Adatszerk. vizsga, 2. tétel 2014

Objektumorientalt programozas - osztalyok és objektumok

Az objektumok a modellezend6 valés vildg egy-egy 6nallé egységét jelolik, az objektumokat a szédmunkra
lényeges tulajdonsigok alapjan megkiilonboztetjiik. Uzeneteket kiildhetiink nekik, amikre valamilyen médon
reagalhatnak.

Az objektumokat osztalyokba soroljuk, ugy, hogy a hasonlé tulajdonsdgokkal rendelkez6 objektumok egy
osztalyba keriilnek, mig az eltéré tulajdonsagokkal rendelkezd objektumok kiilon osztalyokba keriilnek. Az
osztalyok az objektumok mintainak tekinthetok, hiszen hordozzdk az egyes objektumokra jellemzé tulaj-
donsagokat.

Objektum: belsé dllapota van, ebben informéciét tarol (adattagokkal valésitjuk meg). Az objektum metédusainak
hatdsara valtozhat meg bels6 allapota. Minden objektum egyértelmiien azonosithato.

Osztdly: az objektum mintdjanak tekinthetd, ez alapjan hozzuk létre az egyes példanyokat.

Objektum létrehozasa, inicializalasa

Az objektum életciklusa: megsziiletik, él, meghal. Az objektum inicializalasat a konstruktor végzi: adatok

kezdGértékadasa, objektum miikodéséhez sziikséges tevékenységek végrehajtasa, tipusinvaridns beallitdsa.

C++-ban a kovetkezd szabalyok érvényesek a konstruktorra: neve megegyezik az osztaly nevével, ha mar
megadtunk egy konstruktort, akkor a default konstruktor nem definialodik, a default konstruktor meghivja az
attributumok konstruktorat, de a beépitett tipusokat nem inicializalja, a konstruktornak nem lehet visszatérési
értéke.

Destruktorok C+--ban: explicite lehet hivni a delete operatorral, vagy implicit hivédik a blokkbdl vald
kilépéskor. Fontos: ha a konstruktorban dinamikusan lefoglalunk egy memériateriiletet (new), akkor a destruk-
torban ezt fel kell szabaditani (delete).

Példanyvaltozo, példanymetddus, osztalyvaltozo, osztalymetddus

Példanyvaltozé: példanyonként helyet foglalé véaltozo, az osztaly objektumainak allapotleirdja.
Példanymetdédus: példanyokon dolgozé metddus, az osztély objektumainak kiildhet6 iizenetek.
Osztalyvaltozé: osztalyonként helyet foglald valtozd, az osztdlynak, mint objektumnak az allapotleiréja.
Osztalymetodus: osztalyokon dolgozé metddus, az osztalynak, mint példanynak kiildhet6 lizenet.

éréklﬁdés, polimorfizmus, dinamikus Gsszekapcsolas (példakkal)

Oroklddés: Létrehozhatunk Os-osztéalyokat és utéd-osztdlyokat. Az Oroklés soran az utddok oroklik Gseik
metodusait és valtozdit: az Gsosztaly minden metddusa és adattagja a gyerekosztalynak is metédusa és adattagja
lesz. A leszdrmazott bevezethet 1j adattagokat és metédusokat, ezek egyszertien hozzdadddnak az 6rokolt
adattagokhoz és metddusokhoz. Az utdd ezen feliil feliildefinidlhatja az 6rokolt metddusokat, a hierarchidban
ezek feliildefinialjak az 6rokolt metddust.

Polimorfizmus: mas néven tobbalakisag azt jelenti, hogy egy bizonyos tipusként deklardlt véltozo a pro-
gram futdsa sordan maés tipusu valtozé értékét is felveheti. A statikus tipus az a tipus, a véltozé eredeti tipusa
(igy deklardltuk), mig a dinamikus tipus a véltozé éppen aktudlis tipusa (ez valtozhat a program futdsa soran.
C++-ban pl.: legyen az employee egy Gstipus, mig a manager ennek egy leszarmazott tipusa. Ekkor a kovetkez6
kéd értelmes és lefut:

Employeex empp=new Employee("Istvan", "Nagy", 5);
Manager* mp=new Manager("Laszlo", "Kovacs", 2, 3);
empp=mp;

Dinamikus 6sszekapcsolas: Run-time fogalom. Az a jelenség, hogy a véltozé éppen aktudlis értékének
megfelel§ metdédus implementacié hajtédik végre. Az el6zé példa alapjan, ha az empp.print() fliggvényt az
empp=mp értékadds el6tt hivjuk meg, akkor az Ostipus metédusa fog lezajlani, ha azonban az értékadas utan
futtatjuk le a empp.print () kdédrészletet, akkor mar a Manager osztaly print () fiiggvénye hivédik meg. C++-
ban a feltildefinidlhaté fliggvényeknél az Ostipusban a virtual kulesszét kell hasznélni.

Absztrakt osztaly, a tobbszoros oroklodés problémai, lehetséges megoldasai

Absztrakt osztaly: olyan osztdly, amely a tervezés eszkoze, nem hozhaté létre példanya, mivel a leszarmazott
teszi konkréttd. A metddusai kézott van olyan, amelynek csak specifikacidja van, torzse nincs. Absztrakt osztaly
az, amelyben van legaldbb egy pure virtual fiiggvény: virtual [fiiggvény szignatira]=0

A t6bbszorss 6roklédés problémai, megoldasai: A tobbszords 6roklodés azt jelenti, hogy egy tipusnak
akar tobb tipus is lehet az Ose, ekkor mindkét tipustdl 6rokli a tulajdonsdgokat. De a tobbszoros oroklédésnek
lehetnek problémai:

is_equilateral () { return false; }

is_equilateral () {
return true;

}

Quadrangle S E]

Parallelogram

A t6bbsz6rés
oroklédésnek lehetnek
problemail

is_equilateral?

Figure 1: A Shape &s nem egyenlé oldali, mig az Equilateral egyenld oldali. A Rhombus egyenldoldalii? Nem
egyértelmi!

class A{
nt a;
public: virtual void £ (); }:

7N

class B : public A { class C : public A{
public: void £ ():}: public: void £ ():}:

. ~
atdefinial | N yd [atdefinial |
class D : public B, public C {
)

Figure 2: Ha egy D-beli ’f’-re hivatkozunk, akkor az melyiket jelentse? Az ’a’ attribitum hény példanyban
jelenjen meg D-ben?

A maésodik abran lathaté esetben legtébbszor a kédot nem lehet leforditani, a fordité a kétértelmiiségre
(ambiguous) hivatkozva leall. Megolddsi varidcidk: az 6sosztdly mondja meg, hogy mit szeretne tenni ilyen

esetben, vagy a szarmaztatott osztdly mondja meg, hogy melyiket szeretné hasznalni. Pl.:

class D: public B, public C

{

public:
using C::f;

+s

Arra a problémaéra, hogy 'a’ attributum hényszor jelenjen meg D-ben, a kovetkez6 a megoldas: Az A osztaly B
és C virtudlis bézisosztédlya kell legyen, ekkor D a-t(minden adattagot) csak egyszer 6rokli.

