4. tétel

Adatszerkezetek és algoritmusok vizsga

Frissilt: 2013. januar 28.

Listak, szekvencialis adatszerkezetek

A szekvencialis adatszerkezet olyan (A, R) rendezett par amelynél az R € (A x
A) reldci6 tranzitiv lezdrtja teljes rendezési reldcio.

Az R € (A x A) relacié tranzitiv lezdrtja az a relacié, mely tranzitiv, tartal-
mazza R-et, és a lehetd legkevesebb elemet tartalmazza.

Megadasa.
1. R =RU(RoR)
2. Ha R # R’, akkor folytatas 1.-nél, kiilonben R’ = Ry, a tranzitiv lezart.

Szekvencidlis adatszerkezetben az egyes adatelemek egymas utan helyezked-
nek el, van egy logikai sorrendjiik.

Az adatok kozott egy-egy jellegli a kapcsolat: minden adatelem csak egy
helyr6l érheto el és az adott elemtél csak egy masik lathato.

Két kitiintetett elem: az elsd és az utolso.

Ez egy homogén adatszerkezet, azaz azonos tipusu véges adatelemek soro-
zata.

Jelolése : L = (a1, ag,...a,) Ha n =0, akkor L = () az iires lista.

A lancolt lista olyan adatszerkezet, amelynek minden eleme tartalmaz egy
(vagy tobb) mutatét (hivatkozdst) egy mésik, ugyanolyan tipust adatelemre.

A ldnc elsé elemének a cimét a lista feje tartalmazza. FEz nem tartalmaz
informécids részt.

A lanc végét az jelzi, hogy az utolsé elemben a rakoévetkez6 elem mutatdja
tres.

Statikus lista

Toémbben, a tombelemek érték-index parok, a logikai sorrendet az indexek mu-
tatjak, a szabad helyek is listaban.

L: 2 SZH: 5
| ped
23(10 17 28
4 |7 |0 |0 6I 8A 1A QA 19 lil
[B==——— —— a—r— w—_"TY 1
! [W I U S

Viszont a besziurandé adatok szama nem ismerheto elére. Nem akarunk
feleslegesen helyet foglalni. Ezért jobb lehet a dinamikus lista.

Dinamikus lista
Egyirdnyu lancolt lista szemléltetése:

fejelem nélkiil:

s S O ey Wy

fejelemmel: fejelem mindig létezik, ha iires a lista, akkor is.

T

Mindig van egy aktudlis elemre mutato is.
Kétiranyt lancolt listanal vissza mutatok is vannak:

WL:,,LJL[M

A lista egy eleme all egy adatrészbél és egy mutato részbél.
Miiveletek
A lista tipus komponensei: L - els6 elem mutatéja, akt - aktudalis elem mutatdja.

Létrehozas

Egy tres listdt ad vissza. Struktogramja:

L« NIL
akt « NIL

L

Ures lista lekérdezése

Logikai értéket ad vissza

L

Els6 elemre allitas

Ures lista esetén hibat dob

-

L#NIL?

Kovetkezo elemre allitas

A lista utols6 elemére kiadott Next hatdsa akt=NIL lesz

>

akt (akt—mut)
-

Lista végének lekérdezése

Logikai értéket ad vissza.

Az utolsé elemen vagyok?

Logikai értéket ad vissza.

IsLast

return

(akt # NIL A akt—mut =NIL)

Aktudlis elem értéke

Aktuélis elem értékét x-ben adja.

Aktualis elem modositasa

Aktudlis elem médositdsa e-re.

Listaelem besztrasa

Menete:
1. Deklaralas - Node tipust elemet fogunk létrehozni
2. Létrehozés - jelolés: new(p)

3. Beflizés

Az elemet nekiink
kell ,,befiizni” a
listaba

Tobbféle helyre lehet: elejére, aktudlis elem elé, mogé, vagy a végére.

Besziras elsé elemként

Ures és nem tres listara is miikodik. Elsd elem lesz az aktudlis.

New(p)

(p—adat) ¢« ¢
(p—>mut) « L
L<p
akt <L

Besziras utolsé elemként

Itt az utolsé elem lesz az aktualis. Ez is miikodik tires listara is.

InsertLast

new(p); (p—adat) < e; (p—mut) « NIL

L=NIL

ue L; ve— (L—mut)
Le<p

‘v # NIL
akt <L

u < v; v «—(v—mut);

(u—mut) ¢ p; aktép

Aktualis elem utan

Ha nincs aktudlis elem, hiba, az aktudlis elem ekkor a beszurt lesz.

new(p);

(p—adat) < e;
(p—mut) < (akt—mut)
(akt—mut)<— p

akt < p

Aktualis elem elé

InsertBefare

Besziras ak{=NIL

aktuailis

elem elé new(p); (p—adat) < &

7 - -/ ué— L; v (L—mut) \
/ v # akt

(u—mut) « p: (p—mut) « akt:
akte—p:
—‘_""‘-l—-—-—!-""'—

u ¢ v; v «—(v—mut);

f'lu!:""‘"[‘-'—ic"‘ﬁ

Torlés
Aktualis elem torlése
Menete:
1. Akutdlis elem megelézjét atlancoljuk

2. Kitorlés ("delete")

kitaréljiik

3. 4j aktudlis: az uténa 1évé - 6t is atlancoljuk

Aktudlis elem torlésének struktogramja:

Aktualis elem torlése: @

\ y
Nem elso

«L
elem tirlése p

L « (L—muf)
akt < L
felszab(p)

(p—mut) « (akt—mut)
felszab(akt)
akt «+(p—mut)

Egyéb miiveletek

Lehet még pl. teljes lista torlése, listak Osszeflizése, elemszam. Egyirany lancolt
listanal nem elég hatékonyak az aldbbi miiveletek: last, remove, insertbefore,
insertlast. Itt jobb a kétiranyud lancolt lista, vagy egyéb maés.

Rendezés

Egy példa a fenti miiveletek alkalmazdsara a rendezés.
Adott az A[l..n] egészeket tartalmazéd tomb. Helyezziik el a pozitiv elemeit
rendezett médon egy listaba!

lista. Empty

fori=l ton

Afli]=07
lista.IsEmpty
. lista.First; a < lista.GetValue S
lista. K
I . . I
- not lista.IsLast A Afi] =a o
s
e lista.Next
-
i3
F a & lista.GetValue
i
r Ali]=a
H
t
(A[i]) | HstaInsertBefore(Ali]) lista.InsertLast(A[i])

