7. tétel

Adatszerkezetek és algoritmusok vizsga

Frissilt: 2013. januar 28.

Kupac (heap)

Majdnem teljes fak

Teljes binaris fa

Egy binaris fa teljes, ha
e magassaga h és

e 21 _ 1 csomépontja van.

Majdnem teljes binaris fa

Egy h magassigt binaris fa akkor és csak akkor majdnem teljes, ha
e iires, vagy
e magassaga h és

— bal részfaja h — 1 magas és majdnem teljes

— jobb részfaja h — 2 magas és teljes

e magassiga h és

— bal részfaja h — 1 magas és teljes

— jobb részfija h — 1 magas és majdnem teljes

Definicié [!! |
Egy majdnem teljes fa heap tulajdonsigi <=

e iires, vagy

e a gyOkérben 1év6 kulcs nagyobb, mint mindkét gyerekében, és mindkét
részfaja is heap tulajdonsiga

s/ ‘\\P
ﬁ/ \H n/ \H
‘I\E c/ \4 I/\“|

Prioritasos sorok megvalésitasara hasznaljuk.

Reprezentacio

Dinamikusan allokalt csomépontok és mutaték mint barmilyen mas lancolt lista
vagy fa.

L w=3 o

—_— R H‘ -
.”t-*')"‘ée;\ T7a,
[1]2]3[a]5]sf7efo] | | |

T N R L F

-

fight 2pe7

Hasznaljunk egy tombot és hasznéljuk ki a “majdnem teljes” tulajdonsagot.
e a k csomépont gyerekei a 2k, 2k 4+ 1-nél vannak
e a k sziil6je a k/2-nél van

e ha k > n, akkor a csomépont nem létezik

Miveletek
Létrehozas

Empty: — K - az {ires kupac létrehozasa.

Maxmeret
'

[x[=] =] =[=] =] x[=]

Aktmeret Iﬂ Hely foglalasa

Aktmeret:=0

Ures-e a kupac?

Isempty: K — L
return (Aktmeret = 0)

Beszuras III

Insert: K x N — K elem betétele a kupacba.

Menete: Adjunk egy elemet a kupachoz. Helyezziik a kovetkez6 tires pozici-
ora a jobb szélén — Ez kell legyen a kévetkezo kitoltendo hely.

Utana vigytiik felfelé, amig nagyobb, mint a sziilei.

X
G/ \FI O/ﬁ
Aj \E Cj \A If \M i;/j

Struktogram: E

N Aktmeret # Maxmeret

Aktmeret :— Aktmeret+1;
T[Aktmeret] := yjelem;
Szulo := Aktmeret / 2;
Gyerek := Aktmeret;

Szulo >= 1 and then T[Szulo] < T[Gyerek]

Csere(T[Szulo], T.[Gyverek]);
Gyerek:= Szulo;
Szulo:= Szulo/2;

Maximualis elem lekérdezése

Max: K -+ F

N Aktmeret # 0 S

ot T e

Maximalis elem kivétele a kupacbdl

Delmax: K - K x N

Torlés menete. Torlés esetén mindig helyre kell allitani a heap tulajdonsagot.
A 1épések:

e kiszedjik a gyokér elemet.
e a kovetkezd legnagyobb elemet felvissziik a gyokérbe.

e Ekkor hibés lehet a heap tulajdonsag. Ilyenkor a gyokér és gyerekeit vizs-
galjuk, ha az egyik gyerek nagyobb mint a gyokér, csere a gyokérrel, és ezt
rekurzivan, ameddig lehet és kell

Struktogram.

Aktmeret # 0
maxelem:=T[1];
T[1]:=T[Aktmeret];

Aktmeret:=Aktmeret-1;

Sullyeszt;
return maxelem;

A maximélis elem értékét a mazelem-ben kapjuk.
Sullyeszt: feltételezziik, hogy a kupacban két j6 részfa van, de a T[1]-t meg-
felelen le kell siillyeszteni

ai=1; -- aktualis index

(ai * 2 +1) <= Aktineret and then T[ai] < Max(T[ai *2], T[ai *2+1])

T[ai*2+1] < T[ai*2]

Els6bbségi / prioritasos sor

A sorban 1év6 elemeknek valamifajta rendezése is van. Ezek a prioritasok. Ugy
kell rendezziik az elemeket, hogy a legnagyobb (legkisebb) prioritdst elemet
toroljik eldszor.

Fogalma. 'siirgGsségi osztaly"

© e o
R

Vannak tennivalok, melyiket kell elészor elvégezni? Pl. operaciés rendszer,
mely prioritdsos feladatokat (job) dolgoz fel. Itt kiilonb6zé tovabbi algoritmu-
sok, amelyek a prioritdst meghatdrozzak egy-egy folyamat (job) szdméra. Vagy:
telekommunikaciéban a csomagok tovabbitasanal is hasznaljak.

ADT Axiomatikus leiras IIl

E alaptipus feletti P elsGbbségi sor tipus jellemzése:
Egyszerlisités: csak prioritdsokat tesziink bele (V).
Miiveletek:

e empty: — P (az iires prior. sor konst.- 1étrehozds)

e isempty: P — L (lires a prior.sor?)

e insert: P x N — P (elem betétele a prioritdsos sorba)

e delmax: P — P x N (maximalis elem kivétele a pr. sorbol)

e max: P — N (maximalis elem lekérdezése)

Megszoritasok: delMax és max értemezési tartomanya: P\ {empty}

Axiémaék:

=~ W =

ot

© »®» 3N @

10.

isempty (empty) vagy: p=empty—isempty(p)

isempty(p) —p = empty

— isempty (insert(p,n))

insert(delmax(p))=p

max(p)=delmax(p)s (2: méasodik komponens)

delmax(p); # empty — max(p) > max(delmax(p);)

n > max(p) — delmax(insert(p,n));=p A max(insert(p,n))=n
n < max(p) — max(insert(p,n)) = max(p)
delmax(insert(empty,n)) = (empty,n)

max (insert(empty,n)) = n

(7. és 8.-ndl feltettiik, hogy nem iires a prioritdsos sor)

ADS reprezentacié

1.

2.

3.

rendezetlen tombbel, a beérkezési id6 szerint — max miiveletigénye mindig
egy mazker, vagyis 0(n)

rendezett tombbel — insert miiveletigénye:

e a hely megkeresése — logker 6(log,)
e t8le jobbra léptetés: 6(n)

o Osszesen: 6(n)

heap (kupac) adatszerkezettel — fentebb

ADS miiveletek megvalésitasa

Fentebb, a kupac leirasanal.

