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Vizsga

összeállította: 

Esztergár-Kiss Domokos
1. Az adattípus absztrakciós szintjei
Típus: adat által felvehető lehetséges értékek halmaza és műv; specifikációja; 
Típusabsztrakció szintjei:
- ADT(=absztrakt adattípus): lm. absztrakciós szint, nem feltételez semmit a belső szerkezetről, nincs konkrét prog.környezet, elég műv hatásait ismerni, enkapszuláció(=tokbazárás, megvalósítás elrejtése), csak matematikai fogalmakat használ, nem magas formalizáltság miatt absztrakt; elvárások leírása, hogy nem teszünk megszorítást a szerkezetre nézve, felhasználó csak műv keresztül érheti el;

- ADS(=absztrakt adatszerkezet): léteznek adatelemek, amelyek vmely típusúak, van ráköv. reláció, itt is műveletek(hatás- ADS-gráf változása); irányított gráf mutatja a rákövetkezéseket (csúcs- adat, él- ráköv);
· Reprezentáció: ADS gráf az absztrakt memóriában- aritmetikai(tömbös- cím/indexfv) v láncolt(pointeres) ábrázolás- ráköv.relációt adja meg; 
·  Implementáció(megvalósítás): prognyelven; 
· Fizikai ábrázolás: adatszerk hogyan képződik le bitekre;

Típus specifikáció: szerződés megrendelő és megvalósító között; 
- egy adat külső jellemzésére szolgál(interfész)- típusértékhalmaz(adat által felvehető értékel T halmaza), típusműveletek(T-n értelmezett műv); megadása: abgebrai, funk.spec;
· típus-reprezentáció(típusértékek ábrázolása): ábrázoló elemek H halmaza(típus-szerkezet), ábrázoló elemek és típusértékek kapcsolata(leképezés: ró: H(T), típus-invariáns(kiválasztja hasznos ábrázoló elemeket, I: H(L,[I]);
· típus implementáció(műveletek helyettesítése): a típusértékeket ábrázoló elemekkel működő programok, szintje: programnyelv;
·  fizikai ábrázolás: nem foglalkozunk; 
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ADT: típus-specifikáció (közvetett) megadására szolgál (nem kell konkrét prog környezetben ábrázolni típusértékeket, elég műv hatását ismerni, de kell őt kiváltó konkrét típus); 

· algebrai(részei: t.érték halmaz, műv, megszorítás,axiómák- helyes,teljes,redundáns), pl: verem: E alaptípus feletti V verem, műv: Empty: ( V, IsEmpty:V ( L,Push:V ( E ( V, Pop:V ( V ( E, Top:V ( E; megsz: DPop = DTop = V \ {Empty}, 
axiómák:  IsEmpty (Empty); IsEmpty (v) ( v = Empty; ¬IsEmpty (Push(v,e)); Pop (Push(v,e)) = (v,e); Push (Pop(v)) = v; Top (Push(v,e)) = e;
· funk.spec(típus matematikai reprezentációja- nem utal ábrázolási mód megválasztására; részei: t.érték halmaz, műv, állapottér, paramétertér, előfelt, utófelt), pl: verem: 
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) (ln idő legyen utoljára);
ADS: a típus absztrakt szerkezetét irányított gráffal ábrázoljuk, itt is műv, pl: kupac(=Heap) az elsőbbségi sor reprezentációja (binfa, majdnem teljes, balra tömörített, szülő>gyerek);
Reprezentáció: az absztrakt memóriában; ábrázolás: 
· láncolt(pointeres): él=pointer, műveletek algoritmusait meg kell adni, dv kiszámító algoritmusát is(szemben ADS-vel), köv: gazdagabb reprezentációt igényelhet, mint ADS, pl kupac;
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· aritmetikai(tömbös- cím/indexfv): adatelemeket folyamatosan elhelyezzük az absztrakt memóriában egy ugyanilyen alaptípusú tömbben, ráköv.rel=cím/idnexfv-ekkel adjuk meg, műv és fv algoritmusait meg kell adni, pl: (majdnem) teljes binfa (szintfolytonosan: index(bal(a))= 2*index(a), index(jobb(a))= 2*index(a)+1);
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Adatszerkezetek: 
- definíció: <A,R> rendezett pár, ahol A: adatelemek véges halmaza, R: A-n értelmezett valamennyi reláció; 
- osztályozása:  
· típus: homogén,heterogén; 
· rel: 
- struktúra nélkül(nincs kapcsolat,sorrend, pl: halmaz), 
- asszoc.címzésű(nincs lényegi kapcsolat, tartalom alapján címezhető, pl: tömb), 
- szekvenciális(R rel tranzitív lezártja teljes rendezési reláció, azaz egymás után többször végrehajtható, egy-egy, kitüntetett elem: első,utolsó, pl: lista), 
- hierarchikus(egy-sok, kitüntetett elem: gyökér(r), r nem lehet végpont, minden elem csak egyszer végpont, minden elem r-ből elérhető, pl: fa, B-fa), 
- hálós(R relációban nincs kikötés, sok-sok, rel. nincs kikötés, pl: gráf);
· adatelemek száma: 
- statikus(rögzített számú), 
- dinamikus(szám változik, lehet: rekurzív(saját magára hivatkozás) v. nem rek, lin(egy saját magára hiv) v. nem lin(több)); 
· reprezentáció: 
- folytonos(egymás  után, azonos tárolási jellemzők, ismert: első elem címe, ebből számítható többi, loc(An)=loc(A1)+(n-1)*H, pl: asszoc,string), 
- szétszórt(tárelemek véletlenszerűen, minden elem más elemek elhelyezkedésére vonatkozó infó, pl: hierarchikus,hálós), 
- mindkét módon jól tárolható(pl: verem, sor);;;
2. Tömbök, Verem, Sor, Lengyelforma
Tömbök:
- ADT: 
· definíció: E alaptípusú k dimenziós T tömbtípus, legyen: I=I1 x I2 ..x Ik indexhalmaz, ahol minden j e [1,..k]: Ij= [1..nj]; A e T tömbnek N=n1*n2..nk eleme van: {a1,a2,…aN}; mindig van f: I({a1,..aN} egy-egy értelmű leképezés (indexhalmaz( elem); jelölés: A[i1,..ik]; elnevezés: k=1- vektor, k=2- mátrix;
· invariáns adható(spec megszorítások, tömb alakjának módosítása, pl: szimm, alsóháromszög, ritka);
· műv: indexelés(elem kiválasztás), elemmódosítás(értékadás, pl: A[i1..ik]:=a, A:=B);
- ADS: nem kötelező rákövetkezést definiálni elemek között, de elfogadott: kövj(A[i1..ij..ik]=A[i1..ij+1..ik], ahol j e [1,k]; la 2 dimenziós tömb ortogonális adatszerk, k=2-re gráf;
- Reprezentáció: aritmetikai ábrázolás: k dim tömböt 1 dim-ban, megadjuk leképezés címfv-ét; sorfolytonos(SF) v. oszlopfolytonos(OF) elhelyezés; 
· indexfv: SF: ind(A[i,j])= (i-1)*n+j, OF: ind(A[i,j])= (j-1)*m+i, 
· címfv: SF: cím(A[i,j])= cím(A)+ (i-1)*n*h+(j-1)*h, OF: cím(A[i,j])= cím(A)+(j-1)*m*h+(i-1)*h, ahol i e [1,m], j e [1,n], h…egy elem hossza; 
· invariánsok: 
· tridiag: indexfv: ha |i-j|<=1, akkor inf(A[i,j])= (i-1)*3-1 + 1(ha i>j), 2(ha i=j), 3(ha i<j), 0-t tároljuk elején: ind(A[i,j])= (i-1)*3 + 1(ha i=j+1), 2(ha i=j), 3(ha i+1=j), különben: 1, pl: (0 a11 a12 a21 a22 a23…); 
· alsó háromszög: elemszám: m*(n+1)/2 +1; ind(ai,j)= i*(i-1)/2 +j (ha i>=j), n*(n+1)/2 +1 (ha i<j); 
· ritka mátrix: láncolt ill vegyes ábrázolás, egy elem tartalmaz: i, j, A[i,j], pointer le,jobbra,  mikor előnyös? (h+2*i+2*p)*k + (m+n)*p < m*n*k, ahol k..nem0 elemek száma, h..érték, p..mutató, i..index helyfoglalása; 
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Szemlélet:  push(v,e)- proceduális, v.push(e)- objektum-elvű;

Verem(=Stack): LIFO(=last-in, first-out)
- ADT: 
· axiomatikus leírása: E alaptípus feletti V verem, műv: Empty: ( V, IsEmpty:V ( L,Push:V ( E ( V, Pop:V ( V ( E, Top:V ( E; megsz: DPop = DTop = V \ {Empty}, axiómák:  IsEmpty (Empty); IsEmpty (v) ( v = Empty; ¬IsEmpty (Push(v,e)); Pop (Push(v,e)) = (v,e); Push (Pop(v)) = v; Top (Push(v,e)) = e;
· funkcionáris leírása: rendezett párok halmaza(elhelyezett érték, időpontja), invariáns (megszorítás- kül  időértékek), NEM így implementáljuk; 
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- ADS: lineáris adatszerk; 
- Reprezentáció: aritmetikai ábrázolás: vektor(elemek tömbje, hossza: max, elements:[1..max]), verem tetejének mutatója(head e [0,max]);
· v.Empty: v.head<-0; 
· v.IsEmpty: return v.head=0; 
· v.IsFull: return v.head=max; 
· v.push(e.): if v.IsFull then error; else v.head<-v.head+1, v.elements[v.head]<-e; 
· v.pop: if v.IsEmpty then error; else v.head<-v.head-1; return v.elements[v.head+1] endif; 
· v.top: if v.IsEmpty then error; else return v.elements[v.head]; endif;;;
Sor(=Queue): FIFO(=first-in, first-out)
- ADT: E alaptípus feletti S sor típus, műv: Empty: ( S, IsEmpty: S ( L,In:S ( E ( S, Out:S ( S ( E, First:S ( E; megszorítás: DOut = DFirst = S \ {Empty};
· algebrai: IsEmpty(Empty); IsEmpty(s) ( s = Empty; ¬IsEmpty(In(s,e)); Out(In(Empty,e)) = (Empty,e); ¬IsEmpty(s) ( Out(In(s,e))2 = Out(s)2; ¬IsEmpty(s) ( In(Out(s)1,e) = Out(In(s,e))1; First(s) = Out(s)1; 
· funk.spec: 
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- ADS: lineáris adatszerk;
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- Reprezentáció: aritmetikai ábrázolás: vektor(elemek tömbje, hossza: max, elements[1,..max]), első elem mutatója(head e [1,max]), első üres(=utolsó) hely mutatója(tail e [1,max]); empt(üres-e) v count(hány elem);
· s.Empty: s.head<-1;s.tail<-1;s.empt<-true; 
· s.IsEmpty: return s.empt; 
· s.ISFull: return not s.empt and (s.head=s.tail); 
· s.in(e.): if s.IsFull then error; else s.empt<-false; s.elements[s.tail]<-e; ifs.tail=max then s.tail<-1 else s.tail<-s.tail+1; endif; 
· s.out: if s.empt then error; else e<-s.elements[s.head]; if s.head=max then s.head<-1 else s.head<-s.head+1; end if; if s.head=s.tail then s.empt<-true end if return e; end if; 
· s.first: if s.empt then error; else return s.elements[s.head] end if;;;
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Lengyelforma: infix(a+b), prefix(+ab), postfix(ab+), J.Lukasewitz használta először; 

- előny: műveleti jelek olyan sorrendben követik egymást, ahogy végre kell hajtani, ill operátor(=műveleti jel) közvetlenül operandusai előtt áll, pl: (a+b*c)*(d*3-4)= abc*+d 3*4-*; 
- lengyelformára alakítás: pl: (1+2)*(3-4); x-et feldolgozzuk: nyitózárójel- verembe, operandus- kiíratás, operátor-  nyitózárójelig kivesszük nagyobb prioritású operátorokat- kiír- ezt verembe, csukózárójel- verem tetején elemek kiíratása nyitózárójelig- nyitózárójel ki, végén: veremben lévő elemek kiíratása;
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tfh x „token”-ekből (op, operandus, (, ) ) álló sor szintaktikailag helyes kifejezést tartalmaz, y sorba postfix kifejezést s verem segítségével; 
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- kiértékelés: pl: 12+ 34-*( -3; operandus- verembe, operátor- 2.,1. operandust ki veremből- kiszámítás- eredményt verembe;
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tfh y sort tartalmazza postfix kifejezést, kiértékeljük v vermet felhasználva, z változóba tároljuk;

v.Empty; z<-0; while(not y.IsEmpty){e<-y.out; if(e=operandus){v.push(e) – {op2<-v.pop; op1<-v.pop; v.push(„op1 e op2”)}};

3. Elsőbbségi (prioritásos) sor és a kupac (heap)
Prioritásos sor: egyszerű sor: FIFO szemantika, elem hozzáadás,törlés konstans igényű (O(1)), ha elemeknek rendezése van( prioritás; törlés: ln prioritásút először, pl: sürgősségi osztályon kül súlyosságú esetek, oprendszer, tennivalók; 
- ADT: E alaptípus feletti P elsőbbségi sor típus, egyszerűsítés: csak prioritásokat teszünk bele(N); 
· műv: Empty: ( P, IsEmpty: P ( L,Insert:P ( N ( P, Max:P ( N, DelMax:P ( P ( N; megsz: DMax = DDelMax = P \ {Empty}; 
· axiómák: IsEmpty(Empty); IsEmpty(p) ( p = Empty; ¬IsEmpty(Insert(p,n)); Max(p) = DelMax(p)2; Insert(DelMax(p)) = p; ¬IsEmpty(DelMax(p)1) → Max(p) ( Max(DelMax(p)1); n ( Max(p) → DelMax(Insert(p,n))1 = p ( Max(Insert(p,n)) = n; n < Max(p) → Max(Insert(p,n)) = Max(p); DelMax(Insert(Empty,n)) = (Empty,n); Max(Insert(Empty,n)) = n; 
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ábrázolás(ADS): rendezetlen tömb, beérkezési idő szerint (művigény: insert O(1), max O(n), delmax O(n)), rendezett tömb(insert műveletigénye helykeresés: O(log n), jobbraléptetés: O(n), max,delmax O(1)), heap(O(log n));

binfa: 
· teljes(magassága h, 2h+1-1 csomópontja), 
· majdnem teljes(üres v magassága h, balrészfa: h-1 magas és majdnem teljes, jobbrészfa: h-2 magas és teljes  v balrészfa: h-1 magas és teljes, jobbrészfa: h-1 magas, majdnem teljes)- „balról töltjük fel”, 
· heap tulajdonságú(üres v gyökérben lévő kulcs>mindkét gyerekében és mind2 részfája heap tul);
törlés(gyökeret- utolsót gyökérbe- gyökér>mind2 gyerek?- helyreállítás: gyökér és nagyobbik gyerek cseréje- bal részfa helyreállítása: balrészfa györér és nagyobbik gyerek cseréje), 
ideje: gyökéreltávolítás,utolsó elem gyökérbe: O(1), csere: O(h)=O(log n)( össz: O(log n);
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beszúrás(köv üres pozícióba helyezzük jobb szélen- felfele, amíg>szülő), ideje: max h csere: O(h)=O(log n);
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- Reprezentáció: láncolt lista(din allokált csomópontok és mutatók) v tömb(mivel majdnem teljes fa, ezért k csomópont gyerekei: 2k, 2k+1, k szülője: k/2, ha k>n, akkor nem létezik);
· insert: if(Aktmeret/=Maxmeret){Aktmeret:=Aktmeret+1; T[Aktmeret]:=ujelem; Szulo:=Aktmeret/2; Gyerek:=Aktmeret; while(szulo>=1 és T[Szulo]<T[Gyerek]){Csere(T[Szulo],T[Gyerek]); Gyerek:=Szulo; Szulo:=Szulo/2;} – Tele!}; 
· delmax: if(Aktmeret/=0){maxelem:=T[1]; T[1]:=T[Aktmeret]; Aktmeret:=Aktmeret-1; Sullyeszt(P); - Üres!}; 

Hatékonyság: hatékony, minden elem beszúrása: O(n*log n), minden elem eltávolítása: O(n*log n)( O(n*log n);

4. Listák
Szekvenciális adatszerk: <A,R> rendezett pár, amelynél R rel tranzitív lezártja teljes rendezési reláció, azaz egymás után többször végrehajtható; logikai sorrend, egy-egy jellegű kapcsolat, kitüntetett elem: első,utolsó, pl: lista; homogén(azonos típusú adatok); jelölés: L(a1,a2,..an);
Láncolt lista(minden eleme tartalmaz egy v több mutatót egy másik ugyanolyan típusú adatelemre, 1.elem címe: fej(nincs infó), utolsó elem: rákövetkező elem mutatója üres); 
- ADT és ADS: műv: beszúrás, módosítás, törlés;
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- Reprezentáció: 
· statikus ábrázolás(tömb, érték és index(logikai sorrendet mutat), vannak szabad helyek, de probléma: adatok száma nem ismert előre, nem akarunk feleslegesen helyet foglalni, feladat dinamikusan változik), 
· dinamikus láncolt ábrázolás(egyirányú: fejelem nélküli v fejelemes(létezik, ha üres, akkor is), akt elemre mutató is van; kétirányú); 

lista típus komponensei(L..első elem mutatója, akt, hiba);
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műv: 
· Lértehoz: L<-nil; akt<-nil; hiba<-false; 
· IsEmpty: return (L=nil); Error: if(hiba){hiba<-false; return true; – return false}; 
· First: if(L/=nil){akt<-L; hiba<-false; – hiba<-true}; 
· Next: if(akt/=nil){akt<-(akt<-mut); hiba<-false; – hiba<- true}; 
· IsEndOfList: return (akt=nil); IsLast: return (akt/=nil és akt->mut=nil); 
· GetValue: if(akt/=nil){x<-(akt->adat); hiba<-false; – hiba<-true}; 
· SetValue: if(akt/=nil){(akt->adat)<-e; hiba<-false; – hiba<-true}; …
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beszúrás(deklarálás(listaelem típusra mutató mutató), létrehozás(new(p)- Node típus), befűzés): 
· InsertFirst: new(p); (p->adat)<-e; (p->mut)<-L; L<-p; akt<-L; hiba<-false; 
· InsertLast: new(p); (p->adat)<-e; (p->mut)<-nil; if(l=nil){L<-p; akt<-l; – u<-L; v<-(L<-mut); while(v/=nil){u<-v; v<-(v->mut)}; (u->mut)<-p; akt<-p}; 
· InsertAfter: if(akt/=nil){new(p); (p->adat)<-e; (p->mut)<-(akt->mut); (akt->mut)<-p; akt<-p; hiba<-false; – hiba<-true}; 
· InsertBefore: if(akt=nil){hiba<-true; – new(p); (p->adat)<-e; u<-L; v<-(L<-mut); while(v/=akt){u<-v; v<-(v->mut)}; (u->mut)<-p; (p->mut)<-akt; akt<-p; hiba<-false};
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törlés(akt elem elé beáll- átláncol- kitöröl- akt beállít): 
· RemoveAkt: if(akt/=nil){if(akt=l){p<-L; L<-(L->mut); akt<-L; felszab(p); hiba<-false; – p<-L; while(p->mut/=akt){p<-(p->mut) }; (p->mut)<-(akt->mut); felszab(akt); akt<-(p->mut); hiba<-false; – hiba<-true}; 
hatékonyság: Last, Remove, InsertBefore, InsertLast nem hatékony- lehetne kétirányú láncolt lista;

rendezés listával:A[1..n], poz elemeit rendezzük; l.Empty; for(i=1 to 1){if(A[i]>0){if(l.Isempty){l.InsertFirst(A[i]); – l.First; a<-l.GetValue; while(not l.IsLast és A[i]>a){l.Next; a<-l.GetValue}; if(A[i]<=a){l.InsertBefore(A[i]); – l.InsertAfter(A[i])}}; – skip};
5. Hierarchikus adatszerkezetek és bináris fák
Hierarchikus adatszerk: <A,R> rendezett pár, amelynél kitüntetett elem: gyökér(r), r nem lehet végpont(non R(a,r)), minden elem csak egyszer végpont(minden a e {A\{r}}-hez E! b/=a: R(b,a), b e A), minden elem r-ből elérhető(E a1..an e A, an=a: R(r,a1), R(a1,a2).. R(An-1,an)), egy-sok, pl: fa, B-fa; láncolt lista általánosítása; 

Fa: 
- def: hierarchikus adatszerk, véges számú csomópont, 2 cspont között kapcsolat egyirányú(kezdő-végpont), kitüntetett cspont: gyökér(nem végpont), összes többi cspont pontosan egyszer végpont; 
- rekurzív def: üres v kitüntettet cspont: gyökér, ehhez 0 v több diszjunkt fa kapcsolódik(részfák);

megfeleltetés: csúcs- adatelem, él- egymás utáni sorrend, gyökérelem- nincs megelőzője, levélelem- nincs rákövetkezője, közbenső elem- többi adatelem;

definíciók: 
· elágazásszám(közvetlen részfák száma), 
· szint(gyökérelemtől való távolság, gyökér: 0.szint), 
· magasság(szintek száma, levelekhez vezető leghosszabb út, ln szintszám+1),
· csomópont foka(kapcsolódó részfák száma), 
· fa foka(ln fokszám), 
· levél(0 fokú cspont), 
· elágazás(közbenső cspont), 
· szülő(ős)(kapcsolat kezdőpontja, levél nem), 
· gyerek(leszármazott)(kapcsolat végpontja, gyökér nem), 
· testvér(ua pont leszármazottai), 
· útvonal(egymást követő élek sorozata, minden levél gyökértől 1 úton érhető el), 
· ág(útvonal, ami levélben végződik), 
· üresfa(nincs eleme), 
· min magasságú fa(adott elemszám esetén legkisebb), 
· kiegyensúlyozott(azonos fokú cspontok, minden szinten részfák magassága nem ingadozik többet 1 szintnél), 
· rendezett(szülőhöz tartozó részfák sorrendje lényeges); max cspont elhelyezése f fokú m magasságú fában: (fm+1-1)/(f-1)= 1+f+f*f+f*f*f…; 
műv: 
· Lekérdező: Üres_e, Gyökérelem, Keres(e), 
· [image: image75.png]


Módosító: Üres (létrehoz), Beszúr(e), MódosítGyökér(e) (e adatelem lesz gyökér), Töröl(e), TörölFa, 
Bejárás: 
· preorder(=gyökérkezdő, gy,b,j), 
· postorder(=gyökérvégző, b,j,gy), 
pl: abcdgef, ill bgdefca; 
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Bináris fa: fa, amelynek csúcspontjaiból max 2 részfa nyílik(fokszám :2), 
· inorder bejárás(=gyökérközepű), 
pl: pre: abdceghijf, in: dbageihjcf, post: dbgijhefca; 
- Reprezentáció: 
· általános fa: minden csponthoz 3 mutató(bal-gyerek, jobb-testvér, szülő), multilista(minden csponthoz lin lista, amelynek 1. eleme: adat, többi kapcsolatok- újabb lin listára mutat, annyi kapcsolati elem, ahány fokú cspont); 
· korlátos általános fa (aritmetikai is lehetséges, ill láncolt, ahol minden cspontnak k mutatója max k gyerekre)
[image: image77.png]



[image: image78.png]



· bináris fa: aritmetikai ábrázolás(szintfolytonosan tömbben, ind(bal(c))= 2*ind(c), ind(jobb(c)=2*ind(c)+1), láncolt(mutató bal,jobb gyerekre, szülőre is lehet);
[image: image79.png]Multilistis

reprezenticia

B





[image: image80.png]



Def: 
· tökéletesen kiegyensúlyozott(minden elem bal, ill jobboldali részfájában elemek száma lf eggyel tér el), 
· teljes(minden közbenső elemének pontosan 2 leágazása van), 
· majdnem teljes(csak levelek szintjén hiány);
műv: üres fa inicializálása; üres fa gyökérelemének definiálása; gyökér és a 2 részfa csoportosítása; elem hozzáadása egy olyan elem bal(ill jobb) oldalához, amelynek nincs bal(ill jobb) oldali leágazása; üres_e;  van_e_bal(ill jobb) oldali leágazása akt elemnek; gyökérelem elérése; adott elem elérése; fa kettéválasztása egy elemre(régi gyökér) és 1v2 részfára; részfa törlése, részfa helyettesítése másik részfával; 

- kiszámító(=kifejezésfa): struktúra, amely egy nyelv szimbólumai és kül műveletei közötti precedenciát jeleníti meg; használat: aritmetikai kifejezések ábrázolása(elágazás- operátor, levél- operandus, részfák közötti hierarchia- op precedenciája, ill zárójelezés); 
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- rendezési(=kereső)fa: binfa kialakítása a kül adatelemek között meglévő rendezési relációt
 követi; felépítés: minden csúcs értéke nagyobb, mint tetszőleges csúcsé bal ágon és kisebb, mint jobb ágon található csúcsok; 
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6. A rendezés feladata. A rendezők osztályozása. Három “lassú” (négyzetes) rendezés: a buborék rendezés, a beszúró rendezés, és a maximum kiválasztásos rendezés
Rendezések: bemente: (a1,a2,…,an) n elemű sorozat, kimenet: (a1’,a2’,…,an’) bemenő sorozat permutációja, hogy a1’<=a2’<=…an’;  
· általánosabban: legyen K teljesen rendezett halmaz (kulcsok halmaza), legyenek Ti-k tetszőleges típusok i e[1,m], E:= K x X Ti, pl: E egy eleme: |kulcs,t1,..,tm|; 
· cél: S e E* rendezése, legyen n=|S|, s rendezett<-> minden i e [1,n-1]: Si kulcs<=Si+1 kulcs, előfelt: S= S’e E*, utófelt: S rendezett ls S e Perm(S’); 
· rendezett sorozat: elemek között nincs inverzió;

- rendezési reláció: legyen U egy halmaz, < egy kétváltozós reláció U-n, ha a,b e U és a<b( a kisebb, mint b; < egy rendezés, ha: 
· irreflexív(a non< a), 
· tranzitív(ha a<b és b<c( a<c), 
· teljes(tetszőleges a/=b e U-ra: a<b v b<a); 
ha < egy rendezés U-n( (U; <) rendezett halmaz, pl: Z egész számok halmaza, < nagyság szerinti rendezés;
- osztályozás: 
· skalár(m=0), rekord(m>=1); 
· belső(központi memória+indexelés), külső(háttértáron); 
· összehasonlításos(kulcsok érétkét), edény(kulcsok értéke szerint szétrak); 
· helyben(konstans segédmemória), nem helyben; 
· stabil(azonos kulcsú rekordok sorrendje nem változik), nem stabil; 
· előrendezéshez illeszkedő(kevesebbet dolgozik, ha előrendezett sorozat), nem illeszkedő rendezők; 
· lineáris, fa adatszerkezet használ; 
· módszer szerint(pl: összehasonlításosnál max.elemet kiválasztó, csere, egy elemet helyrevivő, összefuttatásos rendező); 
Algoritmusok hatékonysága: lépésszám nagyságrendje érdekes; input mérete: n, lépésszám: f(n); 
· def: ha f(x) és g(x) R+ egy részhalmazán értelmezett valós fv, akkor f=O(g) azt jelenti, hogy vannak olyan c,n>0 állandók, hogy: |f(x)|<= c*|g(x)|, ha x>=n( g aszimptotikus felső korlátja f-nek, pl: 100n+300=O(n), azaz 100n+300<=c*n, n=300, c=101; 

· def: ha f(x) és g(x) R+ egy részhalmazán értelmezett valós fv, akkor f=Ω(g) azt jelenti, hogy vannak olyan c,n>0 állandók, hogy: |f(x)|>= c*|g(x)|, ha x>=n( g aszimptotikus alsó korlátja f-nek, pl: 100n-300= Ω(n), n>300, c=99;
· def: ha f=O(g) és f=Ω(g), akkor f=Θ(g)( g aszimptotikus éles korlátja f-nek, pl: 100n-300= Θ(n);
Buborék rendezés: feladat: A[1..n], tetszőleges T elemtípus, amire teljes rendezés értelmezhető; 
· alapötlet: legnagyobb elemet felbuborékoltatjuk- eggyel rövidebb tömbre is; inverziók csökkentése; pl: 12,5,7,9,11,10( 5,12,7,9,11,10…5,7,9,11,10,12; 
· Buborék: j<-n; while(j>=2){i<-1; while(i<=j-1){if(A[i]<=A[i+1]){skip – Csere(A[i],A[i+1])}; i<-i+1}; j<-j-1}; 
· időigénye: c1,c2,c1,c2,c3,c4,c1,c1, 
külső ciklus: n-1-szer, cf-et n-szer ellenőrzi, j-t n-1-szer csökkent:: c1+n*c2+(n-1)*c1, 
belső ciklus: n-1,n-2,..2,1-szer fut le, n-1-szer kezdőértékadás, cf-et eggyel többször ellenőrzi, i-t (1+..+n-1)-szer növeljük:: 
(n-1)*c1+(2+..+n)*c2+(1+..+n-1)*c1, A[i] és A[i+1] összehasonlítása: (1+..+n-1)*c3, csere száma=A inverzióinak száma: 0 és (n alatt 2) között: inv(A)*c4( 
T(A)= c1+ n*c2+ (n-1)*c1+ (n-1)*c1+ (2+..+n)*c2+ (1+..+n-1)*c1+ (1+..+n-1)*c3+ inv(A)*c4= c1+ n*c2+ n*c1-c1+ n*c1-c1+ (n+2)*(n-1)/2*c2+ n*(n-1)/2*c1+ n*(n-1)/2*c3+ inv(A)*c4= n2*(c1/2+ c2/2+ c3/2)+ n*(3*c1/2+ 3*c2/2- c3/2)- (c1+c2)+ inv(A)*c4, 
egyszerűsítés: c1<<c3, c2<<c4 (összehasonlítás és csere)( 
T(A)= n2*c3/2- n*c3/2+ inv(A)*c4= n*(n-1)/2*c3+ inv(A)*c4, feltételezés: c3~c4( T(n)= n*(n-1)/2+ inv(A), 
feltételezés: egyes műv számát külön-külön kérdezzük: Ö(n)= n*(n-1)/2, Cs(n)= inv(A), 
feltételezés: legrosszabb(M T(n)), legjobb(m T(n)), átlagos(A T(n)) esetben kiszámítani(
M Ö(n)= m Ö(n)= A Ö(n)= n*(n-1)/2, M Cs(n)= n*(n-1)/2, m Cs(n)=0, A Cs(n)= n*(n-1)/4, feltételezés: műveletszám aszimptotikus viselkedése érdekel( 
M Ö(n)= Θ(n2), M Cs(n)= A Cs(n)*2= Θ(n2);
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Maximum kiválasztásos rendezés:  
· ötlet: tfh A[1..n] jobb széle már rendezve van(j+1..n)- kiválasztjuk A[1..j] max elemét- kicseréljük j. helyen lévővel- j-t csökkentjük; pl: 12,5,7,6,11,10- 10,5,7,6,11,12- 10,5,7,6,11,12- 6,5,7,10,11,12; 
· MaxKiv_Rend: j<-n; while(j>=2){maxkiv(A[1..n],ind,max);csere(A[ind],A[j]);j<- j-1}; 
· M Ö(n)>= (n-1)+(n-2)+..+1= Θ(n2);
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Beszúró rendezés: beillesztéssel egy-egy elemet a helyére viszünk, tömbben fontos mozgatások száma, stabil rendező; pl: 12,5,7,6,11,10- 5,12,7,6,11,10- 5,7,12,6,11,10- 5,6,7,12,11,10- .. 
· Beszúró: j<-1; while(j<=n-1){w<-A[j+1],i<-j; while(i>=1 és A[i]>w){A[i+1]<-A[i]; i<-i-1} A[i+1]<-w}; j<-j+1}; 
· művigény: M Ö(n)= n*(n-1)/2= Θ(n2), A Ö(n)= M Ö(n)/2= Θ(n2), m Ö(n)= n-1; mozgatás műv: M M(n)= (n+2)*(n-1)/2= Θ(n2), A M(n)=n2/4= Θ(n2), m M(n)=2*(n-1)=O(n);
7. Kupacrendezés (heapsort)
Prioritásos sor: egyszerű sor: FIFO szemantika, elem hozzáadás,törlés konstans igényű (O(1)), ha elemeknek rendezése van( prioritás; törlés: ln prioritásút először, pl: sürgősségi osztályon kül súlyosságú esetek, oprendszer, tennivalók; 

ábrázolás(ADS): rendezetlen tömb, beérkezési idő szerint (művigény: insert O(1), max O(n), delmax O(n)), rendezett tömb(insert műveletigénye helykeresés: O(log n), jobbraléptetés: O(n), max,delmax O(1)), heap(O(log n));

műv: Empty: (P, IsEmpty: P(L, Insert: PxN(P, DelMax: P(PxN, Max: P(N;
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binfa: 
· teljes(magassága h, 2h+1-1 csomópontja), 
· majdnem teljes(üres v magassága h, balrészfa: h-1 magas és majdnem teljes, jobbrészfa: h-2 magas és teljes  v balrészfa: h-1 magas és teljes, jobbrészfa: h-1 magas, majdnem teljes)- „balról töltjük fel”, 
· heap tulajdonságú(üres v gyökérben lévő kulcs>mindkét gyerekében és mind2 részfája heap tul);
törlés(gyökeret- utolsót gyökérbe- gyökér>mind2 gyerek?- helyreállítás: gyökér és nagyobbik gyerek cseréje- bal részfa helyreállítása: balrészfa györér és nagyobbik gyerek cseréje), 
ideje: gyökéreltávolítás,utolsó elem gyökérbe: O(1), csere: O(h)=O(log n)( össz: O(log n);
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beszúrás(köv üres pozícióba helyezzük jobb szélen- felfele, amíg>szülő), ideje: max h csere: O(h)=O(log n);
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- Reprezentáció: láncolt lista(din allokált csomópontok és mutatók) v tömb(mivel majdnem teljes fa, ezért k csomópont gyerekei: 2k, 2k+1, k szülője: k/2, ha k>n, akkor nem létezik);

Kupacrendezés: szúrd be az elemeke egy Ps prioritásos sorba, amíg sor ki nem ürül- vedd ki Ps-ből max elemet és eredményt sorba;
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műv: 
· Empty: hely foglalása, Aktmeret:=0; 
· IsEmpty: return (Aktmeret=0); 
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Insert: 
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· DelMax: 
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· Sullyeszt: 

hatékonyság: hatékony, minden elem beszúrása: O(n*log n), minden elem eltávolítása: O(n*log n)( O(n*log n);
8. Gyorsrendezés (quicksort)
hatékony, C.A.R.Hoare készítette, 1960;  Oszd meg és uralkodj algoritmus egy példája; fázisai: 
· partíciós(oszd a munkát 2 részre, strázsa=pivot választása- minden elem tőle jobbra nagyobb és tőle balra kisebb), 
· rendezési(uralkodj a részeken, ua algoritmus mindkét félre);
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- Implementáció: p..low, q..pivot, r..high; strázsa választása- bal,jobb végét beállítani- mozgatni jelzéseket(bal,jobb), amíg szembetalálkoznak- azon belül: mozgasd bal jelzőt, amíg pivotnál <= elemekre mutat, ill jobb jelzőt, amíg pivotnál >= elemekre mutat- ha pivot 2 oldalán elemek rossz sorrendben, akkor cseréld ki- tovább mozgatom, ha szembetalálkoznak, akkor cseréld ki pivotot és jobbat;
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- analízise: 
· felosztás(minden elemet egyszer vizsgál): O(n), 
· uralkodás(adatok kétfelé osztása): O(log2 n)( 
· összesen(szorzatuk): O(n*log n), de ha adatok (majdnem) rendezettek, akkor minden partíció létrehoz 0 méretű feladatot és n-1 méretűt( minden n időigénye O(n), összesen: n*O(n) = O(n2); 
igazság: majdnem egyforma partíciókra, áltagosan O(n*log n); 
esélyjavítás: úgy strázsát választani, hogy partíciók egyformák legyenek (első, középső, utolsó, véletlenszerű), rendezett adatoknál középső elem pivotnak választása( O(n*log n) idő);
Összehasonlítás: Quicksort(általában gyorsabb, néha O(n2), átlagosan jó végrehajtási idő, üzleti alkalmazások, információs rendszerek) <-> Heap Sort(általában lassúbb, garantált O(n*log n), real-time rendszerekhez);
9. Összefuttatásos rendezés (mergesort), az összehasonlításos rendezés minimális összehasonlítás száma a legrosszabb esetben (bizonyítás döntési fával)
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Összefuttatásos rendezés: alapja: 2 rendezett sorozat összefuttatása, legyen A[1..k] és B[1..m] 2 rendezett vektor,; pl: 3,5,9,21,23,42 és 4,11,16,29;
[image: image111.png]



[image: image112.png]3

e





rendezés: üres és egyelemű sorozat biztosan rendezett- S[1..n] tömböt szétvágjuk- ezeket külön-külön rendezzük- összefuttatjuk;
- Tömbökre: 
MergeSort(A,k,v): if(k>=v){skip – h<-[(k+v)/2]; MergeSort(A,k,h); MergeSort(A,h+1,v); Összefuttat(A[k..h], A[h+1..v], A[k..v]);
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másik, iteratív stratégia: minden lépésben egyre növekvő (h=1,2,22,23,..,2[log n]-1) lépésközzel, és az ilyen hosszú szomszédos tömbrészleteket fésüljük össze egy segédtömböt használva; 
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hatékonyság: 
· összefuttat k és m hosszú sorozat összefésülésekor: M Ö(k,m)= k+m-1, ha 2 sorozat hossza együtt n, akkor M Ö(n)= n-1. közel egyenlő szétvágás- részsorozatokat milyen hosszúra vágja? pl: n=11-re: M Ö= 10+(5+4)+(2+2+2+1)+(1+1+1)=29;
· az egyenlő szétvágások binfája majdnem teljes, fa magassága: h=log2 n, levelekhez nem tartozik összehasonlítás, így h szinten kell összegezni összehasonlítások számát- ezek összege szintenként csökken <=n-1( M Ö(n)<=(n-1)*log n=> Θ(n)=n*log n;;
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Rendezések: összehasonlításos rendezőknél időigényről mit tudunk mondani? Alsó becslést adni? cél: elemek melyik sorrendje(permutációja) az igazi sorrend; kezdetben: n!, ha 2 elemet összehasonlítunk- 2 részre osztja sorrendeket (ha x<y, akkor olyan sorrend, ahol x hátrébb, mint y - nem jöhet szóba), k kérdés után: n!/ 2k sorrend;
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- a döntési fa modell: összehasonlításokat döntési fáknak tekintjük, amik a rendezés során történt összehasonlításokat ábrázolják, tfh:

· minden elem különböző, belső csúcs: ai:aj pár, ahol 1<= i,j <=n, levél: egy-egy permutáció; 
· bo részfa: ai<=aj után szükséges összehasonlítások, 
· jo részfa: ai<aj után szükséges összehasonlítások, 
· levél: rendezett sorrend; 

alsó korlát a legrosszabb esetben: 
· Tétel: bármely n elemet rendező döntési fa magassága Ω(n*log2 n); 
· Biz: n elemet rendező döntési fa magassága: h, legalább n! levele van(ezek a permutációk), h mélységű binfa leveleinek száma <= 2h ( n!<= 2h( h=>log2(n!), Stirling formula alapján:  n!>(n/e)n( h>=log2((n/e)n)= n* log2 n - n*log2 e= Ω(n*log2 n); 
· következmény: kupac, összefésüléses rendezés aszimptotikusan optimális összehasonlító rendezés, 
· Biz: futási idő felső korlátja: Θ(n*log2 n)= Ω(n*log2 n)( nincs lineáris idejű összehasonlító rendezés!;
10. Edényrendezés és radix rendezés
Edényrendezés: tfh tudjuk, hogy bemenő elemek A[1..n] egy m elemű U halmazból kerülnek ki (minden i-re: i e [1..m]); lefoglalunk egy U elemeivel indexelt B tömböt (m db láda, először üres, elemei lehetnek pl láncolt listák); 
· működés: 
1.fázis: végigolvassuk A-t, s=A[i] elemet B[s] lista végére fűzzük, 
2.fázis: növekvő sorrendben végigmegyünk B-n- B[i] listák tartalmát visszaírjuk A-ba;
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hatékonyság: B létrehozása: O(m), 1.fázis: O(n), 2.fázis: (n+m)( összesen: O(n+m); gyorsabb, mint ált alsó korlát, ha pl m<=c*n;

- általánosan: legyen K az S sorozat elemeinek típusértékhalmaza, φ:K([0..M-1] fv, amire igaz: ha φ(k1)< φ(k2), akkor k1<k2; legyenek E0,E1..EM-1 edények, melyek éppen olyan sorozatok, mint S (egyes edényekben megmarad S-beli elemek ottani relatív sorrendje); 
· cél: egyszeri szétrakás elég legyen- felt: minden edényben lf 1 elem van v egyes edényekben csak azonos elemek v egyes edények rendezettek(ha egyik felt teljesül: tökéletes edényrendezés; 
· műveletigénye: Θ(n), ahol n=|S|, pl: nagyon sok embert magasság szerint sorbarakni- minden testmagassághoz egy edény;
· Edenyrend(S): E0,E1..EM-1<-e,e,…e; while(S/=e){Out(S,x); In(Eφ(x),x)} //főprog: S<-konkat(E0,E1..EM-1);

Radix rendezés: tfh összetett kulcsok(több komponensből), t1,…,tk alakú szavak, ahol ti komponens Li rendezett típusból való (lexikografikus rendezés), 
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pl: legyen (U;<) XX.sz-i dátumok összessége időrendben: L1={1900, 1901…1999}, L2={jan…dec}, L3=[1,..31}; s1=100, s2=12, s3=31; 
· működés: rendezzük a sorozatot az utolsó(k.) komponensek szerint edényrendezéssel- kapott eredményt rendezzük k-1. szerint edényrendezéssel (edény: elemeket mindig lista végére tettük, így ha 2 azonos kulcsú elem közül egyik megelőzi másikat, akkor sorrend rendezés után sem változik( konzervatív rendezés), stb; miért működik jól? Ha X<Y, első i-1 tag megegyezik, de xi<yi, akkor i. komponens szerinti rendezéskor X előre kerül;
· általánosan: e=eded-1…e2e1 számot jobbról balra(alacsony helyiértéktől indulva) pozíciónként szétrakja edényekbe, majd összefűzi edények tartalmát; 
i. pozíció: φi fv-t alkalmazzuk: φi(e)= ei, szétrakás és összefűzés után S „i-rendeztt” lesz (jele: x<=i y, ha minden x=xdxd-1…x2x1 és y=ydyd-1…y2y1-ra: x<0 y, x<=i y <-> xi<yi v xi=yi és x<=i-1 y (i>0), ekkor a „d-rendezés” a közönséges rendezés;
· hatékonyság: 2*d-szer megyünk végig az S sorozaton, így T(n)= Θ(d*|S|);
· Radix(S): i<1; while(i<=d){Edényrend(S,φi); i<-i+1};

· Implementáció: S fejelemes láncolt lista, edényeket egy „fej” és „vége” mutató ábrázolja, szétrakás és összefűzés az elemek láncolásával is megoldható, de összefűzéskor nem kell egyes edények részlistáit végigolvasni, hanem egy darabban láncolni;
11. Külső rendezések
- eddig: adatok központi memóriában( hatékonyságot összehasonlítások számában mértük; 
- ha adatok háttértárban, akkor futási idő döntő részét I/O(egysége: 1 blokk, ami kx512 byte) utasítások teszik ki(hatékonyság: blokk I/O-k számában mérjük; háttértár: szalag v lemez; igazából csak összefésüléses rendezés(MergeSort) alkalmas;
- összefésüléses rendezés külső tárakon: 
· adott S szekvenciális input file, amely n blokkból áll(minden blokk adott számú rekorddal, pl: 1 blokk= 1024 byte, ezen 3 rekord), blokkok tartalma rendezetlen; 
· összefésülés iteratív módon (egyes menetek végén egyre nagyobb darabok, azaz egyre több szomszédos blokk lesz rendezett), menetenként váltakozva A,B ill C,D – végül teljes rendezett eredményt S-be; 
· működés:
· 1.menet: beolvas S rendezetlen blokkjait- belső rendezővel rendez- kiír felváltva A-ba, ill B-be (még nincs összefésülés); 
· 2.menet: sorban beolvas A és B 1-1 blokkját- összefésül- rendezett 2 blokkot felváltva C-be, ill D-be ír (ha nincs párja, akkor 1 blokkot ír ki); 
· 3.menet: C-ből, D-ből olvas 2-2- rendezett blokkot- összefésül- felváltva A-ba, ill B-be ír (rendezett 4 blokkok, ha C-ben töredékblokk, akkor A végére); 
· 4.menet: C-be A és B 4-4 rendezett blokkjából 8 blokk hosszú rendezett, D-be maradék (most 1 blokk); 5.menet: C 8 blokkját és D 1 blokkját összefésüljük S-be;; 
· k hosszú futam: k blokkból álló összefüggő rendezett rész;
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megj: ha n=15-re: páratlan töredék rész mérete: 1,3,7; ha központi memória korlátozott és nem képes befogadni egyre növekvő méretű rendezett részeket(futamok), akkor összefésülést lehet pufferelve (akár blokkonként) végezni, mert összefuttatás egysége a rekord;
- általában: 
· 1.menet eredménye: 1 hosszú futamok, 2.menet: 2, 3.menet: 4.,…(k-1).menet: 2(k-2) hosszú futamok, k(utolsó).menet: <= 2(k-1) hosszú egyetlen futam=S; 
· (k-1).menetben még 2 futam: 2(k-2)<n, k.menetben: n<=2(k-1)( k-2< log2 n<= k-1( k-1= [log2 n] (felső közelítés jele- csak nekem nincs ilyen…)( 
· menetek száma: k= [log2 n]+1, összes blokk I/O száma: 2*n*([log2 n]+1), mivel minden menetben beolvastuk és kiírtuk n blokkot;
Gyorsítási lehetőség: 
· nagyobb kezdő futamok: 
· ha központi memória lehetővé teszi, akkor 1.menetben: m hosszú blokkokat olvasunk be- ezt rendezzük és így keletkezett m hosszú kezdőfutamot írjuk ki A-ba, ill B-be; 
· 2.menet: 2 db m hosszú futamot fésülünk össze- 2*m hosszú futamok; 3.menet: 2*m hosszúakat fésülünk össze- 4*m hosszú futam,…(k-1).menet: 2(k-2)*m, k(utolsó).menet: <= 2(k-1)*m hosszú egyetlen futam=S; 2(k-2)*m< n<= 2(k-1)*m( 
· menetek száma: k= [log2 (n/m)]+1, összes blokk I/O száma: 2*n*([log2 (n/m)]+1);
· több, mint kétfelé fésül: 
· S fájl mellett 2*m fájllal dolgozunk, pl: m=3, n=13, 1 hosszú kezdőfutamok;
· 1.menet: felváltva A,B,C-be írjuk ki rendezett kezdőfutamokat- 3 futamot fésülünk össze- új futamokat D,E,F-be írjuk- megint A,B,C-be- utolsó menetben: S-be írjuk eredményt; 
· 1.menet: 1 hosszú futamok, 2.menet: m,…(k-1).menet: mk-2, k(utolsó).menet: <= mk-1 hosszú egyetlen futam=S; 
· mk-2<n és mk-1>=n( k= [logm n]+1= [log2 n/log2 n]+1, összes blokk I/O művelet: 2n*([log2 n/log2 m]+1);
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· 3 fájlos rendező: 
· m-felé fésülésnél nem 2m db fájlt használunk, hanem csak m+1 db-ot (azaz m=2-nél nem A,B,C,D, hanem csak A,B,C); 
· m=2 esetén: 1.menet: S rendezett blokkjait A,B-be; 
· 2.menet: A és B blokkjainak összefésülése, de eredményt csak C fájl fogadja, ezért C-be összefésül, amíg A v B ki nem ürül- új menet a két nemüres fájllal…; futamok száma(hossza);
· probléma: 1.menet végén két futamszám különbsége 7-6=1, ez lassan fogy le; 
· megoldás: Fibonacci sorozat(0,1,1,2,3,5,8,13, azaz 2 szomszédos elem különbsége nem 1)( 1.menet: A-ba, B-be annyi futamot írunk, mint Fibonacci sorozat 2 (alkalmas) szomszédos eleme( leggyorsabb lefutás; 
ha N nem Fibonacci szám, akkor levágjuk és félretesszük felesleget- végén összefésüljük v (virtuálisan) kiegészítjük megnövelve input állomány méretét;
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· lépésszám: |S|= Fn+1( 1.menet: Fn, Fn-1, 2.menet: Fn-1, Fn-2,…(n-1).menet: 1, 1, n.menet: 1,0; menetek száma: n; 
· cél: kifejezni n-et Fn+1-el (input fájl (közelítő) mérete blokkban), jelölés: N:= Fn+1; n..szükséges menetek száma(hány lépésben ér el Fn+1től 1-ig);
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12. Bináris keresőfák
Keresések: adatok a struktúrákban: kulcs+ mezők(rekordok), 
· lehetőségek: minden kulcs kül – azonos, ill rekordok- csak kulcsokat nézzük(k); 
· most választjuk: minden k kül, csak k-t nézünk; 
· cél: sok adat estén hatékonyan keresni, módosítani, beszúrni, törölni( fákban, táblázatokban; 
- szekvenciális(=lineáris): idő: O(n), pl: rendezetlen tömbök, láncolt listák;

- bináris: keresési idő: O(log2 n), pl: rendezett tömbök; 
rendezett tömb: elem hozzáadása(pozíció keresése: c1*log2 n, jobbratolás: c2*n, összesen: O(n));
· Szótár(=dictionary): adatszerk, ha értelmezve vannak műveletek: beszúr, keres, töröl, (tól-ig); 
· Prioritásos sor: adatszerk, ha értelmezve van előzőeken kívül: min, max, előző, rákövetkező;
· Bináris fa: olyan fa, amelynek csúcspontja max 2 részfára nyílik(fokszáma 2), bejárása: preorder(=gyökérkezdő, gy,b,j), inorder(=gyökérközepű, b,gy,j), postorder(=gyökérvégző, b,j,gy);  
reprezentáció: aritmetikai ábrázolás(szintfolytonosan tömbben, ind(bal(c))= 2*ind(c), ind(jobb(c)=2*ind(c)+1), láncolt(mutató bal,jobb gyerekre, szülőre is lehet);
rendezési(=kereső)fa: binfa kialakítása a kül adatelemek között meglévő rendezési relációt követi; felépítés: minden csúcs értéke nagyobb, mint tetszőleges csúcsé bal ágon és kisebb, mint jobb ágon található csúcsok;  T fa bármely x csúcsára és bal(x) bármely y csúcsára és jobb(x) bármely z csúcsára: y<x<z; tükrözi őt tartalmazó elemek beviteli sorrendjét;
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· inorder: kulcsok rendezett sorozatát kapjuk: 
n csúcsú binkerfa bejárási ideje: O(n), mivel kezdőhívás után minden csúcspontja esetén pontosan 2x(rekurzívan) meghívja önmagát(bo és jo részfára);
műv: 
keresés: T fában keressük k kulcsú elemet(csúcsot): 
· Fában-keres(x,k): if (x=nil or k=kulcs[x]) {then return x}; if(k<kulcs[x]){then return Fában-keres(bal[x],k); else return Fában-keres(Jobb[x],k)}; 
· Fában-iteratívan-keres(x,k): while(n/=nil és k/=kulcs[x]){do if (k<kulcs[x]){then x<-bal[x]; else x<-jobb[x]}; return x; thf t/=nil, iteratív, ideje: O(h): 
· Fában-minimum(T): x<-gyökér[T]; while(bal[x]/=nil){do x<-bal[x]}; return x; 
· Fában-maximum(T): x<-gyökér[T]; while(jobb[x]/=nil){do x<-jobb[x]}; return x;
· Fában-következő(T,x): if(jobb[x]/=nil){then return Fában-minimum(jobb[x])}; y<-szülő[x]; while(y/=nil és y=jobb[x]){do x<-y; y<-szülő[x]}; return y;
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· Beszúrás: kulcs[p]=v; bal[p]=nil, jobb[p]=nil, szülő[p]=nil; 
· Törlés: nincs gyereke v egy gyerek v 2 gyerek(átszervezzük fát, legközelebbi rákövetkezőjét kivágjuk, aminek tudjuk, h nincs balgyereke- 1 v 2 típusú törlés- ennek tartalmát p-be): 
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· hatékonyság: minden művelet egy útvonal bejárása fában- O(h) idő alatt, de beszúrásnál,törlésnél változik fa magassága( műveletek ideje is (nem tudom fa átlagos magasságát); 
véletlen építésű binkerfa(adott n kül kulcs, ebből binkerfát építünk, minden sorrend egyformán valószínű); 
· Tétel: n kulcsú véletlen építésű binkerfa átlagos magassága O(log2 n), 
· Biz: tfh véletlen sorrendű adatokból építjük(1,2,..,n), hány összehasonlítással lehet felépíteni? pl: p=5,2,9,3,11,1,6,10,8,7,4; Ö(p)= (1+1)+(2+2+2+2)+(3+3+3)+4=23; határozzuk meg ennek átlagát!  
· jelölés: f(n)..n adatból hány összehasonlítással lehet keresőfát építeni, 
f(n|k)..először k érték jön(1.elem), tfh minden sorozat egyforma valségű( 
f(n)= 1/n* Sum(k=1;n)f(n|k); összehasonlítás: bo: f(k-1), jo: f(n-k)( 
f(n)= 1/n* Sum(k=1;n)(k-1+f(k-1)+(n-k)+f(n-k))( 
f(0)=0, f(n)= (n-1)+ 2/n* Sum(k=1;n-1)f(k)( f(n)< 2*n*ln n~ 1,39*n*log2 n .. 
fa átlagos csúcsmagassága(~Quicksort); 
· cél: sorrend megőrzése- forgatással(bal v jobb)- ua inorder bejárás, pl: A,x,B,y,C;
14. AVL fák
1.kiegyensúlyozott fa algoritmus, Adelson-Velskii-Landnis, 1962; 
tul: bin rendezőfa, bal és jobb részfák magassága lf eggyel különbözik, részfák AVL-fák;
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- AVL-tulajdonság: jelölés: m(f)..f binfa magassága(szintek száma), ha x fa egy csúcsa, akkor m(x)..x gyökerű részfa magassága; egy binkerfa AVL-fa, ha minden x csúcsára teljesül: |m(bal[x])-m(jobb[x])|<=1; 
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· k-szintű AVL-fa minimális csúcsszáma: 
S1=1, S2=2, S3=4, S4=7, S5=12; 
összefüggés pontszám és magasság között: 
· n adattal felépíthető fa min magassága: majdnem teljes fa; 
· n adattal felépíthető f max magassága= adott h szintszámú AVL-fa min pontszáma (egyik részfája: h-1, másik: h-2 szintű), eredeti fa minimalitása miatt mindkét részfa min csúcsszámú; 
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· rekurzió: Sh=1+Sh-1+Sh-2; 
· Tétel: h magasságú AVL-fának legalább Fh+3+1 csúcsa van, 
· [image: image150.png]


Biz: legyen Sh lk h magasságú AVL-fa mérete, nyilván: S0=1 és S1=2, valamint Sh=1+Sh-1+Sh-2, TI-val: Sh= Fh+3-1 (3-mal eltolt Fibonacci), ahol Fh+3-1= Fh+2-1+Fh+1-1+1; Fib-ra igaz: Fn= 1/gy(5)* [(1+gy(5)/2)n-(1-gy(5)/2)n](
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· újrakiegyensúlyozás beszúrásnál: beszúrás elrontja AVL tul-t; új levéltől felfele haladva újra számoljuk csúcsok címkéit, ha egy x csúcs címkéje ++ v --, akkor x gyökerű (rész)fa forgatásával helyreállítjuk tul-ot; 
· műveletigény: O(1); 
· Tétel: legyen S egy n csúcsból álló AVL-fa, beszúr(s,S) után lf egy (esetleg dupla) forgatással helyreállítható AVL-tul, 
· Biz: előzőekből következik;  4 eset: 1 és 4 tükörkép, 2 és 3 tükörkép; új attribútum: kiegyensúlyozási tényező(-1..bal részfa magasabb, 0..egyforma, +1..jobb részfa magasabb); 
· ++,+ szabály: α<x<β<y<γ; új levél γ részfába kerül, beszúrás előtt: h+2 magas fa( forgatás, ismét h+2 magas, ezért feljebb nem kell ellenőrizni; 
· --,- szabály tükörképe;
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++,- szabály: α<x<β<z<γ<y<δ; új levél z alatti β v γ részfába kerül, beszúrás előtt: x gyökerű f magassága: h+2, z alatti fák egyformák( dupla forgatás: jobbra, balra, ismét: h+2 magas, ezért feljebb nem kell ellenőrizni;
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· újrakiegyensúlyozás törlésnél: mivel az x gyökerű fa magassága csökkent a forgatással, ezért feljebb is elromolhatott az AVL tulajdonság; törölt elem szülőjétől kezdve felfele haladva újra számoljuk a csúcsok címkéit, ha egy csúcs címkéje ++ v --, akkor x gyökerű (rész)fa (esetleg dupla) forgatással helyreállítjuk AVL tulajdonságot; ha x nem a gyökér, akkor feljebblépünk és folytatjuk ellenőrzést; 
· Tétel: n pontú AVL-fából való törlés után legfeljebb 1,44*log2 n forgatás helyreállítja AVL tulajdonságot;
· ++,+ szabály: α<x<β<y<γ; törlés α részfában történik, törlés előtt magassága: h+1 (h lesz), x gyökerű fa magassága: h+3 (h+2 lett)( forgatás: magasság: h+2, ezért feljebb ellenőrizni kell;
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· ++,- szabály: α<x<β<z<γ<y<δ; törlés α részfában történik, törlés előtt magassága: h+1 (h lesz), x gyökerű fa magassága: h+3 (h+2 lett)( forgatás: magasság: h+2, ezért feljebb ellenőrizni kell;
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15. 2-3 fák és B fák
2-3 fák: hatékony keresőfa-konstrukció, egy nemlevél csúcsnak 2 v 3 gyereke lehet; 
· def: (lefelé) irányított gyökeres fa, melyre: rekordok fa leveleiben helyezkednek el (kulcs értéke szerint növekvő sorrendben), 1 levél 1 rekordot tartalmaz, minden belső csúcsból 2 v 3 él megy lefelé- 1 v 2 k e U kulcsot tartalmaznak;
· logikailag: 3 gyerekes belső csúcs(m1,m2,m3 mutatók a csúcs részfáira, k1,k2 U-beli kulcsok, k1<k2; 
· m1 által mutatott részfa: minden kulcsa kisebb, mint k1; 
· m2 részfájában: k1 a lk kulcs, minden kulcsa kisebb, mint k2; 
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m3 részfájában: k2 a lk kulcs), ill 2 gyerekes(m1,m2mutatók a csúcs részfáira, m1 által mutatott részfa minden kulcsa kisebb, mint k1; 
m2 részfájában: k1 a lk kulcs);
n=0..t=nil v üres gyökér, n=1..kivételesen gyökérnek 1 gyereke van, összefüggés n és h között: 2h<=n<=3h( h<= log2 n;
műv: 
- keresés: összehasonlítások száma: 0,1,..,h-1 magasságban: 1 v 2, h magasságban: 1; T(n)<= 2*h+1<= 2*log2 n+1= Θ(log2 n);
- beszúrás: kereséssel meghatározzuk helyét;
· legalsó belső pontnak 2 gyereke van: elfér 3. (felfelé haladva korrigálni kell a megfelelő kulcsot, ha nagyszülőkben 5-nél kisebb nem volt, akkor egy leágazásos elem nem szúrható be);
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legalsó belső pontnak 3 gyereke van: ha szülőnek eleve 3 gyereke volt, akkor itt is csúcsvágás- tovább felfelé- ha úton 2 gyerekes, akkor megáll; ha úton minden belső pontnak 3 gyereke van, akkor a csúcsvágás felgyűrűzik a gyökérig- új gyökeret (h nő!);
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- törlés: megkeressük a törlendő elemet;
· kulcs szülőjének 3 gyereke van(neki 2 testvére): korrekció a szülőben; 
· törlendő elem szülőjének 2 gyereke van(neki 1 testvére): ha szülőnek van 3 gyerekes testvére, akkor 1 gyereket átad, ha nincs, akkor összevonunk 2 csúcsot- szükség estén folytatjuk felfelé- ez felgyűrűzhet a gyökérig (h csökken); 
· művköltség: T(n)=O(h)=O(log2 n);
[image: image166.png]nzl+i=Dy 2"



[image: image167.png]B-FABAN-KERES(x k)
[
whio <] és k> kules[x do
et
ifi <0l 65 k = kcsip]
hen raum (xi)
irlevel]
hen ratum NI
else LEWEZRALOLVAS(c[d)
retum B-FABAN-KERES(c 1K)



  
[image: image168.png]D H

P

M

BC] [T

[

TKL




[image: image169.png]B-FAT-LETREHOZ(T)

Xe PONTOT-ELHELYEZ()
levellx]e- IGAZ

nixl0

LEMEZRE-R(x)
ayokerTlex



[image: image170.png]Ay
|

PORSTUY






B-fák: R.Bayes, E.McCreight, 1972; 2-3 fa általánosítása; nagy méretű adatbázisok, külső tárakon lévő adatok feldolgozására; több szabvány tartalmazza valamilyen változatát;

· probléma: nem összehasonlítás időigényes, hanem adatok kiolvasása (sokszor 1 adat kiolvasásához több más adatot is kiolvasunk- 1 lapot)( fa csúcsai legyenek lapok,

· költség: lapelérések száma; pl: mágneses háttértár(sáv=track, szektor=blokk 512 byte, lap: 2048 v 4096 byte- átvitel egysége), 
· ideje: lemez szektor olvasása(ms) >> memória olvasása(ns);
Műveletek modellezése: legyen x egy objektumra mutató pointer; 
· ha obj pillanatnyilag központi memóriában van, akkor mezőire szokásos módon hivatkozhatunk (kulcs[x]) (tfh ekkor Lemezről_olvas(x) nem végez műveletet- NOP);
· ha mágneslemezen van, akkor Lemezről_olvas(x), utána lehet hivatkozni x mezőire- Lemezre_ír(x) menti el a megváltozott mezőjű x objektumot a mágneslemezre;
· művelet tipikus mintája: x<-obj mutatója; 
· Lemezről_olvas(x); y mezőit olvasó és módosító műveletek; 
· Lemezre_ír(x) (kimarad, ha y egyik mezője sem változott); további x mezőit olvasó műveletek; 
· futási idő: Lemezről_olvas(x), Lemezre_ír(x) műv száma határozza meg, 
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cél: legkevesebb írás, olvasás( B-fa egy csúcsának nagysága a mágneslemez egy lapja méretének felel meg (elágazási tényező: 50 és 2000 között), így fa magassága jelentősen csökken, pl: 2 magasságú B-fa 1001 elágazási faktorral: több, mint 1 Mrd kulcs (ha gyökér állandóan központi memóriában, akkor bármelyik kulcs eléréséhez max 2 lemezművelet kell);
def: 
· minden x csúcsnak következő mezői vannak: 
· n[x]..csúcsban tárolt kulcsok darabszáma, az n[x] db kulcs (nemcsökkenő sorrendben: kulcs1[x]<= kulcs2[x]<=…<=kulcsn[x][x]), 
· levél[x]..logikai változó(igaz, ha x levél, hamis, ha x belső csúcs); 
· ha x egy belső csúcs, akkor tartalmazza c1[x], c2[x],..,cn[x]+1[x] mutatókat az x gyerekeire (levél csúcsoknak nincsenek gyerekeik, ci[x] mutatói definiálatlanok); 
· a kulcsi[x] értékek meghatározzák a kulcsértékeknek azokat a tartományait, amelyekbe részfák kulcsai esnek (ha ki egy olyan kulcs, amelyik a ci[x] gyökerű részfában van, akkor k1<= kulcs1[x]<= k2<= kulcs2[x]<=..<= kulcsn[x][x]<= kn[x]+1); 
· minden levélnek azonos a mélysége(ez a fa magassága); a csúcsokban tárolható kulcsok darabszámára adott alsó és felső korlát (t>=2..minimális fokszám);
· minden nemgyökér csúcsnak legalább t-1 csúcsa van (így minden belső csúcsnak la t gyereke van; ha fa nem üres, akkor gyökérnek la 2 kulcsa kell legyen);
· minden csúcsnak lf 2t-1 kulcsa lehet, tehát egy belső csúcsnak lf 2t gyereke lehet (telített csúcs: pontosan 2t-1 kulcsa van);
magassága: 
· Tétel: ha n>=1, akkor minden olyan T n-kulcsos B-fára, amelynek h a magassága és min fokszáma t>=2 teljesül: h<= logt n+1/2, 
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Biz: ha magassága h, akkor csúcsainak száma min, ha gyökércsúcsnak 1 kulcsa van, minden más csúcsnak t-1 kulcsa van( 
ekkor: 2 db 1 mélységű, 2t db 2 mélységű, 2t2 db 3 mélységű,… 2th-1 db h mélységű csúcs, így kulcsok n darabszámára teljesül:
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Műveletek (keresés, beszúrás, törlés): a keresőfák, ill 2-3 fák alapján könnyen elképzelhető, felt: 
· B-fa gyökere mindig központi memóriában van (így gyökérkulcsra nem kell Lemezről_olvas, de Lemezre_ír kell, ha megváltozik), 
· minden olyan csúcs, amely paraméterként szerepel, már központi memóriában van(végrehajtottuk Lemezről_olvas műveletet);
- keresés: minden belső csúcsban n[x]+1 lehetőséget kell megvizsgálni, legyen x a részfa gyökércsúcsára mutató pointer, k..kulcs, amit ebben a részfában keresünk; 
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ideje: Θ(h)= Θ(logtn), mivel n[x]<2t, így while ciklus ideje minden csúcsra: Θ(t), központi egység összes műveleti ideje: Θ(t*h)= Θ(t*logt n);
- létrehozás: B-fát-létrehoz..üres gyökércsúcsot ad, Pont-elhelyez..O(1) idő alatt lefoglalja az új csúcsnak a lemez egy lapját (tfh nincs szükség Lemezről-olvas eljárás meghívására);
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ideje: O(1) lemezművelet, O(1) központi egység idő;
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- csúcs szétvágása: 
· telített (2t-1 db csúcsot tartalmazó) y csúcsot szétvágjuk középső kulcsa(kulcst[y]) körül két t-1 kulcsú csúcsra; 
· a középső csúcs átmegy y szülőjébe (tfh ez még nem volt telített), ha y-nak nincs szülője, akkor fa magassága 1-el nő; 
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tfh x nem telített belső csúcs, y=ci[x] és y x-nek egy telített gyereke:
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- beszúrás: k kulcs beszúrása h magasságú T B-fába egy egymenetes lefelé haladó algoritmussal oldható meg, 
· ideje: lemezhozzáférés: O(h), központi egység idő: O(t*h)= O(t*logt n);
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 - törlés: kulcsot nemcsak levélből, hanem tetszőleges csúcsból lehet törölni, ügyelni- csúcs ne legyen túl kicsi (kivéve gyökérben); lehetőségek: 
· k kulcs x csúcsban van(x levél);
· 2. k kulcs x csúcsban van(x belső csúcs): 
· a) ha x-ben k-t megelőző gyerekeknek(y) legalább t kulcsa van, akkor megkeressük y részfában k-t közvetlenül megelőző k’ kulcsot- rekurzívan töröljük k’-t, és helyettesítjük k-t k’-vel x-ben; 
· b) szimmetrikusan, ha z gyerek következik x-beli k után, és z-nek la t kulcsa van, akkor keressük z gyökércsúcsú részfában k-t közvetlenül követő k’ kulcsot- rekurzívan töröljük k’-t és helyettesítsük k-t k’-vel x-ben; 
· [image: image186.png]
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c) ha mind y-nak, mind z-nek csak t-1 kulcsa van, akkor egyesítjük k-tés z kulcsait y-ba úgy, hogy x-ből töröljük k-t és z-re mutató pointert- ekkor y-nak 2t-1 kulcsa lesz, szabadítsuk fel z-t és rekurzívan töröljük k-t y-ból;
· 3. k kulcs nincs benne x belső csúcsban, akkor határozzuk meg annak a részfának ci[x] gyökércsúcsát, amelyikben benne lehet k (ha egyáltalán szerepel), ha ci[x]-nek csak t-1 csúcsa van, akkor 3.a) v 3.b) szerint járunk el (mivel biztosítani kell, hogy annak a csúcsnak, amelyikre lépünk, la t csúcsa legyen)- rekurzióval megyünk tovább; 
· a) ha ci[x]-nek csak t-1 csúcsa van, de van egy közvetlen testvére, amelyiknek la t csúcsa van, akkor vigyünk le ci[x]-be egy kulcsot x-ből és a ci[x] közvetlen bal v jobboldali testvérétől vigyünk fel egy kulcsot x-be és vigyük át a megfelelő gyerek mutatóját a testvérétől ci[x]-be; 
· b) ha ci[x]-nek és mindkét közvetlen testvérének t-1 kulcsa van, akkor egyesítsük ci[x]-t az egyik testvérével, majd vigyünk le egy kulcsot x-ből ebbe az egyesített csúcsba, középre( fa magassága csökken;
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16. Hasító táblák
· eddig: kulcsok összehasonlításán alapultak, végrehajtási idő: O(n) v. O(log n); 
· cél: jobbat elérni, pl: személyi szám alkalmas-e kulcsnak (összes kitöltési lehetőség: 74 millió- 10 millió laksora elég 12 millió rekord)( nem alkalmas; kell h fv: minden személyi számhoz rendel egy egészet [0..12*106-1] intervallumból;
· hash-elés: adott K..kulcsok halmaza (K elemeivel azonosított rekordok száma várhatóan jóval kisebb, mint K számossága), ekkor K-t egy alkalmas h fv-el leképezzük az ábrázolás alapját képező kisebb tartományra, legyen ez [0..M-1] intervallum; 
· hash-fv: h:K([0..M-1], mivel M<|K], sőt M<<|K|, ezért h nem lehet injektív( kulcsütközés (van olyan k/=k’, amelyre h(k)=h(k’)); 
· feladat: megoldás kulcsütközésre; hatékonyság: ez a kérdés!;
- közvetlen hozzáférésű táblák: 
- legegyszerűbb eset: tfh elemek kulcsai kül egész értékek 0..m-1 intervallumból és m nem túl nagy- használjuk magukat a kulcsértékeket, hogy kiválasszunk egy helyet a T közvetlen hozzáférésű táblában (melyben elemeket tároljuk);  
· k kulcsú elem keresése: nézzük meg k indexű elemet(ha van itt érték, akkor megtaláltuk, ha jelző=0, akkor nincs benne), 
· ideje: O(1), beszúrás, törlés is- konstans; 
· megszorítások: kulcsok egészek, egyediek, kis intervallumból, sűrűn intervallumban (ha ritkásan- sok üres hely értékek között- túl sok helyet használunk el, hogy sebességet nyerjünk- nem hatékony: „hely a sebességért kereskedelem”);
- másik eset: T-ben csak a kulcsok, csak akkor tárolom az egészet, ha kell; 
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· megszorítások gyengítése: 
· kulcsok egészek: kell egy hash fv(h(kulcs)(egész), ezt kulcsra alkalmazva egy indexet kapunk; ha h minden kulcsot egy egyedi egész értékre képez le 0..m-1 intervallumban, akkor keresés: O(1);
· kulcsok egyediek: hozzuk létre a duplikátumok láncolt listáját, ezt kapcsoljuk táblához; ha egy keresésnek elég akármilyen k kulcsú elem, akkor végrehajtás még mindig O(1); ha elemnek van még valami más megkülönböztető jegye is, aminek meg kell egyeznie, akkor O(ndup_max)-t kapunk, ahol ndul_max duplikátumok ln száma(leghosszabb lista);
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Hash függvények: 
· [image: image195.png]


formája: pl: n-karakteres kulcsot használva; 
pl: ez a fv 0..255 egy értékét adja vissza, de tetszőleges fv, ami 0..m-1-ben generál értékeket egy megfelelő (nem túl nagy) m-re jó lesz; hash fv maga O(1); 
· kulcsütközés: ha hash fv 2 kül kulcshoz ua címet rendeli, pl: ezzel a hash fv-el: hash(„AB”,2), hash(„BA”,2)-re ua értéket adja; 
· cél: táblázat felismerje és feloldja ezt;
· felismerés: tároljuk akt kulcsot az elemmel a hash táblában: számítsuk ki címét k=h(kulcs), ellenőrizzük találatot: if(table[k].key==kulcs) then találat, else „próbáld a következőt”;
- javaslat: 
- láncolt listák: minden tábla elemhez egy láncolt listát rendelünk; 
· keres: i kulcsú elemet; Láncolt-hasító-keresés(T,i): kiszámítjuk h(i)-t, keressük i kulcsú elemet a T[h(i)] listában, ja null, akkor kulcs nincs a táblázatban; 
· beszúr: x-t (ha nincs benne!); Láncolt-hasító-beszúrás(T,x): kiszámítjuk h(x,kulcs)-t, (i=x.kulcs), beszúrunk a T[h(x.kulcs)] lista elejére; 
· törlés: hasonlóan T[h(x.kulcs)] listából;  mikor jó? Ha tudjuk mennyi lesz max érték;
· [image: image196.png]{ iy



túlcsordulási terület: a láncolt listát a tábla egy spec területén hozzuk lére; tfh h(k)==h(j), k lett először tárolva, hozzáadjuk j-t (kiszámítjuk h(j)-t, megkeressük k-t, megkeressük 1. helyet a túlcsordulási ter-en, betesszük j-t, k pointere erre mutat); keresés: ua, mint láncolt listában;

- nyílt címzés: elemeket a táblában tároljuk; 
· keresés: végigmegyünk táblázaton, amíg meg nem találjuk v el tudjuk dönteni, hogy nincs benne; 
· beszúrás: kipróbáljuk összes helyet, amíg üreset nem találunk (vmilyen stratégia szerint- beszúrandó kulcs fv-e); kiterjesztjük hash fv ÉT-t kipróbálási számmal (h: K x {0,1..,m-1}({0,1..,m-1}), 
· felt: minden k kulcsra: {h(k,0), h(k,1),h(k,2),..,h(k,m-1)} kipróbálási sorozat a {0,1,..,m-1} egy permutációja legyen, így előbb-utóbb minden hely szóba jön; tfh T hasító táblázatban csak kulcsok vannak v nil; 
· törlés: nem elég csak nil-t írni, hiszen akkor ezutáni keresés nem találná meg azokat, amelyek később vannak, ezért új szimbólum: törölt; így módosítani kell beszúrást is!!!;

- re-hashing – kettős hashelés: használjunk egy 2.hash fv-t (h’); sok variáció; h(k)==h(j), k lett először tárolva, hozzáadjuk j-t(kiszámoljuk h(j)-t, így megtaláljuk k-t, ismételjük, míg találunk üres helyet- kiszámítjuk h’(j)-t, betesszük j-t);  
mező státuszai: üres, foglalt, törölt;   keresés: használd h(x)-et, aztán h’(x)-et; 
2.hash fv: 
· lineáris próbálkozás: h:K({0,1,..,m-1}, h’(k,i)=(h(k)+i) mod m; próbáld ki először T(h(k))-t, aztán vedd a következőt ciklikusan, amíg nem találsz üreset; 
· cél: h’ egyenletesen szórja szét kulcsokat; 
· hátrány: rossz csomósodások (elsődleges: re-hash kulcsok kitöltik üres helyeket az egyéb kulcsok között és súlyosbítják a kulcsütközés problémáit); 
· négyzetes próba: h’(k,i)= (h(k)+c1i+c2i2) mod m az i.próbánál,ahol c1,c2/=0, i=1,..m-1; 
· cél: elkerülni elsődleges csomósodásokat; 
· probléma: ahhoz, hogy egész táblázatot lefedje, megkötések kellenek c1,c2,m-re, 2.lagos csomósodások (minden kulcs, amelyik ütközik h-ban ua sorozat mentén, először: a=h(j)=h(k), utána: a+c, a+4c, a+9c.. – de ez kisebb probléma);
· dupla hasítás: h’(k,i)=(h1(k)+ i*h2(k) mod m az i. próbánál, i=0,1,..m-1; 
· probléma: h2(k) relatív prím kell legyen m (táblázat mérete)-hez képest (lehet pl m-et 2 hatványának, h2-t úgy, hogy mindig ptlan számot adjon vagy m prím és h2 mindig m-nél kisebb poz egész);
· potenciális O(1) keresési idő: ha megfelelő kulcsú h(kulcs)( integer fv-t találunk; „hely a sebességért kereskedelem”; 
· problémák: „teljes” hasító táblázatok nem működnek, ütközések elkerülhetetlenek, hash fv csökkenti kulcs információtartalmát, kül feloldási stratégiák(láncolt, túlcsordulási ter, re-hash);
hash fv választása: majdnem minden fv jó, de bizonyos fv-ek egyértelműen jobban; kulcskritérium az ütközések min száma(röviden tartja láncokat, karbantartja O(1) átlagot);
· egyszerű egyenletes hasítás: ideális hash fv: ha P(k)..valsége, hogy k kulcs előfordul, m hely hasító táblán, akkor egyenletes hash fv biztosítja: (vagyis kulcsok száma minden helyre azonos);
ha kulcsok [0,r)-en véletlenszerűen elszórt egészek, akkor h(k)= [mk/ r] (alsó egészrész, csak nincs ilyen jelem…) egy egyenletes hash fv;
legtöbb hash fv megadható: kulcsokat valamely r-re a [0,r)-re képezze le, pl: karakterek ASCII kódja mod 255 a [0,26) v [0,255]-ben ad értéket;

cél: csökkentsül [0,m)-re: kulcsokat egészek egy intervallumára képezzük le: 0<=k<r, ezt csökkentjük;  
stratégiák:
· osztás: h(k)= k mod m; m választása: 2-hatványok általában nem jók (h(k)= k mod 2n nem egyforma valószínű minden kombináció), de 2n-hez közeli prímek jó választások, pl: 4000 méretű táblához m= 4093-t;
· szorzó módszer: szorozd a kulcsot egy A konstanssal (0<A<1), vedd ki belőle a tört részt (kA- [kA]) (megint alsó egészrész), szorozd m-el: h(k)=[m*(kA-[kA])] (szokásosan alsó egészrész); most m nem kritikus, és 2 hatvány választható- gyors egy tipikus digitális számítógépen;
· univerzális hashelés: ha rosszakarónk válogatja kulcsokat, tud olyan sorozatot adni, hogy mind n elemre ua legyen h(i) érték- így keresés ideje O(n); 
· alapgondolat: hash-fv-t véletlenül, az aktuálisan tárolandó kulcsoktól fglenül választjuk meg (egy gondosan megtervezett fvosztályból futás közben)- jó átlagos teljesítmény (nem lehet olyan bemenet, ami biztosan legrosszabb viselkedést váltja ki); 
· legyen H hasító fv-ek véges halmaza, melyek egy adott K kulcsuniverzumot [0,m) tartományban képeznek le; 
· H univerzális, ha minden x,y e K, x/=y kulcspárra azoknak h e H hasító fv-eknek száma, amelyre h(x)=h(y) pontosan |H|/m; ez azt is jelenti, hogy egy véletlenül választott h e H hasító fv-re minden x,y e K, x/=y kulcsok közötti kulcsütközés valsége pontosan 1/m (ua, mint {0,1,..m-1} halmazból véletlenül választott h(x) és h(y) egyenlőségének valsége); 
· tervezés: univerzális hash fv egy halmaza: válasszunk egy olyan p prímszámot, amely elég nagy, hogy minden kulcs benne legyen a [0..p-1]-ben (p>m); jelölés: Zp={0,1..p-1}, Zp*={1,2,..p-1}, definiáljuk: minden a e Zp*, minden b e Zp, ha,b(k)= ((a*k+b)mond p) mod m; az ilyen fv-ek osztálya: Hp,m={ha,b: a e Zp*, b e Zp}; 
· Tétel: a hasító fv-ek fenti egyenlőségekkel definiált Hp,m osztálya univerzális;
· betöltési tényező: ütközések nagyon valószínűek;  α= n/m (n..elemek száma, m..helyek száma) α betöltési tényezőt alacsonyan kell tartani!; külön láncolás: minden helyhez külön adjuk láncolt listákat (jobb végrehajtás, de több hely);
· általános tervezés: 
· tábla méretének megválasztása(méret: m, elemszám: n, ha nagy, akkor csökkenti ütközések valségét, α=n/m ütközések valsége), 
· tábla szervezését megválasztani(növekvő gyűjtemény- láncolt listák; relatív statikus méret- túlcsordulási ter v re-hash), 
· hash fv választása(egyszerű, gyors), 
· adatok vizsgálata a hash függvénnyel 
(fix adatok: különböző h,m értékeket adni, amíg max ütközési lánc elfogadható lesz- ismert hatékonyság; 
változó adatok: jellemző adatokat választani, kül h,m értékeket adni, amíg max ütközési lánc elfogadható lesz- ált megjósolható hatékonyság);






– 46 –


_1122208568.unknown

_1122209578.unknown

_1223137081.unknown

_1131095869.unknown

_1122276808.unknown

_1122208755.unknown

_1122208908.unknown

_1122208920.unknown

_1122209048.unknown

_1122208887.unknown

_1122208645.unknown

_1122208741.unknown

_1122208621.unknown

_1122194778.unknown

_1122208513.unknown

_1122208554.unknown

_1122208498.unknown

_1122194002.unknown

_1122194649.unknown

_1122193443.unknown

