
17. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Hasító táblák
A gyakorlatban sokszor csak a BESZÚR, KERES, TÖRÖL műveleteket megva-
lósító dinamikus szerkezetre van szükségünk – hogyan lehetne ezt hatékonyan
tenni?

Az eddigi kereső szerkezeteink a kulcsok összehasonlításán alapultak. Vég-
rehajtási idő O(n) vagy O(log n) volt - lassú. Szeretnénk az előzőnél jobbat
elérni.

Azt szeretnénk kihasználni, hogy ha vektorban indexelünk, az csak O(1)!
A hash-elés:

• Adott a K kulcsok halmaza. A K elemeivel azonosított rekordok száma
azonban várhatóan jóval kisebb, mint K számossága.

• Ekkor K-t egy alkalmas h függvénnyel leképezzük az ábrázolás alapját
képező kisebb tartományra. Legyen ez a [0 .. M-1] intervallum.

• A
h : K → [0..M − 1]

függvényt hash-függvénynek nevezzük.

• Mivel M < |K|, sőt általában M � |K|, ezért h nem lehet injektív, hanem
szükségképpen fellép a kulcsütközés: van olyan k 6= k’, amelyre h(k) =
h(k’).

Közvetlen hozzáférésű (címzésű) táblák. Tegyük fel, hogy az elemek kul-
csai különböző egész értékek a [0 , m-1] intervallumból, és m nem túl nagy. Hasz-
náljuk magukat a kulcsértékeket, hogy i kiválasszunk egy helyet a T közvetlen
hozzáférésű táblában, melyben az elemeket tároljuk

Egy k kulcsú elem keresése: nézzük meg a k indexű elemet. ha van itt egy
érték, megtaláltuk, ha a jelző itt pl. -1, akkor nincs benne.

1

Keresés, beszúrás, törlés (tömör) pszeudokódja.

Közvetlen_címzésű_keresés (T, k)
return T[k]

Közvetlen_címzésű_beszúrás (T, x)
T[kulcs[x]] ← x

Közvetlen_címzésű_törlés (T, x)
T[kulcs[x]] ←-1

Mindegyik O(1) idejű!

Megszorítások. A kulcsok

• egészek

• egyediek

• kis intervallumból valóak legyenek

• sűrűn legyenek az intervallumban. Ha ritkásan vannak - sok üres hely
van az értékek között - túl sok helyet használunk el, hogy a sebességet
megnyerjük

Másik lehetőség a tárolásra. T-indexei a kulcsok, T-ben mutatók, csak
akkor tárolom az egészet, ha kell.

2

Ilyenkor a műveletek.

T inicializálása
minden elemét null-ra állítjuk

Közvetlen_címzésű_keresés (T, k)
return „a T[k] által mutatott objektum”

Közvetlen_címzésű_beszúrás (T, x)
helyet foglalunk x-nek,
T[kulcs[x]] mutatóját erre állítjuk

Közvetlen_címzésű_törlés (T, x)
felszabadítjuk a T[kulcs[x]] által mutatott objektumot
(T[kulcs[x]] is null lesz!)

Itt is, mindegyik O(1) idejű

Megszorítások gyengítése és a kulcsütközések
A fenti megszorítások túl erősek. Elég lesz egy gyengébb is.

A kulcsok egészek legyenek. Kell egy hash függvény

h(kulcs)→ egész

Ezt a függvényt a kulcsra alkalmazva egy indexet kapunk
Ha h minden kulcsot egy egyedi egész értékre képez le a 0...m − 1 interval-

lumban, akkor a keresés O(1)

3

A kulcsok egyediek legyenek. Hozzuk létre a duplikátumok láncolt listáját,
és ezt kapcsoljuk a táblához. ha egy keresésnek elég akármelyik k kulcsú elem,
a végrehajtás még mindig O(1)

4

Hash függvény
Tetszőleges függvény, ami a 0..m-1 -ben generál értékeket egy megfelelő (nem
túl nagy) m–re jó lesz! Amíg ő O(1).

Ez a fv. 0...255 egy értékét adja vissza:

int hash(char *s, int n)
{

int sum = 0;
while(n--) sum = sum + *s++;
return sum % 256;

}

Vagy: xor függvény is jó:

sum = sum ^ *s++;

Hash függvények egyszerű egyenletestől univerzálisig
Egyszerű egyenletes hasítás

P (k) legyen annak a valószínűsége hogy a k kulcs előfordul, a hasító táblánkban
m hely van, egy egyenletes has függvény, h(k) biztosítani fogja:∑

k|h(k)=0

P (k) =
∑

k|h(k)=1

P (k) = ...
∑

k|h(k)=m−1

P (k) = 1
m

(szumma minden k-ra, melyre h(k) = 0).
A kulcsok száma minden helyre azonos.
Ha a kulcsok a [0, r)-en véletlenszerűen szétszórt egészek, akkor

h(k) =
⌊

mk

r

⌋
egy egyenletes hash függvény. A kulcsokat egészek egy intervallumára képeztük
le: 0 ≤ k < r. Most csökkentsük ezt az intervallumot [0, m)-re, ahol m a hash
tábla egy elfogadható mérete.

Hogyan?

• Osztás (mod) -
h(k) = k mod m

m mi legyen: pl. 2n

• Szorzó módszer: konsanssal szorzunk (0 < A < 1), utána kivesszük a tört
részt belőle:

(kA− bkAc)

Utána ezt még felszorozzuk m-mel:

h(k) = bm ∗ (kA− bkAc)c

Itt jó a 2 hatvány.

• Univerzális hashelés

5

Univerzális hashelés

A hash függvényt véletlenül, az aktuálisan tárolandó kulcsoktól függetlenül vá-
lasztjuk meg.

A hasító függvényt egy függvényosztályból futás közben véletlenül választjuk
ki.

Legyen H a hasító függvények véges halmaza, ezek egy K kulcs univerzumot
a [0, m) tartományba képeznek le.

H univerzális, ha ∀x, y ∈ K, x 6= y kulcspárra azoknak a h ∈ H hasító függ-
vényeknek a száma, melyre h(x) = h(y), pontosan |H|m . Ilyenkor a kulcsütközés
valószínűsége pontosan 1

m

Megválasztásuk. Vegyük egy olyan p prím számot, mely elég nagy hogy
minden kulcs benne legyen a [0, ..., p− 1]-ben (p > m).

Jelölés:
Zp = {0, 1, ...p− 1}, Z∗p = {1, 2, ..p− 1}

Definiáljuk: ∀a ∈ Z∗p ,∀b ∈ Zp:

ha,b(k) = ((a ∗ k + b) mod p) mod m

Az ilyen függvények osztálya:

Hp,m = {ha,b : a ∈ Z∗p , b ∈ Zp}

Tétel. A hasító függvények fenti egyenlőségekkel definiált Hp,m osztálya uni-
verzális.

Kulcsütközés
Pl. a fenti függvényre:

hash("AB", 2) és hash("BA", 2)

ugyanazt az értéket adják!
Ezt hívjuk kulcsütközésnek: a hash függvény két különböző kulcshoz rendeli

ugyanazt a címet. Számos technikát használnak a feloldására.
A táblázat fel kell ismerje és fel kell oldja ezt.

Felismerés. Tároljuk az aktuális kulcsot az elemmel a hash táblában: Szá-
mítsuk ki a címét k = h(kulcs) Ellenőrizzük a találatot:

if (table[k].key == kulcs) then találat
else próbáld a következőt

6

Kulcsütközésekre megoldások
Láncolt lista

Minden tábla elemhez egy láncolt listát rendelünk Keressünk i kulcsú elemet:
X.

Láncolt hasító keresés(T, i): kiszámítjuk h(i)-t, keressük az i kulcsú elemet
a T [h(i)] listában. Ha NULL-t találunk, a kulcs nincs a táblában

Beszúrunk x-t: Láncolt hasító beszúrás(T, x): kiszámítjuk h(x.kulcs)-t, be-
szúrunk a T [h(x.kulcs)] lista elejére.

Törlés – hasonlóan a T [h(x.kulcs)] listából.

Túlcsordulási terület

A „láncolt” listát a tábla egy speciális területén hozzuk létre – ez a túlcsordulási
terület

Tfh. h(k) == h(j) és a k lett először tárolva
Pl. Hozzáadjuk j-t:

• Kiszámítjuk h(j)-t

• Megtaláljuk k-t :-(

• Megkeressük az első szabad helyet a túlcsordulási területen

• betesszük j-t

• k „pointere” erre mutat (a mutató itt a táblabeli index)

Többféle lehetőség a – lista elejére, végére is szúrhatunk be
Keresés – ugyanaz, mint a láncolt lista
Törlésnél – lehet a lista utolsó elemét idetenni, de lehet új állapotot bevezetni

a töröltre, ez majd jön.

7

Nyílt címzés

Az elemeket a táblában tároljuk.
Egy elem keresésénél végigmegyünk a táblázaton, amíg meg nem találjuk,

vagy el tudjuk dönteni, hogy nincs benne a táblában.
Elem beszúrásánál kipróbáljuk az összes helyet, amíg üreset nem találunk –

valamilyen stratégia szerint – ez a beszúrandó kulcs függvénye, nem a 0 .. m-1
felsorolás!

Kiterjesztjük a hash függvény értelmezési tartományát az ún. kipróbálási
számmal:

• h : K × {0, 1, ..., m− 1} → {0, 1, ...m− 1}

• Megköveteljük, hogy minden k kulcsra a

(h(k, 0), h(k, 1), ..., h(k, m− 1))

kipróbálási sorozat a {0, 1, . . . , m− 1} egy permutációja legyen.
Így előbb-utóbb minden hely szóba jön.

Algoritmusok:

Keresés. Keresésnél aszerint keressük, ahogy a beszúrás betehette.

Hasító_keres(T, k)
i ← 0
repeat j ← h(k,i)
if T[j] = k

then return j
i ← i + 1

until T[j] = NIL vagy i = m
return NIL

8

Törlés. Bonyolultabb, ui. nem elég csak NIL-t írni, hiszen akkor egy következő
keresés nem találná meg azokat, amelyek később vannak a táblában⇒ vezessünk
be a NIL-en kívül még egy szimbólumot, a TÖRÖLT-et

Hasító_töröl(T, k)
i ← 0
repeat j ← h(k,i)

if T[j] = k
then T[j] ← TÖRÖLT
return

i ← i + 1
until T[j] = NIL vagy i = m

Beszúrás. Tfh. a T hasító táblázatban csak kulcsok vannak vagy NIL

Hasító_beszúr(T,k)
i ← 0
repeat j ← h(k,i)
if T[j] = NIL vagy T[j] = TÖRÖLT
then T[j] ← k

return
else i ← i + 1

until i = m
error „hasító táblázat túlcsordulás”

Kettős hashelés

Használjunk egy második hash függvényt – h’. Sok variáció lehet. Általános
név: re-hashing – kettős hashelés

Feltessszük, hogy h(k) == h(j), és k lett először tárolva. Hozzáadjuk j-t,
kiszámítjuk h(j)-t, így megtaláljuk k-t. Ismételjük, míg találunk üres helyet:
kiszámítjuk h’(j)-t, betesszük j-t.

Keresés – használd h(x)-t, aztán h’(x)-t
Egy mezőnek 3-féle státusza lehet: üres – foglalt – törölt (hogy a keresés

folytatódhasson)

A második hash fv-nél lehet pl.

9

• Négyzetes próba

• Dupla hasítás

10

