
15. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 30.

Edényrendezés
Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű
U halmazból kerülnek ki, pl. "∀A[i]-re igaz, hogy A[i] ∈ [1..m].

Lefoglalunk egy U elemeivel indexelt B tömböt (m db ládát), először mind
üres. B segédtömb elemei lehetnek pl. láncolt listák.

Lépések:

1. végigolvassuk az A-t, és az s = A[i] elemet a B[s] lista végére fűzzük.

2. elejétől a végéig növő sorrendben végigmegyünk B-n, és a B[i] listák tar-
talmát visszaírjuk A-ba.

Általánosabb megfogalmazás. Legyen K az S sorozat elemeinek típusér-
tékhalmaza, φ : K → [0..M − 1] olyan függvény, amire igaz, hogy ha j(k1) <
j(k2), akkor k1 < k2.

Legyenek E0, E1, . . . EM−1 edények, melyek éppen olyan sorozatok, mint S.
Az egyes edényekben megmarad az S-beli elemek ottani relatív sorrendje.

1



Struktogram.

Ahhoz, hogy Edényrend(S) egyszeri szétrakással rendezzen, elégséges, ha:

• minden edényben legfeljebb egy elem van, ( ∀i ∈ [0,M − 1] : |Ei| ≤ 1)
vagy:

• az egyes edényekben csak azonos elemek vannak, vagy:

• az egyes edények rendezettek.

Ha az előző feltételek valamelyike teljesül, akkor tökéletes az edényrendezés.
Ennek műveletigénye: θ(n), ahol n = |S|.
Példa: nagyon sok embert kell magasság szerint sorba rakni =⇒ megéri

minden egyes testmagasság számára egy edényt létrehozni.

Lépésszám
• B létrehozása: O(m)

• első fázis: O(n)

• második fázis: O(n+m) összesen: O(n+m)

Ez gyorsabb, mint az általános alsó korlát, ha pl. m ≤ c ∗ n!!

Radix rendezés
Tegyük fel, hogy a kulcsok összetettek, több komponensből állnak, (t1, ...tk)
alakú szavak, ahol a ti komponens az Li rendezett típusból való, a rendezés
lexikografikus.

Példa: Legyen (U ;<) a huszadik századi dátumok összessége az időrendnek
megfelelő rendezéssel:

L1 = {1900; 1901; ...; 1999} n1 = 100
L2 = {január, február, ...,december} n2 = 12
L3 = {1; 2; ...; 31} n3 = 31

2



A dátumok rendezése éppen az Li típusokból származó lexikografikus ren-
dezés lesz.

Menete.

• Rendezzük a sorozatot az utolsó, a k-adik komponensek szerint edényren-
dezéssel!

• A kapott eredményt rendezzük a k-1-edik komponensek szerint edényren-
dezéssel

• stb.

Fontos, hogy az edényrendezésnél az elemeket a ládában mindig a lista végére
tettük. Így, ha két azonos kulcsú elem közül az egyik megelőzi a másikat, akkor
a rendezés után sem változik a sorrendjük. Ez egy konzervatív rendezés.

Példa.

Általános leírás. Az e = eded−1...e2e1 számot jobbról balra, az alacsony
helyiértékek felől indulva pozíciónként szétrakja edényekbe, majd összefűzi az
edények tartalmát.

Definíció. S „i-rendezett” (jelölés: x ≤i y ), ha minden

• x = xdxd−1...x2x1 és y = ydyd−1...y2y1 –ra: x <0 y

• x ≤i y ⇐⇒ xi < yi vagy xi = yi és ≤i−1 y(i > 0)

• Ekkor a „d-rendezés” a közönséges rendezés

Az i. pozíción a ϕi függvényt alkalmazzuk: ϕi(e) = ei Az i. pozíción
végrehajtott szétrakás és összefűzés után S "i-rendezett" lesz.

Hatékonyság
2 ∗ d-szer megyünk végig az S sorozaton, így T (n) = θ(d ∗ |S|)

3



Struktogram

Szokásos implementáció
S fejelemes láncolt lista

Az edényeket egy „fej” és egy „vége” mutató ábrázolja.
A szétrakás és az összefűzés az elemek láncolásával megoldható. Összefű-

zéskor nem kell az egyes edények részlistáit végigolvasni, hanem egy darabban
lehet őket láncolni.

Leszámláló rendezés
Tegyük fel, hogy van n db bemeneti elem, s ezek mindegyike 1 és k közötti egész
szám.

Az alapötlet: meghatározzuk minden egyes x bemeneti elemre azoknak az
elemeknek a számát, amelyek kisebbek, mint az x.

Ezután x-et közvetlenül a saját pozíciójára tudom helyezni.
Legyen a bemenet az A[1..n] tömb, a kimenet a B[1..n] tömb. Mindkettő

hossza: hossz[A] = hossz[B] = n Szükség van még egy C[1..k] tömbre átmeneti
munkaterületként.

Menete
1. Végigmegyünk az A-n, és ha egy elem értéke i, akkor megnöveljük C[i]

értékét eggyel.

4



2. Minden i-re 1..k között meghatározzuk, hogy hány olyan bemeneti elem
van, amelyiknek az értéke ≤ i (összegzés C-n)

3. Minden j-re n..1 között A[j]-t betesszük B megfelelő pozíciójába - ezt a
C-ből állapítjuk meg.

...

5



... ... a végén:

Ha betettük, akkor a C[A[j]] értékét csökkentjük, így a következő vele egyenlő
elem már elé kerül, vagyis így stabil lesz a rendezés, az egyenlő elemeknél meg-
tartja az eredeti sorrendet.

Pszeudokód
for i ← 1 to k do

C[i] ← 0
for j ← 1 to hossz(A) do

C[A[j]] ← C[A[j]] + 1 C-ben az i-vel = elemek száma
for i ← 2 to k do

C[i] ← C [i] + C[i-1]
for j ← hossz(A) downto 1 do C-ben az i-vel ≤ elemek száma

B[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] - 1

6


