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Nagy Péter

CCS Vizsgatételek 2015/16/2

Folytonos ideji linearis idéinvarians rendszerek Kkiilonb6zo leirasi
modjai (magasabb rendii linearis differencialegyenletek, atviteli
fliggvény, sulyfiiggvény, allapottér-modell)

Id6tartomany:

Allandé egyiitthatds linearis differencidlegyenlettel

dTL
An "gen

TL—1

d
+an 1dtn1+ +a1_+a0—b0u+b1_+ +bmdtm

n-1
adott kezdeti feltételekkel y(0) = Yoo , 2 (0) = Y10, 5a (0) = Y(n-1)0

Impulzusvalasz fiiggvénnyel
Y(s) = H(S)U(s) » L™ - y(®) = (h*w)(t)

azaz  y(t) = [, h(t — Du(D)dr = [ h(Ou(t — 1)dt

Dirac-§ definici6jabdl adédik: fooo §(t — t)h(t)dr = fot §5(t — t)h(r)dr = h(t)

ésL(8)(s) = fooo §(t)e stdt = 1, tehat h a rendszer Dirac-§ bemenetre adott valasza

Operatortartomany:

Atviteli fiiggvénnyel

Y(s) = H(s)U(s) 0 kezdeti feltételekkel (!)

A\

Allapottér modell:
Altalanos alak:

Y(s) - A kimeneti jel Laplace transzformaltja
U(s) - A bemeneti jel Laplace transzformaltja

H(s) = b(s) - A rendszer atviteli fiiggvénye, ahol a(s),b(s)
pohnomok és deg(b(s))=m, deg(a(s))=n

Strictly proper atviteli fliggvény : m < n

Proper atviteli fiiggvény : m = n

Improper atviteli fiiggvény : m > n

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

adott x(t,) = x(0) kezdeti feltétellel ésx(t) € R™, y(t) € R?,u(t) € R".

Rendszerparaméterek:

AERY™ BeR™" (CeRP* DeRPX"
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Az atviteli fiiggvény kiszamitasa ATM1-b6l:
Az ATM Laplace transzformaltja:

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)
X(s) = (sI = A)T'BU(s)
Y(s) = {C(sI — A)™'B + D}U(s)
Az ATM-hez tartozé atviteli fiiggvény (H(s)) (A,B,C,D):

H(s) = C(sI — A)"'B+D

Folytonos ideji linearis iddinvarians rendszerek iranyithatosaga és

megfigyelhetosége

Megfigyelhetoség:

Problémafelvetés:

Elegend6 Kiszamitani x(t,) = x,

Sziikséges és elégséges feltétel:

Egy ATM (AB,C) matrixokkal megfigyelhetd pontosan akkor, ha az 0,
megfigyelhet6ségi matrix teljes rangu

CA:n_l

Geometriai értelmezés:

(A,Q) nem megfigyelhetd altere azon kezdeti értékek halmaza, amelyek a
rendszer kimenetének ismeretében nem kiilonithetsk el egymastél, azaz az ATM
a nem megfigyelhetd altér kiilonb6z6 pontjaibol, mint kezdeti értékekbdl inditva

a rendszer ugyanazt a kimeneti fiiggvényt adja.

A nem megfigyelhetd altér bazisanak kiszamitasa: ker (0,,)

1 Allapottér Modell
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Iranyithatosag:
Problémafelvetés

x(t,)-be ]uttat]a véges id6 alatt.

Sziikséges és elégséges feltétel:

Egy ATM (A,B,C) matrixokkal iranyithaté pontosan akkor, ha a C,, iranyithat6sagi
matrix teljes rangu

C.,=[B AB A?B . . A" 1p]

Geometriai értelmezés:

(A,B) iranyithatosagi altere azon allapotok halmaza, amelyek véges id6n beliil
elérheték az allapottér origdjabél valamely u bemenet hatisara, azaz az ATM
allapotvaltozoit az allapottér origdjabdl inditva semmilyen bemenettel nem
tudjuk ,kivinni” az iranyithatdsagi altérbol.

Az iranyithatésagi altér bazisanak kiszamitasa: im(C,,)

Folytonos idejii linearis iddéinvaridns rendszerek egyiittes
iranyithatosaga és megfigyelhetosége

Ekvivalens ATM tulajdonsagok:

2. lemma

(A,B,C) egylttesen -
iranyithato és
megfigyelhetd 1 tétal

N\

(A, B,C) minimalis

N

3. lemma

H(s) nem
egyszerisithetd
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Definicio:
Hankel matrixnak nevezziik a kovetkez6 blokkmatrixot

CB CAB - - + (CA™ !B

CAB CA*B : : : CA"B

H[l,n—-1] = : : :
lCA"—lB cCA"B - - - CAZ"—ZBJ

A matrix a CA'‘B Markov paramétereket tartalmazza, amelyek invaridnsak az
allapottranszformaciora

1. Lemma:

b(s)
a(s)
irdnyithaté és megfigyelhetd n-edrendii realizacié, akkor a H-hoz tartozé valamennyi
n-edrendii realizacié is egylittesen iranyithat6 és megfigyelhet6.

Ha egy rendszer atviteli fliggvénye H(s) = , és ehhez taldlhat6 egy egylittesen

Controller form realizacio:

ahol
[ —a; —a> —a, | 1]
1 0 0 0
Ac: S Bc:
0 0 . | 0 ] | 0 ]
Ccz[bl b . . . bn]. D.=D

az atviteli flggvényben szereplé polinomok egylitthatoival:

H(s) = 22 +D

a(s) =s"4+a15" L + ... +ap_15 +apés b(s) =b1s™ L+ ...+ by15+b,
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Observer form realizacio:

y{l‘}: ox{r}

ahol ) ) ) )
—a; 1 0 0 by

— 47 0 1 0 bg

A, = _ . Bo=|

—a,.1 0 0 ... 1 bp—1
| -3, 00 ... 0 b, |

Co=[1 00 ... 0]. D,=D

az atviteli flggvényben szereplé polinomok egyltthatoival:

H(s) = bH +D

a(s) = s " +a1s" L+ ... +a,_15 +an és b(s) = bys" ! + ... + by_15 + b,

Definiciok:
Relativ prim polinomok
a(s) és b(s) relativ primek, ha a(s) = [[(s —«;); b(s) =[I(s — B;) és «;# f;
barmilyen i j-re. (Mas szavakkal: a polinomoknak nincsen k6zos tényezgjiik)
Nem eEVszerﬁsithetc’S atviteli fliggvény

H(s) = nem egyszer(sithetd, ha a(s) és b(s) relativ primek

Minimalis reahzacm
Egy n dimenzids (A,B,C) realizacié minimalis, ha nem talalhaté nala kevesebb
dimenzids realizacié

2. lemma:
Egy H(s) atviteli fliggvény 'controller form’ realizacidja egytittesen irdnyithato és
megfigyelhet6 pontosan akkor, ha a(s) és b(s) relativ primek (H(s) nem egyszeriisithet6)
1. Tétel:
H(s) = nem egyszerlsithetd pontosan akkor, ha n-edrendi realizaciéi egyiittesen

1rany1thatok és megfigyelhetok

2. Tétel:
H(s) = nem egyszerlsithetd pontosan akkor, ha barmely (A,B,C) realizaci6ja

mlnlmalls, ahol H(s)=C(sI—A)"'B

3. Tétel:
Egy (A,B,C) realizacié minimalis pontosan akkor, ha egylittesen iranyithaté és
megfigyelhetd
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3. Lemma:
Barmely két minimalis realizaci6 attranszformalhaté egymasba egy egyértelmii
invertalhat6 hasonlésagi transzformacidval

Folytonos ideji linearis idéinvarians rendszerek stabilitasa

Stabilitas fogalma:
Egy rendszer stabilis, ha kitérités utan a magara hagyott rendszer visszatér nyugalmi
allapotaba, tranziensei lecsengenek.(Masik: korlatos bemenetre a rendszer kimenete is
korlatos - BIBO)

Tétel:
Egy SISO LTI2 rendszer BIBO stabil pontosan akkor, ha

f |h(t)|dt <M < oo
0

ahol M € R* és h arendszer sulyfliggvénye.

Nemlinearis rendszerek stabilitasa:
Tekintsiik a kovetkez6 rendszert:

x=f(x), xEX=R" f:R"—R"

egyensulyi pont: f(x*) =0

x* stabil egyensulyi pont: barmely € > 0-hoz létezik olyan § > 0(§ < ¢), hogy

[[x* —x(0)]| < § esetés ||x* —x(t)|| < ¢

x* aszimptotikusan stabil egyensulyi pont: x* stabil, és lim;_,,, x(t) = x*

x* instabil egyensulyi pont: nem stabil

x* lokalisan (aszimptotikusan) stabil: x*-nak van olyan U kdrnyezete, amelyen beliil az
(aszimptotikus) stabilitas feltételei teljesiilnek

x* globalisan (aszimptotikusan) stabil: U = R™

Ljapunov-fiiggvény:
V:X — R (radialisan nem korlatos)

e V>0hax#x"V(x")=0
e Vlegalabb egyszer folytonosan differencialhaté

N Py d
e Vnem novekvo, azaz EV <0

Ljapunov stabilitasi tétele:
Haaz x = f(x), f(x*) = 0 rendszerhez létezik Ljapunov-fiiggvény, akkor x* stabil
egyensulyi allapot.

Ha a Ljapunov fiiggvény tulajdonsagai csak x* egy U kérnyezetében teljesiilnek, akkor x*
lokalisan (aszimptotikusan) stabil egyensulyi allapot.

2 Linearis id6invarians
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LTI rendszerek - BIBO és Aszimptotikus stabilitas:
LTI rendszereknél az aszimptotikus stabilitasbdl kovetkezik a BIBO stabilitas

Ljapunov kritérium LTI rendszerekre:
Egy linearis rendszer allapotmatrixa (A) stabilitasi matrix pontosan akkor, ha barmely
megadott Q pozitiv definit szimmetrikus matrixhoz létezik egy P pozitiv definit
szimmetrikus matrix, hogy ATP + PA = —Q

Q pozitiv definit - Q valamennyi sajatértéke pozitiv

Az atviteli fiiggvények értelmezése a frekvenciatartomanyban
(erosités, fazis), Bode- és Nyquist diagramok, rendszerek soros és
parhuzamos Kkapcsolasa, altalanos negativ visszacsatolas, minimum
fazisu rendszerek

Atviteli fiiggvények és stabilitas:

SISO eset: H(s) = C(sl — A)~1B="14)—

bns™ 4+ bp_15™" L + -+ bys + by (s—DB1)(s—52) ... (s— Bm)
s+ a,_1s"™ L4 das+a; (s—M)s—A)...(s—A,)

@ Férusok: 9y.0.....8, € C
@ Polusok: A1, Aa..... A, € C (megegyeznek A sajatértékeivel)
Aszimptotikus stabilitis & Re(A;) < 0
Erodsités és fazis:
atviteli figgvény: G(jw), (G(s))
u(t) = ug sin(wt + a)

y(t) = yo sin(wt + B)

erdsités: k = = |G(jw)| (frekvenciafiiggd!)

Yo
Ug

fazis: @ = B — a =4G(jw[rad]) (frekvenciafiiggd!)

Bode-diagram:
Egy egy bemenet(, egy kimenet(li rendszer atviteli karakterisztikajanak abrazolasara
szolgal.

Nyquist-diagram:
Egy visszacsatolassal rendelkez6 rendszer stabilitasanak megallapitasara hasznaljuk.

10
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Részrendszerek dsszekapcsolasi maodjai:
Soros kapcsolas:

dfdf

Parhuzamos kapcsolas:

I

\

: U=

i > H,

v

I

\

I

| " Hs
| U=

I

; H

=
-
r—+
o
Il
o
=
Pl
e
e
-
o
%]
-
r—+
o

- | H(s) LN
; !
| G(s) i
H(s)
) = Tk H)
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Altalanos negativ visszacsatolas (parhuzamos):

¥ i tooy
f '(;} > H,(s)
; Hy(5)
i G(s)
G(s) Hi(s)

T 14 Hi(s)Hh(s)

Altalanos negativ visszacsatolas (soros):

k J

Vo N — — ¥
. ) Hzllle > H,Illle
: G(s)
Hy(s)H
6(s) 1(s)Ha(s)

2015/16/2
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SISO-rendszerek iranyitasanak alapjai: altalanos
rendszerinvertalas (és problémai), a visszacsatolas fogalma és tipusai,
az integrator szerepe a szabalyozasi korben, PID-szabalyozok

Az iranyitasi cél:

A rendszer kimenete azonos legyen azzal, amit mi el6irunk.

Kézenfekvonek tiiné megoldas:

Alakitsuk valahogyan a rendszer-operatort identikus operatorra

Bal- és jobb inverz:

2015/16/2

iranyitasi

Bal inverz:
2 |
— S I-I » S —
| | |
Jobb inverz:
3 a
e S » g ! -

Invertalasi problémak:

A rendszer-operator nem invertalhat6
Az irdnyitandé rendszer instabil

Az inverz instabil

Az inverz nem kauzalis

cél,

A rendszer-operator nem pontos (bizonytalan) -> az inverz még bizonytalanabb (lehet)

A val6sagban a rendszer nem elszigetelt

13
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CCS Vizsgatételek 2015/16/2

Visszacsatolas:
Jelentése:

Visszacsatolas = érzékelés + szamitas + beavatkozas

Miért alkalmazzuk?

Gyakran az instabil rendszerek stabilizalasdnak egyetlen modja a visszacsatolas
Egy j6l megtervezett visszacsatolas bizonytalan rendszermodellel egylitt is
miikod6képes lehet

Visszacsatolassal csokkenthet6 a kiils6 zavarok hatasa is

Tipusai:

kimenet-visszacsatolas: a bemenet a rendszer kimeneteitdl fiigg, azaz u=F[y]
(teljes) allapot-visszacsatolas: a bemenet a rendszer allapotvaltoz6itdl fiigg, azaz
u = F[x]

statikus visszacsatolas: az F operator statikus (u=F[y], u=F[x])

dinamikus visszacsatolas: az F operator dinamikus (lineéris esetben pl. ATM-el
vagy atviteli fliggvénnyel megadhato)

Linearis visszacsatolas: az F operator vagy az F fiiggvény linedris

Az integrator szerepe:

vl

: s f—s H,(s) —r—
| 5(s) |
b kb
1) =2 7“9 = ) + kb )
GG+ 0)] = 1

Az integratort tartalmazé szabalyozasi kor allandésult dllapotbeli erdsitése 1. (A
szabdlyozott rendszer koveti a konstans referenciajelet, ha aszimptotikusan stabil)

14
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PID szabalyozo:
A PID szabalyoz6 strukturaja:

TR +

¢

-
=z
=
—_—
L7 ]
R
L J
T
—
L7s]
Ry

L J

P=Proportional, I=Integral, D=Derivative

Atviteli fiiggvény:

Kp(Ty Ty s*+Tis+1)
N Tl' S

KPID(S) :Kp 1+ +Td'SJ

Ti'S

——- Kp 1T s) —()——-

e K,:aranyos (proporcionalis) erdsités
e T;:integralasi id6allando
e T,:derivalasiidéallandé

PID szabdlyozok hangolésa:
Ziegler-Nichols mddszer:
1. Alkalmazzunk csak aranyos (proporcionalis) visszacsatolast
2. Noveljik az aranyos erdsitést (K,) addig, amig az egységugrasra
adott vélasz csillapitatlan (szinuszos) rezgeés lesz (Kj)
3. Mérjiik meg a rezgés periddusidejét (T,)

15
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Polusathelyezéses szabalyozo

Altalanos problémafelvetés:
Adott:
e Egy SISO LTI rendszer (A,B,C) matrixokkal (a pélusok A-tél (a(s)-t6l) fiiggnek)
o elbirt (kivant) pélusok, melyeket az a(s) polinom hataroz meg tgy, hogy
deg(a(s)) = deg(a(s))=n

Kiszamitando:
Egy teljes allapot-visszacsatolas Ugy, hogy a zart rendszer pélusai éppen a(s)
gyokei.

Részprobléma:
Olyan visszacsatolas, amely stabilizalja a(z eredetileg instabil) rendszert

Statikus linearis teljes allapot-visszacsatolas:

= - - - - — — — — 1

| |

v|+u S }»’=th

:. (A,B,C) |
I

| I

I |

LS (A'BC) |

u=—-kx+v,
aholk € R"™*™ hax € R"ésu € R"

A SISO LTI rendszer matrixai: (A,B,C)
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
y(®),u(t) € R,x(t) € R™
A€ Ran B € RnXl Ce Ran

Statikus linedris teljes allapot-visszacsatolas:
v=u+kx (u=v-—kx)
k:/kl kz e kn]
k € R¥™ (sorvektor)

16
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Zart rendszer:
x(t) = (A — Bk)x(t) + Bv(t)
y(t) = Cx(t)

Azaz:
A =A—-Bk; B'=B;, C(C' =C

Karakterisztikus polinomok:
Visszacsatolas nélkiili (szabalyozatlan) rendszer:
a(s) = det (sl — A)
Visszacsatolt (szabalyozott) rendszer:
a.(s) = def (sI — A + Bk)

Polusathelyezéses szabalyozo tervezése:
Bass-Gura formula:
Szamitsuk ki a kovetkez6 determinanst

M, M,
det [M3 MJ

két ekvivalens mdédon
det(M;) det(M,—M;M{*M,) = det(M,) det (M, — M,M;1M3)
Alkalmazzuk:

sl—A B
dec "%
a kovetkezdt kapjuk:

det(sl — A)det(1 + k(s —A)"'B) =1-det((sI—A)+B-1"1-k)

Rezolvens formula:
a(s) =s"+ay;s" 1+t ay

(sI—A)1= % (" U + 5" 2(A+ aq) + s"3 (A2 + a A + apl) + )

1 41 42 . . . dp—1
0 1 41 . . . dp_2
x—a=k[A AB A’B .. A"'Bl | g 0 1 an—3

o«—a = kCT; // (ahol C az iranyithat6s4gi matrix)
Ha S iranyithatd, akkor
k = (x— T "C

17
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Controller-form realizacio:

ahol
[ —a —a . . . —a, | [ 1]
1 0 0 0
AC: ' ' BC:
0 0 A | 0] | 0]
Ccz[bl b . . . bn]. D.=D

az atviteli fliggvényben szereplé polinomok egylitthatdival:

H(s) = JE;' +D

a(s) =s"+a1s" L+ ...+ a,_15+a, és b(s) =bis™ ! + ...+ b,_15 + b,

Polusathelyezéses szabalyozo controller-form esetén:

_(31 + kcl] _[32 + kcﬂ_"] e _[En + kcn] ]
1 0 .. 0
A — Bk =
I 0 0 S 0 |

a zart rendszer karakterisztikus polinomja, a(s):
a(s) = det(sl — (A — Beko)) = s™ + (ag + ke)s™ L+ -+ + (an + ken)
az allapot-visszacsatolas k. egylitthatoi:
ke=x—a

Allapotbecslé tervezése folytonos idejii LTI rendszerekhez,
szeparacios elv

Problémak:

e Abemenet és kimenet mérése altalaban nem pontos, és a szamitashoz kellenek a
kimenet 1., 2, ..., (n-1). derivaltjai
e Arendszermodell dltalaban nem tokéletes

Cél:
Olyan eszkoz (allapot-megfigyeld) tervezése, amelyhez nincs sziikség a kimenet 0.-nal

magasabb foku derivaltjaira, és amelynek becslése aszimptotikusan tart a tényleges
allapotvektor értékéhez.
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Az allapot-megfigyel6 algebrai alakja:
ATM:
x = Ax + Bu
y=Cx
AX + Bu+ L(y — CX)
£=(A-LOZ+[BL] [1;]

x

becslési hiba:
e=x—2X
és
e=(A—-L0)e

Az allapot-megfigyel6 strukturaja:

u L X1 -il
—> S@ABCO |Y S, (A-LC, [BL], I"") —»

B A

rendszer allapotbecsld

Az allapot-megfigyel6 kiszamitasa:
Emlékeztetd:
Polusathelyezésnél a zart rendszer matrixa A, = A — BK (adott A,B,
kiszamitandé: k, feltétel: (A,B) iranyithato

Allapot-megfigyel rendszermatrixa:
Ay = A — LC (adott: A,C, kiszamitando: L, feltétel: ?)

Megoldas:
AL = AT —(LO)T = AT — CTLT

Tehat L a p6lusathelyezéses szabalyozas szamitasi algoritmusaval kiszamithaté ugy,
hogy a becslé pélusai (4, sajatértékei) tetszélegesek legyenek (azaz az allapotbecslé
stabil legyen).
Feltétel: [CT ATCT .. (A" 1)TCT] = O teljes rang, azaz a rendszer
megfigyelhetd

Szeparacios elv:
Probléma:

Mi torténik, ha az allapotbecslét és a szabalyozdt 6sszekapcsoljuk (dinamikus
kimenet-visszacsatolaskor)?

u N
> S(ABC) |y TS, (A-LC, [BL] I")|—»
- x —h.
rendszer allapotbecsld
k -

stabilizalo allapotvisszacsatolas
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Szeparacios elv:
Stabilizal6 allapot-visszacsatolasbdl és stabil allapotbecslébdl all6 zart rendszer
aszimptotikusan stabil, ugyanis a zart rendszer dinamikaja a kovetkezé:

[ﬂ -[* _OBK AfiKLC [e]

Azaz a stabilizal6 allapot-visszacsatolas (K) és a stabil allapotbecslé (L)
egymastdl fliggetleniil kiilon-kiilon megtervezhetd.

Szamitas:
x =Ax + Bu, v=—K%. és:e =x—%
Ebbél: v=—K(x — e) = —Kx + Ke, é&s

¥ = Ax + B(—Kx + Ke) = (A — BK)x + BKe (2)
e=(A-LC)e (3)

Sajatértékekre vonatkozé Gsszefliggés:

)”([A—Bf{ BK

0 A—LC D = A (A= BK)U A (A-LC).

és tudjuk, hogy A — BK ill. A — LC stabilitasi matrixok.

Linearis kvadratikus szabalyozas (LQR)

LQR: Problémafelvetés:
Adott:

e egy (MIMO) LTI ATM
x(t) = Ax(t) + Bu(t), x(0) = x,
y(t) = Cx(t)
e egy funkcional (szabalyozasi cél)

T
J(x,u) = %f[xT(t)Qx(t) + uT (t)Ru(t)]dt
0
aholQT =Q, Q>0 ésRT =R, R>0

Kiszamitando beavatkozas:
{u(t), t € [0,T]}, amellyel ] minimalis az ATM megold4sai mentén (megszoritas)
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Variacioszamitas:
Probléma:

Minimalizaljuk u-ra:
T

J(x,u) = f F(x,u,t)dt
0
feltétel: x = f(x,u, t)
Megoldas: vektor Lagrange-multiplikatorokkal A(.)

T
J(x,%,u) = f[F(x,u, ) + AT(O)(f(x,u, t) — x)]dt
0

Hamilton-fiiggvény H = F + AT f
T
J = f[H _ Txdt
0

x parcialis integralassal eliminalhat6
T

T
[ﬂﬂ%:fi%ﬂt+fﬂ&dt
0 0
ekkor J = ['[H — ATx]d¢-b6l kapjuk:
T
J = —IATxT + f [H + A7x]de
0

.....

x(t) = x(a,t) = x(t) + an(t)
u(t) > u(B,t) = u®) + py ()

Euler-Lagrange egyenletek:
Kritériumfiiggvény:
(o, 8) = —[AT (t)x(a, t)]] +

+ fj [H(x(a.t). u(B.1). 1) + AT (t)x(a. t)]dt
0

x-hez és u-hoz I szélsGértéke tartozik, ha

al al
da = 88"
al ‘T raH
£ _jo L’X + A (r)} n(tydt =0
al T OH
53 _jo B y(t)dt
Euler-Lagrange egyenletek:
oH .
- /\T — O
ox
dH
——=0
du

2015/16/2
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LQR Euler-Lagrange egyenletek

LTI rendszerekre:
f=Ax+Bu

1
F= > (xTQx + uTRu)
1
H= > (xTQx + u"Ru) + AT (Ax + Bu)

LQR Euler-Lagrange egyenletek: aa_x (xTQx) = 2xTQ
AT+xTQ+2TA=0, AT(T)=0
uTR+2A"TB =0
Atrendezett Euler-Lagrange egyenletek:
A+0x+4TA=0
u=—-R'BTA
Allapotegyenlet:
x =Ax(t) + Bu(t) , x(0) =x,
Matrix-vektor alak
x(t)] _ [ A —BR‘1BT] [x(t) x(0) = x,
Al 1= -AT 1@l " AT =0

LQR: iranyithaté & megfigyelheté eset:
Lemma * Ha (A,B) iranyithatd, akkor
A) =K(@®)x() , K(t)€eR™™

A mddositott allapot- és tars-allapot egyenletek:
A+ Qx+A"A=0 = Kx+ Kx=-ATKx— Qx
u=—R'B"N = u=-R'BTKx
x=Ax+Bu = x=Ax—BR'B'Kx

Kx+K[A— BRTIBTKlx +ATKx + Qx =0

Vx(t). —» Matrix Ricatti differencialegyenlet K(t)-re
K+KA+ATK —KBR™'BTK+Q =0

Stacionarius eset:
Speciilis eset: stacionarius megoldas T — oo

] = f(xTQx +uTRu)dt
0

limK(t)=K ie K=0

t->oo

Control Algebraic Ricatti Equation(CARE)

KA+ ATK —KBR™'BTK+Q =0
Tétel: (R. Kalman) Ha (A,B) irdnyithat6, akkor a CARE-nak egyértelmii pozitiv definit
szimmetrikus megoldasa van (K).
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LQR és tulajdonsagai:

CCS Vizsgatételek 2015/16/2

Megoldas: linearis statikus teljes dllapot-visszacsatolas

ahol G = R™1BTK

% =Ax —BR™'BTKx = (A— BG)x ,

u%(t) = —R71BTKx(t) = —Gx(t)
Zart kor dinamikaja:
x(0) = xo

A zart kor tulajdonsagai:

a zart kor aszimptotikusan stabil fiiggetleniil A,B,C,R,Q értékétdl, azaz

ReL;(A—BG) <0 , i=12,..,1n

a zart kor pélusai Q és R megvalasztasatol fliggnek

Folytonos idejii rendszerek mintavételezése és diszkretizalasa,
diszkrét ideji rendszerek leirasa (allapottér-modell, impulzusatviteli

operator)

Mintavételezés:

continuous
tirme

Contraol

Algarithrm

=

Clock

Computer

____________________

A D/A atalakité miikodése:

]

u(k)
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CT-LTI rendszerek mintavételezése:
Adott:
x =Ax + Bu
y=Cx+Du

u mintavételezése nulladrendii tartéval
u(™) =u(ty) =ulk) , tp ST <tgs
Ekvidisztans (periodikus) mintavételezés:
tys1 — txy = h = const
Kiszamitando:
a mintavételezett (diszkrét idej(i) rendszer ATM-je

Mintavételezett allapotegyenletek:

A folytonos idejii allapotegyenlet megoldasa:
t

x(t) = eAlt-tdx(t,) + feA(t‘T)Bu(r)dT
to
Helyettesités: t = t, 1 ésty =t
Ut

x(tgsq) = A=ty (t,) + f eAtt1=D By (1) dr

tk
periodikus mintavételezés és @ =t —t;, ty,q1 —T=h—10

h
x(k+1) = erx(k) + f e A= By (k)do
0
h

x(k+1) = erx(k) + eAhf e~49d0 Bu(k)
0

h
x(k+1) = erx(k) + e“”‘f e~ 4940 Bu(k)
0
és

h
j A0 49 = [_A—le—AG]: = A71(I — e
0

Diszkrét idejii allapotegyenletek:
x(k + 1) = e“"x(k) + A~ (e — I)Bu(k)

DT3-LTI allapotegyenletek mintavételezett rendszerekhez:

x(k+1) = dx(k) + I'u(k)
2

2!

Ah
d=er=]+Ah+ -, F:A—l(eAh_])B=<[h+_+...

3 Diszkrét idejli

2015/16/2
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DT-LTI ATM:
x(k+1) = dx(k) + I'u(k)
y(k) = Cx(k) + Du(k)
adott x(0) kezdeti feltétellel és

x(k) € R",y(k) € R?,u(k) € R"
véges dimenzios vektorok és
¢ €eR™™ T €ER™T (CeRP™ DeRPT

matrixok.

DT allapotegyenletek megoldasa:
x(1) = ®x(0) + I'u(0)
x(2) = ®x(1) +Tu(l) = ®>x(0) + STu(0) +Tu(1)
x(3) = &x(2) +Tw(2) = ©?x(0) + ST u(0) + Pru(l) +Tu(2)

x(k) = ®x(k — 1) +Tu(k — 1) = ®*x(0) + 317} &= u(j)
Impulzus atviteli operator:
A DT-LTI ATM-bél szdmolva
x(k+1) = ®x(k) +Tul(k) . y(k) = Cx(k) + Du(k)
x(k+1) = gx(k) = Px(k) +Tu(k)

x(k) = (ql — ®)~1T u(k)
y(k) = Cx(k) + Du(k) = [C(ql — ®)~T + D] u(k)

(®,T,C,D) ATM-hez tartozé impulzusatviteli operator H(q):
H(g) =C(ql — ®)"r+D
Az atviteli fliggvény diszkrét ideji megfigyeldje.

Impulzus atviteli operator SISO eset:

_ ~ip 4 p= 2@ _
H(g)=C(ql — &) I'+D=—-—= degB(q) < degA(q) =n

Al '

ahol A(q) a @ matrix karakterisztikus polinomja.

Kapcsolat a diszkrét differenciaegyenlettel

vik) +avlk—1)+ ...+ av(k—n) = bu(k—1) + ... + byu(k— n)
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DT-LTI rendszerek podlusai:
folytonos idé diszkrét idé

dllapot egy.  Xx(t) = Ax(t) + Bu(t) x(kh + h) = ®x(kh) +T u( kh)

b — E.f-‘lh
kimeneti egy. v(t) = Cx(t) v kh) = Cx(kh)

pélusok Ai(A) Ai (@)

Diszkrét idejii iranyithatdsag és megfigyelhetOség

Iranyithatosag:
Definicio:
A diszktér idejli rendszer iranyithatd, ha barmely kezdéallapothoz 1étezik olyan
bemeneti jelsorozat, amellyel az x* = 0(!!) allapot véges id6 alatt elérhetd.
(Masképp: Ha 2@ 1 akkor az irdnyithat6saghoz az kell, hogy tetszéleges kezdeti
értékbol a rendszert az origbba tudjuk vezérelni.)

Definicio:
A diszkrét idejli rendszer elérhet6 (az irdnyithat6sagnal er6sebb fogalom), ha egy
tetszbleges x, kezd6- és tetszlOleges x* végallapothoz létezik olyan bemeneti
jelsorozat, amely a rendszert véges id6 alatt a kezd6allapotbo6l a végallapotba
viszi.

Az elérhet6ségbdl mindig kovetkezik az iranyithatdsag, de forditva csak akkor igaz, ha
3071,
Tétel:
Adott (&,1',C) és
x(k+1)=ox(k) +Tu(k) , x(0)=x,
y(k) = Cx(k)
HaW, =[I' &I .. ®" !I'| métrix teljes rangti(n), akkor a rendszer elérhet6
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Megfigyelhetdség:
Definicio:
A diszkrét idejli rendszer megfigyelhetd, ha van olyan véges k érték, hogy
{u(0), ...,u(k — 1); y(0), ..., y(k — 1)}
jelekb6l x(0) meghatarozhaté
Tétel:

Adott (@,I',C) és
x(k+1)=ox(k) +Tu(k) , x(0) =x,

y(k) = Cx(k)
C
HaW, = C:qb matrix teljes rangu, akkor a rendszer megfigyelhetd
C(pn—l

Diszkrét ideji rendszerek stabilitasa: diszkrét ideji allapotegyenlet
megoldasainak stabilitasa, diszkrét ideji LTI rendszerek
aszimptotikus stabilitasa, Ljapunov tétel diszkrét idejii linearis
rendszerekhez

Tétel:
Egy DT-LTI rendszer aszimptotikusan stabil pontosan akkor, ha 1;(®) értékek a komplex
egységkoron beliil vannak.

Tétel:
Az aszimptotikus stabilitasbol kovetkezik a BIBO stabilitas

Bemenet nélkiili allapotegyenlet:
x(k+1) = f(x(k), k)

els6 megoldas: x°(k),x°(ky) —ra
masodik (perturbalt) megoldas: x(k), x(ky) — ra

Megoldas stabilitasa x° (k) stabil, ha barmely £ > 0-hoz létezik § (¢, ko) hogy
llx (ko) — x°(ko)ll < & esetén ||x(k) — x°(k)|| < e barmely k > k,y-ra

Aszimptotikus stabilitas x° (k) aszimptotikusan stabil, ha stabil és ||x(k) — x°(k)|| = 0,
ha k - o0 és ||x(ky) — x%(ko)|| elegendben kicsi

BIBO stabilitas
Egy diszkrét idejii rendszer BIBO stabil, ha
lull < My < oo = lyll < My <
ahol ||. || megfelel6 jelnorma
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Diszkrét idejii Ljapunov-tétel:
x(k+1)=f(x(k)), f(0)=0

V(x) Ljapunov-fliiggvény, ha
e V(x) folytonos x-ben, V(0) = 0ésV:R™ - R
e V(x)pozitiv definit
o AV(x) = V(f(x)) — V(x) negativ definit

Tétel:
Ha a rendszerhez létezik Ljapunov-fliggvény, akkor az x(k) = 0, k = 0,1,2, ...
megoldas aszimptotikusan stabil. Ha létezik tovabba egy @ fiiggvény, amelyre
0 < ®(Ix|) < V(x) ahol ®(||x||) » o amikor ||x|| = o
akkor a megoldas barmely kezdeti értékre aszimptotikusan stabil.

Tétel:
Egy DT-LTI rendszer aszimptotikusan stabil pontosan akkor, ha barmely pozitiv
definit szimmetrikus Q matrixhoz létezik P pozitiv definit szimmetrikus megoldas
az alabbi Ljapunov-egyenletre
¢TPd — P = —Q

Diszkrét idejii LQR szabalyozas (bizonyitas nélkiil), deadbeat-
szabalyozas
DT-LTI LQR szabalyozas:

Problémafelvetés:
Adott egy diszkrét idejii determinisztikus ATM

x(k+1) = dx(k) + I'u(k)

Keressiik azt a beavatkozo diszkrét jelsorozatot u, amely minimalizalja a
kovetkez6 célfiiggvényt:

[o0]

JGrw) = ) (2T Qx() + u(k) Ru(k)),

k=1
aholR=RT >0, Q=Q0">0

Megoldas:
Az optimalis visszacsatolas linearis, teljes allapot-visszacsatolas(G):

u(k) = —Gx(k)
G = ((I''ST + R)"X(I''S®),

ahol S a kovetkez6 algebrai Ricatti-egyenlet megoldasa:

TSP — S — (@TSM(rTSr + R)"Y(Ir'se)+Q =0
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Deadbeat-szabalyozas:
Alapfogalmak:

Tekintsiik az A € R™™ matrixot.
A-t nilpotens-nek nevezziik, ha valamely k > 1-re A = 0
A kovetkez6 allitasok ekvivalensek:

e Anilpotens

e Avalamennyi sajatértéke 0

e A karakterisztikus polinomja s™

Problémafelvetés:
Adott egy diszkrét idejii ATM
x(k + 1) = &x(k) + 'u(k)
és egy linearis statikus teljes allapot-visszacsatolas
u(k) = —Gx(k)
Kérdés:
Megvalaszthaté-e G ugy, hogy a zart rendszer rendszermatrixa® —I' - G
nilpotens legyen?
Ekkor ugyanis x(k) = (® — I' - G )*x(0) = 0, azaz a zart rendszer véges
(k) id6lépésben az origbba jut.
Megoldas:
Ha a diszkrét ideji ATM elérhetd, akkor G a pélusathelyezéses szabalyozassal
azonos modon megvalaszthato ugy, hogy (@ — I' - G) valamennyi sajatértéke 0
legyen, azaz (@ — I' - G) nilpotens legyen.

Diszkrét idejii sztochasztikus allapottér-modellek, KAlman-sziiré

DT-LTI sztochasztikus I/0 modell:
Definicio:
A diszkrét idejli LTI SISO sztochasztikus input-output modellek altaldnos alakja a
kovetkez6 ARMAX folyamat:
Ay k) = B(qu(k) + C(q)e(k)
a kovetkezd polinomokkal:
A@Q=q"+aq" '+ +ay, ,  B(@=beq™+biq" "+ by
C@=q"+cq" "+t
ahol C(q) a feltételezés szerint stabil polinom.

29



Nagy Péter CCS Vizsgatételek 2015/16/2

DT-LTI sztochasztikus ATM:
x(k+1) = dx(k) + 'u(k) + v(k)
y(k) = Cx(k) + e(k)
® e RV e R™" (e RpXn

fiiggetlen, diszkrét idej{i, nulla varhat6 értéki, normalis fehér zaj folyamatokkal:

{v()}o és{e(k)}o’

EV(kVT (k)] =Ry . E[v(kvT()] =0, ¥ k]
Elv(k)eT()] =0 , Yk,j
Ele(k)eT (k)] =R, . E[e(k)eT ()] =0, ¥ k #

Kezdeti feltételek:
Ex(0) =my , cov[x(0)] =R,
Paraméterek:
(@,I,C; Ry,Ry; my,Ry)

DT-LTI sztochasztikus differenciaegyenletek:
Definicid: (linearis sztochasztikus DE)

x(k+1) = dx(k) +v(k)
ahol {v(k)}g diszkrét idejii fehér zaj folyamat, és v(k) fiiggetlen x(k)-tol.
A fenti egyenlet megoldasa maga az {x(k)}y sztochasztikus folyamat.

Allapotegyenlet megoldasa:
x(k+1) = dx(k) +v(k)

Varhat6 érték fiiggvény m(k):
m(k +1) = dm(k) , m(0) =m,
Kovarianciafiiggvény:

P(k) = cov[x(k), x(k)] = E{x(k)x" (k)} , X(k)=x(k)— m(k)
X(k + 1)x7 (k + 1) = [x(k) + v(K)][®x(k) + v(K)]T =
= ox(k)xT (k)dT + &x(k)vT (k) + v(k)xT (k)®T + v(k)vT (k)

P(k+1)=®P(k)oT + R, , P(0) =Ry
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A kimeneti folyamat:

Hozzarendeljik az {y(k)}g kimeneti sztochasztikus folyamatot az
allapotegyenlet megoldasahoz a kovetkez6 egyenlettel:

y(k) = Cx(k)
ahol C konstans matrix. Ekkor

my (k) = Cm(k) , 1, = CP(k)C”

Kalman-sziiro:
Becslés-szilirés-simitas problémafelvetés:
Adott:
e egy SISO rendszerbdl szarmazo véges szamud bemeneti és kimeneti
értéket tartalmazo6 mérési rekord (diszkrét id6pillanatokban)
D(0,k) = {y(®),u(®|i=0,1, ..., k}
e adiszkrét idej(i sztochasztikus rendszer ATM-je
Megbecsiilend6:
Az allapotvektor (X(k + m)) értéke a mérési adatok alapjan.

m értékétdl fiiggden a kovetkezo specidlis esetek lehetségesek:
e m<0 : simitas(smoothing)
e m=0: szlirés(filtering)
e m>0:becslés(prediction)
Kalman-sziir6 problémafelvetés:
Adott:
e Allapotbecsls (Kalman-becsld) a kovetkezs alakban:
X(k+1lk) = &x(k|k—1)+Tu(k)+K (k) [y(k) — Cx(klk —=1)] . EX(0)=mo

e Egy ATM-el adott diszkrét idejii SISO sztochasztikus rendszer
A becslési hiba: z(k) = x(k) — x(k)
z(k+ 1) = dz(k) + v(k) — K(k)[y(k) — Cx(k|k —1)]
zZ(k+1)= (P — K(k)C)z(k) + v(k) — K(k)e(k) (*)
A becslési hiba folyamat P(k) kovarianciafiiggvénye:
P(k) = E{[z(k) — Ez(K)][z(k) — Ez(k)]"}
Keressiik:
Az (xT P(k + 1) ) skalart minimalizalé K(k) matrixot
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