
Adatszerk. vizsga, 2. tétel 2014

Objektumorientált programozás - osztályok és objektumok

Az objektumok a modellezendő valós világ egy-egy önálló egységét jelölik, az objektumokat a számunkra

lényeges tulajdonságok alapján megkülönböztetjük. Üzeneteket küldhetünk nekik, amikre valamilyen módon
reagálhatnak.

Az objektumokat osztályokba soroljuk, úgy, hogy a hasonló tulajdonságokkal rendelkező objektumok egy
osztályba kerülnek, mı́g az eltérő tulajdonságokkal rendelkező objektumok külön osztályokba kerülnek. Az
osztályok az objektumok mintáinak tekinthetők, hiszen hordozzák az egyes objektumokra jellemző tulaj-
donságokat.

Objektum: belső állapota van, ebben információt tárol (adattagokkal valóśıtjuk meg). Az objektummetódusainak
hatására változhat meg belső állapota. Minden objektum egyértelműen azonośıtható.

Osztály: az objektum mintájának tekinthető, ez alapján hozzuk létre az egyes példányokat.

Objektum létrehozása, inicializálása

Az objektum életciklusa: megszületik, él, meghal. Az objektum inicializálását a konstruktor végzi: adatok
kezdőértékadása, objektum működéséhez szükséges tevékenységek végrehajtása, t́ıpusinvariáns beálĺıtása.

C++-ban a következő szabályok érvényesek a konstruktorra: neve megegyezik az osztály nevével, ha már
megadtunk egy konstruktort, akkor a default konstruktor nem definiálódik, a default konstruktor megh́ıvja az
attribútumok konstruktorát, de a beéṕıtett t́ıpusokat nem inicializálja, a konstruktornak nem lehet visszatérési
értéke.

Destruktorok C++-ban: explicite lehet h́ıvni a delete operátorral, vagy implicit h́ıvódik a blokkból való
kilépéskor. Fontos: ha a konstruktorban dinamikusan lefoglalunk egy memóriaterületet (new), akkor a destruk-
torban ezt fel kell szabad́ıtani (delete).

Példányváltozó, példánymetódus, osztályváltozó, osztálymetódus

Példányváltozó: példányonként helyet foglaló változó, az osztály objektumainak állapotléırója.
Példánymetódus: példányokon dolgozó metódus, az osztály objektumainak küldhető üzenetek.
Osztályváltozó: osztályonként helyet foglaló változó, az osztálynak, mint objektumnak az állapotléırója.
Osztálymetódus: osztályokon dolgozó metódus, az osztálynak, mint példánynak küldhető üzenet.

Öröklődés, polimorfizmus, dinamikus összekapcsolás (példákkal)

Öröklődés: Létrehozhatunk ős-osztályokat és utód-osztályokat. Az öröklés során az utódok öröklik őseik
metódusait és változóit: az ősosztály minden metódusa és adattagja a gyerekosztálynak is metódusa és adattagja
lesz. A leszármazott bevezethet új adattagokat és metódusokat, ezek egyszerűen hozzáadódnak az örökölt
adattagokhoz és metódusokhoz. Az utód ezen felül felüldefiniálhatja az örökölt metódusokat, a hierarchiában
ezek felüldefiniálják az örökölt metódust.

Polimorfizmus: más néven többalakúság azt jelenti, hogy egy bizonyos t́ıpusként deklarált változó a pro-
gram futása során más t́ıpusú változó értékét is felveheti. A statikus t́ıpus az a t́ıpus, a változó eredeti t́ıpusa
(́ıgy deklaráltuk), mı́g a dinamikus t́ıpus a változó éppen aktuális t́ıpusa (ez változhat a program futása során.
C++-ban pl.: legyen az employee egy őst́ıpus, mı́g a manager ennek egy leszármazott t́ıpusa. Ekkor a következő
kód értelmes és lefut:

Employee* empp=new Employee("Istvan", "Nagy", 5);

Manager* mp=new Manager("Laszlo", "Kovacs", 2, 3);

empp=mp;

1



Dinamikus összekapcsolás: Run-time fogalom. Az a jelenség, hogy a változó éppen aktuális értékének
megfelelő metódus implementáció hajtódik végre. Az előző példa alapján, ha az empp.print() függvényt az
empp=mp értékadás előtt h́ıvjuk meg, akkor az őst́ıpus metódusa fog lezajlani, ha azonban az értékadás után
futtatjuk le a empp.print() kódrészletet, akkor már a Manager osztály print() függvénye h́ıvódik meg. C++-
ban a felüldefiniálható függvényeknél az őst́ıpusban a virtual kulcsszót kell használni.

Absztrakt osztály, a többszörös öröklődés problémái, lehetséges megoldásai

Absztrakt osztály: olyan osztály, amely a tervezés eszköze, nem hozható létre példánya, mivel a leszármazott
teszi konkréttá. A metódusai között van olyan, amelynek csak specifikációja van, törzse nincs. Absztrakt osztály
az, amelyben van legalább egy pure virtual függvény: virtual [függvény szignatúra]=0

A többszörös öröklődés problémái, megoldásai: A többszörös öröklődés azt jelenti, hogy egy t́ıpusnak
akár több t́ıpus is lehet az őse, ekkor mindkét t́ıpustól örökli a tulajdonságokat. De a többszörös öröklődésnek
lehetnek problémái:

Figure 1: A Shape ős nem egyenlő oldalú, mı́g az Equilateral egyenlő oldalú. A Rhombus egyenlőoldalú? Nem
egyértelmű!

Figure 2: Ha egy D-beli ’f’-re hivatkozunk, akkor az melyiket jelentse? Az ’a’ attribútum hány példányban
jelenjen meg D-ben?

A második ábrán látható esetben legtöbbször a kódot nem lehet leford́ıtani, a ford́ıtó a kétértelműségre
(ambiguous) hivatkozva leáll. Megoldási variációk: az ősosztály mondja meg, hogy mit szeretne tenni ilyen

2



esetben, vagy a származtatott osztály mondja meg, hogy melyiket szeretné használni. Pl.:

class D: public B, public C

{
public:

using C::f;

};

Arra a problémára, hogy ’a’ attribútum hányszor jelenjen meg D-ben, a következő a megoldás: Az A osztály B
és C virtuális bázisosztálya kell legyen, ekkor D a-t(minden adattagot) csak egyszer örökli.

3


