
16. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Külső rendezés
Az eddig látott rendezéseknél feltettük, hogy az adatok a központi memóriában
vannak. Ennek megfelelt, hogy a hatékonyságot az összehasonlítások számában
mértük. Ha az adatok háttértárban vannak, akkor a futási idő döntő részét az
I/O utasítások teszik ki. (Az I/O egysége az 1 blokk, ami k x 512 byte valamely
kis k-val, pl. 1024 v. 2048 byte. Ezt lapnak is nevezik.) A háttértár lehet szalag
v. lemez (ennek különféle változatai). A hatékonyságot a szükséges blokk I/O-
k számában mérjük. Külső rendezésre igazából csak az összefésüléses rendezés
(MergeSort) alkalmas.

Az összefésüléses rendezés külső tárakon
Adott egy S szekvenciális input fájl, amely n blokkból áll, minden blokkban
adott számú rekorddal. (Pl. 1 blokk = 1024 byte és ezen 3 rekord foglal
helyet.) A blokkok tartalma rendezetlen. Az összefésülést iteratív módon vé-
gezzük, úgy, hogy az egyes „menetek” végén egyre nagyobb darabok, vagyis
egyre több szomszédos blokk lesz rendezett. Az összefésülést menetenként vál-
takozva az A, B, illetve a C,D fájlokba végezzük, végül a teljesen rendezett
eredményt S-be írjuk. A közbülső menetekben azért lesz 2 output fájl, mert az
összefuttatás eredményét az „egyet ide, egyet oda” elv alapján írjuk ki.

Menete

1. beolvassuk S rendezetlen blokkjait, valamilyen belső rendezővel rendezzük,
majd kiírjuk felváltva A-ba, illetve B-be. Itt még nem volt összefésülés.

1

2. Sorban beolvassuk A és B 1-1 blokkját. Ezek rendezettek. Összefésüljük
őket és a rendezett két blokkot felváltva C-be, illetve D-be írjuk.
Az A utolsó blokkjának nincs párja, így azt kiírjuk C-be. A C és D fájlban
a rendezett részek hossza 2 blokk, illetve a maradék esetében 1 blokk.

3. C-ből és D-ből olvasunk 2-2 rendezett blokkot, összefésüljük őket és fel-
váltva A-ba és B-be írjuk a rendezett 4 blokkot. A C-beli utolsó töredék
blokk változatlanul A végére kerül.

2

4. C-be kerül A és B 4-4 rendezett blokkja összefésülésének a 8 blokk hosszú
rendezett eredménye, D-be pedig a maradék egy blokk.

5. C 8 blokkját és D 1 blokkját összefésüljük S-be.
Elnevezés: egy k blokkból álló összefüggő rendezett részt k hosszú fu-
tamnak nevezünk.

3

Kiegészítő megjegyzések

1. Ebben a példában az S 9. blokkja csaknem végig nem került kapcsolatba
más rendezett részekkel, csak az utolsó menetben került összefésülésre. Ha
végrehajtjuk a fenti eljárást n=15-re, akkor a páratlan töredék maradék
rész mérete így alakul: 1, 3, 7, vagyis a fenti jelenség nem törvényszerű.

2. Ha a központi memória mérete korlátozott és nem képes befogadni az egyre
növekvő méretű rendezett részeket (futamokat), akkor ezek összefésülését
lehet „pufferelve”, akár blokkonként végezni. Ez azért lehetséges, mert az
összefuttatás egysége a rekord.

Általában:

• 1. menet eredménye: 1 hosszú futamok

• 2. menet eredménye: 2 hosszú futamok

• 3. menet eredménye: 4 hosszú futamok

• (k-1). menet eredménye: 2(k−2) hosszú futamok

• k. (utolsó) menet eredménye: 2(k−1) hosszú egyetlen futam = S

(előtte maradék mindig lehet)
Gyorsítási lehetőségek:

• nagyobb kezdő futamokat hozunk létre

• három fájlos külső rendező

Három fájlos külső rendező
Érdekes algoritmushoz jutunk, ha az m-felé fésülésnél nem 2m db fájl-t haszná-
lunk, hanem csak m+1 db-t.

Ezt m=2 esetére nézzük meg, ami az eredeti eset. Ekkor tehát 3 fájl-t
használunk, mondjuk A, B, C-t.

Az 1. menetben szétosztjuk S immár rendezett blokkjait A-ba és B-be.

4

A második menetben elkezdjük A és B blokkjainak az összefésülését, de
most csak 1 fájl tudja fogadni az eredményt, a C fájl. Ezért C-be fésülünk össze
egészen addig, amíg A és B egyike ki nem ürül.

Ekkor új menetet kezdünk a két nem üres fájllal s.i.t.

Példa. S n=13 blokk.
A táblázatban az első szám a futamok számát jelenti, zárójelben pedig a

futamok hossza áll.

Látjuk, hogy a második menet végén képződött 6 db 2 hosszú futam csak
egyesével tud elfogyni – érezhetően sok lépésben.

Ennek oka az, hogy az 1. menet végi két futamszámnak 1 a különbsége:
7-6=1 Hogy tudnánk ezen javítani??

Eszünkbe jut a Fibonacci sorozat: 0,1,1,2,3,5,8,13,....
Ahol két szomszédos elem különbsége – az első néhány tag kivételével – 1-től

különböző.
Innen jön a gondolat, hogy az első menetben írjunk annyi futamot A-ba és

B-be, mint a Fibonacci sorozat két (alkalmas) szomszédos eleme, és lépkedjünk
visszafelé a sorozaton az egyes menetekben.

Belátható, hogy a 3 fájlos rendező éppen akkor fut le leggyorsabban, ha így
járunk el, azaz A-ban és B-ben két szomszédos Fibonacci számnak megfelelő
számú kezdő futamot hozunk létre.

Ha N nem Fibonacci szám, akkor vagy levágjuk és félretesszük a felesleget, és
a végén még összefésüljük a kialakult eredménnyel, vagy pedig éppen fordítva:
(virtuális) kiegészítéssel alkalmasan megnöveljük az input állomány méretét.

Nézzük meg, hány lépésben érjük el Fk és Fk−1-ből az 1, 0 számokat úgy,
hogy minden menetben egy újabb számot tudunk lefelé lépni:

5

Látható, hogy a menetek száma ekkor k, hiszen Fk-től F1-ig vezet az út a
táblázatban. Ki kell fejezni n-et Fk+1-gyel, ami az input fájl (közelítő) mérete
blokkokban. Jelöljük N := Fk+1

Az A = 1 +
√

5/2 az aranymetszés aránya, amely kielégíti az A2−A− 1 = 0
egyenletet.

Ezt átrendezve: A2 = A + 1, amiből teljes indukcióval megmutatható, hogy
k ≥ 2 esetén:

6

