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Folytonos idejis linedris idéinvarians rendszerck kilonbsz3 leirdsi médjai
(magasabbrendii linedris differencidlegyenletek, arviteli figgvény. silyfgevény.
allapottér-modell)

Folytonos ideji linedris idéinvaridns rendszerck irinyithatésiga s
megfigyelhetdsége

Folytonos ideji linedris idéinvaridns rendszerck egyittes irdnyithatésiga és
megfigyelhetdsége

Folytonos idejis linedris idéinvaridns rendszerck stabilitdsa (stabilitds fogalma
4ltalénos nemlinedris esetben, Ljapunov-figevény. Liapunov-tétel, BIBO
stabilités, LTI rendszerck aszimptotikus stabilitdsa, Ljapunov-tétel LTI
rendszerckre)

Az dtviteli figgvények értelmezése a frekvenciatartoményban (erdsités. fizis),
Bode- és Nyquist diagramok. rendszerek soros és pérhuzamos kapesoldsa,
4lialinos negativ visszacsatolds. minimum fizist rendszerck

SISO-rendszerck irdnyitdsanak alapjai: dltalinos irdnyitasi cél. rendszerinvertélds
(és problémai). a visszacsatolds fogalma és tipusai, az integrior szerepe a
szabilyozasi kérben, PID-szabalyozok

Polusithelyezéses szabilyozds

Allapotbees3 tervezése folytonos idejis LTI rendszerckhez. szepardcios clv
Linedris kvadratikus szabilyozds (LQR)

Folytonos idejii rendszerck mintavételezése és diszkretizaldsa. diszkeét idejis
rendszerek leirdsa (allapottér-modell, impulzusarviteli operdtor).

diszkeét idejis irdnyithatésag és megfigyelhetdsé
Diszhrét idej rendszerek stabilitdsa: diszksét idejfs llapotegyenlet
‘megoldasainak stabilitdsa, diszkrét idejit LTI rendszerck aszimptotikus stabilitésa.,
Liapunov tétel diszkrét idejt linedris rendszerekhez

Diszkeét idejit LTI sztochasztikus rendszermodellek (sztochasztikus folyamatok.
fehér zaj. AR. MA. ARMAX folyamatok. IO modell. allapottér-modsll, az
allapotegyenlet megoldisa)
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Folytonos idejű lineáris időinvariáns rendszerek különböző leírási módjai

(magasabbrendű lineáris differenciálegyenletek, átviteli függvény, súlyfüggvény,

állapottér-modell)
Szabályozás: 
obj viselkedésének befolyásolása egy kívánt cél elérés érdekében; pl: műszaki(termosztát, repülő fel/le, mosógép, ABS, ESP, CPU órajel, vent), közg(bankrendszer, törv, média), term(testhőm, hormon, járás); 
- jel: időtől, tértől v más fglen változótól függő mennyiség, 
-- csoportosítás: fglen, függő változó dimenziója, valós v komplex, folyt v  diszkrét, korl v nem korl, per v aper, p v ptlan; 
- Dirac-delta=egységimp: Int(-Inf,Inf)[ f(t)dir(t)dt]= f(0), ahol f: R+0->R sima fv, 
-- köv: Int(-Inf,Inf)[1*dir(t)dt= 1, 
-- fizikai jelentése: áramimpulzus- töltés, hőmimp- en, erőimp- momentum; 
- egységugrás: n..éta n(t)= Int(-Inf,t)[ dir(τ)dτ], azaz n(t)= 0, ha t<0, 1, ha t>=0; 
- konv: x,y: R+0->R, (x*y)(t)= Int(0,t)[ x(τ)y(t-τ)dτ], minden t>=0-ra; 
- LT: R+0-> C, intható, L{f}(s)= Int(0,Inf)[ f(t)e-stdt]; 
- rendszer: olyan fizikai v log eszköz, amely jeleken végez vmely műveletet;;; 
[image: image2.png]—
bemenetek

RENDSZER
s

allapotok: X

y

Kimenetek





Rendszerek: S..rendszer, absztrakt operátor, u e U(írott)..be, y e Y(írott)..kimenetek: y=S[u];   tul: 
- lin: S[c1u1+c2u2]= c1y1+c2y2- szuperpozíció, ahol c1,c2 e R; 
- időinvariancia: eltolási és rendszerop komm, azaz Tτ ¤ S = S ¤ Tτ; 
- folyt v diszkrét idejű; SISO v MIMO; kauzális v nem; 
CT-LTI rendszermodellek: SISO rendszerek bement-kimenet(I/O) modelljei: 
- időtart: állandó eühatós lin diffegy, 
an*dny/dtn+ an-1*dn-1y/dtn-1+..+ a1*dy/dt = b0*u+ b1*du/dt+ bn*dmu/dtm, 
n+1 és m+1 dimenziós vektor- n kezdeti érték kell, és megoldható:
adott kezdeti felt-ekkel: y(0)= y0, dy/dt(0)= y10,.., dn-1y/dtn-1(0)= yn0; 
-- ált eset: anyn(t)+ an-1yn(t)+..+a0y(t)= bmum(t)+ bm-1um-1(t)+..+b0u(t);
-- mindkét oldalt LT: ansnY(s)+ an-1sn-1Y(s)+..+a0Y(s)= bmsmU(s)+bm-1um-1U(s)+..+b0U(s);
-- Y(s) (ansn+an-1sn-1+..+a0)= U(s) (bmsm+bm-1sm-1+..+b0); 

-- H(s)= Y(s) / U(s)= ansn+an-1sn-1+..+a0 / bmsm+bm-1sm-1+..+b0;
- operátortart: 
átviteli fv 0 kezdeti felt-ekkel, Y(s)= H(s)U(s), ahol: Y(s)..kimeneti jel LT-ja, U(s)..be LT-ja, H(s)=b(s)/a(s)..átviteli fv, ahol a(s) és b(s) polinomok, deg b(s)= m, deg a(s)= n; 
tul: strictly proper, ha m<n, proper, ha m=n, improper, ha m>n; 
- időtart: Y(s)= H(s)U(s) L-1( y(t)= (h * u)(t), azaz y(t)= Int(0,t)[h(t-τ)u(τ)dτ]= Int(0,t)[h(τ)u(t-τ)dτ], ahol: h(t)= L-1(H)(t)..impválaszfv(=súlyfv);
- spec eset: u(t)= dir(t);

-- h( * dir)(t)= Int(0,t)[dir(t-τ)h(τ)dτ]= h(t)
-- L(dir)(s)= 1, tehát Dirac bemenetre válasz
-- Y(s)= H(s)L(dir)= H(s)   L-1( y(t)= h(t);;
állapottér modell: 
- ált alak: állegy: x˙(t)= Ax(t)+Bu(t), kimeneti egy: y(t)= Cx(t)+ Du(t), 
adott: x(t0)= x(0) kezdeti felt és x(t) e Rn, y(t) e Rp, u(t) e Rr, 
rendszerparaméterek: A e Rnxn, B e Rnxr, C e Rpxn, D e Rpxr; 
-- egyértelműen megoldható: x(0)= x0 e Rn, 1.rendű közönséged DER-rel;
- állapot-transzformációk: xł..x felülvonás, x e X(írott)..állapottér;
-- T e Rnxn, det T/=0, xł= Tx( x= T-1xł ;

-- deriválás idő szerint: x˙ł= Tx˙= T(Ax+ Bu)= TAx+ TBu

-- x˙ł= TAT-1xł+ TBu, y= CT-1xł+ Du ( x˙ł(t)= Ałxł(t)+ Bł(t), y(t)= Cłxł(t)+ Dłu(t), tehát:

-- Ał= TAT-1, Bł= TB, Cł= CT-1, Dł= D; lin transzformáció után ugyanolyan formájú állegy- invariáns;
számolások: 
- átviteli fv kiszámítása: x(0)=0; 

állapottér modell LT-ja: sX(s)= AX(s)+ BU(s), Y(s)= CX(s)+ DU(s)( 
X(s)= (sI-A)-1BU(s), Y(s)= [C(sI-A)-1B+ D]U(s); tehát: H(s)= C(sI-A)-1B+ D;
- állapotegy mo: LDE analitikus formában:

-- def: exp(z)= Sum(n=0, Inf) [zn/ n!]; exp mátrixfv: exp(At)= eAt= Sum(n=0,Inf) [(At)n/ n!]= I+ At+ A2t2/ 2!+… kiszámolása: véges tagok sorozata ill rezolvens inverz LT-ja; 
-- (sI-A)-1= s-1(I- A/s)-1, sorbafejtjük, tudjuk:
--- Taf(x)= Sum(n=0,Inf) [f(n)(a) (x-a)n/ n!];  f(x)= (1-x)-1 0 körüli Taylor-sora: T0f(x)= 1 x0/ 0! + 1 x1/ 1! + 2! x2 / 2!...= 1+ x+ x2…;
--- x= A/s, ekkor: (I- A/s)-1= I+ A/s+ A2/ s2…;

-- tehát: (sI-A)-1= s-1(I- A/s)-1= I/s+ A/ s2+ A2/ s3; 

-- LT tul: L(1)(s)= 1; L(t)(s)= 1/s2; L(tn-1/ (n-1)!)= 1/ sn;

-- L-1((sI-A)-1)(t)= I+ At+ A2t2/ 2!+ A3t3/ 3!+…= eAt;
-- következőt kapjuk: x˙(t)= Ax(t)+Bu(t), x(t0)= x0  LT( sX(s)-x0= AX(s)+ BU(s)( 
(sI-A)X(s)= x0+ BU(s)( X(s)= (sI-A)-1x0+ (sI-A)-1BU(s) LT-1( 
x(t)= eAtx0+ Int(0,t) [eA(t-τ)Bu(τ)dτ], y(t)= Cx(t)+ Du(t)… lin rendszer időtartománybeli megoldása; 

-- SISO, D=0 és u(t)=dir(t) és x0=0 esetén:  x(t)= eAtB;  y(t)= Cx(t)(
y(t)=h(t)= CeAtB= CB+ CAB*t+ CA2B* t2/2!+…;;  
- Markov paraméterek: CAiB, i=0,1,2.. invariáns álltr-ra;;; 
Folytonos idejű lineáris időinvariáns rendszerek irányíthatósága és megfigyelhetősége
- ált alak: állegy: x˙(t)= Ax(t)+Bu(t), kimeneti egy: y(t)= Cx(t)+ Du(t); D=0;
Dinamikus rendszertulajdonságok: megfigyelhetőség, irányíthatóság, stabilitás;
megfigyelhetőség: 
- adott: álltér modell(A,B,C), u és y jelek véges időint-on mért értékei;

- kiszámítandó: álltváltozó vektor (x) értékei, elég: x(t0)= x0-t kiszámolni;

- megfigy mátrix: On= [C CA .. CAn-1]T,  szükséges és elégséges felt: megfigy( On megfigy mátrix teljes rangú;

- Biz: konstruktív; y= Cx; y˙= Cx˙= CAx+ CBu; 

-- y¨= Cx¨= CAx˙+ CBu˙= CA(Ax+ Bu)+ CBu˙= CA2x+ CABu+ CBu˙;
-- y(3)= Cx(3)= CA2(Ax+ Bu)+ CABu˙+ CBu¨= CA3x+ CA2Bu+ CABu˙+ CBu¨;
-- y(n-1)= Cx(n-1)= CAn-1x+ CAn-2Bu+..+CAB(n-3)+ CBu(n-2); 

-- mátrixba rendezve: [y y˙ y¨ y(3) … y(n-1)]T = [C CA CA2 … CAn-1]T x + [0 0 … 0; CB 0 … 0; CAB CB 0 … 0; … ; CAn-2B CAn-3B .. CB 0] [u u˙ u¨ … u(n-1)]T ; 

-- egyszerűsített jelöléssel: Y˙(t)= Onx(t)+ MU˙(t), ahol: M..Markov paraméterek szerepelnek benne; 
-- nulla kezdeti érték feltétellel: U˙=0, ha t=0-; ekkor: Y˙(0-)= Onx(0-);  (ha létezik O inverze!)
-- a kérdéses x(0-) egyértelműen meghatározható, ha On rangja= n; 
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- geom ért: nem megfigyelhetőség altere: azon kezdeti értékek halmaza, amelyek a rendszer kimenetének ismeretében nem különíthetőek el egymástól, azaz álltér modellt a nem megfigy altér kül pontjaiból indítva ua kimeneti fv-t kapjuk, bázis: ker(On) ;
irányíthatóság: 
- adott álltér(A,B,C), kezdeti x(t1) és végállapot x(t2)/=x(t1);

- kiszámítandó: u bemenő jel, amely rendszer áll-t x(t1)-ből x(t2)-be juttatja véges idő alatt;

- irhatósági mátrix: Cn= [B AB A2B .. An-1B], szüks és elégs: ir( Cn teljes rangú;

- Biz: konstruktív; Dirac-delta: Int(-Inf,Inf) [f(t)dir(t)dt]= f(0);

-- Int(-Inf,Inf) [f(t)dir’(t)dt]= [f(t)dir(t)](-Inf,Inf) - Int(-Inf,Inf) [f’(t)dir(t)dt]= (-1)f’(0);
-- Int(-Inf,Inf) [f(t)dir”(t)dt]= [f(t)dir’(t)dt](-Inf,Inf) - Int(-Inf,Inf) [f’(t)dir’(t)dt]=(-1)(1-)f”(0);
-- Int(-Inf,Inf) [f(t)dirn(t)dt]= (-1)n fn(0);
-- f(t)= eAt= I+ At+ A2t2/ 2!+…

-- f’(t)= A+ A2t+…= A(I+ At+ A2t2/ 2!+…)= AeAt;

-- fn(t)= AneAt; 

-- g(t)= e-At;

-- g’(t)= -Ae-At;

-- g”(t)= A2eAt;

-- g(n)(t)= (-1)nAne-At;

-- bemenet: dirac-delta és deriváltjainak lin komb: u(t)= g1dir(t)+ g2dir˙(t)+..+gndir(n-1)(t);

-- x(t)= eAtx(t0)+ Int(t0,t) [eA(t-τ)Bu(τ)dτ]; 
-- x(0+)= eA(0+)x(0-)+ Int(0-,0+) [eA(0+)e-AτBu(τ)dτ];

--- Int(0-,0+) [e-AτB dir(i)(τ)dτ]= (-1)n(-1)nAi I B= AiB, így:

-- x(0+)= Ix(0-)+ g1B+ g2AB+ ..+gnAn-1B.. szuperpozíció tétele alapján; 
-- mátrixokra bontva: x(0+)= x(0-)+ [B AB A2B … An-1B] [g1 g2 … gn]T; 
-- egyszerűsített jelöléssel: x(0+)= Cn G; tfh x(0-)=0;    (ha létezik C inverze, akkor irható!!)
-- tetsz végállapothoz akkor találunk egyértelmű bemeneti súlyozás(gi), ha Cn-1 rangja= n; 
- geom: irányíthatóság altere: azon állapotok halmaza, amelyek véges időn belül elérhetőek az állapottér origójából valamely u bemenet hatására, azaz álltér állváltozóit origóból indítva semmilyen bemenettel nem tudjuk kivinni irhatósági altérből, bázisa: im(Cn); 
diagonális realizáció: 
x˙(t)= Ax(t)+Bu(t),  y(t)= Cx(t), ahol: x˙= [ λ1 . . 0; . . ; 0 . . λn]x + [b1 . . bn]Tu, y= [c1 . . cn]x; - irhatóság: Cn= [B AB .. An-1B]= [b1 λ1b1 λ12b1 …; …; bn λnbn λn2bn …]= [b1 . . 0; . . ; 0 . . bn] [1 λ1 . . λ1n-1; . .; 1  λn λnn-1], ez mátrix Vandermonde, akkor nem szinguláris, ha λi/= λj (i/=j), rank Cn=n ( det Cn/=0 és bi/=0; det Cn= Πi bi Πi<j (λi-λj); 
átviteli fv: H(s)= C(sI-A)-1B= Sum(i=1,n) [cibi / s-λi]= b(s) / a(s);;; 
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Folytonos idejű lineáris időinvariáns rendszerek együttes irányíthatósága és megfigyelhetősége
definíciók: 
- n-ed rendű realizáció: egy H(s)= b(s)/a(s) SISO n-ed rendű realizációja az (A,B,C,D) álltér modell, ha H(s)= C(sI-A)-1B+ D, ahol A e Rnxn, B e Rnx1, C e R1xn, D e R; (nem egyértelmű, hanem végtelen sok van!);
- minimális realizáció: ha nem létezik nála kisebb rendű; 
- együttesen ir és megfigy állapottér-modell: ha teljesülnek rá ir és megfigy feltételei, azaz On és Cn teljes rangú; 
- átviteli fv: invariáns álltr-ra; 

-- Biz: H(s)= C(sI-A)-1B; Ał= TAT-1, Bł= TB, Cł= CT-1, Dł= D;
-- Hł(s)= Cł(sI-Ał)-1Bł= Cł(1/s (I-Ał/s))-1Bł= 1/s Cł(I+ Ał/s+ Ał2/s2)Bł= 
1/s CT-1(I+ TAT-1/s+ TAT-1TAT-1/s2+…)TB= 1/s C(I- A/s)-1B= C(sI-A)-1B;

-- átviteli fv nevezőjének gyökei az A mátrix SÉ-i;

-- egy H(s) bármely 2 n-ed rendű együttesen ir és megfigy (A1,B1,C1) ill (A2,B2,C2) realizációját invertálható T tr köti össze: T= O-1(C1,A1)O(C2,A2)= C(A1,B1)C-1(A2,B2); 
- mátrixpolinomok: p(x)= cnxn+ cn-1xn-1+..+c1x+ c0, ahol x e R;
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-- p(A)= cnAn+ cn-1An-1+..+ c1A+ c0I;  tul: 
-- kommutál a behelyettesített mátrix hatványaival: AiP(A)= P(A)Ai;

-- SÉ: λi[P(A)]= P(λi[A]);

-- Cayley-Hamilton T: minden nxn-es mátrix gyöke a saját kar polinomjának: p(x)=det(A-xI); 
áttekintés: SISO CT-LTI rendszer: együttes ir és megfigy rendszertul;

(A,B,C) együttesen ir és megfigy(1.lemma)  -> (2.lemma)  (1.T)<- H(s) nem egyszerűsíthető -> (2.T)   <- (A,B,C) minimális(3.lemma)  ->   (3.T) <- (A,B,C) együttesen ir és megfigy; 
- Hankel mátrix: H[1,n-1]= O(C,A)C(A,B); 

H[1,n-1]= [CB CAB . . CAn-1B; CAB CA2B . . CAnB; . . ; CAn-1B CAnB . . CA2n-2B],   Markov paramétereket tartalmaz (CAiB), melyek invariánsak álltr-ra;
-- ha együttesen ir és megfigy, akkor det H/=0;
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1.lemma: ha rendszer átviteli fv-e (H(s)) és ehhez található egy együttesen ir és megfigy n-ed rendű realizáció, akkor H-hoz tartozó valamennyi n-edrendű real is ir és megfigy; 
- Biz: O(C,A)= [C CA … CAn-1], C(A,B)= [B AB A2B … An-1B], H[1,n-1]= O(C,A)C(A,B);
- Controller form: x˙(t)= Acx(t)+ Bcu(t), y(t)= Ccx(t), ahol: 
Ac= [-a1 –a2 . . –an; 1 0 . . 0; . . ; 0 0 . . 1 0], Bc= [ 1 0 . . 0]T, Cc= [b1 b2 . . bn], Dc= D; 
- Observer form: x˙(t)= Aox(t)+ Bou(t), y(t)= Cox(t), ahol: 
Ao= [-a1 1 0 . . 0; -a2 0 1 0 . . 0; . . ; -an-1 0 . . 1; -an 0 . . 0], Bo= [ b1 b2 . . bn]T, Co= [1 0 . . 0], Do= D, az átviteli fv-ben szereplő polinomok eühatóival: 
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H(s)= b(s)/a(s)+ D, a(s)= sn+ a1sn-1+..+an-1s+ an és b(s)=  b1sn-1+..+ bn-1s+ bn; 
- relatív prím polinomok: a(s) és b(s) rel prímek, ha a(s)= Π(s-αi), b(s)= Π(s-βj) és αi/=βj bármely i,j-ra, azaz nincs közös tényezőjük; 
- nem egyszerűsíthető átviteli fv: ha a(s) és b(s) rel prímek; 
2.lemma: ha controller form együttesen ir és megfigy, akkor a(s) és b(s) rel prímek (H(s) nem egyszerűsíthető);
Biz:  ei= [0 0 1 0 … 0]T .. i. sorban van 1-es;
- controller form irható és Oc= I~nb(Ac), ahol: 
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-- I~n= [0 … 1; 0 … 1 0; …; 1 0 … 0]= [en en-1…e1]= [enT en-1T…e1T]T; e Rnxn, azaz mellékátlója csupa 1-es; 
-- b(Ac)= b1Acn-1+ b2Acn-2+..+bn-1Ac+ bnI.. átviteli fv számlálója a controller form realizációja; 
-- Ac= [-a1 –a2 . . –an; 1 0 . . 0; . . ; 0 0 . . 1 0];
-- eiTAc= |-a1 –a2 … -an|, ha i=1, ei-1T, ha i>=2; 
-- megfigy mátrix kiszámítása:

--- 1.sor: enTb(Ac)= enTb1Acn-1+ enTb2Acn-2+..+enTbn-1Ac+ enTbnIn; ebből:
---- n. kifejezés: enTbnIn= [0 …0 bn];

---- n-1. kifejezés: enTbn-1Ac= bn-1en-1T= [0 … bn-1 0]; 

---- n-2. kifejezés: enTbn-2Ac2= bn-2enTAcAc= bn-1en-1TAc= bn-1en-2T= [0… bn-2 0 0]

--- így: 1.sor: enTb(Ac)= [b1 … bn-2 bn-1 bn]= Cc.. kontroller form realizáció C mátrixa;
--- 2.sor: en-1Tb(Ac)= enTAcb(Ac)= enTb(Ac)Ac= CcAc;

--- 3.sor: en-2Tb(Ac)= enTb(Ac)AcAc= CcAc2;
- Oc nemszinguláris:
-- pontosan akkor, ha b(Ac), mivel I~n biztosan nemszinguláris;

-- b(Ac) pontosan akkor nemszinguláris, ha det(b(Ac))/=0, ez pedig b(Ac) SÉ-itől függ;

-- b(Ac) mátrix SÉ-i: b(λi), i=1,2,…,n; 
-- λi  az Ac SÉ, azaz a(s)= det(sI-A) gyöke, így: det(b(Ac))= Π(i=1,n) [b(λi)] /=0; 
-- a(s)-nek és b(s)-nek nincs közös gyöke, azaz relatív prímek;
1.Tétel: H(s)= b(s)/a(s) nem egyszerűsíthető, ha n-ed rendű realizációi együttesen ir és megfigy;
Biz: 1. és 2. lemma;
 2.Tétel: H(s)= b(s)/a(s) nem egyszerűsíthető, ha bármely (A,B,C) realizációja minimális, ahol H(s)= C(sI-A)-1B; 
Biz: indirekt; 
3.Tétel: (A,B,C) real min, ha együttesen ir és megfigy; 
Biz: 1. és 2. tételből;
3.lemma: bármely 2 min realizáció áttranszformálható egymásba egy egyértelmű invertálható hasonlósági transzformációval; 
Biz: T= O-1(C1,A1)O(C2,A2)= C(A1,B1)C-1(A2,B2) létezik és invertálható; 
dekompozíció: 
- nem irható rendszerek: 

tfh (A,B,C) nem ir, ekkor létezik olyan invertálható T tr, hogy a transzformált rendszer (xł=Tx) ilyen alakú: [ x1˙ł  x2˙ł ]T = [ Ac A12; 0 Acł] [x1ł x2ł]T + [Bc 0]T u, 
 y= [Cc Ccł] [x1ł x2ł]T és H(s)= Cc(sI-Ac)-1Bc; 
- nem megfigy: 
tfh (A,B,C) nem megfigy, ekkor létezik olyan invertálható T tr, hogy a transzformált rendszer (xł=Tx) ilyen alakú: [ x1˙ł  x2˙ł ]T = [ Ao 0; A21 Aoł] [x1ł x2ł]T + [Bo Boł]T u,  
y= [Co 0] [x1ł x2ł]T és H(s)= Co(sI-Ao)-1Bo; 
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áltálános dekompozíciós Tétel: 
(A,B,C) real mindig áttranszformálható (Ał,Bł,Cł) alakba: xł= [xłco xłcoł xłcło xłcłoł]T; 
Ał= [Ałco 0 Ał13 0; Ał21 Ałcoł Ał23 Ał24; 0 0 Ałcło 0; 0 0 Ał43 Ałcłoł], 
Bł= [Błco Błcoł 0 0]T, Cł= [Cłco 0 Cłcło 0]; 
- a partícionálás alrendszereket definiál: ir és megfigy alrendszer (Ałco,Błco,Cłco) minimális, azaz nł<=n és H(s)= Cłco(sIł-Ałco)-1Błco = C(sI-A)-1B; 
- irható: [Ałco 0; Ał21 Ałcoł], [Błco Błcoł]T, [Cłco 0]; 
- megfigy: [Ałco Ał13; 0 Ałcło], [Błco 0]T, [Cłco Cłcło]; 
- nem megfigy és nem ir alrendszer: [Ałcłoł], [0], [0];;; 
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Folytonos idejű lineáris időinvariáns rendszerek stabilitása (stabilitás fogalma általános nemlineáris esetben, Ljapunov-függvény, Ljapunov-tétel, BIBO stabilitás, LTI rendszerek aszimptotikus stabilitása, Ljapunov-tétel LTI rendszerekre)
Bemeneti-kimenti stabilitás: 
- BIBO: korlátos bemenet – korlátos kimenet: 
|u(t)|<= M1< Inf ( |y(t)|<= M2< Inf, , minden t e [0,Inf[ ;
- Tétel: egy SISO LTI rendszer BIBO stabil pontosan akkor, ha Int(0,Inf)[ |h(t)|dt <=M< Inf, ahol M e R+ és h a rendszer súlyfv-e; 
- Biz: 
<= tfh Int(0,Inf) [h(t)dt] <= M< Inf és u korlátos, azaz |u(t)|<= M1< Inf, minden t e R0+-ra, ekkor: |y(t)|<= M1 Int(0,Inf) [|h(τ)|dτ <= M1M= M2;
=> indirekt: tfh Int(0,Inf) [h(τ)dτ]= Inf, de BIBO stabil; definiáljuk a következő korlátos bemenetet: u(t-τ)= sign h(τ)= 1, ha h(τ)>0, 0, ha h(τ)=0, -1, ha h(τ)<0; 
lim (t->Inf) [y(t)]= Int(0,Inf) [h(τ) u(t-τ) dτ], feltettük: Int(0,Inf) [h(τ)dτ]= Inf; találunk egy olyan bemenetet, amire kimenet nem korlátos, így nem BIBO stabil;
nemlin rendszerek stabilitása: rendszer: x˙= f(x), x e Rn,f:Rn(Rn, egyensúlyi pont: f(x*)=0; 
- stabil egyensúlyi pont: x*, ha bármely ε>0-hoz létezik olyan δ>0 (δ<ε), hogy ||x*-x(0)||< δ esetén ||x*-x(t)||< ε; 
- aszimptotikusan stabil egyensúlyi pont: ha x* stabil és lim(t->Inf) x(t)= x*; pl: 0-ra beáll; nem aszimpt: ha A nem teljes rangú, pl: oszcillál; 
- instabil: nem stabil; pl: elmegy végtelenbe;
- lokálisan (aszimpt) stabil: x*-nak van olyan U környezete, amelyen belül (aszimpt) stabilitás feltételei teljesülnek; 
- globálisan (aszimpt) stabil: U=Rn; 
Ljapunov stabilitási T: 
- Lj-fv: V: X(írott)->R (radiálisan nem korlátos); 
-- V>0, ha x/=x*, V(x*)=0, 
-- V legalább 1x folyt diffható, 
-- V nem növekvő, azaz d/dt V<=0; 
- Tétel: 
-- ha x˙=f(x), f(x*)=0 rendszerhez léteik Lj-fv, akkor x* stabil egy állapot, 
-- ha d/dt V<0, akkor x* aszimptotikusan stabil egy áll, 
-- ha Lj-fv tul csak egy U környezetében teljesül, akkor x* lokálisan (aszimpt) stabil egy áll; 
- pl: rendszer: x˙= -(x-1)3, egyensúlyi pont: x*=1; Lj-fv: V(x)= (x-1)2;
d/dt V= dV/dx x˙= 2(x-1)(-(x-1)3)= -2(x-1)4 <0, tehát globálisan aszimptotikusan stabil;

lin rendszerek stabilitása: lin rendszermodell (u=0): x˙=Ax, x(0)=x0, x e Rn, A e Rnxn, egyensúlyi pont: x*=0, 
- mo: x(t)= eAt*x0;   A diagonalizálható (azaz létezik olyan T invertálható transzformáció, hogy Ał=TAT-1 diagonális) pontosan akkor, ha A-nak n db LFG SV-a van;

- x˙ł=Ałxł, ahol: Ał=[λ1 0…0; 0 λ2…0; …; 0…0 λn]; eAłt=[eλ1t 0…0; 0 eλ2t…0; …; 0…0 e λnt];
- ha λ valós: eλt-> 0 ( λ<0; 

- ha λ komplex: eλt= e(a+bi)t= eat+ ebit= eat+ (cos(bt)+ isin(bt)), ahol (cos(bt)+ isin(bt))< |1|, tehát: eλt-> 0 ( a<0; 
- x(t)-> 0 ( xł(t)-> 0; 
stabilitási esetek:
- aszimpt stabilitás: A minden SÉ-nek valós része neg (A stabilitási mátrix); 
- nem aszimpt stabilitás: A-nak 0 és neg valós részű SÉ vannak, 0 SÉ-hez tartozó SV LFG; 
- polinomiális instabilitás: A-nak 0 és neg valós részű SÉ vannak, 0 SÉ-hez SV LÖF; 
- exponenciális instabilitás: A-nak van poz valós részű SÉ; 
Tétel: LTI rendszereknél, ha aszimpt, akkor következik, hogy BIBO stabil;
Biz: x(t)= eAtx(0)+ Int(0,t) [eA(t-τ)Bu(τ) dτ],  y(t)= Cx(t);  korlátos normájú bemenet( |u| < M); x(t)|<= | eAtx(0)+ M Int(0,t) [eA(t-τ)B dτ] |= | eAt(x(0)+ MA-1B)- MA-1B | csak véges értékű lehet;
Lj-tétel LTI rendszerekre: 
- szimm mátrix: Q e Rnxn, Q=QT, azaz [Q]ij=[Q]ji (minden SÉ valós);

- poz definit: Q>0, xTQx>0, minden x e Rn, x/=0 (minden SÉ poz); 
- neg def: Q<0, xTQx<0, minden x e Rn, x/=0 (minden SÉ neg);

- Lj-kritérium: egy lin rendszer állmátrixa (A) stabilitási mátrix pontosan akkor, ha bármely megadott Q poz def szimm mátrixhoz létezik egy P poz def szimm mátrix, hogy: 
ATP+ PA= -Q; 
- Biz: 

<= tfh minden Q>0-hoz létezik P>0, hogy ATP+ PA= -Q; 
-- legyen: V(x)= xTPx; tudjuk: x˙=Ax, x˙T= xTAT;
-- d/dt V= x˙TPx+ xTPx˙= xTATPx+ xTPAx= xT(ATP+PA)x <0.. kvadratikus alak, ahol. ATP+PA= -Q;
-- x=0 aszimpt stabil egyensúlyi állapot, ezért A stabilitási mátrix;

=> tfh A stabilitási mátrix, ekkor: P= Int(0,Inf) [eATtQeAt]; 

-- ATP+PA= Int(0,Inf) [ATeATtQeAt]+ Int(0,Inf) [eATtQeAtA]; parc int:
-- [eATtQeAt](t=0,Inf) - Int(0,Inf) [eATtQAeAt]+ Int(0,Inf) [eATtQAeAt]= 0Q0- IQI= -Q; 
átviteli fv-ek és stabilitás: 
SISO eset: H(s)= C(sI-A)-1B= b(s) / a(s)= bmsm+ bm-1sm-1+..+b1s+ b0 / sn+ an-1sn-1+..+ a1s+ a0= (s-β1)(s-β2)..(s-βm) / (s-λ1)(s-λ2)..(s-λn); β e C..zérusok, λ e C..pólusok (A SÉ-ei)

- aszimpt stabil ( Re(λi)<0;
 - pl: RLC kör stabilitása: [x1˙ x2˙]= [-R/L -1/L; 1/C 0] [x1 x2];  Lj-fv: V(x)= ½ (Lx12+ Cx22); d/dt V= dVdx x˙= ½ (x˙TPx+ xTPx˙)= -Rx12; 
Routh-féle stabilitási kritérium: 
a(s)= a0sn+ a1sn-1+..+ an-1s+ an; //keretben, nem mátrix// a0 a2 a4 . . ; a1 a3 a5 . .; (a1a2-a0a3)/a1 (a1a4-a0a5)/a1 (a1a6-a0a7)/a1 . .; . . ; an . . 
- Routh-féle próbaegyütthatók: R0= a0, R1= a1, R2= (a1a2-a0a3)/a1,.., Rn=an (1.oszlop elemei); 
- kritérium: előjelváltások száma a próbaegyütthatók oszlopában = poz valós részű instabil gyökök száma; stabilitás szüks és elégs felt: Ri>0, i=0..n; 
- stabilitás szükséges felt: valamennyi ai együttható poz legyen (ha 2-nél magasabb fokú polinomok esetén nem elégséges);

- ha tisztán képzetes gyök(ök), akkor próbaegyütthatók között 0(-k) lesz(nek);
- pl: a(s)= s3+ s2+ 3s+ 10;  R0= 1, R1= 1, R2= -7, R3= 10;  2 db poz valós részű gyök- instabil;
Hurwith-féle stabilitási kritérium: 
W= [a1 a3 a5 . . 0 0; a0 a2 a4 a6 . . 0; 0 a1 a3 a5 . .0; 0 a0 a2 a4 a6 . . 0; . .; 0 0 0 . . an-3 an-1 0; 0 0 0 . . an-4 an-2 an]; sarokdet(minor): H1, H2,..,Hn; 
- kritérium: stabilitás szüks és elégs felt: Hi>0, i=1..n; 
- ha sarokdet= 0, akkor képzetes gyök, ha sarokdet= neg, akkor poz valós részű gyök; 
összefüggés Routh és Hurwitz között: Ri= Hi / Hi-1, H0=1;; 
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Az átviteli függvények értelmezése a frekvenciatartományban (erősítés, fázis), Bode- és Nyquist diagramok, rendszerek soros és párhuzamos kapcsolása, általános negatív visszacsatolás, minimum fázisú rendszerek)
SISO rendszerek frtart-ban: 
[image: image17.png]


- pl: RLC-kör: x= [i uc]T, u=ube, y= x2;  A= [-R/L  -1/L; 1/C 0]; B= [1/l 0]T; C=[0 1];
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- FT: f: R0+->R, w..omega, 
F(jw)= Int(-Inf,Inf) [f(t)e-jwtdt];

- LT: F(s)= Int(0,Inf) [f(t)e-stdt] s e C; 
ha s imaginárius tengelyen van: s( jw;

- frekvenciaválaszfv: HF(w)= H(jw), ekkor HF a súlyfv (h) FT-ja, ugyanis: 
HF(w)= Int(0,Inf) [h(t)e-iwtdt]= Int(-Inf,Inf) [h(t)-iwtdt] (mivel kauzális, ezért előtte mindig 0) tehát HF a H képzetes tengelyre való leszűkítése; 
-- H értéke kiszámítható komplex számsík azon részén, ahol LT értelmezett, kihasználva, hogy átviteli fv analitikus(végtelenszer folyt diffható, bármely pont körüli Taylor sora= deriváltja); ha H minden pólusa neg félsíkon, akkor: 
H(s)= 1/ 2π * Int(-Inf,Inf) [(HF(w)/ s-iw)dw]; 
áttekintés: h..súlyfv(időtart) -> L  L-1 <- H..átviteli fv(operátortart) -> szűkítés Im tengelyre  analitikus kiterjesztés <- HF..frválasz-fv(frtart) -> F-1  F <- h..súlyfv; 
stabil LTI rendszer viselkedése periodikus bemenetre: 
- Tétel: legyen H(s) aszimpt stabil LTI rendszer átviteli fv-e és w>0, ekkor a rendszer 
u(t)= u0sin(wt) bementre adott válasza: y(t)= u0Re(HF(w))sin(wt)+ u0Im(HF(w))cos(wt);

-- kimenet is periodikus bemenettel megegyező periódussal(T= 2π/w); 
- átviteli fv: G(jw) u(t)= u0sin(wt+α), y(t)= y0sin(wt+β), Ł..szög;

- erősítés: k= |y0/u0|= |G(jw)|, fázis: Φ= β-α = ŁG(jw[rad]) – frfüggő! ; 
- pl: G(jw)= a+bj; |G(jw)|= gyök(a2+b2), ŁG(jw)= arctan(b/a);
erősítés idő és frtart-ban: u(t)= a0sin(wt), y(t)= a1sin(wt+Φ), 
U(s)= a0w / s2+w2, Y(s)= a1(s*sin(Φ)+w*cos(Φ)) / s2+w2, 
|G(jw)|= |Y(jw)|/|U(jw)| = |a1(jw*sin(Φ)+ w*cos(Φ)) / a0w| = |a1/a0|; 
ŁG(jw)= arctan(w*sin(Φ) / w*cos(Φ))= Φ; 
- erősítés dB-ben: A= |y0/u0|; Ad= 20*lg(A); Ad=1- nem erősít, nem gyengít;
- sávszélesség: fr, ahol |G(jw)| először lépi át felülről 1/gyök(2) ~ 3dB értéket;;
Bode diagram: függ tengely: erősítés [dB], fázis [deg]; vízsz tengely: frekvencia [rad/sec];

Nyquist diagram: valós és képzetes tengely; átviteli fv-t értékeli ki;
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- ált Nyquist felt: zárt szabályozási rendszer stablil, ha a nyitott kör W0(jw) teljes Nyquist diagramja óramutató járásával ellenkező irányban annyiszor fogja körül a komplex sík -1+0j pontját, ahány jobboldali(=labilis) pólusa van W0(s)-nek; 
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- soros kapcsolás: H(s)= H1(s)H2(s), azaz 
h(t)= (h1 * h2)(t); 
- párhuzamos kapcsolás: H(s)= H1(s)+H2(s), azaz h(t)= h1(t)+h2(t); 
- arányos neg visszacsat: G(s)= H(s)/ 1+kH(s);  

- Biz: Y(s)= H(s)U(s); U(s)= V(s)- kY(s); G(s)= Y(s)/V(s);
-- Y(s)= H(s)(V(s)-kY(s))= H(s)V(s)-kH(s)Y(s);
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-- Y(s)+ kH(s)Y(s)= H(s)V(s)( Y(s)(1+ kH(s))= H(s)V(s);

-- G(s)= Y(s)/V(s)= H(s)/ 1+ kH(s);
pl: H(s)= 1/ s-1, instabil; G(s)= 1/ s+k-1, stabil, ha k>1;
- nagy erősítésű kimenet-visszacsatolás: 
H(s)= b(s)/a(s); visszacsatolt rendszer átviteli fv-e:

G(s)= b(s)/ a(s)+kb(s)= n(s)/d(s), k->Inf esetén d(s)->b(s), azaz visszacsatolt rendszer pólusai az eredeti rendszer zérusaihoz tartanak; 
- minimum fázisú rendszerek: valamennyi zérusának valós része neg (nagy erősítésű kimenet-visszacsatolással stabilizálható);
- általános neg visszacsatolás: G(s)= H1(s)/ 1+H1(s)H2(s);;

SISO-rendszerek irányításának alapjai: általános irányítási cél, rendszerinvertálás (és problémái), a visszacsatolás fogalma és típusai, az integrátor szerepe a szabályozási körben, [image: image27.png]


PID-szabályozók
SISO rendszerek irányításának alapjai: 
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- cél: rendszer kimenete legyen azonos előírttal (referenciajel);  mo: alakítsuk rendszeroperátort identikus operátorrá; balinverz v jobbinverz;
- invertálási problémák: 
-- rendszer-op nem invertálható, 
-- rendszerop nem pontos(inv még bizonytalanabb), 

-- irányítandó rendszer instabil, 
-- inverz instabil, nem kauzális(nem számítható),
-- valóságban rendszer nem elszigetelt (külső zavarok); 
- állandósult állapotbeli erősítés beállítása:
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-- feltételezés: adott egy stabil SISO átviteli fv;
-- cél: a szabályozott rendszer aszimptotikusan kövesse a konstans referenciajelet (0 fr: 1 erősítés); ha |H(j0)|= k, akkor: Kc= 1/k;
visszacsatolás: érzékelés+ számítás+ beavatkozás; 
- miért alkalmazzuk? Gyakran instabil rendszerek stabilizálásának egyetlen módja, bizonytalan rendszermodellel is működőképes lehet, csökkenthető külső zavarok hatása; 
- típusai: 
-- kimenet-visszacsatolás: bemenet csak kimenetektől függ, u=F[y];

-- (teljes) állapot-visszacsatolás: bemenet rendszer állváltozóitól függ, u=F[x];

-- statikus visszacsatolás: F operátor stat, u=F(y), u=F(x); F..F függvény;
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-- dinamikus visszacsatolás: F op din (ha lin modell, akkor állapottér-modellel v átviteli fv-el megadható);

--  lineáris visszacsatolás: F op v F fv lin; 
- integrátor: H(s)= b(s)/a(s); 
G(s)= kIb(s)/ sa(s)+ kIb(s); |G(j0)|= 1;
[image: image31.png]B aB

e

b

boabi Al

b

¥



ha van szabályozási körben, akkor szabályozási kör állandósult állapotbeli erősítése 1;
 (felt: átviteli fv stabil)
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PID szabályozás: =Proportional Integral Derivate; 
- átviteli fv: KPID(s)= Kp[1+ 1/ Tis+ Tds]= Kp(TiTds2+ Tis+ 1) / Tis, ahol Kp..arányos erősítés, Ti..integálási, Td..deriválási időállandó; 
- hangolás: Ziegler-Nichols módszer: 
-- alkalmazzunk csak proporionális(=arányos) visszacsatolást, 
-- növeljük az arányos erősítést(Kp), amíg egységugrásra adott válasz csillapítatlan(sin-os) rezgés lesz(Kp*), 
-- mérjük meg rezgés periódusidejét(Tc); 
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- PID tervezési példa:
- SISO rendszerek szabályozásának minősítése:
-- emax: max túllendülés,

-- tmax: max túllendülés időpontja,

-- Tα: felfutási idő,

-- Tu késleltetési idő,

-- te: beállási idő (ekkortól ε sugarú környezetben),

-- tan: felépülési idő (referenciajel 100%-t ekkor éri el);

Pólusáthelyezéses szabályozás
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Pólusáthelyezés szabályozás: 
- adott SISO LTI rendszer(A,B,C) mátrixokkal (pólusok A-tól (a(s)-től) függnek);
- előírt(kívánt) pólusok, melyeket α(s) polinom határoz meg úgy, hogy deg a(s)= deg α(s)= n;

- kiszámítandó: egy teljes állapotvisszacsatolás úgy, hogy zárt rendszer pólusai éppen α(s) gyökei; 
-- részprobléma: olyan visszacsatolás, amely stabilizálja az eredetileg instabil rendszert;

zárt LTI rendszerek: u= -kx+v, ahol: k e Rrxm, ha x e Rn és u e Rr; ha SISO, akkor r=1;
SISO LTI rendszer mátrixai(A,B,C): x˙(t)= Ax(t)+ Bu(t), y(t)= Cx(t), 
y(t),u(t) e R, x(t) e Rn, A e Rnxn, B e Rnx1, C e R1xn; 
- stat lin teljes állvisszacsat: v= u+ kx,  (u= -kx+v), ahol: k= [k1 k2 .. kn], k e R1xn( 
zárt rendszer: x˙(t)= (A-Bk)x(t)+ Bv(t), y(t)= Cx(t), azaz A’=A-Bk, B’=B, C’=C; 
- Biz: x˙= Ax+ Bu= Ax+ B(-kx+v)= Ax- Bkx+ Bv= A(-Bk)x+ Bv;

- karakterisztikus polinomok: 
-- visszacsatolás nélküli (szabályozatlan) rendszer: a(s)= det(sI-A), 
-- visszacsatolt (szabályozott) rendszer: ac(s)= det(sI-A+Bk); 
Bass-Gura formula: 
- det [M1 M2; M3 M4] készámítása 2 ekvivalens módon:

det(M1)det(M4-M3M1-1M2)= det(M4)det(M1-M2M4-1M3); 

- alkalmazzuk: det [sI-A B; -k 1], és a következőt kapjuk:
det(sI-A)det(1+k(sI-A)-1B)= 1*det((sI-A)+B1-1k); 
Rezolvens formula: 
a(s)= sn+ a1sn-1+..+ an, (sI-A)-1= 1/a(s)*(sn-1I+ sn-2(A+a1I)+ sn-3(A2+a1A+a2I)+..); 
- Biz: (sI-A)(sI-A)-1= (sI-A) 1/a(s)*(sn-1I+ sn-2(A+a1I)+ sn-3(A2+a1A+a2I)+..)= 
1/a(s)*[snI- sn-1A+ sn-1A+ a1sn-1I- sn-2A2- sn-2a1A+…]= 1/a(s)*[snI+ a1sn-1I+…]= a(s)I/ a(s)= I;
Pólusáthelyezés: 
- det(sI-A)det(1+ k(sI-A)-1B)= 1*det((sI-A)-1+ B1-1k); k..sorvektor, B..oszlopvektor;
- a(s)(1+ k(sI-A)-1B)= det(sI-A+ Bk);
- a(s)(1+ k(sI-A)-1B)= α(s) ( α(s)-a(s)= a(s)k(sI-A)-1B;

- rezolvens formulával: α(s)-a(s)= a(s)k*[1/a(s)*(sn-1I+ sn-2(A+a1I)+ sn-3(A2+a1A+a2I)+..)]B;

- α(s)-a(s)= sn-1kIB+ sn-2(kAB+a1kIB)+ sn-3(kA2B+ka1AB+a2kIB)+..;
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-- polinom-egyenletek:
--- sn-1: α1-a1= kB;

--- sn-2: α2-a2= kAB+ a1kB= a1kB+ kAB;
--- sn-3: α3-a3= kA2B+ka1AB+a2kB= a2kB+ a1kAB+ kA2B;
-- egész vektort jelöli: //mindkettő vektor//  α-a = k[B AB A2B . . An-1B] [1 a1 a2 . . an-1; 0 1 a1 . . an-2; 0 0 1 . . an-3];

-- egyszerűsített jelöléssel: α-a= kCTlT, ahol T..Toeplitz mátrix, SÉ: 1-esek, det= 1;

-- ha S irható (ha (A,B) irható, akkor megoldható), akkor (α-a)(TlT)-1= kC( (α-a)Tl-TC-1= k;
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- pólusáthelyezés szabályozó Controller form esetén: 
- Controller form: 

x˙(t)= Acx(t)+ Bcu(t), y(t)= Ccx(t), ahol: 

Ac= [-a1 –a2 . . –an; 1 0 . . 0; . . ; 0 0 . . 1 0], Bc= [ 1 0 . . 0]T, Cc= [b1 b2 . . bn], Dc= D; 

az átviteli fv-ben szereplő polinomok eühatóival: 

H(s)= b(s)/a(s)+ D, a(s)= sn+ a1sn-1+..+an-1s+ an és b(s)=  b1sn-1+..+ bn-1s+ bn; 

- szabályozó: Ac- Bckc= [ -(a1+kc1) –(a2+kc2) … -(an+kcn); 1 0…0; …; 0 0 …1 0];
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-- zárt rendszer karakterisztikus polinomja:

- α(s)= det(sI- (Ac- Bckc))= sn+ (a1+kc1)sn-1+..+(an+kcn);
-- állapotvisszacsatolás kc együtthatói: kc= α-a //ezek megint vektorok//

- Ackerman formula: teljes állapotvisszacsatolás; K= CnC0-1φ(A), ahol: Cn..egységvektor, pl: [0 1], C0..irhatósági mátrix,  φ(A)= A2+ α1A+ α2I, ahol: (s-λ1)(s-λ2)= s2+ α1s+ α2  (λ1,λ2 a kívánt pólusok);
Állapotbecslő tervezése folytonos idejű LTI rendszerekhez, szeparációs elv
Állapotmegfigyelő tervezése: 
- ism: ha (A,B,C) álltér-modell megfigy, akkor bemenet (u) és kimenet (y) ismeretében kiszámítható rendszer kezdeti (és így minden további) állapota;

- probléma: bemenet és kimenet mérése nem pontos és kellenek kimenet 1.,2.,…,(n-1). deriváltjai, rendszermodell nem tökéletes;

- cél: olyan eszköz (állmegfigy) tervezése, amelyhez nincs szükség kimenet 0-nál magasabb fokú deriváltjaira és amelynek becslése aszimpt tart tényleges állvektor értékhez; 
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- algebrai alakja: 
-- álltér modell: x˙=Ax+Bu, y=Cx, ahol: x e Rn, u e Rp, y e Rr;
x^˙..kalap derivált, L e Rnxr;
-- állapotmegfigyelő alakja: x^˙= Ax^+Bu+L(y-Cx^), x^˙= (A-LC)x^+ [B L] [u y]T, 
-- becslési hiba: e= x-x^ és e˙= (A-LC)e;
-- Biz: e˙= x˙-x^˙= Ax+ Bu- Ax^- Bu- L(y-Cx^)= A(x-x^)- LC(x-x^)= Ae- LCe= (A- LC)e;

-- cél: lim (t->Inf) e(t)= 0;

-- stabil: ha Re[λi(A-LC)] <0;
- feladat: L-t meghatározni, hogy x^ aszimpt tartson valódi állapotváltozó fv-éhez, azaz 

x^(t)-> x(t);
- kiszámítása: 
-- pólusáthelyezésnél: Ac= A-Bk (adott: A,B, kiszámítandó: k, felt: (A,B) irható);
-- állapotmegfigyelő rendszermátrixa: Ao= A-LC (adott A,C, kiszámítandó: L), 
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-- mo: AoT= AT- (LC)T= AT-CTLT, tehát L a pólusáthelyezéses szabályozás számítási algoritmusával kiszámítható;
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-- felt: OnT= [CT ATCT…(An-1)TCT] teljes rangú, azaz rendszer megfigy; pl:RLC,állbecslő működése:
- probléma: nem tudunk mérni minden állapotot, pl: ha állapotbecslőt és szabályozót összekapcsoljuk (din-kimenetvisszacsatoláskor);
szeparációs elv: 

- stabilizáló állapotvisszacsatolásból és stabil állapotbecslőből álló zárt rendszer aszimpt stabil, ugyanis dinamikája: [x^˙ e˙]T= [A-Bk LC; 0 A-LC][x^ e]T= Ac [x e]T, azaz stabilizáló állvisszacsat (k) és stabil állbecslő (L) egymástól fglenül megtervezhető;
- Biz: szabályozandó rendszer: x˙=Ax+Bu; x^˙= Ax^+Bu+L(y-Cx^); visszacsat erősítés: k;
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-- u= -kx^; e= x-x^ ( x^= x-e;

-- x˙=Ax+Bu= Ax- Bkx^= Ax- Bk(x-e);

-- x˙= (A-Bk)x+ Bke;

-- e˙= (A-LC)e;
-- λi(Ac)= λj(A-Bk) u λk(A-LC), i=1,..,2n,  j,k= 1,..,n;
Lineáris kvadratikus szabályozás(LQR)
- adott: 

-- MIMO LTI álltér-modell: x˙(t)= Ax(t)+Bu(t), y(t)=Cx(t), x(0)=x0,

-- funkcionál (szabályozási cél): J(x,u)= ½*Int(0,T) [(xT(t)Qx(t)+uT(t)Ru(t))dt], ahol: 
QT=Q, Q>0 és PT=P, P>0;

- kiszámítandó: beavatkozás, (u(t), t e [0,T]), amellyel J min az álltér mo-i mentén; 
variációszámítás: 
- probléma: minimalizáljuk u-ra: J(x,u)= Int(0,T) [F(x,u,t)dt], F: RnxRpxR->R, felt:x˙=f(x,u,t);

- mo: időfüggő Lagrenge-multiplikátor(λ):  λ e R0+->R;
J(x,x˙,u)= Int(0,T) [(F(x,u,t)+λT(t)(f(x,u,t)-x˙))dt]; 
- Hamilton-fv: H= F+λTf, J= Int(0,T) [(H-λTx˙)dt]; 
-- x˙ parc int-al eliminálható: [λTx](0,T)= Int(0,T) [λ˙Tx]+ Int(0,T) [λTx˙];

-- ekkor: J= -[λTx](0,T)+ Int(0,T) [(H+λ˙Tx)dt];

- x és u variációja: t0 kezdeti és t1 kitüntetett időpont, fv: x(t), variáció: elérünk fv-től valamely irányba, de variált görbe értéke ua t0,t1-ben;
x(t)-> x(α,t)= x(t)+αη(t), u(t)-> u(β,t)= u(t)+βγ(t), ahol: α,β e R, η e R0+->Rn, γ e R0+->Rp;
- kritériumfv: I(α,β)= -[λT(t)x(α,t)](0,T)+ Int(0,T) [(H(x(α,t),u(β,t),t)+ λ˙T(t)x(α,t))dt];
- szélsőérték létezésének szükséges feltétele α,β függvényében: x-hez é su-hoz I szélsőértéke tartozik, ha  đI/đα= 0, đI/đβ= 0; 

-- đI/đα= Int(0,T) [(đH/đx+ λ˙T(t)) η(t)dt]= 0;

-- đI/đβ= Int(0,T) [(đH/đu) γ(t)dt]= 0;
- Euler-Lagrange egyenletek: đH/đx+λ˙T=0, đH/đu=0;

LTI rendszerekre:
 f= Ax+Bu, F=1/2(xTQx+uTRu), H=1/2(xTQx+uTRu)+λT(Ax+Bu);

- Euler-Lagrange-egyenletek: đ/đx(xTQx)= 2xTQ; đH/đx= xTQ+ λTA;
-- đH/đx+λ˙T= xTQ+ λTA+ λ˙T= 0, 
-- đH/đu= uTR+ λTB= 0;
-- megtranszponálva: 
--- λ˙+ ATλ+ Qx= 0( λ˙= -Qx- ATλ;
--- Ru+ BTλ= 0( u= -R-1BTλ;
-- állapotegyenlet: x˙(t)= Ax(t)+Bu(t), x(0)=x0;

--- x˙= Ax- BR-1BTλ, λ˙= -Qx- ATλ;
--- mátrixvektor alak: [x˙(t) λ˙(t)]= [A –BR-1BT; -Q –AT] [x(t) λ(t)],  x(0)= x0, λ(T)=0;
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λT(T)=0, uTR+λTB=0; 
Hammerstein féle társ-állapotváltozós leírás;
- Lemma: ha (A,B) irható és (C,A) megfigy, akkor λ(t)= K(t)x(t), ahol: K(t) e Rnxn;
- módosított állapot és társ-állapot-egyenletek:

-- λ˙= K˙x+ Kx˙= -Qx- ATKx;

-- u= -R-1BTKx;

-- x˙= Ax- BR-1BTKx;
-- K˙x+ K(A- BR-1BTK)x+ ATKx+ Qx= 0;  minden x(t)-re:

- mátrix Ricatti differenciálegyenlet K(t)-re:  K˙+ KA+ ATK- KBR-1BTK+ Q= 0;
stac eset: 
- felt: T->Inf, ekkor célfv: J= Int(0,Inf) [(xTQx+uTRu)dt];
- Lemma: lim(t->Inf) K(t)= K..konstans mátrix, köv: K˙= 0;
- CARE= Control Algebralic Ricatti Equation: KA+ ATK- KBR-1BTK+ Q= 0; ez optimális állapotvisszacsatolás;
Tétel: Kalman: ha (C,A) megfigy és (A,B) ir, akkor a CARE-nek egyértelmű poz def szimm mo-a van (K); 
- mo: lin stat teljes állvisszacsat: u0(t)= -R-1BTKx(t)= -Gx(t), ahol: G= R-1BTK; K e Rnxn, B e Rnxp, BT e Rpxn, R e Rpxp, G e Rpxn;
- zárt kör dinamikája: x˙= Ax- BR-1BTKx= (A- BG)x, x(0)=x0, 
- zárt kör tul: 

-- aszimpt stabil fglenül A,B,C,R,Q értékétől, azaz Re λi(A- BG) < 0, i=1,2,…,n;

-- pólusai Q,R-től függnek;;
[image: image45.png]Rendszer: RLC kor. A nyitott kor (u = 0V') valasza =(0) = [1 1] kezdeti
érték esetén. (Polusok: —5 -+ 8.6603:)




[image: image46.png]


[image: image47.png]


[image: image48.png]A szabalyoz dital generalt bemenet






Folytonos idejű rendszerek mintavételezése és diszkretizálása, diszkrét idejű rendszerek leírása (állapottér-modell, impulzusátviteli operátor)
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 DISZKRÉT:  Mintavételezés: 
- adott: x˙=Ax+Bu, y=Cx+Du; 
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-- u mintavételezése 0.rendű tartóval: u(τ)= u(tk), tk<= τ< tk+1,
-- ekvidisztáns (periodikus) mintavét: tk+1-tk= h= konst; 
- kiszámítandó: mintavételezett (diszkrét idejű) rendszer állapottér-modellje;

-- folyt idejű állegy: x(t)= eA(t-t0)x(t0)+ Int(t0,t) [eA(t-τ)Bu(τ)dτ]; 
-- diszkrét idejű: helyettesítés: t= tk+1, t0= tk;

--- x(tk+1)= eA(tk+1- tk)x(tk)+ Int(tk, tk+1) [eA(tk+1-τ)Bu(τ)dτ];

--- τ: [tk, tk+1], ezt szeretnénk: θ: [0,h], ezért θ= τ-tk (τ = θ+tk); h= tk+1-t0;
--- x(tk+1)= eA(h)x(tk)+ Int(0, h) [eA(h-θ)Bu(tk)dθ], mivel u(τ) konstans kezdőpontban felvett érték;
--- x(tk+1)= eA(h)x(tk)+ eAh Int(0, h) [e-Aθ]dθ Bu(tk);

---- ahol:  Int(0, h) [e-Aθ]dθ= [-A-1e-Aθ] (0,h)= -A-1e-Ah+ A-1I= A-1(I-e-Ah);

--- visszahelyettesítve: eAh A-1(I-e-Ah)= eAh (A-1- A-1e-Ah)= eAhA-1- eAhA-1e-Ah= mivel komm:
A-1eAh- A-1eAhe-Ah= A-1eAh-A-1I= A-1(eAh- I);
- tehát: x(tk+1)= eA(h)x(tk)+ A-1(eAh- I) Bu(tk)..diszkrét idejű állapotegyenletek;

- jelölés: x(k):= x(tk), u(k):= u(tk); Φ= eAh= I+Ah+…; Γ= A-1(eAh-I)B= (Ih+ Ah2/2!+..)B; 

- DT-LTI állegy mintavételezett rendszerekhez: 
-- állapotegyenlet: x(k+1)= Φx(k)+ Γu(k), 
-- kimeneti egyenlet: y(k)= Cx(k)+ Du(k), 
ahol: x(0) kezdeti felt, x(k) e Rn, y(k) e Rp, u(k) e Rr, Φ e Rnxn, Γ e Rnxr, C e Rpxn, D e Rpxr;
- állegy mo: 
-- x(0) ismert; x(1)= Φx(0)+ Γu(0);

-- x(2)= Φx(1)+ Γu(1)= Φ2x(0)+ ΦΓu(0)+ Γu(1);

-- x(3)= Φx(2)+ Γu(2)= Φ3x(0)+ Φ2Γu(0)+ ΦΓu(1)+ Γu(2);

-- ált mo: x(k)= Φx(k-1)+ Φ Γu(k-1)= Φkx(0)+ Sum(j=0,k-1) [Φk-j-1Γu(j)]; 
-- y(k)= Cx(k)= CΦkx(0)+ Sum(j=0,k-1) [CΦk-j-1Γu(j)];
DT-LTI I/O rendszermodell: 
- impulzusválasz fv: I/O modell SISO rendszerekhez: 

-- U(írott)= [u(0) u(1)…u(N-1)]T, Y(írott)= [y(0) y(1)…y(N-1)]T;
-- ált lin modell: Y(í)= HłU(í)+Yp, ahol: H e Rnxn, Yp tartalmazza kezdeti feltételeket;

- kauzális: Hł alsóhármoszög, y(k)= Sum(j=0,k) [hł(k,j)u(j)+yP(k)], ahol 
hł(k,j)=h(k-j)..impulzusválaszfv; 
- x(k)= Φx(k-1)+ Φ Γu(k-1)= Φkx(0)+ Sum(j=0,k-1) [Φk-j-1Γu(j)];

- y(k)= Cx(k)= CΦkx(0)+ Sum(j=0,k-1) [CΦk-j-1Γu(j)];

- súlyfv diszkrét idejű megfelelője: h(k)= 0, ha k<1, CΦk-1Γ, ha k>=1; 
- diszkrét idejű Markov-paraméterek: CΦk-1Γ; 
- diszkrét idejű jelek: f= {f(k), k=0,1..};

- skalár értékű diszkrét idejű jelek jelnormái: 
-- végtelen norma: ||f||Inf= sup(k) |f(k)|;

-- 2-es norma: ||f||22= Sum(k=-Inf,Inf) f2(k); 
eltolási operátor: 
- előre (q): qf(k)= f(k+1); qnf(k)= f(k+n);
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- hátra (q-1): q-1f(k)= f(k-1); 
- q operátor X vektortéren értelmezett ||.|| norma által indukált normája: ||q||= sup(||z||=1) [||q(x)|| / ||x||]; 
diszkrét differenciaegy modellek: 
- előre: y(k+na)+ a1y(k+na-1)+..+anay(k)= b0u(k+nb)+..+bnbu(k); na>= nb;
A(q)y(k)= B(q)u(k), ahol: A(q)= qna+ a1qna-1+..+ana és B(q)= b0qnb+ b1qnb-1+..+bnb;
- hátra: y(k)+ a1y(k-1)+..+anay(k-na)= b0u(k-d)+..+bnb(k-d-nb); d= na-nb> 0;
A*(q-1)y(k)= B*(q-1)u(k-d);
impulzusátviteli operátor: 
- DT-LTI állapottér modellből számolva: x(k+1)= Φx(k)+ Γu(k), y(k)= Cx(k)+ Du(k);

-- x(k+1)= qx(k)= Φx(k)+ Γu(k);

-- qIx(k)- Φx(k)= Γu(k);

-- x(k)= (qI- Φ)-1Γu(k);

-- y(k)= Cx(k)+ Du(k)= (C(qI- Φ)-1Γ+ D)u(k);
- (Φ,Γ,C,D) ÁTM-hez tartozó impulzusátviteli operátor (H(s)): H(q)= C(qI- Φ)-1Γ+ D.. átviteli fv diszkrét idejű megfelelője;
- ha SISO, akkor: H(q)= B(q)/A(q)= y(k)/u(k), ahol: deg B(q)< deg A(q)= n, ahol A(q) a Φ mátrix kar pol-ja;
- kapcsolat differenciaegyenletekkel: A(q)y(k)= B(q)u(k);

- pólusok: λi(Φ)= eλi(A)h; λi= a+bi; eλih= e(a+bi)h= eahebih;  stabil, ha <1, azaz beleképződik korlátos halmazba;
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Diszkrét idejű rendszerek stabilitása: diszkrét idejű állapotegyenlet megoldásainak stabilitása, diszkrét idejű LTI rendszerek aszimptotikus stabilitása, Ljapunov tétel diszkrét idejű lineáris rendszerekhez

diszkrét idejű stabilitás: 
bement nélküli állegy: x(k+1)= f(x(k),k), 
- 1.mo: x0(k),  x0(k0)-ra, 2.(perbutált) mo: x(k),  x(k0)-ra;  x0(k0)/=x(k0);   xł:= x-x0;
- mo stabilitása: x0(k) stabil, ha bármely ε>0-hoz létezik δ(ε,k0), hogy ||x(k0)-x0(k0)||< δ esetén ||x(k)-x0(k)||< ε bármely k>=k0-ra; 
- aszimpt stabilitás: x0(k) aszimpt st, ha stabil és ||x(k)-x0(k)||->0, ha k->Inf és ||x(k0)-x0(k0)|| elegendően kicsi; 
- BIBO stabilitás: ha ||u||<= M1< Inf ( ||y||<=M2< Inf, ahol: ||.|| megfelelő jelnorma; 
- állapotegyenlet: u(k)= 0, k=0,1,2…; 

-- 1.mo: x0(k), x0(0)=a0-ra;  perturbált mo: x(k), x(0)=a; x0(0)/=x(0); xł:= x-x0;
-- x(k+1)= Φx(k);  x0(k+1)= Φx0(k);

-- xł(k+1)= x(k+1)- x0(k+1)= Φx(k)- Φx0(k)= Φ(x(k)- x0(k))= Φxł(k); xł(0)= a- a0;
-- tehát: a stabilitás az LTI rendszerek rendszertulajdonsága;

-- bármely 2 mo különbsége megfelel az állapotegyenletnek;
- mo stabilitása: ha különbség véges értékhez v 0-hoz tart, így nem függ kezdeti értéktől, csak Φ mátrixtól; 

- bemenet nélküli állapotegyenlet megoldása: x(k+1)= Φx(k), x(0)= x0;

- x(k)= Φkx(0);

- diagonalizáljuk Φk mátrixot: SÉ: λi(Φk)= λi(Φ)k, így x(k)-> 0 ( |λi(Φ)|< 1;
- 1.Tétel: egy DT-LTI rendszer aszimpt stabil pontosan akkor, ha λi(Φ) egységkörön belül vannak;
- 2.Tétel: ha aszimpt st( BIBO stabil; 
- Lj-fv: x(k+1)= f(x(k)), f(0)=0, V(x) Lj-fv, ha 
-- V(x) folytonos x-ben, V(0)=0, V: Rn->R, 
-- V(x) poz def, 
-- ΔV(x)= V(f(x))- V(x) = V(x(k+1))- V(x(k)) neg def; 
- 3.Tétel: ha rendszerhez létezik Lj-fv, akkor x(k)=0, k=0,1,2.. megoldás aszimpt stabil; 
ha létezik továbbá φ fv, amelyre: 0< φ (||x||)< V(x), ahol: φ (||x||)-> Inf, amikor ||x||-> Inf, akkor mo bármely kezdeti értékekre aszimpt stabil;
- 4.Tétel: bemenet nélküli állegy: x(k+1)= Φx(k), Lj-fv: V(x)= xTPx, 
egy DT-LTI rendszer aszimpt stabil pontosan akkor, ha bármely poz def szimm Q mátrixhoz létezik P poz def szimm mo alábbi Lj-egyenletre: ΦTPΦ- P= -Q;
- Biz: ΔV(x)= V(x(k+1))- V(x(k))= xT(k)ΦTPΦx(k)- xT(k)Px(k)= xT(k) (ΦTPΦ- P) x(k)( ΦTPΦ- P= -Q < 0; így Lj csökkenő- stabil is;
Diszkrét idejű irányíthatóság és megfigyelhetőség
irányíthatóság: 
ha bármely kezdőáll-hoz létezik olyan bemeneti jelsorozat, amellyel x*=0 állapot véges idő alatt elérhető; nem következik elérhetőség!;
elérhetőség: 
ha egy tetsz x0 kezdő és tetsz x* végállapothoz létezik olyan bemeneti jelsorozat, amely a rendszert véges idő alatt kezdő->végáll-ba viszi; 
- DT állapottér-modell: x(n)= Φnx(0)+ Φn-1Γu(0)+..+ Γu(n-1), Φnx(0)=0-val;

- ha Φ invertálható (teljes rangú), akkor 2 tul ekvivalens; 

- szüks és elégs=5.Tétel: adott(Φ, Γ,C) és x(k+1)= Φx(k)+Γu(k), y(k)= Cx(k), x(0)=x0; elérhető, ha Wc= [Γ ΦΓ . . Φn-1Γ] diszkrét idejű irhatósági mátrix teljes rangú; 
- Biz: konstruktív;

-- x(n)= Φnx(0)+ Φn-1Γu(0)+..+ Γu(n-1);
-- adott: x(n), x(0), keressük: U(írott)= [u(n-1), u(n-2)…u(0)]T;

-- x(n)- Φnx(0)= [Γ ΦΓ…Φn-1Γ] U(írott)= Wc U(írott), ahol: Wc..irhatósági mátrix; 

-- U= Wc-1(x(n)- Φnx(0));

-- megfelelő U(írott) tervezhető, ha Wc teljes rangú;
megfigyelhetőség: 
ha van olyan véges k, hogy {u(0),..,u(k-1); y(0),..,y(k-1)} jelekből x(0) meghatározható; 
- szüks és elégs=6.Tétel: adott(Φ, Γ,C) és Φx(k)+Γu(k), y(k)= Cx(k);

megfigy, ha Wo= [C CΦ . . CΦn-1]T diszkrét idejű megfigyelhetőségi mátrix teljes rangú; 
- Biz:
-- tfh u(k)=0, k=0,1,…, ekkor: x(k+1)= Φx(k), y(k)= Cx(k);
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-- y(0)= Cx(0);

-- y(1)= Cx(1)= CΦx(0);

-- y(2)= Cx(2)= CΦ2x(0);

-- y(n-1)= Cx(n-1)= CΦn-1x(0);
-- mátrixba rendezve: 
[C CΦ…CΦn-1]Tx(0)= [y(0) y(1)…y(n-1)]= Wox(0)= Y(í), ahol: Wo..diszkrét idejű megfigyelhetőségi mátrix;
-- x(0)= Wo-1Y(írott);
Diszkrét idejű LQR szabályozó: 
- adott: diszkrét idejű determinisztikus álltér-modell: x(k+1)= Φx(k)+Γu(k);

- keressük: beavatkozó jelsorozatot (u), amely minimalizálja célfv-t: 
J(x,u)= Sum(k=1,Inf) [x(k)TQx(k)+u(k)TRu(k)], ahol: R=RT >0, Q=QT>= 0, 
- mo: opt visszacsatolás: lin teljes állvisszacsat (G): u(k)= -Gx(k), ahol: 
G= (ΓTSΓ+R)-1(ΓTSΦ), ahol S algebrai Ricatti-egy mo-a:

ΦTSΦ- S- (ΦTSΓ)( ΓTSΓ+ R)-1(ΓTSΦ)+ Q= 0;

Deadbeat szabályozás: 
nilpotens: ha valamely k>=1-re Ak=0; A nilpotens( A összes SÉ=0 ( A kar polinomja sn; 
- adott: diszkrét idejű 1 bemenetű álltér-modell: x(k+1)= Φx(k)+Γu(k) és lineárisan statikus teljes állvisszacsat: u(k)= -Gx(k);

- cél: G-t úgy megválasztani, hogy zárt rendszer rendszermátrixa Φ-ΓG nilpotens, ekkor: x(k)= (Φ-ΓG)kx(0)= 0, azaz zárt rendszer véges(k) időlépésben origóba jut; 
- mo: ha álltér-modell elérhető, akkor G pólusáthelyezéses szabályozással azonos módon megválasztható, hogy Φ-ΓG összes SÉ=0 legyen;;
Diszkrét idejű LTI sztochasztikus rendszermodellek 
sztoch foly: véletlenszerű zavarok leírására, valváltozók családja: x: T x Ω-> Rp, x(.,.), ahol T..időhalmaz (folyt idejű: T c R, diszkrét: T c N); 
- realizáció: x(.,w0) determinisztikus fv, ahol w0 rögzített; 
- rögzített idejű érték: x(t0,.) rögzített t0-lal egy valváltozó, 
-- jelölés: x(t,.)= x(t) az x sztoch foly által t rögzítésével generált valváltozó; 
- eloszlásfv: sztoch foly egyértelműen megadható valamennyi véges dim eloszlásfv-ével, F(ζ1.., ζn; t1,..,tn)= P(x(t1)<= ζ1,..,x(tn)<= ζn); 
- Gauss=normál folyamat: folyamat valamennyi véges dimenziós eloszlásfv-e normális; 
- várható érték fv: mx(t)= Ex(t)= Int(-Inf,Inf)[ yfx(y,t)dt], mx determinisztikus időfv; 
- kovarianciafv: rxx(s,t)= cov(x(s),x(t))= E( [x(s)-m(s)][x(t)-m(t)]T), determ 2vált fv; 
- stac sztoch foly: ha valamennyi x(t1),..,x(tn) véges dim eloszlásfv-e bármely τ esetén megegyezik x(t1+ τ),..,x(tn+ τ)-val;
-- gyengén stac: ha eloszlásfv első 2 momentuma bármely τ-ra megegyezik, azaz m(t)=0, rxx(s,t)= rxx(t-s); 
- Markov-folyamat: legyen ti e T olyan, hogy t1<..<tn<t, P(x(t)<= ζ | x(t1)=x1,..,x(tn)=xn) = P(x(t)<= ζ | t(tn)=xn);  Markov-folyamatokat egyértelműen meghatározza kezdeti és átmeneti eloszlásfv: f(ζ,t0)= P(x(t0)<= ζ) és F(ζt,t | ζs,s)= P(x(t)<= ζt | x(s)= ζs); 
- diszkrét idejű fehér zaj: e= {e(θ)}θ=-InfInf sztoch foly fehér zaj folyamat, ha azonos eloszlású, fglen valváltozók sorozata, tul: stac foly(ált: m(t)=0), kovfv: ree(t)= cov(e(s),e(s-t))= σ2, ha t=0, 0, ha t/=0, nem feltétlenül Gauss foly; 
- mozgóátlag(MA) folyamat: legyen e={e(k), k=…,-1,0,1,2,..} fehér zaj, ekkor: y={y(t)}t=-InfInf folyamatra igaz: y(k)= e(k)+ b1e(k-1)+..+bne(k-n)= B*(q-1)e(k), 
-- várható értéke: my(t)=0, ryy(0)= 1+ b12+..+bn2 , ryy(1)= b1+ b1b2+..+bn-1bn; 
- autoregresszív(AR): e={e(t)}t=-InfInf fehér zajjal így definiálható: y(k)+ a1y(k-1)+..+any(k-n)= A*(q-1)y(k)= e(k); 
- ARMAX: külső bemenettel rendelkező autoregressziós mozgóátlag folyamat, AR és MA linkomb, külső u={u(t)}t=-InfInf  jellel kiegészítve: A*(q-1)y(k)= B*(q-1)u(k)+ C*(q-1)e(k), ahol: A*(q-1)= 1+a1q-1+..+anq-n, B*(q-1)= b0+ b1q-1+..+bmq-m, C*(q-1)= c0+ c1q-1+..+cmq-m és m<n; 
ált reprezentációs tétel: minden véges 1 és 2. momentummal rendelkező x={x(t)}t=-InfInf sztoch foly felírható ARMA formában: A*(q-1)x(k)= B*(q-1)e(k), ahol e={e(t)}t=-InfInf fehér zaj és A*(z) stabil és B*(z) nem instabil polinom( minden stac diszkrét idejű sztoch foly tekinthető H(z)= B*(z)/ A*(z) impátviteli operátorral rendelkező, fehér zaj bemenetű LTI rendszer kimenete; 
diszkrét idejű LTI sztoch I/O modell(= DT-LTI I/O): SISO sztoch I/O modell ált alakja ARMAX foly: A(q)y(k)= B(q)u(k)+ C(q)e(k), ahol: A(q)= qn+a1qn-1+..+an; B(q)= b0qm+ b1qm-1+..+bm; C(q)= qn+ c1qn-1+..+cn stabil polinom; 
sztoch állapottér modell: x(k+1)= Фx(k)+ Гu(k)+ v(k),  y(k)= Cx(k)+ e(k), Ф e Rnxn, Г e Rnxr, C e Rpxn, fglen, diszkrét idejű, 0 várható értékű, normális fehér zaj folyamatokkal v={v(k)}k=-InfInf , e={e(k)}k=-InfInf ;;  E(v(k)vT(k))= R1, E(v(k)vT(j))= 0, minden k/=j, E(v(k)eT(j))= 0, minden k,j-re, E(e(k)eT(k))= R2, E(e(k)eT(j))= 0, minden k/=j, 
-- kezdeti felt: Ex(0)=m0, cov(x(0))= R0, paraméterek: Ф,Г,C; R1,R2;m0,R0; 
DT-LTI stoch differenciaegy: x(k+1)= Фx(k)+ v(k), ahol v={v(k)}k=0Inf diszkrét idejű fehér zaj és v(k) fglen x(k)-tól( megoldása: {x(k)}k=0Inf sztoch foly;
- állapotegyenlet megoldása: x(k+1)= Фx(k)+ v(k), várható érték fv: m(k+1)= Фm(k), m(0)= m0; kovfv: P(k)= cov[x(k),x(k)]= E{xł(k)xłT(k)}, xł(k)= x(k)- m(k); xł(k+1)xłT(k+1)= [Фxł(k)+ v(k)] [Фxł(k)+ v(k)]T= Фxł(k)xłT(k)ФT+ Фxł(k)vT(k)+ vT(k)xłT(k)ФT+ v(k)vT(k);  P(k+1)= ФP(k)ФT+ R1, P(0)= R0;
Kálmán-szűrő
DT sztochasztikus LTI rendszerek állapottér-modellje:
x(k+1)= Фx(k)+ Гu(k)+ v(k),  y(k)= Cx(k)+ e(k), Ф e Rnxn, Г e Rnxr, C e Rpxn, 
diszkrét idejű, 0 várható értékű, normális(Gauss-típusú) fehér zaj folyamatokkal v={v(k)}k=-InfInf , e={e(k)}k=-InfInf amelyek egymástól fglenek, azaz:

-- E(v(k)vT(k))= R1, E(v(k)vT(j))= 0, minden k/=j, 
-- E(v(k)eT(j))= 0, minden k,j-re, 
-- E(e(k)eT(k))= R2, E(e(k)eT(j))= 0, minden k/=j, 

-- kezdeti felt: Ex(0)=m0, cov(x(0))= R0, paraméterek: Ф,Г,C; R1,R2;m0,R0; 

Becslés, szűrés simítás: 
- adott: 
-- SISO rendszerből származó véges számú bemeneti és kimeneti értéket tartalmazó mérési rekord (diszkrét időpillanatokban) D(0,k)= {y(i),u(i) | i= 1,..,k},

-- diszkrét idejű sztochasztikus rendszer állapottér-modellje;

- becsülendő: állapotvektor (xł(k+m)) értéke mérési adatok alapján – ez lehet: m<0 (simítás=smoothing), m=0(szűrés=filtering), m>0 (becslés=predicition), 
Kálmán-szűrő: 
- adott: állapotbecslő köv alakban: xł(k+1)= Φxł(k)+ Γu(k)+ K(k)[y(k)-Cxł(k)], Exł(0)=m0 egy álltér-modellel adott diszkrét idejű SISO sztoch rendszer; 
- kiszámítandó: αTP(k+1)α skalárt minimalizáló K(k) mátrixot;
- becslési hiba: z(k)= x(k)- x(kł) valváltozó; 
-- z(k+1)= x(k+1)- xł(k+1)= Фx(k)+ Гu(k)+ v(k)- Φxł(k)- Γu(k)- K(k)[Cx(k)+ e(k)- Cxł(k)];
-- z(k+1)= Ф(x(k)- xł(k))+ v(k)- K(k)Cx(k)- K(k)e(k)+ K(k)Cxł(k);

-- z(k+1)= Фz(k)+ v(k)- K(k)Cz(k)- K(k)e(k);

-- z(k+1)= (Ф- K(k)C)z(k)+ v(k)- K(k)e(k);
- cél: z „kicsi” legyen kis szórással, E(z(k))= 0, 
-- E(z(k+1))= E((Ф- K(k)C)z(k))+ E(v(k))- E(K(k)e(k))= (Ф- K(k)C)E(z(k))+ 0+ 0= 0;
-- tehát: E(z(k)= 0, minden k>=0-ra, ezért Kalman-becslő statisztikai értelemben torzítatlan;

- becslési hiba kovfv-e: P(k)= E{ [z(k))][z(k)]T};
-- P(k+1)= E{ [z(k+1)][z(k+1)]T};

-- P(k+1)= E{ [(Ф- K(k)C)z(k)+ v(k)- K(k)e(k)] [(Ф- K(k)C)z(k)+ v(k)- K(k)e(k)]T};
-- P(k+1)= E{ (Ф- K(k)C)z(k)z(k)T(ФT- CTK(k)T)}+ E{ v(k)v(k)T}+ E{ K(k)e(k)e(k)TK(k)T}+ 0 (többi tag 0 lesz);
-- P(k+1)= (Ф- K(k)C) P(k) (ФT- CTK(k)T)+ R1+ K(k) R2 K(k)T; ha P(k) poz szemidef, akkor P(k+1) is poz szemidef;
-- P(k+1)= ФP(k)ФT- ФP(k)CTK(k)T- K(k)CP(k)ФT+ K(k)CP(k)CTK(k)T+ R1+ K(k)R2K(k)T;
- K(k)-tól függő rész:

-- W(k+1)= K(k) (CP(k)CT+ R2) K(k)T- ФP(k)CTK(k)T- K(k)CP(k)ФT;
-- ebből gyártunk kvadratikus alakot: α e Rn tetsz vektor; cél: mátrix-> skalár;
-- még mindig keressük: αTW(k+1)α skalárt minimalizáló K(k) mátrixot;

- αT (K(k)(CP(k)CT+ R2)K(k)T- ФP(k)CTK(k)T- K(k)CP(k)ФT) α= 

= αT K(k)(CP(k)CT+ R2)K(k)T α - αT ФP(k)CTK(k)T α - αT K(k)CP(k)ФT α;
- teljes négyzetté alakítjuk: 
-- ehhez minimalizáljuk következő skalár értékű fv-t: F(u)= uTSu+ rTu+ uTr (négyzetes tag+ lin tagok), ahol: S..poz def mátrix, u,r e Rn, S e Rnxn;
-- (u+ S-1r)T S (u+ S-1r)= uTSu+ uTSS-1r+ rTS-1Su+ rTS-1SS-1r= uTSu+ uTr+ rTu+ rTS-1r;
-- utolsó tag: rTS-1r u-tól nem függ, poz, így 2 kifejezés minimuma ugyanott lesz: 
u+ S-1r= 0( u= -S-1r;
- jelen esetben: S= CP(k)CT+ R2;  u= K(k)Tα; uT= αTK(k);  r= -CP(k)ФTα; rT= -CP(k)ФTα;
- tehát: αTP(k+1)α skalárt minimalizáló u (tetszőleges α mellett): 
- u= K(k)Tα= (CP(k)CT+ R2)-1(CP(k)ФTα)
- opt erősítés: K(k)= ΦP(k)CT(R2+CP(k)CT)-1..optimálisan szűri zajt;
- becslési hiba kovfv-e: P(k+1)= ΦP(k)ΦT+ R1- ΦP(k)CT(R2+CP(k)CT)-1CP(k)ΦT; 
- megj:
-- szűrő struktúrája csak Gauss-folyamatokra optimális;

-- K(k) és P(k) előre kiszámítható;

-- a szűrő nagyon érzékeny a feltételezésektől való eltérésre;
- alkalmazásai: radaros nyomkövetés, járművek poz és seb meghatározása, teljes állvisszacsat zajjal terhelt környezetben, közlekedési rendszerek nem mérhető jellemzőinek becslése;
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