
13. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

Gyorsrendezés (Quicksort)
Egy hatékony rendezési algoritmus. Az „Oszd meg és uralkodj!”elvén működik,
két fázisa van:

• Partíciós fázis - Megosztás
A partícióban egy ún. strázsát (pivot) kell választani. Ettől balra minden
elemnek kisebbnek, jobbra nagyobbnak kell majd lennie.

< strázsa strázsa > strázsa

Megosztás menete:

– adott egy also, felso, bal jobb mutató.
– Bármely elem jó strázsának, pl. a bal széső elem.
– beállítjuk a bal és a jobb végét
– a jelzéseket addig mozgatjuk míg szembetalálkoznak.
∗ A bal elemet jobbra míg a strázsaelemnél ≤ elemre mutat
∗ a jobb elemet balra, míg a strázsaelemnél ≥ elemre mutat

– miután megállunk, látjuk, hogy a bal és a jobb rossz sorrendben
vannak, kicseréljük a bal és a jobb értékét.

– továbbmegyünk, mikor szembetalálkoznak, leállunk.
– aztán kicseréljük a strázsát a jobb elemmel. Új strázsa a jobb elem.

Sebesség: megvizsgál minden elemet egyszer O(n)

1

• Rendezési fázis
Ugyanezt ezt a bal és jobb félre is alkalmazni kell, rekurzívan.

< strázsa > strázsa
< p’ p’ > p’ strázsa < p” p” > p”

Sebesség: adatok kétfelé osztása O(log2 n)

Implementáció
quicksort(void *a, int also, int felso)
{

int pivot;
/* Terminálási feltétel! */
if (felso > also)
{

pivot = feloszt(a, also, felso) ; Oszd meg

quicksort(a, also, pivot-1) ; Uralkodj

quicksort(a, pivot+1, felso) ; ..
}

}

Struktogram

2

Műveletigénye
Jó esetben:

O(n) ·O(log2 n) = O(n log n)

DE, ha az adatok részben vagy teljesen rendezettek, akkor

• Minden partíció létrehoz egy 0 méretű feladatot és egy n-1 méretűt!

• Partíciók száma: minden n időigénye O(n), összesen nO(n) vagyis

O(n2)

is lehet! Tehát nem garantált a sebesség, az a pivot jó megválasztásától függ!
Nem csak bal szélső strázsát lehetne választani, lehetne középsőt, utolsót is.

(Részben) rendezettnél a középső jó lehet :

1 2 3 4 5 6 7 8 9

Esetleg véletlen pivotot választunk.

3

