12. tétel

Adatszerkezetek és algoritmusok vizsga

Frissilt: 2013. januar 28.

Kupac (heap)

Majdnem teljes fak

Teljes binaris fa

Egy binaris fa teljes, ha
e magassaga h és

e 21 _ 1 csomépontja van.

Majdnem teljes binaris fa

Egy h magassigt binaris fa akkor és csak akkor majdnem teljes, ha
e iires, vagy
e magassaga h és

— bal részfaja h — 1 magas és majdnem teljes

— jobb részfaja h — 2 magas és teljes

e magassiga h és

— bal részfaja h — 1 magas és teljes

— jobb részfija h — 1 magas és majdnem teljes

Definici6
Egy majdnem teljes fa heap tulajdonsigi <—
e iires, vagy

e vagy: a gyokérben 1év6 kulcs nagyobb, mint mindkét gyerekében, és
mindkét részfaja is heap tulajdonsagi

N
ﬁ/ \H o/ \u
‘/ \E c/ \‘ I/‘\.’|

Prioritasos sorok megvaldsitasara hasznaljuk.

Reprezentacio

Dinamikusan allokalt csomépontok és mutaték mint barmilyen mas lancolt lista
vagy fa.

P
—

L #=9
Tk 2.
w,)ﬁ.m\ TTa,
[112]3faf5[ef7(efo] | | |

R RN 4 =

Hasznaljunk egy tombot és hasznéaljuk ki a “majdnem teljes” tulajdonsagot.
e a k csomépont gyerekei a 2k, 2k 4+ 1-nél vannak
e a k sziiléje a k/2-nél van

e ha k > n, akkor a csomépont nem létezik

Miiveletek
Létrehozas

Empty: — K - az tires kupac létrehozasa.

Maxmeret
'

EEEIEEEIEE

Iﬂ Hely foglalasa

Aktmeret:=0

Ures-e a kupac?

Isempty: K — L
return (Aktmeret = 0)

Beszuras

Insert: K x N — K elem betétele a kupacba.

Menete: Adjunk egy elemet a kupachoz. Helyezziik a kovetkez6 tires pozici-
ora a jobb szélén — ez kell legyen a kovetkez6 kitoltendo hely.

Utana vigyiik felfelé, amig nagyobb, mint a sziilei.

X
G/ \FI O/ﬁ
Aj \E Cj \A If \M i;/j

Struktogram

N Aktmeret # Maxmeret

Aktmeret :— Aktmeret+1;
T[Aktmeret] := ujelem;
Szulo = Aktmeret / 2;
Gyerek := Aktmeret;

Szulo >= 1 and then T[Szulo] < T[Gyerek]

Csere(T[Szulo], T.[Gyerek]);
Gyerek:= Szulo;
Szulo:= Szulo/2;

Maximualis elem lekérdezése

Max: K - F

Akt t#0
N meret # y

o 71

Maximalis elem kivétele a kupacbdl

Delmax: K - K x N

Torlés menete. Torlés esetén mindig helyre kell allitani a heap tulajdonsagot.
A 1épések:

e kiszedjik a gyokér elemet.
e a mostani utolsé elemet felvissziik a gyokérbe.

e Ekkor hibés lehet a heap tulajdonsag. Ilyenkor a gyokér és gyerekeit vizs-
galjuk, ha az egyik gyerek nagyobb mint a gyokér, csere a gyokérrel, és ezt
rekurzivan, ameddig lehet és kell

Struktogram.

Aktmeret # 0
maxelem:=T[1];
T[1]:=T[Aktmeret];

Aktmeret:=Aktmeret-1;

Sullyeszt;
return maxelem;

A maximélis elem értékét a mazelem-ben kapjuk.
Sullyeszt: feltételezziik, hogy a kupacban két j6 részfa van, de a T[1]-t meg-
felelen le kell siillyeszteni

ai=1; -- aktualis index

(ai * 2 +1) <= Aktineret and then T[ai] < Max(T[ai *2], T[ai *2+1])

T[ai*2+1] < T[ai*2]

Kupac rendezés
Lépései:
e Szurd be az elemeket egy kupacbal

e Amig a sor ki nem iiriil, vedd ki a kupacbdl a maximalis elemet, és tedd
az eredmény (rendezett) sorbal

Struktogramja:
Az s sorban 1év6 elemeket rendezziik a k kupac segitségével!

k empty

not s.isempty

e=s.out
k.insert(e)

not k.isempty

e=k.delmax
5.in(e)

e Szurjunk be minden elemet a kupacba.

n elem, ezekhez kell O(logyn) , dssz. O(nlogn)

e sorrendben tavolitsuk el az elemeket
n elem, ezekhez kell O(logn), 6ssz. O(nlogn)
Miiveletigény 6sszesen: O(nlogn). Ez a sebesség garantélt, nem ingadozik,

mint a Quicksort-nal (az lehet gyorsabb is, de rosszabb esetben O(n?))! Emiatt
hasznaljak valés idejii rendszereknél. Ott az id6 szorit.

