10. tétel

Adatszerkezetek és algoritmusok vizsga

Frissiilt: 2013. januar 28.

2-3 fak

o/o/.\o o/\
A LIN 7N N\

Hatékony keres6fa-konstrukcié. Ez is fa, de a bindrisnal annyival bonyolul-
tabb hogy egy nem-levél csticsnak 2 vagy 3 fia lehet. Lefelé irdnyitott gytkeres
fa, melyre igaz hogy:

1. A rekordok a fa leveleiben helyezkednek el, a kulcs értéke szerint balrél
jobbra névekvé sorrendben. Egy levél egy rekordot tartalmaz.

2. Minden bels§ (azaz nem levél) csicsbdl 2 vagy 3 él megy lefelé; ennek
megfelel6en a belsé csiicsok egy, illetve két k € U kulcsot tartalmaznak.

A bels6 pontok szerkezete:

(sziilore mutato pointer)

A belsé cstics kétféle lehet:

o 3 gyerekes

— mq, ma, m3 mutatok a csics részfdira mutatnak.
k1, ko U-beli kulcsok, melyekre ki < ko.

my altal mutatott részfa minden kulcsa kisebb mint kq.

— Az mg részfajaban kp a legkisebb kulcs és minden kulcs kisebb mint
ko.

— mg részfajaban ko a legkisebb kulcs.

e 2 gyerekes

— m1, mo mutatdk a csics részfdira mutatnak.
k1 U-beli kulcs.

my altal mutatott részfa minden kulcsa kisebb mint k;.

— Az mo részfiajaban kq a legkisebb kulcs.

A két tipus kozotti valtast csak logikailag kezeljiik.

Megjegyzés. Ha nincs elem a faban (n = 0), t = NIL vagy tres a gyokér.
Ha 1 elem van (n = 1), akkor itt kivételesen egy gyereke van a gyokérnek.

A fa magassiga korldtos: 2" < n < 3" = h < logyn (még 2-es elagazasi
tényez6 esetén is!)
Miiveletek

Keresés

gyorsasdga: 0(log, n)

Beszuras

El6szor is kereséssel meg kell hatarozni a helyét az 4j elemnek. Két eset lehet,
attol fiiggden, hogy a legalsé belsé pontnak hany gyereke van: 2 vagy 3.
Ha 2 gyereke van, akkor elfér még egy 3. is.

:'> l10l12|

ey
b. k=8

- J e "

NOREN =) [[+
c. k=2

=] [[

Felfelé haladva korrigalni kell a megfelel6 kulcsot 2-re. (ha a nagysziil6ben
az 5-nél kisebb nem volt, egy ledgazdsos elem nem szirhaté be.)
Ha & gyereke van, itt mar nem lehet kozé szirni, csicsvdgdst kell végezni.

k=8

NTTTT =

A megoldas a csticsvagas:

Ha a sziilonek eleve 3 gyereke volt, akkor itt is csicsvagasra van sziikség, és
igy tovabb felfelé. Ha valahol ezen az tGton van egy kétgyermekes belsé csucs,
akkor ott megdll a besztiras, mert annak lehet 3 gyereke. Ha ezen az tton
minden belsé pontnak 3 gyereke volt, akkor a csticsvagas felgytirtizik a gyokérig.
Ekkor a felfelé vagott gyokér folé egy 1j gyokeret kell tenni.

Nétt a magassag (h)!
Torlés

Elészor megkeressiik a torlendd cstuicsot. Itt is, tobb esetre osztjuk szét a fel-
adatot, most harom eset fordul eld:

Ha a sziilonek 3 gyereke van, nincs nagy baj, 2-re csokken:

k=5
= | I

korrekciod a sziiloben
| | | | | l 5 =10-re
| | 12 | | | l

Ha viszont 2 gyereke volt, akkor 1 testvére van, ha viszont van 3 gyerekes
testvére, az atad 1 gyereket neki.

Ha viszont még az sincs, 0ssze kell vonni a testvér csicsait, és utana feljebb
folytatni, egész a gyokérig dsszevonni, ameddig kell.

ar

,0sszevonunk”
két csticsot

/ gyokér

uj gyoker

h csokkent!

Ha a gyokérig eljut, a magassag ilyenkor csokken.
A koltség: O(logyn)

B-fak

A B-fék a fenti 2-3 fik altalanositdsai. Nagy méreti adatbazisok, kiils§ té-
ron levé adatok feldolgozasdra hasznaljak. Sokféle szabvanyban felhasznaltak,
lemezkezelésnél altalanosan elterjedt. Az adatok kiolvasdsat szeretnénk felgyor-
sitani vele.

Definicié. Minden z csicsnak a kovetkezd mezoi vannak:

e a benne térolt kulcsok darabszama: n[z] Ezekre adott egy alsd és egy felsd
korldt, ez a korlat t > 2, 6 a B-fa minimadlis fokszdma.

e maguk a kulcsok, melyek nem csékkend sorrendben vannak eltdrolva:

x.kulecsy < x.kuless < ... < x.kulcsn[z]

e Ha z belsd csiics (nem levél), akkor tartalmazza a
L.C1, T.Cy o Cpg] 41

mutatokat az & gyerekeire. A ¢; mutatd olyan részfara mutat, amelynek
kulcsai kulcs; és kulcs;y1 kozé esnek:

k1 < w.kulesy < ko < w.kulesy < ... < @.kulesyz) < kpla)+1

Az x.kules; érték meghatarozzak a kulesértékeknek azokat a tartomanyait,
amelyekbe a részfak kulcsai esnek.

A belsé cstuicsok szerkezete:

e a levél csucsoknak nincsenek leveleik, azok nincsenek is definidlva. Minden
levélnek azonos a mélysége ami a fa h magassiga.

e minden nem gyokér cstcsnak legaldbb ¢t — 1 kulesa van. Igy minden belsé
csucsnak legalabb ¢ gyereke van. Ha a fa nem fires, akkor a gyokérnek
legalabb egy kulcsa kell legyen.

e Minden cstcsnak legfeljebb 2¢ — 1 kulcsa lehet, tehdt egy bels6 csicsnak
legfeljebb 2t gyereke lehet. Egy cstcs telitett ha pontosan 2¢ — 1 kulcsa
van.

Miiveletek

A 2-3 fékéhoz hasonld. A B-fa gydkere mindig a kézponti memoéridban van, igy
a gyokérestcsra LEMEZROL-OLVAS miivelet nem kell, de LEMEZRE-IR kell
akkor, ha a gyokércstcs megvaltozott. 2. Minden olyan csiics, amely paramé-
terként szerepel, méar a kézponti meméridban van, mar végrehajtottunk ra egy
LEMEZROL-OLVAS mifiveletet.

Keresés

T a részfa gyokércsucsara mutatd pointer, k a kulcs, amit ebben a részfaban
keresiink.

B-FABAN-KERES (x, k)
i<+ 1
while i < n[x] és k > x.kulcs; do
i+ i+l
if 1 < n[x] és k = x.kulcs;
then return (x,1i)
if x.levél
then return NIL
else LEMEZROL-OLVAS(x.c;)
return B-FABAN-KERES(x.c;,k)

Ha az R betiit keressiik, a pirosakon megyiink.

Miiveletigény. Itt minden belsd csiicsban n[z] + 1 lehetdséget kell megvizs-
gélni. Osszes miivelet id6: O(t * log, n)

Létrehozas

B-FAT-LETREHOZ - egy iires gyokércsticsot ad.

Haszndlja a PONTOT-ELHELYEZ eljarast, ez O(1) idé alatt lefoglalja az j
csucsnak a lemez egy lapjat. Feltételezziik, hogy nincs sziiksége a LEMEZROL-
OLVAS eljaras meghivasara.

B-FAT-LETREHOZ (T)
x<PONTOT-ELHELYEZ ()
X.levél<IGAZ
n[x] <0
LEMEZRE-IR (x)
gyokér [T]<x

Ehhez O(1) lemezmiivelet és O(1) kozponti egység id6 kell.

Cstics szétvagasa. A telitett, 2¢ — 1 darab kulcsot tartalmazd y cstcsot
szétvagjuk kozépsé kulesa, y.kulcs; koriil két ¢ — 1 kulest csticsra. A kozéps6
csucs atmegy az y sziiléjébe — ez még nem volt telitett az y szétvagasa elott. Ha
y-nak nincs sziil6je, akkor a fa magassaga eggyel né.

x.kules;

x.kules, x.kules;, xkules;

X

Z=X.Cipy

PQRSTUV

T,T,T,T,T,T, T, T, T,T,T,T, T, T, T, T,

Tegyiik fel, hogy x egy nem telitett belsd csics, y = x.¢;, és y az x-nek egy
telitett gyereke:

B-FA-VAGAS-GYEREK(x, i, y)

z < PONTOT-ELHELYEZ() - O(1) 4dé alatt lefoglalja az 4j csidcsnak a lemez egy lapjdt
z.levél <+ y.levél
nl[z]+t-1
for j < 1 to t-1 do
z.kulcsj < y.kulcsji¢
if not y.levél
then for j<1 to t do
Z.Cj<— Y. Cj4t

nlyl«t-1

for j < n[x]+1 downto i+l do -- a cslcsokra mutatdékat
X.C jy1 & X.Cj —-- arrébb tesszik

X.Ciy1 & Z -- z kozépre

for j < n[x] downto i do -- a kulcsokat arrébb tesszik
x.kulcsji1 ¢ x.kulcs;

x.kulcsij;; < y.kulcsy -- a kulcs a helyére

nlx] < nfx] + 1 -- x elemszéma ndtt

LEMEZRE-IR(y)
LEMEZRE-IR(z)
LEMEZRE-IR (%)

Beszuras

Egy k kulcs besztrasa egy h magassagi T B-fiba egy egymenetes, a faban lefelé
haladé algoritmussal oldhat6é meg, a végrehajtdshoz O(h) lemezhozzaférés kell.
A sziikséges kozponti egység id6 O(t x h) = O(t * log, n).
Pszeudokdd:

B-FABA-BESZUR(T, k)
T + gydkér[T]
if nlr]=2t-1 -- ha telitett a gyokércsics, vag
then s< PONTOT-ELHELYEZ()
gyokér([T] « s
s.levél« HAMIS
nls] < 0
S.C1 < T
B-FA-VAGAS-GYEREK (s,1,r)
NEM-TELITETT-B-FABA-BESZUR(s,k)
else NEM-TELITETT-B-FABA-BESZUR(r,k)

NEM-TELITETT-B-FABA-BESZUR (x,k)
i + n[x]
if x.levél
then while i > 1 és k< x.kulcs; do
x.kulcsij;; < x.kulcs;
i+ i-1
x.kulcsipg < k
n[x] < n[x] +1
LEMEZRE-IR (x)
else while i > 1 és k < x.kulcs; do
i<+ i-1
i i+l
LEMEZR{OL-0LVAS (x. c;)

if nlx.c;]1=2t-1 -- telitett?
then B-FA-VAGAS-GYEREK(x, i, x.c;)
if k > x.kulcs;
then i « i+l
NEM-TELITETT-B-FABA-BESZUR(x.c;,k)

Példa:
Tegytik fel hogy t = 3, azaz max. 5 kulcs lehet egy cstcsban. Most igy néz
ki a fank:

B beszirasa utan:

@ beszurasa utan:

RSTUYV telitett volt!
L beszurasa utan:

F beszuréasa:

Torlés

Kulcsot nemcsak levélbél, hanem tetszéleges csticsbél lehet torolni. Ugyelni kell
arra, hogy a cstcs ne legyen t1l kicsi (kivéve a gyokérben)

Lehet6ségek.

1. a k kulcs az x cstcsban van, x egy levél, akkor a k kulcsot toroljik az
x-bél.
Példa

Toroljik az F-t!

2. a k kulcs az = cstcsban van, x a fa egy belsd csiicsa, akkor:

10

(a) ha z-ben a k-t megel6z8 gyereknek (y) legaldbb t kulcsa van, akkor
megkeressiik az y részfiban a k-t kozvetleniil megeléz6 k' kulcsot.
Rekurzivan toroljitk k'-t és helyettesitsiik k-t k’-vel az z-ben.

Példa. Eredeti fa:

M torlése:

(b) szimmetrikusan, ha a z gyerek kovetkezik az z-beli k utdn, és z-nek
legalabb ¢ kulcsa van, akkor keressitk meg a z gyokércsicsu részfa-
ban a k-t kozvetleniil kovetd &’ kulcsot. Rekurzivan tordljik k-t és
helyettesitsiik k-t k’-vel az z-ben.

(¢) ha mind y-nak, mind z-nek csak ¢ — 1 kulcsa van, akkor egyesitsiik
k-t és z kulcsait y-ba gy, hogy z-bol toroljik a k-t és a z-re mutatod
pointert. Ekkor y-nak 2t — 1 kulcsa lesz. Ezutan szabaditsuk fel z-t
és rekurzivan toroljik k-t az y-bol.

Példa. Eredeti fa:

G torlése:

11

3. ha a k kulcs nincs benne az x bels6 csticsban, akkor hatarozzuk meg an-
nak a részfanak az x.c; gyOkércsicsat, amelyikben benne lehet a k, ha
egyaltalan szerepel. Ha x.c; —nek csak t-1 cstcsa van, akkor a 3a vagy 3b
szerint jarjunk el, mivel biztositani kell, hogy annak a csticsnak, amelyikre
lelépiink, legalabb t csticsa legyen. Ezutan rekurzidval megytink tovabb.

(a) Ha x.cinek csak t-1 csticsa van, de van egy kozvetlen testvére, ame-
lyiknek legaldbb t cstcsa van, akkor vigyiink le x.c;—be egy kulcsot
x-bol, és a x.c; kozvetlen bal vagy jobboldali testvérétol vigytlink fel
egy kulcsot x-be, és vigyiik at a megfeleld gyerek mutatdjit a test-
vértol x.ci-be.

Példa.

B torlése:

(b) Ha x.ci-nek, és mindkét kozvetlen testvérének t-1 kulcsa van, akkor
egyesitsiik x.ci-t az egyik testvérével, majd vigyiink le egy kulcsot
x-b6l ebbe az egyesitett csicsba, kdzépre.

Példa.

D torlése:

12

a fa magassdga csokken

Pszeudokdd:

B-Tree-Delete(x, k)

//k a toérlendd kulcs

//x a részfa gybkere, amibdl k-t t6rdlni szeretnénk
//B-Tree-Delete igazat ad vissza, ha sikerilt
//Feltételezi, hogy x-nek legaldbb t kulcsa van

if x is a leaf then //ha levél
if k is in x then
to6r6ld k-t x-b6él, return true;
else return false //k nem részfa
else //x egy belsé csics
if k is in x then

y = az x k-t megeldzd gyereke
if y-nak van legaldbb t kulcsa then
k’ = k megeldzdje
masoljuk at k‘-t k-ba
B-Tree-Delete(y, k’) // rekurziv hivas

else //y -nak t-1 kulcsa van
z = az x k-t kovetd gyereke

13

if z -nek van legaldbb t kulcsa then

k’ = a k rakovetkezdje

mésoljuk at k‘-t k-ba

B-Tree-Delete(z, k’) // rekurziv hivas

else //y-nak is és z-nek is t-1 kulcsa van

vonjuk 6ssze k-t és a teljes z-t y-ba -> y-nak most 2t-1 kulcsa lesz
k-t és a z-re mutatdé pointert toérdljik x-bdl.

B-Tree-Delete(y, k) // rekurziv hivas

else //k nem belsd csicsa x-nek
ci[x] mutat annak a részfanak a c gyodkerére, ami tartalmazhatja a k-t
if c-nek t-1 kulcsa van then
if ¢ -nek van olyan kézvetlen bal/jobb testvére (z), aminek
t vagy tobb kulcsa van then
Legyen k1 a kulcs x-ben, ami megeldzi/kéveti c-t
Vidd k1-t c-be mint elsd/utolsdé kulcsot
Legyen k2 az elsd/utolsdé kulcs a z kozvetlen bal/jobb testvérben
Helyettesitsd kl-t x-be k2-vel z-b6l (vidd fel k2-t x-be).
Vidd a z utolsd/elsd gyerek részfajat a c elsb/utolsd gyerek részfajanak
else //c-nek és mindkét kdzvetlen testvérének t-1 kulcsa van
//6sszevonjuk c-t az egyik kézvetlen testvérével és
//x megf. kulcsat kozépre tesszik
//(Ez uj gyokérhez vezethet)
B-Tree-Delete(c, k)

14

