Ez a példa már egy kicsit életszerűbb. Határozzuk meg, hogy telephelyenként az

egyes dolgozók esetén, hány olyan dolgozó van, ahol a dolgozó fizetésének ötödével

többet vagy kevesebbet keresnek.

SELECT dolg.név "Név",

 dolg.telep "Telephely",

 dolg.fizetés "Fizetés",

 Count(*) OVER (PARTITION BY dolg.telep ORDER BY dolg.fizetés

 RANGE BETWEEN UNBOUNDED PRECEDING

 AND (dolg.fizetés/5) PRECEDING) "Ke vesebb az ötödével",

 COUNT(*) OVER (PARTITION BY dolg.telep ORDER BY dolg.fizetés

 RANGE BETWEEN (dolg.fizetés/5) FOLL OWING

 AND UNBOUNDED FOLLOWING) "Több az ö tödével"

FROM aa dolg

A lekérdezés eredménye a következő:

5 EGYÉB HASZNOS FÜGGVÉNYEK

Az analitikus függvényeken túl az Oracle biztosít még több hasznos függvényt,

melyek rangsorolnak vagy csoportosítási műveletekhez kapcsolódnak. Nézzünk ezek

közül is egy kettőt.

5.1 A LISTAGG függvény

A függvény szintaxisí a következő:

LISTAGG(sql_kif,elválasztó_kar) WITHIN GROUP (ORDER BY<…>) [OVER (PARTITION BY <...>)]

A Listagg függvény ugyan nem egy hagyományos értelemben vett analitikus

függvény, azonban használata nagyban hasonlít azokra és emellett sokszor nagyon

hasznos.

Mint már fentebb említettem, alap esetben egy group by záradékkal rendelkező

lekérdezés select ágán nem szerepelhet aggregációs függvény nélkül olyan oszlop, amely

nem szerepel a group by záradékban. A listagg függvény tulajdonképpen ezt oldja fel úgy,

hogy a paramétereként kapott oszlop csoportban szereplő értékeit egy elválasztó

karaktersorozatot használva összefűzi.

Két paramétere van:

• sql_kifejezés: ez egy olyan oszlopdefiníció, amely nem szerepel a group by

záradékban.

• elválasztó karaktersorozat: ezzel a karaktersorozattal lesz elválasztva a csoport

minden eleme az összefűzés során.

A függvényt a WITHIN GROUP kulcsszavak követik, majd zárójelben egy rendezési

relációt kell megadni, mely szerint az oszlop értékei rendezve lesznek a felsoroláson

belül.

5.1.1 Példa a LISTAGG függvény használatára

SELECT dolg.fizetés "Fizetés",

listagg(dolg.név,', ') WITHIN GROUP (ORDER BY dolg. név) "Nevek"

FROM aa dolg

GROUP BY dolg.fizetés;

A lekérdezés eredménye a következő:

5.2 A WIDTH_BUCKET függvény

A függvény szintaxisa a következő:

WIDTH_BUCKET(sql_kif, alsó_határ, fels ő_határ, zsákok_száma)

A WIDTH_BUCKET egy hisztogramm függvény, megy egy kiértékelt kifejezés értékeit

szétosztja egy egyenlő részekre felosztott intervallumon.

Négy paramétere van:

• kifejezés: Ez a kifejezés adja az értéket melyet az intervallumon el kell helyezni.

• alsó határ: Az intervallum kezdete.

• felső határ: Az intervallum vége.

• zsákok száma: Hány részre osszuk fel az intervallumot.

Az első három paraméter lehet numerikus és dátum típusú. Más típus nem megengedett.

Az utolsó paraméternek egy pozitív egész számnak kell lenni.Ezek után az alsó és felső

határ közé eső intervallumot felosztjuk a zsákok számával. Ha az intervallumunk 1 -

20000 közé esik és a zsákok száma 4, akkor a felosztás a következőképpen fog kinézni.

Ez alapján lesz az első paraméterként megadott kifejezés elhelyezve valamelyik zsákba.

Az intervallum [0,5000) halmazokra van felosztva. Az ábrán látszik, hogy van egy 0-ás és

egy 5-ös zsák is. Értelemszerűen a 0-ás zsákba kerülnek azok az értékek, melyek

kisebbek az intervallum alsó határánál és az 5-ös zsákba kerülnek azok az értékek,

melyek nagyobbak az intervallum felső határánál.

5.2.1 Példa a WIDTH_BUCKET függvény használatára

Tegyük fel, hogy a dolgozóinkat szeretnénk beosztani 4 csoportba a fizetésük szerint és

tudjuk, hogy a legalacsonyabb fizetés 60 000 Ft a legmagasabb pedig 130 000 Ft.

SELECT dolg.név "Név",

dolg.fizetés "Fizetés",

WIDTH_BUCKET(dolg.fizetés,60000,130000,4) "Csoport"

FROM aa dolg;

A lekérdezés eredménye a következő:

A példából látszik, hogy a balról zárt jobbról nyílt halmaz miatt Attila már felülcsordul és az

5-ös zsákba kerül.

6 KONKLÚZIÓ

Bár a példatábla kicsi volt, a könnyebb érthetőség kedvéért, azért érzékelhető, hogy

bonyolultabb problémák is egyszerűen lekezelhetők az analitikus függvények

segítségével. Ha csak a LAG vagy a LEAD függvényre gondolunk, a lekérdezés

aktuális sorában egy előző sor valamelyik értékére hivatkozni anélkül hogy

valamilyen egyszerű szabállyal meg tudnánk határozni az előző sor elsődleges

kulcsát, nem egy triviális probléma. Továbbá a végrehajtási tervet vizsgálva látható,

hogy az oracle minimalizálja az ehhez szükséges erőforrásokat és egy

végigolvasással határozza meg az értékeket.

Az oracle eszköztárában vannak még egyéb analitikus függvények (pl. lineáris

regresszión alapuló függvények), melyek esetenként bonyolult problémák megoldását

teszik lehetővé hatékony módon.

7 IRODALOMJEGYZÉK

1. Oracle Tuning - The Definitive Reference Second Edition (http://rampant-

books.com/book_1002_oracle_tuning_definitive_reference_2nd_ed.htm)

2. http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/functions001.

htm#sthref964

