
6. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Bináris keresőfák
Definíciója
A rendezési fa (vagy keresőfa) olyan bináris fa adatszerkezet, amelynek kialakí-
tása a különböző adatelemek között meglévő rendezési relációt követi.

A fa felépítése olyan, hogy minden csúcsra igaz az, hogy a csúcs értéke
nagyobb, mint tetszőleges csúcsé a tőle balra lévő leszálló ágon és a csúcs
értéke kisebb minden, a tőle jobbra lévő leszálló ágon található csúcs értékénél.

A T fa bármely x csúcsára és bal(x) bármely y csúcsára és jobb(x) bármely
z csúcsára:

y < x < z

A rendezési fa az őt tartalmazó elemek beviteli sorrendjét is visszatükrözi.
Inorder bejárással a kulcsok rendezett sorozatát kapjuk.
Inorder bejárás pszeudókódja:

Inorder-fa-bejárás(x)
if x 6= NIL

then Inorder-fa-bejárás(bal[x])
print(kulcs[x])

Inorder-fa-bejárás(jobb[x])

Összes érték kiíratása: Inorder-fa-bejárás(gyökér[T])
Egy n csúcsú bináris kereső fa bejárása O(n) ideig tart, mivel a kezdőhívás

után a fa minden csúcspontja esetében pontosan kétszer (rekurzívan) meghívja
önmagát, egyszer a baloldali részfára, egyszer a jobboldali részfára.

1



Műveletek
Keresés

A T fában keressük a k kulcsú elemet (csúcsot), ha ez létezik, akkor visszaadja
az elem címét, egyébként NIL-t.

Rekurzív algoritmus:

Fában-keres(x,k)
if x = NIL or k = kulcs[x]

then return x
if k < kulcs[x]

then return Fában-keres(bal[x], k)
else return Fában-keres(jobb[x], k)

Iteratív algoritmus:

Fában-iteratívan-keres(x, k)
while x 6= NIL and k 6= kulcs[x]

do
if k < kulcs[x]

then x ← bal[x]
else x ← jobb[x]

return x

Minimum keresés

Tegyük fel, hogy T 6= NIL. Addig követjük a baloldali mutatókat, amíg NIL
mutatót nem találunk.

Az iteratív algoritmus pszeudokódja:

Fában-minimum (T)
x ← gyökér[T]
while bal[x] 6= NIL

do x ← bal[x]
return x

Helyessége a bináris-kereső-fa tulajdonságból következik.
Lefut O(h) idő alatt, ahol h a fa magassága.

Maximum keresés

Tegyük fel, hogy T 6= NIL. Addig követjük a jobboldali mutatókat, amíg NIL
mutatót nem találunk.

Az iteratív algoritmus pszeudokódja:

Fában-maximum (T)
x ← gyökér[T]
while jobb[x] 6= NIL

do x ← jobb[x]
return x

2



Következő elem

x csúcs rákövetkezőjét adja vissza, ha van, NIL különben.

• Ha van jobb gyereke, jobb részfa minimumát adja vissza.

• Különben felszalad egész akár a gyökérig, míg jobb gyereket talál.

Fában-következő(T, x)
if jobb[x] 6= NIL ha van jobb gyereke

then return Fában-minimum (jobb[x])
y ← szülő[x] ha nincs
while y 6= NIL és x = jobb[y]

do x ← y
y ← szülő[x]

return y

Beszúrás

• Megkeressük a helyét

• Beláncoljuk

Fába-beszúr (T,p)
y ← NIL; x ← gyökér[T]
while x 6= NIL do megkeressük a helyét

y ← x
if kulcs[p] < kulcs[x]

then x ← bal[x]
else x ← jobb[x]

szülő[p] ← y
if y = NIL beláncoljuk

3



then gyökér[T]← p
else if kulcs[p] < kulcs[y]

then bal[y]←p
else jobb[y]←p

Pl. beszúrjuk ebbe a fába a 36-os elemet

Törlés

A T bináris keresőfából a p csúcsot töröljük.

Lehetőségek. p-nek
• nincs gyereke: szülőjének mutatóját NIL-re állítjuk

• egy gyereke van: a szülője és a gyermeke között építünk ki kapcsolatot

• két gyereke van: átszervezzük a fát: kivágjuk azt a legközelebbi rákövet-
kezőjét, aminek nincs balgyereke, így 1., vagy 2. típusú törlés, majd ennek
tartalmát beírjuk p-be.

4



Pszeudókód

Fából-töröl (T,p)
if bal[p] = NIL vagy jobb[p] = NIL

then y ← p 0 vagy 1 gyerek
else y←Fában-következő(T, p) 2 gyerek

if bal[y] 6= NIL
then x ←bal[y] x az y 0 vagy 1

gyerekére
else x ← jobb[y] mutat

if x 6= NIL ha volt (egy) gyereke,
then szülő[x]←szülő[y] befűzzük

if szülő[y] =NIL
then gyökér[T ]←x ha a gyökeret töröltük
else if y = bal[szülő[y]] különben y szülőjének megfelelő

then bal[szülő[y]]←x oldali mutatóját
else jobb[szülő[y]] ←x x-re állítjuk

if y 6= p ha a log. törlendő 6= fiz. törlendő
then kulcs[p] ← kulcs[y] és a további mezők is

return y

5


