
3. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Verem
ADT axiomatikus és funkcionális specifikáció
Elképzelés:

Amit betettem utoljára, azt tudom először kivenni.

ADT Axiomatikus leírás

E adattípus feletti V verem típus jellemzése
Műveletek

• empty: → V - üres verem - létrehozása

• isempty: V → L - üres-e a verem?

• push: V × E → V - elem betétele

• pop: V → V × E - elem kivétele

• top: V → E - legfelső elem lekérdezése

• full

Megszorítások: pop és top értelmezési tartománya: V \ {empty}
Axiómák

• isempty(empty) / v=empty → isempty(v)

• isempty(v) → v=empty

1

• ¬ isempty(push(v,e))

• pop(push(v,e))=(v,e)

• push(pop(v))=v

• top(push(v,e))=e

ADT funkcionális leírás

Matematikai reprezentáció: a verem rendezett párok halmaza:

• 1. komponens: a veremben elhelyezett érték

• 2. komponens: a verembe helyezés időpontja.

Megszorítás (invariáns): az idő értékek különbözők.
Nem így implementáljuk!

Példa - a "pop" specifikációja

V × E - állapottér típusai (V = {(ei, ti)...})
v e - változói
V - kezdeti értékkel rendelkezik
v′

Előfeltétel:
Ef = (v = v′ ∧ v′ 6= ∅)

Utófeltétel:

Uf = ((v = v′\{(ej , tj)})∧(e = ej)∧((ej , tj ∈ v′)∧(∀i((ei, ti) ∈ v′∧i 6= j) : tj > ti))

A műveletek jelölése

ADS statikus és dinanimus reprezentáció
A verem működése ADS-ben:

Ábrázolási módok:

2

Aritmetikai / statikus ábrázolás

Egy max hosszú vektor (ez az elemek tömbje)

elements[1...max]

és a verem tetejének mutatója

head ∈ [0, max]

ha head = 0 ⇔ üres a verem.

Műveletek megvalósítása
• v.Empty - üresre állítja a vermet

v.head <- 0

vagy:

v.head := 0

más jelöléssel.
’←’ jelentése: értékadás.

• v.IsEmpty - üres-e a verem? - logikai értéket ad vissza

return (v.head = 0)

• v.IsFull - tele van a verem? - logikai értéket ad vissza

return (v.head = max)

• v.push(e) - e-t beteszi a v verem tetejére

if v.IsFull
then error „túlcsordulás”;
else v.head <- v.head +1;
v.elements[v.head] <- e;

end if;

3

• v.pop - kiveszi a legfelső elemet és visszaadja

if v.IsEmpty
then error „alulcsordulás”;
else v.head <- v.head -1;
return v.elements[v.head+1];

end if;

• v.top - lekérdez a legfelső elemet

if v.IsEmpty
then error „alulcsordulás”;
else return v.elements[v.head];

end if;

Láncolt ábrázolás - gyakorlaton volt

Sor
Köznapi fogalma:

Amit beteszek először, azt tudom legelőször kivenni.

ADT axiomatikus és funkcionális specifikáció
Axiomatikus leírás. E alaptípus feletti S sor típus jellemzése. Műveletek:

• Empty: → S - üres sor, létrehozásnál.

• IsEmpty: S → L - üres-e a sor?

4

• In: S × E → S - elem betétele a sorba

• Out: S → S × E - elem kivétele a sorból

• First: S → E - első elem lekérdezése

• IsFull

Megszorítások: Out és First értelmezési tartománya S \ {Empty}
Axiómák, funkcionális specifikáció - hasonló. (lehet hogy kérdezik!!!)
Axiómák:

• s = Empty → IsEmpty(s)

• IsEmpty(s) → s = Empty

• ¬ IsEmpty(In(s, e))

• ¬ IsEmpty(s) → Out(In(s, e))2 = Out(s)2

• ¬ IsEmpty(s) → In(Out(s)1, e) = Out(In(s, e))1

• ¬ IsEmpty(s) → Out(In(s,e))2 = e

• First(s) = Out(s)2

ADS statikus és dinanimus reprezentáció

Aritmetikai / statikus ábrázolás

Kell
• Egy max hosszú vektor (ez az elemek tömbje): elements[1...max].

• a sor első elemének mutatója: head ∈ [1,..max]

• a sor első üres (vagy utolsó) helyének mutatója: tail ∈ [1,..max]

De kell még egy jelző - empt - mely mutatja, hogy a sor üres-e. Ez kezdetben
igaz. (esetleg egy számlálót, hogy hány elem van a sorban)

5

Műveletek megvalósítása
• s.Empty - üresre állítja a sort

s.head <- 1;
s.tail <- 1;
s.empt <- true

• s.IsEmpty - üres a sor? logikai értéket ad vissza.

return s.empt

• s.IsFull - tele van a sor? - logikai értéket ad vissza

return ((not s.empt) and (s.head = s.tail))

• s.In(e) - e-t beteszi a sor végére, s-tail-t ciklikusan növeli.

if s.IsFull
then error „túlcsordulás”;
else s.empt <- false;
s. elements[s.tail] <- e;
if s.tail = max
then s.tail <- 1
else s.tail <- s.tail+1;

end if
end if

• s.Out - kiveszi és visszaadja az s sor első elemét, s.head-et ciklikusan
növeli, figyeli hogy nem üres-e a sor.

if s.empt
then error „alulcsordulás”;
else e <- s. elements[s.head] ;
if s.head = max
then s.head <- 1
else s.head <- s.head+1;

end if;
if s.head = s.tail then s.empt <- true;

• s.First - visszaadja az s sor első elemét. Figyeli hogy nem üres-e a sor.

if s.empt
then error „alulcsordulás”;
else return s. elements[s.head] ;

end if

Lehetne az is, hogy a darabszámot tároljuk.

Láncolt ábrázolás is lehet

6

Lengyelforma
Infix kifejezésből postfix kifejezést alkot:

Előnye, hogy a műveleti jelek olyan sorrendben követik egymást, amilyen
sorrendben végre kell hajtani azokat, és a műveleti jel (operátor) közvetlenül az
operandusai után áll.

Menete:
Adott egy x, y sorozat és egy s verem.

• Az x sorozatot balról jobbra dolgozzuk fel. A sorozat végét ; jelzi.

• Ha a következő szimbólum nyitózárójel ’(’, betesszük a verembe.

• az Ha operandus: az y sorozatba tesszük, kiírjuk.

• Ha operátor: legfeljebb a nyitózárójelig kivesszük a veremből az operátor-
nál nagyobb prioritású operátorokat és kiírjuk azokat, az operátort pedig
betesszük a verembe.

• Ha csukó zárójel ’)’, kiírjuk y-ba a verem tetején lévő elemeket a nyitózá-
rójelig ’)’. Utána a verem tetejéből kiszedjük a nyitózárójelet is.

• a kifejezés végén: kiírjuk, ami a veremben maradt az y-ba.

Kiértékelés. Van egy y lengyelformára alakított forumula, illetve a v verem.

• végigmegyünk y-n.

• Ha az adott elem operandus - betesszük a verembe.

• Ha operátor - kivesszük a veremből a 2. és az 1. operandust, majd elvég-
zem a műveletet és az eredményt beteszem a verembe.

• A kifejezés végén az eerdmény a verem tetején lesz.

7

Algoritmusok
Az x sor tartalmazza a szintaktikailag helyes kifejezést, ún. token-ekből áll.
Egy token lehet

• operandus

• (bináris) operátor

• nyitó, csukó zárójel ()

Az y sorba hozzuk létre a postfix formájú kifejezést.
Közben felhasználva az s vermet, amely operátorokat és nyitó zárójeleket

tartalmazhat.

Lengyel formára hozás

8

Kiértékelés

9

