Integralds vektormezdében

ATTEKINTES Eza fejezet integralsssal foglalkozik vektormezSkben. Ez a ma-
tematikdnak az a része, amit a mérnokok, fizikusok akkor haszndlnak, amikor
dramldsokat irnak le, vizalatti kdbeleket terveznek, hd4ramldst magyaraznak,
miholdat helyeznek palydra. Definidlunk vonalintegrdlt, amit erGtér 4ltal vég-
zett munka kiszdmitdsdra haszndlunk. Definidlunk feliiletmenti integralt, amivel
egy adott feliileten dtdraml6 folyadék mennyiségét tudjuk kiszdmitani. Kozben
olyan fogalmakkal ismerkediink meg, mint pl. konzervativ erétér, Green-tétel,
hogy szdmitdsainkat olykor egyszerfisithessiik. Ezeket az 1j integralokat a méar
ismert egyszeres és tobbszoros integrdlokra vezetjiik vissza.

Az 5. fejezetben definidltuk egyviltozos valos fliggvény integraljat az x-tengely
egy véges és zart [a,b] intervallumdn. A hatdrozott integralokat sok kiilonbozo
feladat megolddsdhoz hasznaltuk, teriiletszamitdson kiviil pl. véltozé strliségd
vékony, egyenes rud tomegének meghatirozasihoz, munka kiszamitasiahoz,
amikor az erd az x-tengely irdnydban hatott stb. Hogyan szdmolnédnk ki egy olyan
viltoz6 siirtiségli vékony rid vagy huzal tomegét, amely egy gorbe mentén fut
a térben, vagy hogyan szdmolndnk ki egy térbeli gorbe mentén haté eré mun-
k4jit? Ezekhez a szdmitdsokhoz dltalinositanunk kell az x-tengely egy ,,szaka-
sza” mentén vett integrélt, a tér egy ,,gorbedarabja™ mentén vett integralra. Ez
az éltaldnosabb fogalom a vonalintegrdl. A ,vonal”, azaz a gorbe, ami men-
tén integralunk, lehet térgorbe vagy sikgorbe. A révidebb tdrgyalds kedvéért a
sikgorbéket egyszeriien olyan térgorbéknek tekintjiik, amelyeknek harmadik ko-
ordinatédja azonosan nulla.

Tegyiik fel, hogy f(x,y,2) egy val6s értékd figgvény, amit az f értelmezési
tartomanyéban futé r(r) = g(1)i+ h(r)j + k(r)k gorbe mentén szeretnénk integ-
ilni az a < t < b paraméterértékekre. Az f fiiggvény értékeit a gérbe mentén
az f(g(t),h(t), k(1)) Gsszetett figgveény definidlja. Ezt az Ssszetett fuggvényt in-
tegréljuk az ivhossz szerint t = a-t6l 1 = b-ig. Ha a gorbe ivhossza nem véges,
akkor ez egy improprius integrdl. A definicichoz tekintsiink egy véges ivhosszi
(mds széval rektifikdlhat6) gorbét. Osszuk fel a gorbét n darab részivre (16.1.
4bra), és a k-adik iv ivhosszét jelolje Asy. Mindegyik résziven vilasszunk egy
(x.t.)’ksi»’k) pontot, és tekintsiik az

n
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integrélkozelitd Gsszeget. A felo@ﬁs norméjit €s az integrdl létezését ugyan-
(igy definidljuk, mint 2 Riemann-integrél esetében. Az integralkozelits dsszegek
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Additivitas

A vonalintegrélok rendelkeznek azzal a tulajdonséggal, hogy ha a gorbe véges
sok egymishoz csatlakoz6 Cj, Cy....C, gorbedarabbdl dll, akkor az integrdl C
felett a résziveken vett integrélok Osszege:

!deZC[fds—l—C[fder---+c{fds (16.3)

2. PELDA Vonalintegral két csatlakozé girbeiven
A 16-_3- dbran egy misik utat mutatunk az origébdl az (1,1,1) pontba, mint az
€l6bbi dbran. Integréljuk az f(x,y,z) = x — 3y* +z fiiggvényt C, U C; folott!

Megoldds. A legegyszeriibb paraméterezését vélasztjuk Ci-nek és C2 -nek:

Ci: r(t)=ti+ti, g<t<l; [v|=V12+12=12
G: r(p)=i+j+tk, 0<t<l; |V=vVO+0P+12=1

Ezzel a paraméterezéssel

f flx,y,2)ds = ff(x,y,z) ds+ff(x,y‘z) ds (16.3) egyenlSség
Ci Cg
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nk észre ezekben a példdkban. Eloszor: Mihelyst a gorbe
koordinétaﬁiggvénycit behelyettesitettik az f fiiggvénybe, mdr egy kozonséges
egyviltozos integralunk van t-re. Mésodslzog: A két kiilonbozd gorbén, C-n (1.
példa) és Ci U Cy-n (2. példa), az 1qte’gra} értéke ki‘ilbnbézﬁ. A legtobb fiigg-
vény esetén ket adott pontot Osszekoto gorbe mentén szdmitott integral értéke
béken kiilonbozd. Vannak olyan fliggvények, amelyek integrélja

iilonbozd gor _
S(;t pont kozott nem figg a gorbétdl, ezekrol a 16.3. alfejezetben lesz sz6.

Néhany dolgot vegyll

Tomeg és nyomaték szamitasa

& - - - ot 4 be mente’n 6108216 [0-
Spirdlrugot v huzalt tekinthetiink gy, mint Sima goroe me
. 4 agtérbeig‘yA sirfiség eloszldst egy folytonos &(x,y,z) (tomeg/hosszisag-
mg:ég.) fiiggvény adja mee- A rugé, ill. huzal tdmege és momentumai a 16.1.
ﬁﬁw képletei szerint szamithatok. Ezek az eredmények vékony rudakra is
alka t6k.
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Egy vékony fémiv, ami az aljéndl nagyobb siirfiségdi, mint fent, az y* +2° = 1,
* :3' Ofélkbr mentén fekszik az yz-sikban (16.5. 4bra). Hol van az {v tomegko-
Zéppontja, ha a siirtisége az (x, y,z) pontban 8(x,y,z) = 2 — 2?

Megoldas. Tudjuk, hogy ¥ = 0 és 3 = 0, mert az iv az yz-sikban fekszik, és a

wl?;:{ge az tengelyre szimmetrikusan oszlik el. z kiszdmitdsahoz paraméterezziik
a korivet:

r(t) = (cost)j+ (sinf)k, 0<t<Tm.
Ezzel a paraméterezéssel a derivaltvektor

HEh \f(‘;—f)sz (%)2+ (?5)2 — JO + (—sint)? + (cost)? = 1.

A 16.1. tabl4zat alapjan

M= [8ds= [ (2—z)ds= [ (2—sint)(1)dt =2n—2
kg
My = [z28ds= [ z(2—z)ds= [ (sint)(2 —sint) di =
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= f[2sinr —sin’t)dt = S_TI
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Két tizedesre kerekitve 7 2 0,57, a tomegkdzéppont (0, 0, 0,57). O

R M e e

z 1. r)=ri+(1-0j0=<2<1

)

r() =i+it+ik —1<1<1
)
)

2.
e ; 3 9= (2cost)i+ (2sint)j, 0 <t < 2=
4

r{g :fi,—] ﬁlﬁl

*.._..

i




Sebességvektorok egy re-
sepszarny koriil egy szélcsatorné-
- Az dramlas vonalait kerozinfiisttel
thatéva.

: | Az 4ramldsi vonalak egy
S S2kill6 csatorndban. A sztk részen a
iz felgyorsul, ezért a sebességvekto-
10k hosszabbak.

Vektormezgok, cirkulacié, munka
T i s )

r(t) = (cos2t)i+ (sin2f \j -+
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JaH JEI"'"“LQL}\CI tanulmanyozunk, amelyek vektorokkal _|cllclmrmc—

:i\uljekl:n;n;:lz:(:::T:dln iltller_vallumnk f@l_etti inlcgr;'fliokJ lwl,\,'cn"ghrinék. vag)
rélokkal Irt)(_‘lalkcyyu,e;r‘i]uf:k. .f:bhen’ az 1—'1"?]6?].’61}36’1! gorbék mentén vett mtc_'.;:-
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: € val kilovésekor végziink a Fold graviticids mezdje ellenében), vagy
amit a vektortér végez, mikozben egy részecskét mozgat a téren 4t (pl. a munka.
amit egy gyorsitéban a részecskék energidjanak megnovelésére forditunk).

Vektormezok

Tegyiik fel, hogy a stknak vagy a témek egy részét draml6 folyadék tolti ki. Kép-
zeljiik dgy, hogy a folyadék sok pici mozgé részecskéb6l dll, és mindegyiknek
minden pillanatban van egy v sebességvektora. Ha ezeket a vektorokat képzel-
jiik el, akkor a tér minden pontjédhoz tartozik egy mds-mds irdnyu €s mas-mas
hossziisagi vektor. Igy a mozgé folyadék definidl egy vektormezdt. A 16.7. dbran
a levegd sebességvektorait ldthatjuk egy szélcsatorndban egy repiilogeépszarny
koriil. A 16.8. 4bra draml6 viz sebességvektorait mutatja egy besz(ikiilo csator-
ndban. Egy adott testre hat6 gravitdciés erdt is szeml€ltethetiink vektormezovel
(16.9. dbra), vagy akdr méigneses erSteret, elektromos erdteret is.

Altaldban, vektormezonek egy olyan fiiggvényt neveziink, ami a sik vagy
a tér egy tartomanydnak pontjaihoz vektorokat rendel. (Ezt dgy is felfoghatjuk,
hogy a vektormez0 helyvektorokhoz rendel vektorokat, tehat egy vektor-vektor
fiiggvény.) A vektormezot a fizikdban, ill. a mérnoki gyakorlatban szokds még
erétérnek, aramlasi mezdnek stb. is nevezni, attél fiiggben, milyen tulajdon-
sagdt akarjuk inkdbb hangstlyozni. Ha a hiaromdimenzi6s tér pontjaihoz rende-
li‘n:k hiromdimenziés vektorokat, és a térben mar rogzitve van egy derékszogi
j, k alapvektorokkal, akkor a vektormez6t a

koordindta-rendszer a szokdsos i,




s differencialhatg, h.uk.._
nziés vektormeziket gy,

zarendelhetjiik a se
yanak minden Ul\dn

ezjét (potencidlteré)’
= yzi+xgj+ ok

diensmez0k l\ulnnluﬂﬂ‘ st

a térben,

f'.i-"
y,z)K vektorme? 70, & L

tﬁclés mez0 vagy ©




16.2.  Vektormezok, cirkulacié, munka, dramlas 425

Aszeél scbessbic, mi/s
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,-}ﬁli ABRA NASA Seasat mitholdja radarral 350000 szélmérést vegzett az
Seednok felett. A nyilak az irdnyt mutatjak, a hosszuk pedig a szél sebessé gére
utal, Erdekes megfigyelni a komoly vihart Gronland déli részénél.

romagneses mezd), €s az
r(1) = glt)i+ h(Dj+k(k, a<t= b

egy sima gorbe a tartomanyban. Ekkor az F-T skaldrszorzat az F komponense a
gorbe egységnyi hosszi, érintdirdnyd vektoréinak irdnydban. Az F - T integraljat
a gbrbén az F erdtér munkéjénak hivjuk a gorbe mentén, az a és b paraméterer-

tékek kozott.

DEFINICIO Munka sima girbe mentén
AzF= Mi+Nj+ Pk erdtér altal yégzett munka az r(t) sima gorbe men-

t = a-tolt= b-ig

tén =
wsfF-Tds, (16.4)
ardzzuk 2 (16.4) egyenlOséget, mint azt tettiikk a 6. fe-
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Hasonléke??enb F(f{dx képlet levezetésénél. A munka az erének az ut 1ra-
josetbent & ¥ {iua gzorozva az Gt hosszdval. A rektifikalhaté (véges ivhosszal
nydba es® nagy® g ekre osztjuk, és egy-egy ilyen darabon, az erdt
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,endclkeziigf:;z;!:;e. szamitjuk a munkét minden kis resziven, majd dssze-
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Kifejtve, hogy tartalmazza d1-t, hangsd-
lyozza a t paramétert, és a dr/dt sebes-

dg  dh
( dr TNt iiE) dr Hangsilyozza a koordinétaﬁig-gvénycket

= / Mdx+N dy+Pdz dt-vel ,egyszerlisitve”, a leggyakrabban

WBRNTABUAZAR Az F erdiér gorbementi integrljinak hat killonbozs alakja.

2. PELDA Valtozé er6tér munkdja egy térgorbe mentén

Mekkora munkit végez az F = (y — )i+ (z —y?)j+ (x— )k erdtér az r(¢) =

=i+ 12j+1°k, 0 <1 <1 gorbe mentén a (0,0,0) ponttél az (1,1,1) pontig

(16.19. dbra)?
Megoldas. ElSszor irjuk fel F-et a gorbén:
F=(y—P)i+E-y)+0-
— (P —)i+ (P —tj+ (- 1Ok
)
C
Ezutén meghatdrozzuk dr/dt-t:

dr
dt

Végiil felirjuk F .dr/di-t, és integraljuk = 0-t61 t = 1-ig.

: i+t 2j+1°k) = i+ 25+ 37k

iy (LR o) BRIC —5)K] - (i+2e§+31°K)

= (£ —1*)(2) 2u)+(t—1%)(3%) = ot _op L3

igy
1
Mk f (2t — 25 +36° 3% )dt

)
Qg 34 3ol D
= {gf '—6f +4f 9 " 60

Integral 4ramldsi mezdben, cirkulécié
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F vektormezdt, hanem példdul dramlé fo-
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DEFINICIO  Fluxus egy zrt skgbrbén

heo i sikgdrbér

Ha C cay s, im gorbe gy F = M (s )+ V(s foioncs veor

egysé telmezési tartomény4ban, és n a kifelé mutatd, gorbére mer6leges
gvektor a C pontjaiban, akkor F fluxusa C-n

(16.6)

F fluxusa C-n = fF‘nds.
c

ivhﬁgym“‘? meg a cirkulicio és a fluxus kozoti killonbséget. A cirkuldci6 F-T
ok 52 szerin integralja, a fluxus F-n {vhossz szerinti integrdlja. Azbegylk
& cgrandus F érintGirdnyd komponense, a mésik a kifelé mutat6 normdlis irdnyd

omponens. Ha a zdrt gorbével hatdrolt feliletre ugyanannyi folyadék folyik be,
gt ]fl‘ .akkor a fluxus a zdrt gorbén nulla. (Fluxust szdmithatunk nem zdrt girbe
mentén is, de akkor mds szempontok alapjdn kell a normélist irdnyftani.)

A (16.6) integrélt a kovetkez6képpen szdmithatjuk ki Tekintjiik a gorbe egy
sima paraméterezését,

x=g(t), y=h(r), ast<b,

a::nj pontosan egyszer jarja korbe a gorbét mikozben 1 novekszik a-t6l b-ig. A
kifelé mutaté n normalist gy hatarozzuk meg, hogy az érintd irdnyl T egység-

vektort vektoridlisan szorozzuk k-val. De melyik mutat kifelé, T x k vagy k x T?
Ez attol fiigg, hogy az dltalunk vélasztott paraméterezéssel a gorbét az éramutato
_ jardsdval ellentétesen vagy megegyezden jirjuk koriil. Ha megegyezben, akkor
N el k x T, ha ellentétesen, akkor T x k a helyes vélasztds (16.20. dbra). Bar az iv-

W&Jgﬁgﬁs hossz szerinti integrdl értéke, amit a fluxus definidlasdndl a (16.6) egyenlségnél
k % T mutat kifelé felirtunk, nem fiigg att6l, hogy hogyan jarjuk korbe a gOrbét, a tovabbiakban a
i szAmitdsoknél Gramutatd jardsdval ellentétes koriiljarast feltételeziink.

d d
4 n=Txk= o s i ) 4 s iy
ds ' ds

Ha F = M(x,y)i+N(xy)} akkor

dy dx
F-n—M(x,})E—N(mJ;E-
Kovetkezésképp
dy dx = f : \
fF-nds:](ME;n ds) d.s—... M dy— N dx.
c c c

gy O irdnyitott kort tettiink, ami azt fejezi ki, hogy zart
at6 jarasdval ellentétes irAnyban integralunk. Az integril
dx, dvy kifejezéseket kell felirnunk, mint ¢ fliggvényét,

Y Az utolsé integrdlra €
gorbe mentén az 6ramut
kiszamitdsdhoz az M, N,

nem kell jsmerniink sem n-et, sem ds-t.
Fluxus gzamitasa egy sima, zért sikgorbén
F =Mi+Nj fluxusa C'nzngd}‘—Ndx, 167
c

Az integrél a C gorbe barmilyen sima pa:améterezésével szamithatd, ha
azzal a C gorbét pontosan egyszer jarjuk korbe az éramutaté jardsaval
ellentétes irdnybar- J
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bérmilyen gy 4 ¢ o5 "Vt D halmazin definidlva, és tegytk fel
dp i "BGl B-be vezets it mentén, ami D-n beliil halad.
'ntegrdl Gtfiiggetlen D-ben, és az F erdtér konzervativ

.

x

A "k‘“ﬂ'wrvat{ 53 -
vV g
8 a7 epenny SEVeZES onnan ered, hogy olyan erterekrl van 576, ahol
s 2 1 gt
teljesil, egy F ¢y ﬁ;?:: (65igi feltételek mellett, ami a gyakorlatban dltaldban
figgvénynek, aza, ha F csak akkor konzervativ, ha gradiens tere egy f skaldr
Neve van, = Vf valamilyen f-re. Ennek az f fiiggvénynek kiilon

DEeFINiC16 Potencislfiiggvény

HaFegy p- i
D-n, akglfof') fn e erf.itér, és F = Vf valamilyen f skaldr fiiggvényre
-¢t F potencidlfiiggvényének hiviuk.

Az e ;

25 ey oo Potencidl egy olyan skali figavény, aminek a gradiens me-

nek a gradiens mez 6't LA gfa"l_té(:l‘és potencidl egy olyan skalar fiiggvény, ami-

nek megtalgltuk Je egy gr.a\fltéués tér stb. Ahogy latni fogjuk, ha egy erStér-
$ a potencilfiiggvényét, akkor barmilyen it mentén A-bSl B-be

B B
[F-dr - fo‘dr: £(B) - £(A). (16.8)
A A

Ha arra gondolunk, hogy V f tobbvaltozés fiiggvények esetén ugyanaz, mint
y i az egyvaltozos fiiggvények esetében, akkor a (16.8) egyenlSség nem mds,
mint a

b
/ F(x)dx = £(b)— f(a)

Newton-Leibniz-formula megfelelGje vektorterekre.

Az, hogy egy erdtér konzervatiy, az el6zoekkel Bsszhangban, ekvivalens az-
zal, hogy minden zart gorbe mentén vett integrél nulla. Természetesen ahhoz,
hogy a (16.8) egyenloség fennalljon, a tartoményra, az erStérre és gorbékre bi-
Zonyos feltételeknek teljesiilniitk kell. Ezeket targyaljuk az elkbvetkezOkben.

mostantél fogva mindig

Tulajdonsagok, amelyeket
] egyszeresen Osszefiiggo tartomany

feltételeziink: Osszefuiggo,
Ezentil minden gorbérdl feltessziik, hogy szalfagzoyként sima gorbe, azaz vé-
ges sok sima gorbébol all, amelyek vegpon_t}alknai csall?koznak egyméspoz,
ahogy azt a 13.1. alfej{cz_ctben targyaltuk. Szintén feltesszik, hogy F-nek foly-
rcidlis derivaltjai vannak. Ha F = V f ; akl.colr gz_eiobbl feltétel azt ered-
!0[}05 Pe hogy f Vegyes masodrendi parcialis deriviltjai megegyeznek, ami egy
n?ten}/en. iTgyc‘iri zhetd tulajdonsdga a konzervativ erbtereknek.
konnyen € i;:l[ovébbﬂ hogy D nyilt halmaz a térben. Ez azt jelenti, hogy minden
Féllessz i éémb, aminek az adott pont a kozéppontja, és a gomb tel-
pom_]ﬁhoz van D-sl;e-n van. Feltessziik, hogy D osszefiiggd, ami azt jelenti, hogy
jes egészében & ssszekothets egy olyan sima gorbével, ami teljes egészé-
barmely ket Polclljv é. iil, D6l feltessziik, hogy egyszeresen dsszefiiggd, ami
ben D-be'rl halad. = di 5 ‘hurok' ami D-ben halad, dsszehtizhat6 egy pontra agy.
azt jelent. hogy ": 2 el D-1. (HaDegy olyan tartomény, amibdl , kihdztunk™
hogy kozben ncanlla:jyikk ¢ mér nem egyszeresen osszefiigg®, mert a szakaszt

egy egyenes 5 rbe nem hiizhat6 tigy Ossze egy pontra, hogy mindig a tarto-

megkerd 16 zart




az A-~t és B-t tssze-

O 1ittol, akkor

Léncszabaly, hax =g/},
y=Hh(r),z=klt)




= 1B) - f(A)
=xy2|(1.6,—4y — 2v2}(-139)

= (1)(6)(—4) - (-1)(3)(9) .
=-24427=3, o

" TETBL Integral zirt gorbe mentén, konzervativ eritérbe
A kivetkezs allitdsok ekvivalensek:

L [F-dr =0 minden z4rt gorbe mentén D-ben.

2. AzF erbiér konzervativ.

Az elsé allitasbol kisvetkezik a masodik. Azt akarjuk megmutatni, hogy D-

nek barmely A és B pontjara [, [+ F-drugyanazt az értéket veszi fel barmely C;, C

it esetén. Ha megforditjuk az integralds irdny4t Cy-n, és B-bSl A-ba megyiink,

;I:kor egyrészt Co-n az integrédl eljelet valt, mésrészt egy zért gérbét hoztunk
tre.

fF»dr—/F-dr:fFAdH—fF-dr:fF‘dr:{}.
két it A-b6l B- d d d J

juk, hogy zart -
Azaz az integral C-en és Co-n ugyanazt az értéket adja.
A masodik allitasbol kovetkezik az els6: Meg akarjuk mutatni, ha F konzerva-
4 tiv, akkor zirt gorbe mentén vett integrilja nulla. Tekintsiink egy zdrt gorbét és
azon két pontot, A-t és B-t. Ezek C-t két részre osztjdk, a C| és C; gorbére. Ha az
egyiken, pl. C»-n visszafelé megyiink, egyrészt az integral elGjelet vélt, mdsrészt
ugyanazt az értéket veszi fel, mint Cy-en:

B B
= j{F-dr-‘—fF-dl"—I—fF'dr:‘/F‘dr—jF‘dr:O_ |
€ C G A A

A kovetkez6 diagram sszegzi az 1. és 2. Tétel eredményeit:
— F konzervativ = jt{ F-dr=0

=V f D-n
i D-n

D minden zart
g0rbéjén
Miutdn Jattuk milyen egyszeril integralt szdmolni konzervativ ertérben, két
u
kérdés maradt:

Honnan lehet tudni, hogy €gy erdtér (vektormezd) konzervativ?
1. Homn :

Ha F konzervativ, hogyan taldljuk meg a potencidlfiggvényét (olyan f-
2.

et, anlife A7) f = F)r"

rotér potenciailjénak meghatarozasa

tiv-e a kovetkezOképp ellendrizhetjitk. Ne felejtsiik
fiiggd és egyszeresen Osszefliggd.

Konwvaﬁv €

At hogy az ertér konzerva
T




vizonyitas mdsodik fele
a 16.7. alfejezetben
egyszeres Osszefiiggd-

szeretnénk egy poten-
nletet, azaz a

m egyenloseger




) fxyz) = € cosy+xyz+h(z).
ZAmitsuk ki
B ki ebb6l 3 /21 65 vessiik tssze (16.10)-zel.

dh .
o ‘3’+E=xy+z, azaz d—h=z,

S dz

h(z) = zz_z +C.
A pOtenCiélﬁigg-vény tehat

Fx,y,2) = e cosy+xyz + é N o

C-161 fiiggGen végtelen sok potencidlfiiggvényiink van. t

3. PELDA Annak kimutatisa, hogy F nem konzervatiy
Mutassuk meg, hogy F = (2x—3)i— zj + (cos z)k nem konzervativ!

Megoldas. A (16.9) egyenléségbsl adédik:

LN 2
5 —ay(COSZ}~ : E‘-a—z(_l)=—l-

Ez a kett6 nem egyenld, igy F nem konzervativ. 0

Egzakt differencialkifejezések (differencialformak)

Ahogy késébb latni fogjuk, sokszor kényelmes a vonalintegralt , differencisl”
alakban kifejezni:

B
fM’dx + Ndy + Pdz,
A
amit mér a 16.2. alfejezetben emlitettiink. Ezeket az integrdlokat viszonylag

konnyi szdmitani, ha M dx + Ndy + Pdzegy f fiiggvény teljes differencislja.
Ebben az esetben

B
B "of af af
/de+ Ndy+Pd3:/$dx+$d‘v+52d2
A
4 B

A
= f(B)— f(A). 1. Tétel

B
/df = f(B) - f(A)
A

an gy, mint egyvltozos esetben.
- 2




ik a (16.11) egyenldsé-

_om
dy
4dz egzakt, igy

erejéig meghatdrozhatjuk a

(16.12)




t rendre s, i) 2 thvgy.,
az (a) pontba, adoy g
C8Y részecske p, yy ¢

i Nteg.

Ha az integral figgetle, a

a vonatkoz6 bizony, fol.
gralok kionnyen SZdmi.

el glalkozunk, ame] yek nep

nzids vektormezgk giithe.
08 integralld, ami gyajry,

k, mert azt konnyii clkg,
‘mely mis vektormezs esetén is
enyekre tett feltételek telje.

Az els6 a vektormezd di-
nOkok fluxussiriiségnek is




divF (Io, Yo) = 0

divF (x5, y0) <0

(30,0)-ban ki-
i térnek itt
ossze-

. aneEYen (x,7) a T tartomny cgy pontja, & A legyen
ay it el e wb ovien dgd
Yadék az als6 oldalon keresti] kis ._it_tenmiyakkei,ésn y

F(x,y)- (—§)Ax = —N(x,y)Ax

ﬁfﬁ"éﬁ;‘fe}é a téglalapb6l. Ugyanis az 4ramlési sebességvektor F
€5 2 Kell sz0r07m; g 1oy o " MdIVekior irdnydban az (x,y) pontban ~N(x.),
akkor a kifolyssj 42 ivhosszal, Ax-szel. Ha a sebesség pl. méter per mésodperc,
i e L Wbi?ig méterszer méter per masodperc, ami négyzetméter
I lmékodépp kaphmmjuk. an vagyunk. A kifolyési sebességet a t&bbi oldalon is

Kifol :
ydsi sebesség:  Feliil: F(x,y+Ay) -jAx = N(x,y + Ay)Ax
Alul:  F(x,y)- (=j)Ax = —N(x,y)Ax
Jobbra:  F(x+ Ax,y)-iAy = M(x + Ax,y)Ay
Balra:  F(x,y)- (—i)Ay = —M(x,y)Ay
Osszeadva a szemkozti oldalakat:

Alul +feliil:  (N(x,y+Ay) — N(x,y))Ax =~ (?)—NAy) Ax,
i

Jobbra +balra:  (M(x+ Ax,y) — M(x,y))Ay ~ (aaﬂt&t) Ay.
24

Osszeadva ezeket a mennyiségeket:

M aN

= =+ 3) AxAy.

Fluxus a hatéron =~ (
Ha a téglalap AxAy teriiletével osztunk, akkor a fluxussiiriség egy kozelitését

kapjuk.
Fluxus a hatdron _ (aM aw)

téglalap teriilete “\ & P _é;
Végiil, ha Ax és Ay tartanak nulldhoz, az F vektormez6 fluxussiirliségét, vagy
ahogy a matematikdban hivjuk, a divergencidjat kapjuk az (x.y) pontban. Jels-
lése divF.

e
DEFINICIO Divergencia (fluxussiirfiség)

Az F=Mi+ Nj vektormezd divergencidja (fluxussiiriisége) az (x,y)

pontban M 3

dlvF=-a?+§- (16.13)

n. ha példfm] yalamilyen géz az (x0,¥0) pontban éppen kiterjed,
: ktorai elfelé mutatnak a pontt6l, és mivel a gz ki-
P : _t tartalmazo kicsi téglalapbél, a F divergencidja pozitiv.
i fo{yﬂ;s:;(;l;l;é’gzk a divergencia negativ lesz (16.25. dbra).
Ha a gaz ’
hatérozdsa

Divergencia meg S e
§ if'“ii Blay)= (@ —YI+D ~y?)} divergencijél
Adjuk m 24

Megoldas A (16.13) képletet hasznaljuk:
| | divF==-173 o ]
! aM  ON _ J ( ‘yHaﬂ.(J‘)’—yz)
d ax o ax y

gzemléletese




0ja az A tan
omy
oldal mentén, A, d;::,

. {Iay) sebessé
ke g l ]]"d_n\,u
it 6képpen jarunk ¢

y+Ay)Ax

or Ax és Ay is tartanah ¢
égének neverzik.

z Gramutaté jarasival ¢

az xy-sikra, a k yektor

donképpen a k-komp™

K, az F vektormez0 1ol

. Green-tételher csak e

cidsiiriiség)
"‘ pnense (cirkulériﬁ-

(16,14




ink egyszerii és
girbét. Egyszeri
(At sajat magat.

16.4. Green-tétel a kban 443

2. PELDA .
: A rotécié k- i .
Adjuk meg a; 14¢i6 k-komponensénck meghatérozdsa
Flxy) = (2~ y)i+ (y—3?)j
ve#t?rmezﬁ rotici 6_)5.[131{ k-kﬁmpo]]eﬂséﬂ
Wd'ﬁs‘ A (16.14) képlet alapjén:

A Green-tétel két formaja

:gyszerg-t::l o yﬂ,(‘ glakja azt mondja, hogy bizonyos feltételek mellett a sik
definidl ? ‘g"l’l}e.lé_ﬂ szdmitott fluxust (amit mi kifelé mutaté normalvektorral
st t.u“k) gy is kiszdmithatjuk, hogy a zért gorbe ltal hatérolt tartoményon
integraljuk a vektormez divergencijdt (16.28. 4bra).

3. TETEL Green-tétel normalvektoros alakja (fluxusra vonatkozo)

Az ¥ = Mi + Nj vektormez6 (kifelé mutaté normélvektorral szdmitott)
ﬂuxusa‘ egy egyszerfi, zért C gorbén egyenld divF integrdljdval azon a T
tartoményon, amit a C gérbe hatirol. Képlettel:

oM dN
%F-nds:-. Mdy—Ndx= (—+-—) dxdy. (16.15)
g 'Z; .[f dx dy

fluxus divergencia integrilja

A Green-tétel masik alakja azt mondja, hogy egy egyszerf, zdrt gorbe men-
tén, az 6ramutatd jardsdval ellentétes koriiljdrdssal szamitott cirkulacidja egy
vektormez6nek szdmithaté tgy, hogy a roticié k-komponensét integraljuk a zért
gbrbe dltal hatdrolt tartomdnyon.

4. TETEL Green-tétel érintovektoros alakja (cirkuldciéra vonat-
kozd)

Az F = Mi+ Nj vektormezd éramutaté jarasaval ellentétes koriiljarassal
szamitott cirkuldcidja egy egyszerf, zart C gorbe mentén egyenld (rot F)-k
integréljdval a zdrt gorbe 4ltal hatdrolt T tartomdnyon, Képlettel:

4 Nay= [ & g
%F-Td..\‘:‘)&MdX-F = 3 a.v xdy. (16.16)
& ¢ 3

Sramutato jardsdval ellentétes rotacid integrélja

koriiljdrassal szémolt cirkuldcié

forméja ekvivalens. A (16.15) egyenldséget alkalmazva az
ea(l16.16) egyenldséget, a (16.16) egyenlGséget alkalmazva
(16.15) egyenldséget kapjuk.

A Green-tétel két
G, =Ni—Mi mez0re 2
2 Gy = —Ni+Mj mezbre

Matematikai feltételek

feltételnek teljesiilnie kell. El8szor is, M-re és N-re
A Gfeﬁn‘lft‘;nlh‘;zit’:siﬁlg hogy az integrilok létezzenek. A szokdsos feltételek,
kellenek o‘zlis derivaltjaik legyenek folytonosak egy olyan tartomény minden
hogy B C-t és T-t tartalmazza, elegenddek. Misodszor, feltételeink van-
pontjaban, ami Annak egyszerf zért gorbének kell lennie, olyan fvekbdl dssze-
akaC Eﬁrbé‘:ken M és N integralhatéak. A szokdsos feltétel az, hogy ezek a
4llftva, ame ) ek sima gorek. A Green-tételnek az a bizonyitdsa, amit itt most
részivek legy - alakjéra is tesz megszoritdsokat. Olyan bizonyi-

il o T tartomdny .
majd W&wmbb feltételt haszndlnak, magasabb szinti konyvekben







= Ch! yﬁJﬁu‘

4

4. PELDA v,
Szémitsuk ki Vonalintegral szémitisa Green-tételel

a
ngydy—yz dx
C

integralt, ahol ¢
gelyek és az x — iz 4 négyzetvonal, amit az els6 siknegyedben a koordindtaten-
=Ly =1 egyenesek szakaszai alkotnak!

Megoldss

. Barmelvi :

tegrélt a né elyik alakjt hasznalhatjuk a Green-tételnek, hogy 2
gyzeten val§ integralld frjuk 4t

yonalin-

1. .
A fluxusra vonatkozé alak, (16.15) egyenl6ség: M = X N=y &C, ill.

T .
anégyzetvonal, ill, a négyzet belseje.

kil
}qudy“yzd«’hff(y+2y)dxdy=ff3ydxd}’=
#
T 00

G

1
- [lia- [0
0 0

2. A cirkuldciéra vonatkoz6 alak, (16.16) egyenlOség:

§ P axrxydy= [0~ (-2)dxdy=
T

C

| W

3 o
.

5. PELDA Fluxus meghatirozisa

Szamitsuk ki az F(x,y) = xi +y"j vektormezd fluxusét
sal) az x = 1, y = +1 egyenesek dltal adott négyzetvonalon!

Megoldas. A fluxus vonalintegrdllal valé meghatérozdsa négy integrél kisza-
mitas4t igényelné a négyzet négy oldaldn. A Green-tétellel egyetlen keftds in-
tegralt szdmolunk. M = x, N = y? vélasztéssal

Fluxus:%F-nds:SﬂMdy—Ndx:
c

fod
oM N i
f[ (3; ks _.a.\_) dxdy= Green-tétel
T
Y 1

x=1
f[{]+2y)dxdy:f[x+2xyl gy =
" x=-1
S [ | —1
1
::f{2—+-4y)d_v=[2y+2yl_1_—.4. |

-1

(kifelé mutaté normalis-

Il

Il

pecidlis tartomanyokra. Legyen a C egyszerii,
ogy a tengelyekkel parhuzamos egyenesekkel
yen a T tartomény az, amit C kozrezdr, €s

A Green-tétel pizonyitisa s
zért gorbe az xy-sikban olyan, h
b két kozos pontja van. Leg

Vi jegfeljeb VIR 12,
{ tegyiik fel, hogy az M, N fu‘gg‘ve:jyeknck folytonos parcidlis derivé.]t.jai vannak
. f{;} : egy olyan tartomédnyon, arﬂl‘? -1wes (-t tartalmazza. A Green-tétel cirkulaciora
fis) | e yonatkoz0 viltozatdt bizonyitjuk:
1 |

b i : de+Ndv:j‘f(§£-—a—M—) oy

Jl; =)\ % Y- (16.17)
(&

A 16.29. fibra mutatja, hogyan bontjuk fel C-t két irdnyitott részre:

Cut y=filx), aSx<h, G y=falx),b2x2>a.




(16.18)
ni akarunk. A mdsik felét
X szerint, majd y szerint,

szintén keét irdnyitott darabra
2 €<y <d. Akétszeres

(16.19)
o] 4llitdsat kapjuk.

okra

k
hatérolé gorbet négy irdnyitott

=b,c<y<d.
- X=a, d>y>c,

y haladva, mint az elobb
,y)) dy
(a,y)dy
(1 6.20)

Vi
o, Ndy= =0,1igy°
az egye nlﬁség meg”




d
[ f 5 Ddr=- f M dx. (16.22)
A (167
(1622) egyenietet kivonva a(16.21) e cm’ ook oy

fMdHNdy:[/ (%i:_%f) dx dy.

163 m Mas tartomanyok, amelyekre a Green-tételt lehet
alkalmazni.

Olyan tartoméanyok, mint pl. a 16.32. dbrin lithat6ak, minden nagyobb ne-
hézség nélkiil kezelhetdk. Szintén miikodik az olyan patké alakd tartomanyokra
is, mint pl. a 16.33. dbrdn, Gsszetéve az Ry, R, tartomanyokat és a hatdraikat. A
Green-tétel érvényes C)-re és Ty-re, valamint Cy-re és Tp-re:

/de—l—Ndy:/f a_N_a_M dxdy
2 J dx dy
= :

fde—l—Ndy:[[ oN _ oM dx dy.
: s dx dy
s 5

Amikor dsszeadjuk ezt a két integrilt, az y-tengelyen lev szakaszokon az integ-
ralok kiejtik egymast, kovetkezésképp

f-lde..l-Nd__v:'{/(%% : %) aidy,
C

ahol C két egyenes szakaszbol dll az .r—tengcly_ mcntén,‘ —b-161 —a-ig, és a-t6l
b-ig. valamint két félkorbdl, a T tarfomdny pedlg az, amit C kozrezdr.

Az otlet, hogy 4 vonalintegrélt részvonalintegralok dsszegére bontsuk, addig
almazhat6, amig véges sok ilyen Osszetevorol van sz6. A 16.34a dbrdn €,
az 6ramutaté jdraséval eilemétesen‘ir:finyl'tva. a hatdra T; -nek, ami az els6 sik-
negyedben van, és ugyanigy a tobbi siknegyedre, C; a hatdra a T; tartoménynak
i=234A Green-tétel alapjdn

alk

o _om

j.'de-kNdy=// (ax 5;7) dx dy. (16.23)
L.r 1 .

uk a (16.23) egyenlOségeket | = 1,2.3.4-re, akkor

N M
_\}gMdHNdHfMdHNd“:/f(EE - ‘a‘;) dxdy.  (1624)
r=b LT E
r=a

Ha osszead]

egyenl j 0x) — (OM /3y) kettSs inteeralia a 7
i ~nl6ség azt mondja, hogy (oN/ : /& sintegréljaa T
3:(1624) ; y_felyi egyenlé M dx+ N dy vonalintegraljival a T teljes hatdrdn,

&y ﬁ@ haladunk, hogy 2 tartomény mindig a bal keziink felé van (16.34b ghra)




- : kb“ﬂ]ﬁréSsa] Az
Tovabba: :

h2

osak az origéban, ig)
_1.'ével Az orig6t ki kel

i ﬁﬂipsmsscl vagy barmely mas

, az eredmény ugyanaz lenne:

_— =

L aa‘l;) dxdy="0.




' tervk cirkuldciéja:

Ad a Green. 16 .- annak a tartomédnynak a hatfra, ameryet atnwos ==

tel val; - A ¢ .
gt konzervativ terek cirkuldci6igrs)? (yg., g y=1+x* feliilrdl az y = 2 gorbék hatdrolnak.
ai méssal, amit mér tanultunk? v sszhang.-

alaszunkat ip. #H. F=xe'i+421n vi-

C: hdromszog. melynek csiicsai: (0.0). 2.0), (0.4

Feliilet felszine és feliilet; integral

Tudjuk_ h
0o
de hjc)o\ )1 gyan kell integralni egy (kétviltozoés) fiiggvény
an ooy
chet 'U”\Cm! integraini egy gorbiilt wiuleun 4

integr T
nd[g’i“ ugy szamitunk ki, hogy atalaktjuk kettds integrdlld
asikbeli tartoményon, amelyik a

inte gralok feliilet alatt fekszik f 16.38
L F .
e okat haszn4lunk pl. ha azt akarjuk meghatérozni, hogy menny1 I0f¥& ‘
yi
yik 4t egy hértyén, vagy mekkora erd hat felfelé egy ejtoe rnyore.

Feliilet felszine

J A 16.39. 3braeg

,;}' feliiletet mutat az alatta levd sikra esd vetiilete folott
az f(x,y,z) = c egyenlGséggel van definidlva. Ha a felilet sima Vf
a nulla vektor S-en), akkor defini4lhatjuk és ki is szamith: atjuk a felszi
vetiiletén vett kettds integréllal. Feltessziik, hogy a feliilet olyan, nOg!
tének minden pontja egyetlen pontnak felel meg a feliileten, azaz I'-nek minden
pontjshoz egyetlen olyan (x,y,z) van, hogy f(x.y.z

Felszin f(x, v. 2) = ¢

A teriilet definici6jdhoz az elso lépés, hogy a T tartomanyt ki
lapokra osztjuk fel. Minden ilyen kis téglalap felett egy felile
amelynek Aoy teriiletét a Ti (xi. Vi Z ponthoz tartozd érn 5sikban levs parale-
logramma AP; teriiletével kozelitjik. A P, paralelogramma pontosan Aj felett
van. A Ti(xz, Vi, 2x) pont Ag egyik sarka folott van, a 16.39. sbran
sarok folott. Ha az érintsik parhuzamos T sikja

akkor a két parz ml.-.. e

S fiiggdleges vetiilete,
ill. &mnyéka a sikon egybevigo, és teriiletiik azonos, més esetben Py teriilete nat_.u_uh“-. mint Az-€
A 16.40. 4brin kinagyftva lathatjuk a G; feliiletdarabot, a P paralelogram

Amint hamarosan latni mat és az A; téglalapot, amelyeknek eriiletei rendre AGy, APy és AA;. Az abra
g(x.y.z) fiiggvény S felii- mutatja a V f (xg, yk.2) gradie nsvektort és a
fintegraljat ki lehet szdmitani, dbra VféspY. :

3 intcgrélt a feliilet valame- ralelogramma élei [T:c‘i‘l‘.él'a"' . B e :
kra esd vetiiletén. t5sikra. A vektorgeome triab6l tudjuk (k5. TUgE . hogy az u;. Vi vekilorox

7 -I¢ m LTOIL‘- es p egy \r—‘a\hbr wt. Az

s merolegesek az eénn-




akkor cosy, =0

nem fedd ok egyesitése 4/

(16.26)

akarunk hivni. Az is L
jobb lesz. A jobb oldal 4

'. g illtﬂﬂl‘ﬂ.ﬂdus a V J’ ',]h\.l'l‘llﬂ
a es6 komponense abs/!"

k, hogy V.f -p #0¢s f OB
jiik a feliilet felszinének o
pontjéba a feliletnek ¢£<'
aképlet nagyon leegy>/"




s (16_.41_1?5&;;1%@3—“ az § feltiletet és alatta a T tartoményt az xy-
a2 54kﬁﬂap;zx?:hl? az f(x,y,z) = x2 +y2 — z = 0 szintfeliilet, és T az
bérmely (z,5,2) pontigian - | TerOleges egységvekiorp = k. A felllet
f(xvy,Z) _'—_x2+y2__z

E VSf=2d+2yj-k

VA= /(2202 + 29)2 + (<12 = Va2 + 42 + 1

IVEpl=|Vfkl=|=1|=1.

Ebben a tartoményban dA — dx dy. Igy

V£l

= ff Vax2 +4y2 + 1dx dy

xpyP<d
2 2
=f/\/4r2+]rdrde Polérkoordindtdsan

00

v
Feliilet felszine — f f 1v/1 dA (16.28) egyenlGség
T

=f2n [l(4r2+ 1)3-*'2] de
12 0
0

:/%(173fl—|')de;g{l7m—l)- m]

9. PELDA Feliilet felszinének kiszdmitasa
Mekkora a felszine annak a feliiletnek, amiaz 2 +y2 +22 =2, z > 0 félgombbsl
az 12 +y* = 1 henger belsejébe esik?
ii o) — 2 + 2 + 22 = 2 szintfeliilet része. A

ss. Az S feliilet az flenzl=x +y +z ' : ks
Meg;:.l’lisam vetiilete a T 24 _\-3 < 1 korlap, és ennek minden pontjdra a felii-
f}’t—selgy:t]en pgmj:’mak vetiilete esik. A p=Kk egységvektor merdleges T-re. A
e

". 2 py4i=2
feliilet minden pontjéban

24yt= gk st
3 flepz) =% Ttz

|2/ R =2V2

|Vf-11| =|Vf-kl= |22] = 22.

Kovetkezeskepp

-ﬂ_dA;[]' %‘?M:ﬁff‘? (16.29)
Feliilet felszine = {/ vf-pl T £ -

7 Mivel 23 oombfeliilet pontjdnak koordindtdja, kifejez-
T = )

és y-nal, mint
= IR P




et mentén, felhasznaly, 4,

1 f(%,3,2) = ¢ feliilleten, am;;
m nagysagat egységnyi 1o
teljes toltést az § feliileten 4

feliilet alatt kis églal .lpu skra.

Yis 2k ) AP, szorzat j61 kozeli
se ekkor:

‘{x*!yk}zk} | CO\Y

derivéltjai folytonosak, és 2
lev Osszeg a kovetkezd

(16.30)
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alva van egy irdnyiioq
eliileten (ami egységvek-
az F fiiggvény feliiletmeny
§ feliileten pozitiy irdny-

integralja az irdnyiton

-ndo. (16.33)

haromdimenzids térben, ak-

ség nett6 sebessége, azd/
tezésa egy id0egység {'ﬂiltll a
anannyi folyadék folyik be, mint
uxus, nulla.
‘akkor n a kovetkezo két mez0

tekinteni. A megfelel fell"

(16.32) és (16.34) egyeni0sce

(]6.35}




nz+|l€§_= itk 2542k
8 VarrarT o

(Ezek
a vektorok valghan elfelé mutatnak az x-tengelyt5l.) Mivel p = k,

= yj+2k.

\%
do=1V8l ., Besiiod
VK™ = g4 = 744

Mivel z > 0, a2 absz "
=Y, olitérték
Funga feltileten Jel elhagyhats.
F 0= (2 2K) . (4 k) =
=Y+ =z +2) =
== y=1
Kévetkezésképp a feliiletmenti integral (fluxus) S-en kifelé mutaté normalis-

sal
g - l L — 1 e
/]F ndc—‘{](z) (sz) _gdA = (Tyteriilete) = 2. ]

8

Vékony héjak tomege és nyomatékai

Vékony anyagi héjakat, mint pl. edényeket, fémdobokat, kupoldkat feliiletekkel
modelleziink. Témegiik és nyomatékaik a 16.3. tdbldzatban szerepld képletek

alapjin szdmithatok.

; tomeg egységnyi teriiletre)
Statikai nyomatékok (elsé momentum) a koordinatasikokra vonatkoz-

Mv,:://deG, sz:f/)'ﬁdﬁ, MW:/jIZBdG
] S s §

Tomeg: M = ]].Bi_x,y,-:-}dc (8(x,y,z) = siirGiség az (x,y,z) pontban
5

tatva:

Tomegkizéppont koordinatdi:
$=My/M, F=Me/M, T=My/M

Tehetetlenségi nyomateék a koordindtatengelyekre vonatkoztatva;
chete

f;:/f(."z'h’zif‘dﬁ- fy={/(xz +2%)8do,
5
I, = //(rﬂf)&dc, It ={/r23d0‘

s
az (x. ) z) pont tavolsdga az L egyenestdl.

egyenesre vonatkoztatva: R; = \/m

ehetetlenségi svgér -
_ : skony hé
‘ Tomeg € nyomatékképletek igen vékony héjakra,

r(x,»2) =




Inx+ /15y —z = 0 felile
£2,0< y< | xy-sikbel

t*+'?+zm88"éﬂ,\'t annak a Kook
‘=@, y=a, z=asikok vignak [¢ ¥

) =y + 2 fliggvényt annak az cknek ¢
témyolcadban van ¢s a koord!? dtast-
'+2 =1 sikok hatdroljak!

= Xz fiiggvényt annak a teglae nek
»=b, 7= c sikok vignak le ¥/ elsd

=Xy wﬁ annak a téglates stnek
= b, ;= +c sikok ha.u.m‘“‘-*L

. ""Z fiiggvényta 20+ 2y




*  kapunk, hogy az x .
o s-aengely korl!

az (2/a%) 4 (y* I )
= baind, O - 9 -

th i

Stokes-tétel

8 paraméteres cgyenlewé ntink

F jirbe

A cirkuldciGvektor a hé
B dramldsi tér egy I pont

jga mutatja a pozitiv cirku

8 Telller 7. (A; eled feladat folytatdsa.) Adjuk meg A Descartes- T¢I

> k 4 \ - A
y >10) Rirhé) meg lr,::”:(.lf"“l'lk kal adon egyenletét nz 2 + ¥ > _'q h”',"' rh :L i
Motk janak abban sz ( ¥y, v, 0) pontban, ahol xg, + ¥y ™ #
1 ('“l —e g ’ p ,
N paramétere . iy L“' Kétkbpeny(i hiperboloid:  Adjuk mega [y — 51 W
Crezéaére, A Etkivpeny(l hiperboloid egy paraméterezését!
S — d
e el Cu

Ahogy a 164 Mi + Nj vektormez0

allejezetben littuk, a kédimenzios ¥
M /dy ska

Cge (Orvenysirlisége) az (x,y) pontban a dN /dx
4 volt, Mér ott is emlegettik, hogy ez egy vektor k komponense
Héarom dimenziéban egy adott sfkban levd adott P pont kor(ili cirkuldcio egy
vektorral v ban. s olyan ird
yOrhén

cirkuldciosdy {is
l4r mennyiséy

’ an jellemezve, A vektor merdleges a sikra a £ pont
nyu, hogy ha a hegye fel6l nézve a sfkra a cirkuldciot pozitiv koriiljardsu g
szamoljuk, akkor nemnegatiy cirkulfciot kapunk (16.59. dbra) A vektor hosszd
a cirkuldcios(irtiséget adja, fgy a sfk irdny@6l fliggden viltozik. Be lehet litm
; Mi + Nj + Pk vek

hogy a leghosszabb ilyen vektor az (x,v,z) pontban az I

tormezo esetén a rotacidévektor

: CaP N : oM oP\ . aN
oLy (;jh ::-)'!(fa’ fj}. )'(

Ezt az informécion a Stokes-tételbsl nyerjlik, ami a Green tétel alt

oM )l\ l,ll‘\-”l

X o)

ddnositisa

harom dimenziora

Vegylik észre, hogy (rot F)  k dy) Os :
rdabbi fi.l'llllll ionkkal, amikor a mezd kétdimenZ10s F = M{x,y .
tormezs, A (16.44) képlet F rotic 10janak detini i0jdban egy rOvid, JOl meg
V operitort hasznaljuk

szhangban van a ko
N(x,v)j vek

(eIN [ ehx oM

gyezhetd alakba is frhato, ha a

(16.45)

¥ rotacidja V 2 ¥



O

Most a vektorérték( F fiigg-
a skaldrértékd f(x,y,z) fiigg-
itanként, €s az eredmény

Stelek mellett, amelyek 2 gya-

t hatdrol6 zart gorbén vett

feliilet normalvektormezdjénck
| ellentétes, megegyezik a rotd
val a feliileten (16.60. dbra).

egy irdnyftott S felilet C
Sjének irdnydbol nézve ora-
enl6 a V x F - n fiiggvény S

Dshkﬁtéseket kell tenni, pl er
ezzenek. A legtobbszor ey’
Osszes fiiggvény (beleerl\f a
lytonos derivalttal."
azi kdvetkcz.lk hogy ha 51 €




ételbe helyetresttve

o ()

Tehat a Gr mlniazéﬁntﬁkato

amj pe

cen-tétely i Felithatiul o forméja a Green-tételnek (16.61. dbra).
OPerétoros formaban a kétdimenziés vektor-

ﬁF-dl‘:j/VxF.de‘ (16.48)
e T E

Mezikre

2. PELD
Y A A Stokes-t¢
y ~tétel e]) : S
Szdmitsuk ki o (16,47, endrzése félgombin

lidlet a7 42 P a gegyenlﬁség mindkét oldalan 4116 kifejezést, ha az § fe-

; = i & :
ol e o __10 félgémbfeliilet, 4 normdlisok felfelé mutatnak, a
‘X" +¥" =9, a vektormezg pedig F = yi —xj.

. rﬁ] ﬂéz (= 6]'3]1'_'111 ato j i
. : I I : V tato jé.l'iisé\-al E]]e]lte[ﬂ- 0 j

dr = (~3sinf d8)i + (3sin de)j
F = yi—xj = (3s5in0)i— (3cosB)j
F-dr = —9sin® 0 d8 — 90520 d6 = —948.

; n
fF-dr:]-miﬁ: 187
f ]
A rotéci¢ integrélja pedig:
B 0Ny (PR (B0
VXF:(;;‘;T: : ('a: 0 A W S T

— (0—0)i+(0—0)j+(—1-1)k=—2k

xi+yj+k xi+yj+zk

N= s §
Vi o ye+* .
3

do = _‘da“i
g e !
2L dA = —2dA.

és /]VXF.ndG: /f _2dA = —18m.
% 242<9

Tehit a két integrdl megegyezik.
e

o4 i meghatdrozdsa _ i
2 pELDA C,rkulaf'" m.g 4-i+ Pk vektormezd cirkuldciéjdta z = 2 sik és
% L i o, feliilr6l nézve Gramutatd jérdsdval

o8 0i + (r sin )] + 7%

a fsuk Ki azF=V 141 menté
! i sl s b ¢ me
j ST T kb metszeEEH ) dbra)

—— v«x—+- e oruljani.‘;bul {

. 1 az i
ip s a gorbe ollentétes irdnY !




| (rv/2 dr d8) = 4n.

sége, aminek siirlisége az

szerint a cirkuldci6 egyen-
t § feliileten.

tartomény4ban, és egy u irdny!

2 0 és a sikja merGleges u-ra. He
C-vel hatdrolt korlapon
nponenséhez fog tartani. 14

2i6t, azt kapjuk, hogy

(16.49)




etesen forgé
ességgel po-

A (1649) ¢,
lmn.tv?i“}.h P kicsi a?{'é:gﬁlmmm xima4lis, ha u ugyanolyan irdnyd,
-49) egyenidség jobb oldala megkdzelitles

;:—*;ffli'-dr,

AMi 8 C-n vett cirkyle:
fel, hogy egy kicsi - aa kibrlemez teriiletével (srvénystirGiség). Tegylk
U irdnyd. A ki keré‘;( :“m.gzarﬁés‘ lapdtkereket helyeziink el Q-ba, aminek tengelye
579b cirkuldcitngl gyorggpy, xrr Ec > citkuliciotsl SrvényiéstSD figg, n-
xF Irfinydhy esik (16.63. ﬂl;ra). or fog a leggyorsabban forogni, ha tengelye

Egy dllands sgrg
gel, ahol » Segtifolyadek forog a z-tengely koriil v = ( —yi+xj) sebesség-

s ‘}7)021;‘1\? konslims. ligynevezett szogsebesség (16.64. dbra). Ha F = v,
& V X F-et, és viszonyitsuk a cirkuliciéstiriséghez!

MEgﬁldés_ M_i\l"ﬁl F= V= —(Dyi—f-ﬂ)xj
V><F=(f’f_aﬂ)- (a_ng aP N M
o o)t az‘a)”(ﬁ_ﬁ?)k
=(0—0)i+(0—0)j+(m—(—m))k:ka.

hA S’tokes-tétel szerint F cirkuldciéja egy p sugarG C koron ami egy S korlapot
atarol egy V x F-re merdleges sikban, mondjuk pl. az xy-sikban:

E{Fdrz {/Vvandc: {mek-kdxdy= (20)(np?).

Azaz
(VXF)-k=20— '—Zjh‘-dn
p z

O

ami Osszecseng a (16.49) egyenlGséggel, ha u = k.

5. PELDA Stokes-tétel alkalmazasa
Alkalmazzuk a Stokes-tételt az [, F-dr integrdl kiszamitdsdra, ha F = xzi +xyj +
4 3x7k. és C a 2x+y+z =2 sik elsG térnyolcadba ess részének hatdrol6 gorbéje,
feliilré] nézve Gramutatd jardsdval ellentétes irdnyitissal (16.65. dbra)!
Megoldas. A sik az f(x,y,z) =2 szintfelitlete az f(x,y,z) = 2x+y + z fiigg-
vénynek. Az egységnyi normalvektor
: s 1 -
N /N s/ R RUTRY
vl Ri+i+kl V6

pfeleld irdnyd a koriiljardshoz. A Stokes-tétel alkalmazdsdhoz ki kell
éppen me

szamitanunk y

2 | =(x—32)j+yk.

XZ

i

gy,
rOlF:':VXP: ox
XZ

.5‘ 3—1 O e
fad

Asfkonz:ZfZI*)‘-ng

v xF (‘f"3(’}'?—"}"))j+}’k:(7x+3y-b)j+yk
xF=(x—«

—L(?x+4_v—6)‘

és (7r+3)"6+-"]= %

<
x
-
=
]
=




: °n S olyan feliilet, g
 Green-tételt alkalmag,,
etiink meg.

s mdsik kapesolodg elem,
v b6l az élekbl dll, ame.
66. dbrat vessziik, akkor g

képenk az ABCD poli-
een-tételt mind a hérom hs-

kiejti egymast. Pl. a BE szaku-
enkez0 irdnyba megyiink, mint
> a haromszogekre azt kaptuk.

‘ndo.

minden elemére alkalmazzuk

_ Altaldnosabb feliiletekre komo-

yeken lyukak vannak

tettiik, a Stokes-tétel 1S
en lyukak vannak: A‘V _::-:_F
nlG a hatarokon szamitott

negfelelGen vilasztjuk mes

] 824

¢ matematikai ¢s fizik?




N Ossze-
olyan diffe-

plvek dtmetszik
¢ olyan zart rész-

Ez az
80 " w“ f i ’
Pereidls derva fo},mn%nf! I‘,‘*ﬁ’-} fuggvényre fennll, amelyiknek mé-

i
va;._._& %

d
gi %5 % " Ve =Sl = (fox = )i + (o = Sy )k
parcialis deriviray o)
. ivil-
i Tétel), igyeza vektor a uul]av::i: g g Y
Konzervaﬁv vekto

Ha a masoqiy
tak egyenig (

A 163, alfes é a Stokes-tétel
- dliejezethe, meg

on, az ekviv:]m- aili]"l’“mmk. hogy ha F konzervatiy egy nyfit D ar-
80rbén vert integrélja 1.72al, hogy ebben a tartomdnyban haladé minden z4rt

¢ nullg. . :
4zzal is ekvivaleng, hogy :7 EZ eiy;“"e&cn Osszefiiggd nyilt tartomdny esetében

6. TETEL

kozotei Mﬁ?g:::‘ 8orbén vett integrsl nulla volta, és a rotF = 0

2; v xat‘ =0egy egyszeresen Osszefliges D nyilt tartomdny minden pont-
Jaban, akkor birmely a D-ben haladé szakaszonként sima, zért C gorbére
érvényes, hogy

f F.dr=0.

&

A bizonyités vazlata., A térel bizonyitdsat dltaldban két lépésben végzik. EI5-
520r egyszer(l, zart gorbékre, A topologia egy tétele azt mondja ki, hogy egy
cgyszeresen Osszefiiggd, nyflt tartoményban minden differencilhaté egyszert,
zdrt C gorbe hatdra egy irdnyithaté sima § feliiletnek. ami szintén D-ben van.
Kovetkezésképp, a Stokes-tétel szerint

j' F.dr [/t «F-ndo=0.
I{

5

A mdsodik lépés olyan gorbék vizsgilata, amelyek dtmetszik magukat, mint pl
a 16.68. dbrdn. Az dtlet az, hogy ezeket a giirbéket egyszer(l gérbékre daraboljuk
fel. ezekre alkalmazzuk a Stokes-tételt, majd az eredményeket Gsszeadjuk

A kiivetkezs diagram Osszegzi a konzervativ vektormezok ll.llujdum:igait Osz-
A kijve aeTE 587 vy . ; .

5 &« uevanakkor egyszeresen Osszefiiggd, nyflt tartomdnyokon
EO CS UE) - &)

szefiig
1. Tétel, . e
‘ - 16.3. alfejeret F=V/f D-n
F konzervatly D-n
" H -r\l vektorazonosség (16.51)
" e fl Il (lolytonos masodik
o I.c“"flt‘fl.'l I | parcidlis deriviltak)
16.3, alle)
6. Téwl Sl e N
4 [ X - egesz D-n
f}* dr =0 Egysaeresen Osize VxF=0azegész [
p qu‘.}_':" fartomany €s
i:f Cgé-*f D-n Sokes-tétel




2x + 2y
P

» e wr

b

/ l‘--rfl'
bt

_ . 2 442 =1 kor! (A6
m nulja, ha ¢ az xy-sikban az x* 4+ ) Anva nem
€m alkalmazhats, mert Fiértelmeatsi OIS
sen c'ixvci'iipgf?.
adott ¢ EOrbét ne;
ben mindig

jon.)

lI'I{(‘g_r;ﬂ ne
Tétel ity _ /g
CBYyszere a teljes z tengely hidnyzik hch: -L.kilu_
M lehet egy imnlr;: Osszehizni ‘il'ff'-\l‘ l.l“?;:wmd_
teljes egészében az értelmezési tartoményban

A Gauss-—()sztrogradszkij-tétel

A sikbel; Green-fory
szer(, zart £0rbe me
nak a girbe altal ko
altaldnositasy. a Gauss—Osztro
vektormezé 745t feliilete
gencidjdnak a felijlet 4]
bebizonyitjuk
feliileti integr

nez egy-
: . oy yektormezOo eg}
nula normalvektoros alakja szerint egy ve
nti vonalintegrlj

5 divergencidja-
a megegyezik a vektormez0 diverg
rillzart felij

- 3 x 105
leten vett integraljdval. A tétel h;trmnilijl'::;‘;wh
gradszkij-tétel azt mondja ki, hng_\." L" % diver-
n vett feliileti -ime_-;r;il]'u egyenld a vektor 111;/. e
tal hatérolt térrészen vett integraljaval. A _'f).t!\.-'_t[l.i'ﬂht_"l
a Gauss- (').wtrng_radwzk!_j -tételt, és megnézziik, hogy hogy:

e lekt-

s T vényet az ele
alt szamolni a segitségével, Levezetjitk Gauss torvény
romos mez6 fluxusargl

tormezdk integralj
foglaljuk ossze.

. g Srvénvét. véeiil a vek

a hidrodinamika folytonossédgi torvényét, 5 :u i
(s A e e covesite C
arél sz6l6 tételek eredményét egy kozos. egy

Divergencia a haromdimenziés térben

. n ot
0 ive iciaja a 1\f_l-.(..
i I\ J 1“' X, Y. Z 'k \\;‘L‘(.’l'\ﬂt‘}"] d]\tl‘}._‘,(.ﬂ(.lcj
= & | B II..-\I-.-.. | T Ay Yok
qu. P — .qv)!': ‘.._1|._
}\L’/(‘) \'|'\'11|L‘1[‘ﬂ'|‘_li,'\t_'l1‘\'j

dM oN dP (16.5

ox a oz

n
(R}




felelG feltételek teljesii-
feliileten vett feliileti
et dltal hatdrolt térré-
szokds Gauss-téielnek.

mutato egységvekio-
drolt tartomany. Ekkor
lja egyenld V - F D-n vett

(16.53)

n szerepld mennyiségeket. ha 2
432 + 22 = a? gombhéj!

ez8jét az f(x,y,z) =1+ +
kapjuk:

.53) képlet bal oldala:

- a(4na®) = 4ma’.




- — I TG R IS T —
S, g P L P 29 ") YRS .‘ =
. . y I

7 w;%' :" :":-- Oertroarad o m

_' , fnffv.nw—:f!f 3dv =3 Gm?)mam’ | O

ML L e

A AR
témyolca dbé] a5 325+ xzk vektormez§ feliiletmenti integraljt a pozitfv

X = ]_ P .
Megoldss, Ay, ¥=1€s2=1 sikok ltal kivégott kocka felszinén!
integré] gsgze e;:'ym' hoey a feliles integrdlt a kocka hat oldaldn kiszdmolt
BEKent keresnénk, integraljuk inksb a
Vps & d 9
g ax(xy)+j3§(>‘z)+a—z(xz)=y+z+x
O divergencigt 5 kocka belsején:
feliileti integrg] — f f ¥.nido = / f v By Gaus-Oszrog
szkij-
kock:
fel(;cz?;e tlb‘e(}csgjae
- 1
Cj‘.l :f/[(X+_V+E)dxd_v = E rutinszamolds il
E’ 000 2

A Gauss-Osztrogradszkij-tétel bizonyitasa specialis
tartomanyokra

A bizonyitashoz tegyiik fel, hogy F = Mi + Nj+ Pk els6 parcidlis derivaltjai
folytonosak, D egy konvex tartomdny lyukak és buborékok nélkiil, mint péld4ul
egy gomb, kocka vagy ellipszoid, és hogy az S felszine néhdny, kiilon-kiilon sima
feliiletbdl 4ll. Jeloljiik D-nek az xy-sikra vald vetiiletét R,,-nal, és tegyiik fel azt
is, hogy minden olyan egyenes, amely merdleges az xy-sikra, és azt R,,-nak
belsé pontjdban metszi, pontosan két pontban metszi S-t. Ez a két metszéspont
két részre bontja S-t, egy alsé §) €s egy felsd S, részre:

Sy = {{-L_\’.:J €8 ‘ z= filx,y), (x,y) € Rx_‘.} :

L= fl{‘-‘} ll.-".-\\'] € R.t_\'} )

3 = {(.\'._\‘.:J =

Osztrograd- ahol fi < fo. Feltessziik, hogy D az yz- é zx-sikokra merdleges irdnyokbl is

e o ik. (Lisda 1669.dbrit) |

majd kiterjeszt- <12 a7 — i+ naj +nsk egységnormalis 1, j és k bézisvektorokkal bezdrt

g 1‘201]3 T}zés-}' Ekko;n komponensei ., B és v koszinuszai lesznek (16,70,
szoget o, 8 ipo

4bra), hiszen n egységvektor. Tehdt

hasonléan viselked

ny = n-i= [nlfilcosat = cost,
2y —n-j = [nlljlcos = cosB,

n=nk= n||k| cosy = cosY.

igy n = (cosa)i+ (cosB)j+ (cosy)k
i F.n:Mcosa—!-NmsB—,- PcosY.
; radszkij-tétel igy szol:
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zepii gdmbhéjon 4r.
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¥ )2 +22, & pedig egy fizikai

y tetszOleges, origd kozept
nez6 fluxusa g/€o. Azonban
z6leges, az origdt korbefogo
kii-tétel feltételei teljesiilnek)
egy olyan nagy S, origo

1y tartalmazza S-1. Mivel

nie az S,-n vett feliileti in-
auss-torvénynek nevezzik,

. je’ 3= 8(I1x1}"1 :} a fO].)-’i-‘l-
A hidrodinamika folyto-

akkor a folytonossdgi tor-
etelbol.
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» hogy mij
MEgE. (A cxtkkengsy ot ¢EE€] cs6kken a D tartomdnyban levs folyadék: t6-
Ac feliiletdarabog S. raé’l mivel n kifelé mutat.) Ehhez vélasszunk egy piciny
8016 folyadey, Ay s 07> dbra). Bgy révid Ar idGintervallum alatt a AG-n
gatdval, amelyney a]atérmgm Koriilbelil egyenl6 egy olyan ferde henger térfo-
sebességvektora 4 Acmm Ao, & a magassaga (vAr) -, ahol v a folyadék

feliiletdarab egy pontjsban. Teht

AV ~v.nAc Ar
Az dtfolye folyadék tOmege kériilbelii]

Am = 8v.n Ac At,
igy At idGegység alatt D-bg)

ém_ws
N v -n AG

10 i e g ;
Omegii folyadék tévozik. Ha Osszeadjuk az 6sszes §-t alkotd felilletdarabra az

azon &t kidraml6 folyadék tomegét, megkapjuk a Ar id6 alatt az S-en 4t kidraml6
folyadék tmegének g gKapjuk a Af 1 att az S-en & amlé

Am
—ZN— r ESV- nAG
kozelitését. Végiil ha Ac — 0 és Ar — 0, akkor megkapjuk a D-ben levo folyadék
tomegének S-en dt 16rténd csikkenési sebességét:

d .
FT = [j 8v-ndo.
s
Ez a mi folyadékunk esetén

d_m :ffF-ndc,
dt ;

Most vegyiink egy B tomor gombot a folyam Q pontja koriill. V- F atlagos

értéke B-ben |
gty S f / f V-FdvV.
(B térfogata) J

nossdga miatt valamely P € B pontban V - F fel is veszi ezt

i encia folyto
A divergenc ololi B hatdrat, akkor

az értéket. fgy, ha S ]
‘ f[ i s e s J[¥-ndo
(V-F)(P)= (B térfogata) / (B térfogata) s

(az S-en keresztiili tomegesokkenés sebessége)
= (B térfogata)

(16.59)

; egységnyi térfogatra jutd tomegesdkkenést jelenti.
A jobb olc!alt hﬁ_ll)i'(ad({: aiog mi torténik, ha rogzitett Q kdzéppont mellett a B
Most vizsgédljuk meg, nk. A (16.59) egyenlSség bal oldala (V- F)(Q)-

tartu : Z
gomb sugarﬁ\l;zg milié;hgztér sriéke (—00/31)(Q). Ennek a két figgvénynek az
0 o

hoz tart, aj 4ol tOrVENY:
P tonossagl
egyenldsége 3 1Y 2

ardzza” V - F jelentését: F divergencidja

= a;
sroény ;EBIAEY  nek pontbeli csokkenési sebessége-

A folytonosSiE o 6 anyag st

yalamely pontban &7




D tartoméinyp
anyag omege.
is i interpretdlhy, 6

;e'kinthetllnk egy olyan
onense nulia. Ekkor V. F
-alakja igy irhato:

;_ﬁ-ffV-FdA.
-

el a Green-tétel érintévektoros

f V xF-kdA.

k, vizsgdljuk meg a Stokes-
6 hasonl6sdgukat.

5 D
0 der= ff‘? x F-kdA
» c 7
f!'dr=f V x F-ndo
¢ :

Green-tétel normalvektoros (cirku-
menzi6s térben elhelyezkedd
normalkomponsének integrdlj¢

dn vett cirkulacidjdval.
] a sikbeli Green-tétel normilvekio-
egy térbeli tartomanyra. Mindk&
integralja egyenl F-nek a tar®

dljuk meg egy kozo0s. univer-
fel 8!5.3 részben targyalt Newlon™
szerint ha f (-l- ) differenc ialhato

e [a‘! -1, akkor

: ﬁk&ﬂf (df/dx} v .F. Lm\cﬂ
- mutaté egységnormélmtzo azd?




16.8. A Gauss-O

Fb) = fl@) = f@i-i+fl@i(=) =" =
=F(b)-n+F(a)-n=
= F-nek [a, b] hatdrdn vett integrélja.

ol S

sl _\.;"
iy

Ezekkel a jelolésekkel a Newton-Leibniz-tétel igy szol:

F(b)-n+F(a) n= fv-r.dx.
[ﬂ\b]

A Newton-Leibniz-tétel, a Green-tétel normélvektoros alakja és a Gauss—
Osztrogradszkij-tétel mind azt mondja, hogy ha egy F vektormezdre alkalmaz-
zuk a divergencia operdtort (V-) és ezt integraljuk valamely tartomdnyon, akkor
az integrél értéke megegyezik F normalkomponensének a tartomdny hatdrdn vett
T integraljaval. (A Newton-Leibniz-tétel esetén a tartomany hatdra két pont, ezért
A5 integrél helyett 6sszeg szerepel.)
Kl A Stokes-tétel €s a Green-tétel érintdvektoros alakja (a megfeleld irdnyitdsok

B 7 mellett) arrl sz6l, hogy ha az F vektormezdre alkalmazzuk a rotdcié operétort
: (V %), akkor a keletkez6 vektormezd normélko‘mponer?ének egy feliileten vett
integrélja megegyezik F-nek a feliiletet hatdrolo, zért gorbementi vonalintegral-

Jﬁvj&l. tételek ily modon torténd interpreticitjanak a szépsége az, hogy a két té-
telcsoport ere dményeit egy egységes elvként foglalhatjuk Ossze:

6 di ' stor valamely tartoményon vett in-
ezOn hato differencidloperator v '
v?k::on:nlﬁ a vektormezd differencidloperétorhoz tartozo komponen-
sénckJ: tﬁomény hatérén vett integraljdval.

g, Gomb: F= 2+ xzj + 37K,
p,:- az X+ ¥ 4 22 < 4 tomor gomb.

& divergen- Gombeikk: F= i — 2y + 3k,

: ::;. az elsd térnyolcadnak az X2 +y* +2° = 4 gomb dltal hatdrolt
része.

. F= (63 +20)i+ (2y+22)j + 4k,

:?i!.azmydcadnak az % +y> =4 henger és a z = 3 sik dltal

ha(ﬁroﬂ.trésze
Fgw—xyj-zgk.
D: a2 €5 er dltal kivigott ,éK”.

o L

4 sik 6s a 4x° + 2 = 16 el-



