17. tétel

Adatszerkezetek és algoritmusok vizsga

Frissilt: 2013. januar 28.

Hasit6 tablak

A gyakorlatban sokszor csak a BESZUR, KERES, TOROL miiveleteket megva-
16sité dinamikus szerkezetre van sziikségiink — hogyan lehetne ezt hatékonyan
tenni?

Az eddigi keres6 szerkezeteink a kulcsok 6sszehasonlitdsdn alapultak. Vég-
rehajtasi id6 O(n) vagy O(logn) volt - lassi. Szeretnénk az el6zénél jobbat
elérni.

Azt szeretnénk kihaszndlni, hogy ha vektorban indexeliink, az csak O(1)!

A hash-elés:

e Adott a K kulcsok halmaza. A K elemeivel azonositott rekordok szdma
azonban varhatéan joval kisebb, mint K szamossaga.

e Ekkor K-t egy alkalmas h fiiggvénnyel leképezziik az abrazolas alapjat
képez kisebb tartomanyra. Legyen ez a [0 .. M-1] intervallum.

o A
h:K —[0.M —1]

fliggvényt hash-fliggvénynek nevezziik.

e Mivel M < |K|, s6t altaldban M < |K|, ezért h nem lehet injektiv, hanem
szitkségképpen fellép a kulcsiitkozés: van olyan k # k', amelyre h(k) =
h(k’).

Kozvetlen hozzaférésii (cimzésii) tablak. Tegyiik fel, hogy az elemek kul-
csai kiilonbo6z6 egész értékek a [0, m-1] intervallumbdl, és m nem tul nagy. Hasz-
naljuk magukat a kulcsértékeket, hogy i kivalasszunk egy helyet a T kozvetlen
hozzéaférési tablaban, melyben az elemeket taroljuk

Egy k kulcsti elem keresése: nézziik meg a k indexii elemet. ha van itt egy
érték, megtalaltuk, ha a jelz6 itt pl. -1, akkor nincs benne.

Keresés, besziras, torlés (tomor) pszeudokddja.

Kézvetlen_cimzésii_keresés (T, k)
return TI[k]

Kézvetlen_cimzésii_beszuras (T, x)
Tlkulcs[x]] « x

Kézvetlen_cimzésii_térlés (T, x)
Tlkulcs([x]] «-1

Mindegyik O(1) idejfi!

Megszoritasok. A kulcsok
o egészek
e egyediek

e kis intervallumbdl valéak legyenek

e sirlin legyenek az intervallumban. Ha ritkdsan vannak - sok tres hely
van az értékek kozott - tul sok helyet hasznalunk el, hogy a sebességet

megnyerjilk

Masik lehetdség a tarolasra. T-indexei a kulcsok, T-ben mutatdk, csak

akkor tarolom az egészet, ha kell.

Kulcs kisérg adatok

T
X
L 2
X
X
X
X
L]
X
L]

Ilyenkor a miiveletek.
T inicializaléasa

minden elemét null-ra allitjuk

Kézvetlen_cimzésii_keresés (T, k)
return ,a T[k] <al mutatott objektum"

Kézvetlen_cimzésii_beszuras (T, x)
helyet foglalunk x-nek,
Tlkulcs([x]] mutat6jat erre allitjuk

Kézvetlen_cimzésii_térlés (T, x)
felszabaditjuk a T[kulcs[x]] &altal mutatott objektumot
(Tlkulcs[x]] is null lesz!)

Itt is, mindegyik O(1) idejli

Megszoritasok gyengitése és a kulcsiitkozések
A fenti megszoritasok tul erdsek. Elég lesz egy gyengébb is.
A kulcsok egészek legyenek. Kell egy hash fiiggvény

h(kules) — egész

Ezt a figgvényt a kulcsra alkalmazva egy indexet kapunk
Ha h minden kulcsot egy egyedi egész értékre képez le a 0...m — 1 interval-
lumban, akkor a keresés O(1)

T
A kulcsok egyediek legyenek. Hozzuk létre a duplikatumok lancolt listajat,

és ezt kapcsoljuk a tdblahoz. ha egy keresésnek elég akarmelyik k kulcst elem,
a végrehajtds még mindig O(1)

T

T
X
-
X
X
X
X
HEN
X
X

Hash fiiggvény

Tetszbleges fuggvény, ami a 0..m-1 -ben generdl értékeket egy megfelels (nem
til nagy) m-re j6 lesz! Amig 6 O(1).

Ez a fv. 0...255 egy értékét adja vissza:

int hash(char *s, int n)

{

int sum = O;
while(n--) sum = sum + *s++;
return sum % 256;

Vagy: xor fliggvény is jé:

sum = sum ~ *s++;

Hash fiiggvények egyszerii egyenletestdl univerzalisig

Egyszerii egyenletes hasitas

P(k) legyen annak a valdszin{isége hogy a k kulcs eléfordul, a hasité tdblankban
m hely van, egy egyenletes has fliggvény, h(k) biztositani fogja:

Yo Pky= Y PR)=.. > p(k):%

E|h(k)=0 E|h(k)=1 k|h(k)=m—1

(szumma minden k-ra, melyre h(k) = 0).
A kulcsok szdma minden helyre azonos.
Ha a kulcsok a [0, 7)-en véletlenszeriien szétszért egészek, akkor

w-[2]

r

egy egyenletes hash fliiggvény. A kulcsokat egészek egy intervalluméra képeztiik
le: 0 < k < r. Most csokkentsiik ezt az intervallumot [0, m)-re, ahol m a hash
tabla egy elfogadhaté mérete.

Hogyan?

e Osztés (mod) -
h(k) =k mod m

m mi legyen: pl. 2"

e Szorzé médszer: konsanssal szorzunk (0 < A < 1), utdna kivessziik a tort
részt beldle:

(kA — |kA))
Utana ezt még felszorozzuk m-mel:
h(k) = |mx* (KA — |kA])]
Itt j6 a 2 hatvany.

e Univerzalis hashelés

Univerzalis hashelés

A hash fiiggvényt véletleniil, az aktualisan tarolandé kulcsoktdl fiiggetlentil va-
lasztjuk meg.

A hasité fiiggvényt egy fiiggvényosztalybdl futds kozben véletleniil vélasztjuk
ki.

Legyen H a hasito fiiggvények véges halmaza, ezek egy K kulcs univerzumot
a [0, m) tartomédnyba képeznek le.

H univerzalis, ha Vz,y € K,z # y kulcsparra azoknak a h € H hasito fligg-

|H]

vényeknek a szdma, melyre h(z) = h(y), pontosan - Ilyenkor a kulcsiitkozés

val6szintisége pontosan -

Megvalasztasuk. Vegyiik egy olyan p prim szamot, mely elég nagy hogy
minden kulcs benne legyen a [0, ...,p — 1]-ben (p > m).
Jelolés:
Zy=1{0,1,.p—1},Z: = {1,2,.p - 1}

Definidljuk: Va € Z7,Vb € Z,:
hob(k) = ((axk+b) modp) modm
Az ilyen figgvények osztalya:

Hp,m = {ha,b tac Z;,b < Zp}

Tétel. A hasité fliggvények fenti egyenléségekkel definidlt H, ,, osztdlya uni-
verzalis.
Kulcsiitkozés

Pl. a fenti fliggvényre:
hash("AB", 2) és hash("BA", 2)

ugyanazt az értéket adjak!

Ezt hivjuk kulcsiitkozésnek: a hash fiiggvény két kiillonb6zé kuleshoz rendeli
ugyanazt a cimet. Szdmos technikat hasznalnak a felolddsara.

A téblazat fel kell ismerje és fel kell oldja ezt.

Felismerés. Taroljuk az aktualis kulcsot az elemmel a hash tdblaban: Sza-
mitsuk ki a cimét k = h(kulcs) Ellendrizziik a taldlatot:

if (table[k].key == kulcs) then talalat
else prébald a koévetkezdt

Kulcsiitkozésekre megoldasok
Lancolt lista

Minden tébla elemhez egy lancolt listat rendeliink Keressiink i kulcsti elemet:
X.

Ldncolt hasito keresés(T,1): kiszdmitjuk h(i)-t, keressiik az i kulcsi elemet
a T[h(i)] listdban. Ha NULL-t taldlunk, a kulcs nincs a tdblaban

Besztirunk x-t: Ldncolt hasité beszirds(T,x): kiszamitjuk h(x.kules)-t, be-
szirunk a T'[h(z.kulcs)| lista elejére.

Torlés — hasonléan a T'[h(x.kules)] listabol.

T

B W N e O

Tualcsordulasi teriilet

A ,lancolt” listat a tabla egy specialis teriiletén hozzuk létre — ez a tilcsordulési
teriilet

Tth. h(k) == h(j) és a k lett elGszor térolva

Pl. Hozzdadjuk j-t:

o Kiszdmitjuk h(j)-t

Megtaldljuk k-t :-(

Megkeressiik az els6 szabad helyet a tilcsordulasi teriileten

betessziik j-t

k ,pointere” erre mutat (a mutatd itt a tablabeli index)

Tobbféle lehetGség a — lista elejére, végére is sziurhatunk be

Keresés — ugyanaz, mint a lancolt lista

Torlésnél — lehet a lista utolsé elemét idetenni, de lehet 11j allapotot bevezetni
a tordltre, ez majd jon.

Elsédleges
teriilet

h(i)

Tulcsordulasi
teriilet

Nyilt cimzés

Az elemeket a tablaban taroljuk.

Egy elem keresésénél végigmegyiink a tabldzaton, amig meg nem talaljuk,
vagy el tudjuk donteni, hogy nincs benne a tablaban.

Elem beszirasanal kiprobaljuk az 6sszes helyet, amig {ireset nem talalunk —
valamilyen stratégia szerint — ez a besztirandé kulcs fliggvénye, nem a 0 .. m-1
felsorolas!

Kiterjesztjik a hash fliggvény értelmezési tartomanyat az un. kiprébalasi
szammal:

e h:Kx{0,1,....m—1} - {0,1,..m — 1}
e Megkoveteljiik, hogy minden k kulcsra a
(h(ka O)) h(ka 1)7 cey h(ka m— 1))

kiprébalasi sorozat a {0,1,...,m — 1} egy permutécidja legyen.

Igy el8bb-utébb minden hely széba jon.

Algoritmusok:

Keresés. Keresésnél aszerint keressiik, ahogy a besztras betehette.

Hasit6_keres(T, k)

i<« 0
repeat j < h(k,i)
if T[j] = k
then return j
i+—i+1
until T[j] = NIL vagy i = m
return NIL

Torlés. Bonyolultabb, ui. nem elég csak NIL-t irni, hiszen akkor egy kdvetkez6
keresés nem talalnd meg azokat, amelyek késébb vannak a tablaban = vezessiink
be a NIL-en kiviil még egy szimbélumot, a TOROLT-et

Hasité_toérsl(T, k)
i+ 0
repeat j < h(k,i)

if T[] = k

then T[j] « TOROLT
return

i+ 1i+1

until T[j] = NIL vagy i = m

Beszuras. Tfh. a T hasit6 tablazatban csak kulcsok vannak vagy NIL

Hasitd_beszir(T,k)
i+« 0
repeat j < h(k,i)
if T[j] = NIL vagy T[j] = TOROLT
then T[j] + k
return

else i < 1 + 1
until i = m
error ,hasité tablazat tulcsorduléas"

Kett6s hashelés

Hasznaljunk egy masodik hash fiiggvényt — h’ Sok variacié lehet. Altaldnos
név: re-hashing — kett&s hashelés

Feltesssziik, hogy h(k) == h(j), és k lett elszor tarolva. Hozzdadjuk j-t,
kiszdmitjuk h(j)-t, igy megtaldljuk k-t. Ismételjiik, mig taldlunk iires helyet:
kiszdmitjuk h’(j)-t, betessziik j-t.

Keresés — haszndld h(x)-t, aztdn h’(x)-t

Egy mezdnek 3-féle statusza lehet: tires — foglalt — torolt (hogy a keresés
folytatédhasson)

Elsédleges
teriilet

A masodik hash fv-nél lehet pl.

o Négyzetes proba

e Dupla hasités

10

