
7. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Kupac (heap)
Majdnem teljes fák
Teljes bináris fa

Egy bináris fa teljes, ha

• magassága h és

• 2h+1 − 1 csomópontja van.

Majdnem teljes bináris fa

Egy h magasságú bináris fa akkor és csak akkor majdnem teljes, ha

• üres, vagy

• magassága h és

– bal részfája h− 1 magas és majdnem teljes
– jobb részfája h− 2 magas és teljes

• magassága h és

– bal részfája h− 1 magas és teljes
– jobb részfája h− 1 magas és majdnem teljes

1



Definíció !!
Egy majdnem teljes fa heap tulajdonságú ⇐⇒

• üres, vagy

• a gyökérben lévő kulcs nagyobb, mint mindkét gyerekében, és mindkét
részfája is heap tulajdonságú

Prioritásos sorok megvalósítására használjuk.

Reprezentáció

Dinamikusan allokált csomópontok és mutatók mint bármilyen más láncolt lista
vagy fa.

Használjunk egy tömböt és használjuk ki a “majdnem teljes” tulajdonságot.

• a k csomópont gyerekei a 2k, 2k + 1-nél vannak

• a k szülője a k/2-nél van

• ha k > n, akkor a csomópont nem létezik

Műveletek
Létrehozás

Empty: → K - az üres kupac létrehozása.

2



Üres-e a kupac?

Isempty: K → L

return (Aktmeret = 0)

Beszúrás !!

Insert: K ×N → K elem betétele a kupacba.
Menete: Adjunk egy elemet a kupachoz. Helyezzük a következő üres pozíci-

óra a jobb szélén – Ez kell legyen a következő kitöltendő hely.
Utána vigyük felfelé, amíg nagyobb, mint a szülei.

Struktogram: !!

Maximuális elem lekérdezése

Max: K → E

Maximális elem kivétele a kupacból

Delmax: K → K ×N

3



Törlés menete. Törlés esetén mindig helyre kell állítani a heap tulajdonságot.
A lépések:

• kiszedjük a gyökér elemet.

• a következő legnagyobb elemet felvisszük a gyökérbe.

• Ekkor hibás lehet a heap tulajdonság. Ilyenkor a gyökér és gyerekeit vizs-
gáljuk, ha az egyik gyerek nagyobb mint a gyökér, csere a gyökérrel, és ezt
rekurzívan, ameddig lehet és kell

Struktogram.

A maximális elem értékét a maxelem-ben kapjuk.
Sullyeszt: feltételezzük, hogy a kupacban két jó részfa van, de a T [1]-t meg-

felelően le kell süllyeszteni

4



Elsőbbségi / prioritásos sor
A sorban lévő elemeknek valamifajta rendezése is van. Ezek a prioritások. Úgy
kell rendezzük az elemeket, hogy a legnagyobb (legkisebb) prioritású elemet
töröljük először.

Fogalma. "sürgősségi osztály"

Vannak tennivalók, melyiket kell először elvégezni? Pl. operációs rendszer,
mely prioritásos feladatokat (job) dolgoz fel. Itt különböző további algoritmu-
sok, amelyek a prioritást meghatározzák egy-egy folyamat (job) számára. Vagy:
telekommunikációban a csomagok továbbításánál is használják.

ADT Axiomatikus leírás !!
E alaptípus feletti P elsőbbségi sor típus jellemzése:

Egyszerűsítés: csak prioritásokat teszünk bele (N).
Műveletek:

• empty: → P (az üres prior. sor konst.- létrehozás)

• isempty: P → L (üres a prior.sor?)

• insert: P ×N → P (elem betétele a prioritásos sorba)

• delmax: P → P ×N (maximális elem kivétele a pr. sorból)

• max: P → N (maximális elem lekérdezése)

Megszorítások: delMax és max értemezési tartománya: P \ {empty}

5



Axiómák:

1. isempty(empty) vagy: p=empty→isempty(p)

2. isempty(p) →p = empty

3. ¬ isempty(insert(p,n))

4. insert(delmax(p))=p

5. max(p)=delmax(p)2 (2: második komponens)

6. delmax(p)1 6= empty → max(p) ≥ max(delmax(p)1)

7. n ≥ max(p) → delmax(insert(p,n))1=p ∧ max(insert(p,n))=n

8. n < max(p) → max(insert(p,n)) = max(p)

9. delmax(insert(empty,n)) = (empty,n)

10. max(insert(empty,n)) = n

(7. és 8.-nál feltettük, hogy nem üres a prioritásos sor)

ADS reprezentáció
1. rendezetlen tömbbel, a beérkezési idő szerint→max műveletigénye mindig

egy maxker, vagyis θ(n)

2. rendezett tömbbel → insert műveletigénye:

• a hely megkeresése → logker θ(log2 n)
• tőle jobbra léptetés: θ(n)
• összesen: θ(n)

3. heap (kupac) adatszerkezettel – fentebb

ADS műveletek megvalósítása
Fentebb, a kupac leírásánál.

6


