
10. tétel
Adatszerkezetek és algoritmusok vizsga

Frissült: 2013. január 28.

2-3 fák

Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolul-
tabb hogy egy nem-levél csúcsnak 2 vagy 3 fia lehet. Lefelé irányított gyökeres
fa, melyre igaz hogy:

1. A rekordok a fa leveleiben helyezkednek el, a kulcs értéke szerint balról
jobbra növekvő sorrendben. Egy levél egy rekordot tartalmaz.

2. Minden belső (azaz nem levél) csúcsból 2 vagy 3 él megy lefelé; ennek
megfelelően a belső csúcsok egy, illetve két k ∈ U kulcsot tartalmaznak.

A belső pontok szerkezete:

A belső csúcs kétféle lehet:

• 3 gyerekes

1



– m1,m2,m3 mutatók a csúcs részfáira mutatnak.
– k1, k2 U -beli kulcsok, melyekre k1 < k2.
– m1 által mutatott részfa minden kulcsa kisebb mint k1.
– Az m2 részfájában k1 a legkisebb kulcs és minden kulcs kisebb mint
k2.

– m3 részfájában k2 a legkisebb kulcs.

• 2 gyerekes

– m1,m2 mutatók a csúcs részfáira mutatnak.
– k1 U -beli kulcs.
– m1 által mutatott részfa minden kulcsa kisebb mint k1.
– Az m2 részfájában k1 a legkisebb kulcs.

A két típus közötti váltást csak logikailag kezeljük.

Megjegyzés. Ha nincs elem a fában (n = 0), t = NIL vagy üres a gyökér.
Ha 1 elem van (n = 1), akkor itt kivételesen egy gyereke van a gyökérnek.

A fa magassága korlátos: 2h < n < 3h ⇒ h ≤ log2 n (még 2-es elágazási
tényező esetén is!)

Műveletek
Keresés

gyorsasága: θ(log2 n)

Beszúrás

Először is kereséssel meg kell határozni a helyét az új elemnek. Két eset lehet,
attól függően, hogy a legalsó belső pontnak hány gyereke van: 2 vagy 3.

Ha 2 gyereke van, akkor elfér még egy 3. is.

2



Felfelé haladva korrigálni kell a megfelelő kulcsot 2-re. (ha a nagyszülőben
az 5-nél kisebb nem volt, egy leágazásos elem nem szúrható be.)

Ha 3 gyereke van, itt már nem lehet közé szúrni, csúcsvágást kell végezni.

Ha a szülőnek eleve 3 gyereke volt, akkor itt is csúcsvágásra van szükség, és
így tovább felfelé. Ha valahol ezen az úton van egy kétgyermekes belső csúcs,
akkor ott megáll a beszúrás, mert annak lehet 3 gyereke. Ha ezen az úton
minden belső pontnak 3 gyereke volt, akkor a csúcsvágás felgyűrűzik a gyökérig.
Ekkor a felfelé vágott gyökér fölé egy új gyökeret kell tenni.

Nőtt a magasság (h)!

Törlés

Először megkeressük a törlendő csúcsot. Itt is, több esetre osztjuk szét a fel-
adatot, most három eset fordul elő:

3



Ha a szülőnek 3 gyereke van, nincs nagy baj, 2-re csökken:

Ha viszont 2 gyereke volt, akkor 1 testvére van, ha viszont van 3 gyerekes
testvére, az átad 1 gyereket neki.

Ha viszont még az sincs, össze kell vonni a testvér csúcsait, és utána feljebb
folytatni, egész a gyökérig összevonni, ameddig kell.

4



Ha a gyökérig eljut, a magasság ilyenkor csökken.
A költség: O(log2 n)

B-fák
A B-fák a fenti 2-3 fák általánosításai. Nagy méretű adatbázisok, külső tá-
ron levő adatok feldolgozására használják. Sokféle szabványban felhasználták,
lemezkezelésnél általánosan elterjedt. Az adatok kiolvasását szeretnénk felgyor-
sítani vele.

Definíció. Minden x csúcsnak a következő mezői vannak:

• a benne tárolt kulcsok darabszáma: n[x] Ezekre adott egy alsó és egy felső
korlát, ez a korlát t ≥ 2, ő a B-fa minimális fokszáma.

• maguk a kulcsok, melyek nem csökkenő sorrendben vannak eltárolva:

x.kulcs1 ≤ x.kulcs2 ≤ ... ≤ x.kulcsn[x]

• Ha x belső csúcs (nem levél), akkor tartalmazza a

x.c1, x.c2, ...x.cn[x]+1

mutatókat az ő gyerekeire. A ci mutató olyan részfára mutat, amelynek
kulcsai kulcsi és kulcsi+1 közé esnek:

k1 ≤ x.kulcs1 < k2 ≤ x.kulcs2 < ... ≤ x.kulcsn[x] < kn[x]+1

Az x.kulcsi érték meghatározzák a kulcsértékeknek azokat a tartományait,
amelyekbe a részfák kulcsai esnek.
A belső csúcsok szerkezete:

5



• a levél csúcsoknak nincsenek leveleik, azok nincsenek is definiálva. Minden
levélnek azonos a mélysége ami a fa h magassága.

• minden nem gyökér csúcsnak legalább t− 1 kulcsa van. Így minden belső
csúcsnak legalább t gyereke van. Ha a fa nem üres, akkor a gyökérnek
legalább egy kulcsa kell legyen.

• Minden csúcsnak legfeljebb 2t − 1 kulcsa lehet, tehát egy belső csúcsnak
legfeljebb 2t gyereke lehet. Egy csúcs telített ha pontosan 2t − 1 kulcsa
van.

Műveletek
A 2-3 fákéhoz hasonló. A B-fa gyökere mindig a központi memóriában van, így
a gyökércsúcsra LEMEZRŐL-OLVAS művelet nem kell, de LEMEZRE-ÍR kell
akkor, ha a gyökércsúcs megváltozott. 2. Minden olyan csúcs, amely paramé-
terként szerepel, már a központi memóriában van, már végrehajtottunk rá egy
LEMEZRŐL-OLVAS műveletet.

Keresés

x a részfa gyökércsúcsára mutató pointer, k a kulcs, amit ebben a részfában
keresünk.

B-FÁBAN-KERES(x,k)
i ← 1
while i ≤ n[x] és k > x.kulcsi do
i ← i+1
if i ≤ n[x] és k = x.kulcsi
then return (x,i)
if x.levél
then return NIL
else LEMEZRŐL-OLVAS(x.ci)
return B-FÁBAN-KERES(x.ci,k)

6



Ha az R betűt keressük, a pirosakon megyünk.

Műveletigény. Itt minden belső csúcsban n[x] + 1 lehetőséget kell megvizs-
gálni. Összes művelet idő: Θ(t ∗ logt n)

Létrehozás

B-FÁT-LÉTREHOZ – egy üres gyökércsúcsot ad.
Használja a PONTOT-ELHELYEZ eljárást, ez O(1) idő alatt lefoglalja az új

csúcsnak a lemez egy lapját. Feltételezzük, hogy nincs szüksége a LEMEZRŐL-
OLVAS eljárás meghívására.

B-FÁT-LÉTREHOZ(T)
x←PONTOT-ELHELYEZ()
x.levél←IGAZ
n[x]←0
LEMEZRE-ÍR(x)
gyökér[T]←x

Ehhez O(1) lemezművelet és O(1) központi egység idő kell.

Csúcs szétvágása. A telített, 2t − 1 darab kulcsot tartalmazó y csúcsot
szétvágjuk középső kulcsa, y.kulcst körül két t − 1 kulcsú csúcsra. A középső
csúcs átmegy az y szülőjébe – ez még nem volt telített az y szétvágása előtt. Ha
y-nak nincs szülője, akkor a fa magassága eggyel nő.

Tegyük fel, hogy x egy nem telített belső csúcs, y = x.ci, és y az x-nek egy
telített gyereke:

7



B-FA-VÁGÁS-GYEREK(x, i, y)

z ← PONTOT-ELHELYEZ() - O(1) idő alatt lefoglalja az új csúcsnak a lemez egy lapját
z.levél ← y.levél
n[z]←t-1
for j ← 1 to t-1 do
z.kulcsj ← y.kulcsj+t

if not y.levél
then for j←1 to t do

z.cj←y.cj+t
n[y]←t-1

for j ← n[x]+1 downto i+1 do -- a csúcsokra mutatókat
x.c j+1 ← x.cj -- arrébb tesszük
x.ci+1 ← z -- z középre

for j ← n[x] downto i do -- a kulcsokat arrébb tesszük
x.kulcsj+1 ← x.kulcsj

x.kulcsi+1 ← y.kulcst -- a kulcs a helyére
n[x] ← n[x] + 1 -- x elemszáma nőtt

LEMEZRE-ÍR(y)
LEMEZRE-ÍR(z)
LEMEZRE-ÍR(x)

Beszúrás

Egy k kulcs beszúrása egy h magasságú T B-fába egy egymenetes, a fában lefelé
haladó algoritmussal oldható meg, a végrehajtáshoz O(h) lemezhozzáférés kell.

A szükséges központi egység idő O(t ∗ h) = O(t ∗ logt n).
Pszeudokód:

B-FÁBA-BESZÚR(T,k)
r ← gyökér[T]
if n[r]=2t-1 -- ha telített a gyökércsúcs, vág
then s← PONTOT-ELHELYEZ()
gyökér[T] ← s
s.levél← HAMIS
n[s] ← 0
s.c1 ← r
B-FA-VÁGÁS-GYEREK(s,1,r)
NEM-TELÍTETT-B-FÁBA-BESZÚR(s,k)

else NEM-TELÍTETT-B-FÁBA-BESZÚR(r,k)

8



NEM-TELÍTETT-B-FÁBA-BESZÚR(x,k)
i ← n[x]
if x.levél
then while i ≥ 1 és k< x.kulcsi do

x.kulcsi+1 ← x.kulcsi
i ← i-1

x.kulcsi+1 ← k
n[x] ← n[x] +1
LEMEZRE-ÍR(x)
else while i ≥ 1 és k < x.kulcsi do

i ← i-1
i ← i+1
LEMEZRŐL-OLVAS(x.ci)

if n[x.ci]=2t-1 -- telített?
then B-FA-VÁGÁS-GYEREK(x, i, x.ci)
if k > x.kulcsi
then i ← i+1

NEM-TELÍTETT-B-FÁBA-BESZÚR(x.ci,k)

Példa:
Tegyük fel hogy t = 3, azaz max. 5 kulcs lehet egy csúcsban. Most így néz

ki a fánk:

B beszúrása után:

Q beszúrása után:

RSTUV telített volt!
L beszúrása után:

9



F beszúrása:

Törlés

Kulcsot nemcsak levélből, hanem tetszőleges csúcsból lehet törölni. Ügyelni kell
arra, hogy a csúcs ne legyen túl kicsi (kivéve a gyökérben)

Lehetőségek.

1. a k kulcs az x csúcsban van, x egy levél, akkor a k kulcsot töröljük az
x-ből.
Példa

Töröljük az F -t!

2. a k kulcs az x csúcsban van, x a fa egy belső csúcsa, akkor:

10



(a) ha x-ben a k-t megelőző gyereknek (y) legalább t kulcsa van, akkor
megkeressük az y részfában a k-t közvetlenül megelőző k′ kulcsot.
Rekurzívan töröljük k′-t és helyettesítsük k-t k′-vel az x-ben.
Példa. Eredeti fa:

M törlése:

(b) szimmetrikusan, ha a z gyerek következik az x-beli k után, és z-nek
legalább t kulcsa van, akkor keressük meg a z gyökércsúcsú részfá-
ban a k-t közvetlenül követő k′ kulcsot. Rekurzívan töröljük k′-t és
helyettesítsük k-t k′-vel az x-ben.

(c) ha mind y-nak, mind z-nek csak t − 1 kulcsa van, akkor egyesítsük
k-t és z kulcsait y-ba úgy, hogy x-ből töröljük a k-t és a z-re mutató
pointert. Ekkor y-nak 2t− 1 kulcsa lesz. Ezután szabadítsuk fel z-t
és rekurzívan töröljük k-t az y-ból.
Példa. Eredeti fa:

G törlése:

11



3. ha a k kulcs nincs benne az x belső csúcsban, akkor határozzuk meg an-
nak a részfának az x.ci gyökércsúcsát, amelyikben benne lehet a k, ha
egyáltalán szerepel. Ha x.ci –nek csak t-1 csúcsa van, akkor a 3a vagy 3b
szerint járjunk el, mivel biztosítani kell, hogy annak a csúcsnak, amelyikre
lelépünk, legalább t csúcsa legyen. Ezután rekurzióval megyünk tovább.

(a) Ha x.ci–nek csak t-1 csúcsa van, de van egy közvetlen testvére, ame-
lyiknek legalább t csúcsa van, akkor vigyünk le x.ci–be egy kulcsot
x-ből, és a x.ci közvetlen bal vagy jobboldali testvérétől vigyünk fel
egy kulcsot x-be, és vigyük át a megfelelő gyerek mutatóját a test-
vértől x.ci-be.
Példa.

B törlése:

(b) Ha x.ci-nek, és mindkét közvetlen testvérének t-1 kulcsa van, akkor
egyesítsük x.ci-t az egyik testvérével, majd vigyünk le egy kulcsot
x-ből ebbe az egyesített csúcsba, középre.
Példa.

D törlése:

12



a fa magassága csökken

Pszeudokód:

B-Tree-Delete(x, k)
//k a törlendő kulcs
//x a részfa gyökere, amiből k-t törölni szeretnénk
//B-Tree-Delete igazat ad vissza, ha sikerült
//Feltételezi, hogy x-nek legalább t kulcsa van

if x is a leaf then //ha levél
if k is in x then
töröld k-t x-ből, return true;
else return false //k nem részfa

else //x egy belső csúcs
if k is in x then

y = az x k-t megelőző gyereke
if y-nak van legalább t kulcsa then

k’ = k megelőzője
másoljuk át k‘-t k-ba
B-Tree-Delete(y, k’) // rekurzív hívás

else //y –nak t-1 kulcsa van
z = az x k-t követő gyereke

13



if z -nek van legalább t kulcsa then
k’ = a k rákövetkezője
másoljuk át k‘-t k-ba
B-Tree-Delete(z, k’) // rekurzív hívás

else //y-nak is és z-nek is t-1 kulcsa van
vonjuk össze k-t és a teljes z-t y-ba -> y-nak most 2t-1 kulcsa lesz
k-t és a z-re mutató pointert töröljük x-ből.
B-Tree-Delete(y, k) // rekurzív hívás

else //k nem belső csúcsa x-nek
ci[x] mutat annak a részfának a c gyökerére, ami tartalmazhatja a k-t
if c-nek t-1 kulcsa van then

if c –nek van olyan közvetlen bal/jobb testvére (z), aminek
t vagy több kulcsa van then
Legyen k1 a kulcs x-ben, ami megelőzi/követi c-t
Vidd k1-t c-be mint első/utolsó kulcsot
Legyen k2 az első/utolsó kulcs a z közvetlen bal/jobb testvérben
Helyettesítsd k1-t x-be k2-vel z-ből (vidd fel k2-t x-be).
Vidd a z utolsó/első gyerek részfáját a c első/utolsó gyerek részfájának

else //c-nek és mindkét közvetlen testvérének t-1 kulcsa van
//összevonjuk c-t az egyik közvetlen testvérével és
//x megf. kulcsát középre tesszük
//(Ez új gyökérhez vezethet)

B-Tree-Delete(c, k)

14


