Algoritmusok és Adatszerkezetek 2007 - Vizsga

Algoritmusok és Adatszerkezetek

2007

Vizsga

összeállította:

Esztergár-Kiss Domokos
1. Az adattípus absztrakciós szintjei
Típus: adat által felvehető lehetséges értékek halmaza és műv; specifikációja;
Típusabsztrakció szintjei:
- ADT(=absztrakt adattípus): lm. absztrakciós szint, nem feltételez semmit a belső szerkezetről, nincs konkrét prog.környezet, elég műv hatásait ismerni, enkapszuláció(=tokbazárás, megvalósítás elrejtése), csak matematikai fogalmakat használ, nem magas formalizáltság miatt absztrakt; elvárások leírása, hogy nem teszünk megszorítást a szerkezetre nézve, felhasználó csak műv keresztül érheti el;

- ADS(=absztrakt adatszerkezet): léteznek adatelemek, amelyek vmely típusúak, van ráköv. reláció, itt is műveletek(hatás- ADS-gráf változása); irányított gráf mutatja a rákövetkezéseket (csúcs- adat, él- ráköv);
· Reprezentáció: ADS gráf az absztrakt memóriában- aritmetikai(tömbös- cím/indexfv) v láncolt(pointeres) ábrázolás- ráköv.relációt adja meg;
· Implementáció(megvalósítás): prognyelven;
· Fizikai ábrázolás: adatszerk hogyan képződik le bitekre;

Típus specifikáció: szerződés megrendelő és megvalósító között;
- egy adat külső jellemzésére szolgál(interfész)- típusértékhalmaz(adat által felvehető értékel T halmaza), típusműveletek(T-n értelmezett műv); megadása: abgebrai, funk.spec;
· típus-reprezentáció(típusértékek ábrázolása): ábrázoló elemek H halmaza(típus-szerkezet), ábrázoló elemek és típusértékek kapcsolata(leképezés: ró: H(T), típus-invariáns(kiválasztja hasznos ábrázoló elemeket, I: H(L,[I]);
· típus implementáció(műveletek helyettesítése): a típusértékeket ábrázoló elemekkel működő programok, szintje: programnyelv;
· fizikai ábrázolás: nem foglalkozunk;
[image: image197.png]Ir= YPh)= . X Pk
PITE T =i M

Szumma minden &-ra melyre

ADT: típus-specifikáció (közvetett) megadására szolgál (nem kell konkrét prog környezetben ábrázolni típusértékeket, elég műv hatását ismerni, de kell őt kiváltó konkrét típus);

· algebrai(részei: t.érték halmaz, műv, megszorítás,axiómák- helyes,teljes,redundáns), pl: verem: E alaptípus feletti V verem, műv: Empty: (V, IsEmpty:V (L,Push:V (E (V, Pop:V (V (E, Top:V (E; megsz: DPop = DTop = V \ {Empty},
axiómák: IsEmpty (Empty); IsEmpty (v) (v = Empty; ¬IsEmpty (Push(v,e)); Pop (Push(v,e)) = (v,e); Push (Pop(v)) = v; Top (Push(v,e)) = e;
· funk.spec(típus matematikai reprezentációja- nem utal ábrázolási mód megválasztására; részei: t.érték halmaz, műv, állapottér, paramétertér, előfelt, utófelt), pl: verem:
[image: image2.wmf](

)

{

}

{

}

{

}

j

i

i

i

t

t

j

i

n

j

i

n

n

i

t

e

v

¹

®

¹

Î

"

Ù

³

Ù

Î

=

:

,

,

1

,

0

,

,

1

,

K

K

, műv: pl pop: állapottér: A=
[image: image3.wmf]e

v

E

V

´

, paramétertér: B =
[image: image4.wmf]'

v

V

(kezdeti érték), előfelt: Q= (v = v’ (v’ ((), utófelt: R= (
[image: image5.wmf]'

v

v

=

\
[image: image6.wmf](

)

{

}

(

)

(

)

(

)

i

j

i

i

j

j

j

j

j

t

t

j

i

v

t

e

i

v

t

e

e

e

t

e

>

¹

Ù

Î

"

Ù

Î

Ù

=

Ù

:

'

,

'

,

,

) (ln idő legyen utoljára);
ADS: a típus absztrakt szerkezetét irányított gráffal ábrázoljuk, itt is műv, pl: kupac(=Heap) az elsőbbségi sor reprezentációja (binfa, majdnem teljes, balra tömörített, szülő>gyerek);
Reprezentáció: az absztrakt memóriában; ábrázolás:
· láncolt(pointeres): él=pointer, műveletek algoritmusait meg kell adni, dv kiszámító algoritmusát is(szemben ADS-vel), köv: gazdagabb reprezentációt igényelhet, mint ADS, pl kupac;
[image: image7.png]] Pointeres abrizolds (lancolas)

P kupac Tancall Forzctiss
eleit
abrimijuk
m A miveletek alcoritmusait
it mar meg kell
m A feladatban bevezetett

Tlggvények Kiszmits

aigoritmusaitis meg kel
adni (szemben az ADS-sel)

m Kovetkezmeny: epy feladat

megoldisa gazdagabh

reprezenticil igenyelhet,
mint maga az ADS.

· aritmetikai(tömbös- cím/indexfv): adatelemeket folyamatosan elhelyezzük az absztrakt memóriában egy ugyanilyen alaptípusú tömbben, ráköv.rel=cím/idnexfv-ekkel adjuk meg, műv és fv algoritmusait meg kell adni, pl: (majdnem) teljes binfa (szintfolytonosan: index(bal(a))= 2*index(a), index(jobb(a))= 2*index(a)+1);

[image: image8.png]Példa: (majdnem) teljes bil
indexfiiggvénye

Zinifolytonosan:
w index(bal(@)) - 2*index(a)
= index(jobbia)) = 2*index(a) |

Adatszerkezetek:
- definíció: <A,R> rendezett pár, ahol A: adatelemek véges halmaza, R: A-n értelmezett valamennyi reláció;
- osztályozása:
· típus: homogén,heterogén;
· rel:
- struktúra nélkül(nincs kapcsolat,sorrend, pl: halmaz),
- asszoc.címzésű(nincs lényegi kapcsolat, tartalom alapján címezhető, pl: tömb),
- szekvenciális(R rel tranzitív lezártja teljes rendezési reláció, azaz egymás után többször végrehajtható, egy-egy, kitüntetett elem: első,utolsó, pl: lista),
- hierarchikus(egy-sok, kitüntetett elem: gyökér(r), r nem lehet végpont, minden elem csak egyszer végpont, minden elem r-ből elérhető, pl: fa, B-fa),
- hálós(R relációban nincs kikötés, sok-sok, rel. nincs kikötés, pl: gráf);
· adatelemek száma:
- statikus(rögzített számú),
- dinamikus(szám változik, lehet: rekurzív(saját magára hivatkozás) v. nem rek, lin(egy saját magára hiv) v. nem lin(több));
· reprezentáció:
- folytonos(egymás után, azonos tárolási jellemzők, ismert: első elem címe, ebből számítható többi, loc(An)=loc(A1)+(n-1)*H, pl: asszoc,string),
- szétszórt(tárelemek véletlenszerűen, minden elem más elemek elhelyezkedésére vonatkozó infó, pl: hierarchikus,hálós),
- mindkét módon jól tárolható(pl: verem, sor);;;
2. Tömbök, Verem, Sor, Lengyelforma
Tömbök:
- ADT:
· definíció: E alaptípusú k dimenziós T tömbtípus, legyen: I=I1 x I2 ..x Ik indexhalmaz, ahol minden j e [1,..k]: Ij= [1..nj]; A e T tömbnek N=n1*n2..nk eleme van: {a1,a2,…aN}; mindig van f: I({a1,..aN} egy-egy értelmű leképezés (indexhalmaz(elem); jelölés: A[i1,..ik]; elnevezés: k=1- vektor, k=2- mátrix;
· invariáns adható(spec megszorítások, tömb alakjának módosítása, pl: szimm, alsóháromszög, ritka);
· műv: indexelés(elem kiválasztás), elemmódosítás(értékadás, pl: A[i1..ik]:=a, A:=B);
- ADS: nem kötelező rákövetkezést definiálni elemek között, de elfogadott: kövj(A[i1..ij..ik]=A[i1..ij+1..ik], ahol j e [1,k]; la 2 dimenziós tömb ortogonális adatszerk, k=2-re gráf;
- Reprezentáció: aritmetikai ábrázolás: k dim tömböt 1 dim-ban, megadjuk leképezés címfv-ét; sorfolytonos(SF) v. oszlopfolytonos(OF) elhelyezés;
· indexfv: SF: ind(A[i,j])= (i-1)*n+j, OF: ind(A[i,j])= (j-1)*m+i,
· címfv: SF: cím(A[i,j])= cím(A)+ (i-1)*n*h+(j-1)*h, OF: cím(A[i,j])= cím(A)+(j-1)*m*h+(i-1)*h, ahol i e [1,m], j e [1,n], h…egy elem hossza;
· invariánsok:
· tridiag: indexfv: ha |i-j|<=1, akkor inf(A[i,j])= (i-1)*3-1 + 1(ha i>j), 2(ha i=j), 3(ha i<j), 0-t tároljuk elején: ind(A[i,j])= (i-1)*3 + 1(ha i=j+1), 2(ha i=j), 3(ha i+1=j), különben: 1, pl: (0 a11 a12 a21 a22 a23…);
· alsó háromszög: elemszám: m*(n+1)/2 +1; ind(ai,j)= i*(i-1)/2 +j (ha i>=j), n*(n+1)/2 +1 (ha i<j);
· ritka mátrix: láncolt ill vegyes ábrázolás, egy elem tartalmaz: i, j, A[i,j], pointer le,jobbra, mikor előnyös? (h+2*i+2*p)*k + (m+n)*p < m*n*k, ahol k..nem0 elemek száma, h..érték, p..mutató, i..index helyfoglalása;

[image: image1.png]A specifikicid ésa

tipus kaposolata a2 F mivelet specifikiciola

T
¥

s | @ @
e |

azF mivelet implementiciof
425 program

[image: image30.png]® Tridiagonilis matrix:

o

[image: image31.png]w Alsd haromsz

[image: image32.png]

Szemlélet: push(v,e)- proceduális, v.push(e)- objektum-elvű;

Verem(=Stack): LIFO(=last-in, first-out)
- ADT:
· axiomatikus leírása: E alaptípus feletti V verem, műv: Empty: (V, IsEmpty:V (L,Push:V (E (V, Pop:V (V (E, Top:V (E; megsz: DPop = DTop = V \ {Empty}, axiómák: IsEmpty (Empty); IsEmpty (v) (v = Empty; ¬IsEmpty (Push(v,e)); Pop (Push(v,e)) = (v,e); Push (Pop(v)) = v; Top (Push(v,e)) = e;
· funkcionáris leírása: rendezett párok halmaza(elhelyezett érték, időpontja), invariáns (megszorítás- kül időértékek), NEM így implementáljuk;
[image: image9.wmf](

)

{

}

{

}

{

}

j

i

i

i

t

t

j

i

n

j

i

n

n

i

t

e

v

¹

®

¹

Î

"

Ù

³

Ù

Î

=

:

,

,

1

,

0

,

,

1

,

K

K

, műv: pl pop: állapottér: A=
[image: image10.wmf]e

v

E

V

´

, paramétertér: B =
[image: image11.wmf]'

v

V

(kezdeti érték), előfelt: Q= (v = v’ (v’ ((), utófelt: R= (
[image: image12.wmf]'

v

v

=

\
[image: image13.wmf](

)

{

}

(

)

(

)

(

)

i

j

i

i

j

j

j

j

j

t

t

j

i

v

t

e

i

v

t

e

e

e

t

e

>

¹

Ù

Î

"

Ù

Î

Ù

=

Ù

:

'

,

'

,

,

) (ln idő legyen utoljára);

[image: image33.png]

[image: image34.png]

- ADS: lineáris adatszerk;
- Reprezentáció: aritmetikai ábrázolás: vektor(elemek tömbje, hossza: max, elements:[1..max]), verem tetejének mutatója(head e [0,max]);
· v.Empty: v.head<-0;
· v.IsEmpty: return v.head=0;
· v.IsFull: return v.head=max;
· v.push(e.): if v.IsFull then error; else v.head<-v.head+1, v.elements[v.head]<-e;
· v.pop: if v.IsEmpty then error; else v.head<-v.head-1; return v.elements[v.head+1] endif;
· v.top: if v.IsEmpty then error; else return v.elements[v.head]; endif;;;
Sor(=Queue): FIFO(=first-in, first-out)
- ADT: E alaptípus feletti S sor típus, műv: Empty: (S, IsEmpty: S (L,In:S (E (S, Out:S (S (E, First:S (E; megszorítás: DOut = DFirst = S \ {Empty};
· algebrai: IsEmpty(Empty); IsEmpty(s) (s = Empty; ¬IsEmpty(In(s,e)); Out(In(Empty,e)) = (Empty,e); ¬IsEmpty(s) (Out(In(s,e))2 = Out(s)2; ¬IsEmpty(s) (In(Out(s)1,e) = Out(In(s,e))1; First(s) = Out(s)1;
· funk.spec:
[image: image14.wmf](

)

{

}

{

}

{

}

j

i

i

i

t

t

j

i

n

j

i

n

n

i

t

e

s

¹

®

¹

Î

"

Ù

³

Ù

Î

=

:

,

,

1

,

0

,

,

1

,

K

K

. Empty: A=
[image: image15.wmf]s

S

, B=
[image: image16.wmf]'

s

S

, Q=(s =s’), R= (s= (); Isempty:A=
[image: image17.wmf]l

s

L

S

´

, B=
[image: image18.wmf]'

s

S

, Q= (s= s’), R= (Q (l = (s’= ()), In:A=
[image: image19.wmf]e

s

E

S

´

, B=
[image: image20.wmf]'

'

e

s

E

S

´

, Q= (s= s’ (e= e’), R= (
[image: image21.wmf]t

t

s

t

e

i

t

e

s

s

e

e

i

i

i

<

Î

"

Ù

È

=

Ù

=

:

)

'

)

,

((

)}

,

'

{(

'

'

); Out:A=
[image: image22.wmf]e

s

E

S

´

, B=
[image: image23.wmf]'

s

S

, Q= (s= s’ (s’ ((), R= (
[image: image24.wmf]'

s

s

=

\
[image: image25.wmf](

)

{

}

(

)

(

)

(

)

i

j

i

i

j

j

j

j

j

t

t

j

i

s

t

e

i

s

t

e

e

e

t

e

<

¹

Ù

Î

"

Ù

Î

Ù

=

Ù

:

'

,

'

,

,

); Top:A=
[image: image26.wmf]e

s

E

S

´

, B=
[image: image27.wmf]'

s

S

, Q= (s= s’ (s’ ((), R= (Q
[image: image28.wmf](

)

(

)

(

)

i

j

i

i

j

j

j

t

t

j

i

s

t

e

i

s

t

e

e

e

<

¹

Ù

Î

"

Ù

Î

Ù

=

Ù

:

'

,

'

,

);

[image: image35.png][head v head 11

elements[vhead] ¢

- ADS: lineáris adatszerk;
[image: image36.png]2,5 kiveétele utdn:

head=3 ail-s

[image: image37.png]7.3.8 betétele utdn:

[image: image38.png]21 betétele utdn:

head

asasa
TELE

- Reprezentáció: aritmetikai ábrázolás: vektor(elemek tömbje, hossza: max, elements[1,..max]), első elem mutatója(head e [1,max]), első üres(=utolsó) hely mutatója(tail e [1,max]); empt(üres-e) v count(hány elem);
· s.Empty: s.head<-1;s.tail<-1;s.empt<-true;
· s.IsEmpty: return s.empt;
· s.ISFull: return not s.empt and (s.head=s.tail);
· s.in(e.): if s.IsFull then error; else s.empt<-false; s.elements[s.tail]<-e; ifs.tail=max then s.tail<-1 else s.tail<-s.tail+1; endif;
· s.out: if s.empt then error; else e<-s.elements[s.head]; if s.head=max then s.head<-1 else s.head<-s.head+1; end if; if s.head=s.tail then s.empt<-true end if return e; end if;
· s.first: if s.empt then error; else return s.elements[s.head] end if;;;
[image: image39.png]

[image: image40.png]W Sin(e) - el beleszl az s sor vegere,
- sail-t ciklikusan noveli
i sisFull
then error . tulesorduls’
else s.empl «— false:
5. elements[s tail] < e:
ifs.tail-max '
then stail 1
else s.tail < s.tail+1
endif

endif

[image: image41.png]W soul - kiveszi, vissza

dia az s sor elsirel
cadet ciklikusan niveli
1i. hogy nem fires

if s.empt
then error _alulcsordulis'
dlse e 5. clements[s.hea

then s.h
else s.head < .h
end if

if .head =s.tail then s.empt < trues e
retim e

Lengyelforma: infix(a+b), prefix(+ab), postfix(ab+), J.Lukasewitz használta először;

- előny: műveleti jelek olyan sorrendben követik egymást, ahogy végre kell hajtani, ill operátor(=műveleti jel) közvetlenül operandusai előtt áll, pl: (a+b*c)*(d*3-4)= abc*+d 3*4-*;
- lengyelformára alakítás: pl: (1+2)*(3-4); x-et feldolgozzuk: nyitózárójel- verembe, operandus- kiíratás, operátor- nyitózárójelig kivesszük nagyobb prioritású operátorokat- kiír- ezt verembe, csukózárójel- verem tetején elemek kiíratása nyitózárójelig- nyitózárójel ki, végén: veremben lévő elemek kiíratása;
[image: image42.png]W sfirst - visszaadjaaz s sorelsg el
- Figyeli, hogy nem ires-e a sor

mé,

if s.empt
then error _alulcsondul
else retum's. clements[s-head]
endir

m Lehemne az is, hogy a darabsbimot tiroljuk - tessék
dtgondolni a miveleteket!

[image: image43.png]

tfh x „token”-ekből (op, operandus, (,)) álló sor szintaktikailag helyes kifejezést tartalmaz, y sorba postfix kifejezést s verem segítségével;
[image: image44.png][I N 2 T I I) E N

[image: image45.png]v LT T T 1]

- kiértékelés: pl: 12+ 34-*(-3; operandus- verembe, operátor- 2.,1. operandust ki veremből- kiszámítás- eredményt verembe;
[image: image46.png]

[image: image47.png]g v Emply: s Emply §

ot eEmpry

E=xT
perandus?
o= 5 ey
sinte) T T
e P o) 2precte)
push s Empry
vintseop) vintspon)
<pop Spushe)
T oy

tfh y sort tartalmazza postfix kifejezést, kiértékeljük v vermet felhasználva, z változóba tároljuk;

v.Empty; z<-0; while(not y.IsEmpty){e<-y.out; if(e=operandus){v.push(e) – {op2<-v.pop; op1<-v.pop; v.push(„op1 e op2”)}};

3. Elsőbbségi (prioritásos) sor és a kupac (heap)
Prioritásos sor: egyszerű sor: FIFO szemantika, elem hozzáadás,törlés konstans igényű (O(1)), ha elemeknek rendezése van(prioritás; törlés: ln prioritásút először, pl: sürgősségi osztályon kül súlyosságú esetek, oprendszer, tennivalók;
- ADT: E alaptípus feletti P elsőbbségi sor típus, egyszerűsítés: csak prioritásokat teszünk bele(N);
· műv: Empty: (P, IsEmpty: P (L,Insert:P (N (P, Max:P (N, DelMax:P (P (N; megsz: DMax = DDelMax = P \ {Empty};
· axiómák: IsEmpty(Empty); IsEmpty(p) (p = Empty; ¬IsEmpty(Insert(p,n)); Max(p) = DelMax(p)2; Insert(DelMax(p)) = p; ¬IsEmpty(DelMax(p)1) → Max(p) (Max(DelMax(p)1); n (Max(p) → DelMax(Insert(p,n))1 = p (Max(Insert(p,n)) = n; n < Max(p) → Max(Insert(p,n)) = Max(p); DelMax(Insert(Empty,n)) = (Empty,n); Max(Insert(Empty,n)) = n;
[image: image48.png]VBl 70,

sy |

ecyout
& = operandus
vpushe) a2 vpop
opl < vpop
wpush ("opl ¢ 0p2")

zevpop

ábrázolás(ADS): rendezetlen tömb, beérkezési idő szerint (művigény: insert O(1), max O(n), delmax O(n)), rendezett tömb(insert műveletigénye helykeresés: O(log n), jobbraléptetés: O(n), max,delmax O(1)), heap(O(log n));

binfa:
· teljes(magassága h, 2h+1-1 csomópontja),
· majdnem teljes(üres v magassága h, balrészfa: h-1 magas és majdnem teljes, jobbrészfa: h-2 magas és teljes v balrészfa: h-1 magas és teljes, jobbrészfa: h-1 magas, majdnem teljes)- „balról töltjük fel”,
· heap tulajdonságú(üres v gyökérben lévő kulcs>mindkét gyerekében és mind2 részfája heap tul);
törlés(gyökeret- utolsót gyökérbe- gyökér>mind2 gyerek?- helyreállítás: gyökér és nagyobbik gyerek cseréje- bal részfa helyreállítása: balrészfa györér és nagyobbik gyerek cseréje),
ideje: gyökéreltávolítás,utolsó elem gyökérbe: O(1), csere: O(h)=O(log n)(össz: O(log n);
[image: image49.png]

[image: image50.png]

[image: image51.png]

beszúrás(köv üres pozícióba helyezzük jobb szélen- felfele, amíg>szülő), ideje: max h csere: O(h)=O(log n);
[image: image52.png]

[image: image53.png]

- Reprezentáció: láncolt lista(din allokált csomópontok és mutatók) v tömb(mivel majdnem teljes fa, ezért k csomópont gyerekei: 2k, 2k+1, k szülője: k/2, ha k>n, akkor nem létezik);
· insert: if(Aktmeret/=Maxmeret){Aktmeret:=Aktmeret+1; T[Aktmeret]:=ujelem; Szulo:=Aktmeret/2; Gyerek:=Aktmeret; while(szulo>=1 és T[Szulo]<T[Gyerek]){Csere(T[Szulo],T[Gyerek]); Gyerek:=Szulo; Szulo:=Szulo/2;} – Tele!};
· delmax: if(Aktmeret/=0){maxelem:=T[1]; T[1]:=T[Aktmeret]; Aktmeret:=Aktmeret-1; Sullyeszt(P); - Üres!};

Hatékonyság: hatékony, minden elem beszúrása: O(n*log n), minden elem eltávolítása: O(n*log n)(O(n*log n);

4. Listák
Szekvenciális adatszerk: <A,R> rendezett pár, amelynél R rel tranzitív lezártja teljes rendezési reláció, azaz egymás után többször végrehajtható; logikai sorrend, egy-egy jellegű kapcsolat, kitüntetett elem: első,utolsó, pl: lista; homogén(azonos típusú adatok); jelölés: L(a1,a2,..an);
Láncolt lista(minden eleme tartalmaz egy v több mutatót egy másik ugyanolyan típusú adatelemre, 1.elem címe: fej(nincs infó), utolsó elem: rákövetkező elem mutatója üres);
- ADT és ADS: műv: beszúrás, módosítás, törlés;
[image: image29.png]

- Reprezentáció:
· statikus ábrázolás(tömb, érték és index(logikai sorrendet mutat), vannak szabad helyek, de probléma: adatok száma nem ismert előre, nem akarunk feleslegesen helyet foglalni, feladat dinamikusan változik),
· dinamikus láncolt ábrázolás(egyirányú: fejelem nélküli v fejelemes(létezik, ha üres, akkor is), akt elemre mutató is van; kétirányú);

lista típus komponensei(L..első elem mutatója, akt, hiba);
[image: image54.png]

[image: image55.png]fejelem nélkiil

műv:
· Lértehoz: L<-nil; akt<-nil; hiba<-false;
· IsEmpty: return (L=nil); Error: if(hiba){hiba<-false; return true; – return false};
· First: if(L/=nil){akt<-L; hiba<-false; – hiba<-true};
· Next: if(akt/=nil){akt<-(akt<-mut); hiba<-false; – hiba<- true};
· IsEndOfList: return (akt=nil); IsLast: return (akt/=nil és akt->mut=nil);
· GetValue: if(akt/=nil){x<-(akt->adat); hiba<-false; – hiba<-true};
· SetValue: if(akt/=nil){(akt->adat)<-e; hiba<-false; – hiba<-true}; …
[image: image56.png]

[image: image57.png]

[image: image58.png]NIL

akteL | hibacme
hiba < false

[image: image59.png]Lo

NI

b — Tl

[image: image60.png]retum (L= NIL)

[image: image61.png]Tiba

iba < fale

e | retum fase

[image: image62.png]KNI

ki Gt
hiba < fale

i)

hiba true

[image: image63.png]TEndOMLis,

retun (aki

1

[image: image64.png]retum
(akt = NIL A gkt

1)

beszúrás(deklarálás(listaelem típusra mutató mutató), létrehozás(new(p)- Node típus), befűzés):
· InsertFirst: new(p); (p->adat)<-e; (p->mut)<-L; L<-p; akt<-L; hiba<-false;
· InsertLast: new(p); (p->adat)<-e; (p->mut)<-nil; if(l=nil){L<-p; akt<-l; – u<-L; v<-(L<-mut); while(v/=nil){u<-v; v<-(v->mut)}; (u->mut)<-p; akt<-p};
· InsertAfter: if(akt/=nil){new(p); (p->adat)<-e; (p->mut)<-(akt->mut); (akt->mut)<-p; akt<-p; hiba<-false; – hiba<-true};
· InsertBefore: if(akt=nil){hiba<-true; – new(p); (p->adat)<-e; u<-L; v<-(L<-mut); while(v/=akt){u<-v; v<-(v->mut)}; (u->mut)<-p; (p->mut)<-akt; akt<-p; hiba<-false};
[image: image65.png]L NIL:

(akiadal) — ¢

hiba e fase |10 e

[image: image66.png]k= NI

X (aki—adat)

hiba false | b3 e

[image: image67.png]

[image: image68.png]Newn)
adab ¢
(pomut) - L
Lep
akteL
hiba < false

[image: image69.png]

[image: image70.png]e (o madat < (b < NIL

o

L v (mu)

ML

[——

[image: image71.png]

[image: image72.png]. I(nsertafer)

KNI

=
)
[P v—
okt p
dep
hiba e false

i

[image: image73.png]

[image: image74.png]CE

en p): (pada)
e L ve (L)

vrakt

PREspa—

(oem) i (poma ke
ahtep; b=

törlés(akt elem elé beáll- átláncol- kitöröl- akt beállít):
· RemoveAkt: if(akt/=nil){if(akt=l){p<-L; L<-(L->mut); akt<-L; felszab(p); hiba<-false; – p<-L; while(p->mut/=akt){p<-(p->mut) }; (p->mut)<-(akt->mut); felszab(akt); akt<-(p->mut); hiba<-false; – hiba<-true};
hatékonyság: Last, Remove, InsertBefore, InsertLast nem hatékony- lehetne kétirányú láncolt lista;

rendezés listával:A[1..n], poz elemeit rendezzük; l.Empty; for(i=1 to 1){if(A[i]>0){if(l.Isempty){l.InsertFirst(A[i]); – l.First; a<-l.GetValue; while(not l.IsLast és A[i]>a){l.Next; a<-l.GetValue}; if(A[i]<=a){l.InsertBefore(A[i]); – l.InsertAfter(A[i])}}; – skip};
5. Hierarchikus adatszerkezetek és bináris fák
Hierarchikus adatszerk: <A,R> rendezett pár, amelynél kitüntetett elem: gyökér(r), r nem lehet végpont(non R(a,r)), minden elem csak egyszer végpont(minden a e {A\{r}}-hez E! b/=a: R(b,a), b e A), minden elem r-ből elérhető(E a1..an e A, an=a: R(r,a1), R(a1,a2).. R(An-1,an)), egy-sok, pl: fa, B-fa; láncolt lista általánosítása;

Fa:
- def: hierarchikus adatszerk, véges számú csomópont, 2 cspont között kapcsolat egyirányú(kezdő-végpont), kitüntetett cspont: gyökér(nem végpont), összes többi cspont pontosan egyszer végpont;
- rekurzív def: üres v kitüntettet cspont: gyökér, ehhez 0 v több diszjunkt fa kapcsolódik(részfák);

megfeleltetés: csúcs- adatelem, él- egymás utáni sorrend, gyökérelem- nincs megelőzője, levélelem- nincs rákövetkezője, közbenső elem- többi adatelem;

definíciók:
· elágazásszám(közvetlen részfák száma),
· szint(gyökérelemtől való távolság, gyökér: 0.szint),
· magasság(szintek száma, levelekhez vezető leghosszabb út, ln szintszám+1),
· csomópont foka(kapcsolódó részfák száma),
· fa foka(ln fokszám),
· levél(0 fokú cspont),
· elágazás(közbenső cspont),
· szülő(ős)(kapcsolat kezdőpontja, levél nem),
· gyerek(leszármazott)(kapcsolat végpontja, gyökér nem),
· testvér(ua pont leszármazottai),
· útvonal(egymást követő élek sorozata, minden levél gyökértől 1 úton érhető el),
· ág(útvonal, ami levélben végződik),
· üresfa(nincs eleme),
· min magasságú fa(adott elemszám esetén legkisebb),
· kiegyensúlyozott(azonos fokú cspontok, minden szinten részfák magassága nem ingadozik többet 1 szintnél),
· rendezett(szülőhöz tartozó részfák sorrendje lényeges); max cspont elhelyezése f fokú m magasságú fában: (fm+1-1)/(f-1)= 1+f+f*f+f*f*f…;
műv:
· Lekérdező: Üres_e, Gyökérelem, Keres(e),
· [image: image75.png]

Módosító: Üres (létrehoz), Beszúr(e), MódosítGyökér(e) (e adatelem lesz gyökér), Töröl(e), TörölFa,
Bejárás:
· preorder(=gyökérkezdő, gy,b,j),
· postorder(=gyökérvégző, b,j,gy),
pl: abcdgef, ill bgdefca;
[image: image76.png]LT
W

fye) i

o) P

P (pm

ety
i Tl

[p—
Tea)
bt e p ot
[

Bináris fa: fa, amelynek csúcspontjaiból max 2 részfa nyílik(fokszám :2),
· inorder bejárás(=gyökérközepű),
pl: pre: abdceghijf, in: dbageihjcf, post: dbgijhefca;
- Reprezentáció:
· általános fa: minden csponthoz 3 mutató(bal-gyerek, jobb-testvér, szülő), multilista(minden csponthoz lin lista, amelynek 1. eleme: adat, többi kapcsolatok- újabb lin listára mutat, annyi kapcsolati elem, ahány fokú cspont);
· korlátos általános fa (aritmetikai is lehetséges, ill láncolt, ahol minden cspontnak k mutatója max k gyerekre)
[image: image77.png]

[image: image78.png]

· bináris fa: aritmetikai ábrázolás(szintfolytonosan tömbben, ind(bal(c))= 2*ind(c), ind(jobb(c)=2*ind(c)+1), láncolt(mutató bal,jobb gyerekre, szülőre is lehet);
[image: image79.png]Multilistis

reprezenticia

B

[image: image80.png]

Def:
· tökéletesen kiegyensúlyozott(minden elem bal, ill jobboldali részfájában elemek száma lf eggyel tér el),
· teljes(minden közbenső elemének pontosan 2 leágazása van),
· majdnem teljes(csak levelek szintjén hiány);
műv: üres fa inicializálása; üres fa gyökérelemének definiálása; gyökér és a 2 részfa csoportosítása; elem hozzáadása egy olyan elem bal(ill jobb) oldalához, amelynek nincs bal(ill jobb) oldali leágazása; üres_e; van_e_bal(ill jobb) oldali leágazása akt elemnek; gyökérelem elérése; adott elem elérése; fa kettéválasztása egy elemre(régi gyökér) és 1v2 részfára; részfa törlése, részfa helyettesítése másik részfával;

- kiszámító(=kifejezésfa): struktúra, amely egy nyelv szimbólumai és kül műveletei közötti precedenciát jeleníti meg; használat: aritmetikai kifejezések ábrázolása(elágazás- operátor, levél- operandus, részfák közötti hierarchia- op precedenciája, ill zárójelezés);

[image: image81.png]- 2 IZ'ID‘ D£D

[image: image82.png]i

[image: image83.png]vEmply

ol

e lEour
operanduste) operitore?
g | oM vPop
fevele bal — v.Pop

VPO fszerizibal ejobby
v.Pushit)

[image: image84.png]Geszeraie, 0,
reun 13

[image: image85.png]newtt)

Lt e

Liobber2

Lbalef1

- rendezési(=kereső)fa: binfa kialakítása a kül adatelemek között meglévő rendezési relációt
 követi; felépítés: minden csúcs értéke nagyobb, mint tetszőleges csúcsé bal ágon és kisebb, mint jobb ágon található csúcsok;
[image: image86.png]©

SH

6. A rendezés feladata. A rendezők osztályozása. Három “lassú” (négyzetes) rendezés: a buborék rendezés, a beszúró rendezés, és a maximum kiválasztásos rendezés
Rendezések: bemente: (a1,a2,…,an) n elemű sorozat, kimenet: (a1’,a2’,…,an’) bemenő sorozat permutációja, hogy a1’<=a2’<=…an’;
· általánosabban: legyen K teljesen rendezett halmaz (kulcsok halmaza), legyenek Ti-k tetszőleges típusok i e[1,m], E:= K x X Ti, pl: E egy eleme: |kulcs,t1,..,tm|;
· cél: S e E* rendezése, legyen n=|S|, s rendezett<-> minden i e [1,n-1]: Si kulcs<=Si+1 kulcs, előfelt: S= S’e E*, utófelt: S rendezett ls S e Perm(S’);
· rendezett sorozat: elemek között nincs inverzió;

- rendezési reláció: legyen U egy halmaz, < egy kétváltozós reláció U-n, ha a,b e U és a<b(a kisebb, mint b; < egy rendezés, ha:
· irreflexív(a non< a),
· tranzitív(ha a<b és b<c(a<c),
· teljes(tetszőleges a/=b e U-ra: a<b v b<a);
ha < egy rendezés U-n((U; <) rendezett halmaz, pl: Z egész számok halmaza, < nagyság szerinti rendezés;
- osztályozás:
· skalár(m=0), rekord(m>=1);
· belső(központi memória+indexelés), külső(háttértáron);
· összehasonlításos(kulcsok érétkét), edény(kulcsok értéke szerint szétrak);
· helyben(konstans segédmemória), nem helyben;
· stabil(azonos kulcsú rekordok sorrendje nem változik), nem stabil;
· előrendezéshez illeszkedő(kevesebbet dolgozik, ha előrendezett sorozat), nem illeszkedő rendezők;
· lineáris, fa adatszerkezet használ;
· módszer szerint(pl: összehasonlításosnál max.elemet kiválasztó, csere, egy elemet helyrevivő, összefuttatásos rendező);
Algoritmusok hatékonysága: lépésszám nagyságrendje érdekes; input mérete: n, lépésszám: f(n);
· def: ha f(x) és g(x) R+ egy részhalmazán értelmezett valós fv, akkor f=O(g) azt jelenti, hogy vannak olyan c,n>0 állandók, hogy: |f(x)|<= c*|g(x)|, ha x>=n(g aszimptotikus felső korlátja f-nek, pl: 100n+300=O(n), azaz 100n+300<=c*n, n=300, c=101;

· def: ha f(x) és g(x) R+ egy részhalmazán értelmezett valós fv, akkor f=Ω(g) azt jelenti, hogy vannak olyan c,n>0 állandók, hogy: |f(x)|>= c*|g(x)|, ha x>=n(g aszimptotikus alsó korlátja f-nek, pl: 100n-300= Ω(n), n>300, c=99;
· def: ha f=O(g) és f=Ω(g), akkor f=Θ(g)(g aszimptotikus éles korlátja f-nek, pl: 100n-300= Θ(n);
Buborék rendezés: feladat: A[1..n], tetszőleges T elemtípus, amire teljes rendezés értelmezhető;
· alapötlet: legnagyobb elemet felbuborékoltatjuk- eggyel rövidebb tömbre is; inverziók csökkentése; pl: 12,5,7,9,11,10(5,12,7,9,11,10…5,7,9,11,10,12;
· Buborék: j<-n; while(j>=2){i<-1; while(i<=j-1){if(A[i]<=A[i+1]){skip – Csere(A[i],A[i+1])}; i<-i+1}; j<-j-1};
· időigénye: c1,c2,c1,c2,c3,c4,c1,c1,
külső ciklus: n-1-szer, cf-et n-szer ellenőrzi, j-t n-1-szer csökkent:: c1+n*c2+(n-1)*c1,
belső ciklus: n-1,n-2,..2,1-szer fut le, n-1-szer kezdőértékadás, cf-et eggyel többször ellenőrzi, i-t (1+..+n-1)-szer növeljük::
(n-1)*c1+(2+..+n)*c2+(1+..+n-1)*c1, A[i] és A[i+1] összehasonlítása: (1+..+n-1)*c3, csere száma=A inverzióinak száma: 0 és (n alatt 2) között: inv(A)*c4(
T(A)= c1+ n*c2+ (n-1)*c1+ (n-1)*c1+ (2+..+n)*c2+ (1+..+n-1)*c1+ (1+..+n-1)*c3+ inv(A)*c4= c1+ n*c2+ n*c1-c1+ n*c1-c1+ (n+2)*(n-1)/2*c2+ n*(n-1)/2*c1+ n*(n-1)/2*c3+ inv(A)*c4= n2*(c1/2+ c2/2+ c3/2)+ n*(3*c1/2+ 3*c2/2- c3/2)- (c1+c2)+ inv(A)*c4,
egyszerűsítés: c1<<c3, c2<<c4 (összehasonlítás és csere)(
T(A)= n2*c3/2- n*c3/2+ inv(A)*c4= n*(n-1)/2*c3+ inv(A)*c4, feltételezés: c3~c4(T(n)= n*(n-1)/2+ inv(A),
feltételezés: egyes műv számát külön-külön kérdezzük: Ö(n)= n*(n-1)/2, Cs(n)= inv(A),
feltételezés: legrosszabb(M T(n)), legjobb(m T(n)), átlagos(A T(n)) esetben kiszámítani(
M Ö(n)= m Ö(n)= A Ö(n)= n*(n-1)/2, M Cs(n)= n*(n-1)/2, m Cs(n)=0, A Cs(n)= n*(n-1)/4, feltételezés: műveletszám aszimptotikus viselkedése érdekel(
M Ö(n)= Θ(n2), M Cs(n)= A Cs(n)*2= Θ(n2);
[image: image87.png]

Maximum kiválasztásos rendezés:
· ötlet: tfh A[1..n] jobb széle már rendezve van(j+1..n)- kiválasztjuk A[1..j] max elemét- kicseréljük j. helyen lévővel- j-t csökkentjük; pl: 12,5,7,6,11,10- 10,5,7,6,11,12- 10,5,7,6,11,12- 6,5,7,10,11,12;
· MaxKiv_Rend: j<-n; while(j>=2){maxkiv(A[1..n],ind,max);csere(A[ind],A[j]);j<- j-1};
· M Ö(n)>= (n-1)+(n-2)+..+1= Θ(n2);
[image: image88.png]Maveletek idigénye:

jon
e
O
=
S PV
B T coetnarn
! ieitl
<l ieiol

[image: image89.png]C=y

Wi

AT e

A AL W

Ali+1] < Al

[image: image90.png]Maxkiv AT T mav)

Csere(Alind], AlJ))

S

Beszúró rendezés: beillesztéssel egy-egy elemet a helyére viszünk, tömbben fontos mozgatások száma, stabil rendező; pl: 12,5,7,6,11,10- 5,12,7,6,11,10- 5,7,12,6,11,10- 5,6,7,12,11,10- ..
· Beszúró: j<-1; while(j<=n-1){w<-A[j+1],i<-j; while(i>=1 és A[i]>w){A[i+1]<-A[i]; i<-i-1} A[i+1]<-w}; j<-j+1};
· művigény: M Ö(n)= n*(n-1)/2= Θ(n2), A Ö(n)= M Ö(n)/2= Θ(n2), m Ö(n)= n-1; mozgatás műv: M M(n)= (n+2)*(n-1)/2= Θ(n2), A M(n)=n2/4= Θ(n2), m M(n)=2*(n-1)=O(n);
7. Kupacrendezés (heapsort)
Prioritásos sor: egyszerű sor: FIFO szemantika, elem hozzáadás,törlés konstans igényű (O(1)), ha elemeknek rendezése van(prioritás; törlés: ln prioritásút először, pl: sürgősségi osztályon kül súlyosságú esetek, oprendszer, tennivalók;

ábrázolás(ADS): rendezetlen tömb, beérkezési idő szerint (művigény: insert O(1), max O(n), delmax O(n)), rendezett tömb(insert műveletigénye helykeresés: O(log n), jobbraléptetés: O(n), max,delmax O(1)), heap(O(log n));

műv: Empty: (P, IsEmpty: P(L, Insert: PxN(P, DelMax: P(PxN, Max: P(N;
[image: image91.png]Maskiv
(A[LJ], ind, max)

L Liind o 1 max — A[1]

Al ma

binfa:
· teljes(magassága h, 2h+1-1 csomópontja),
· majdnem teljes(üres v magassága h, balrészfa: h-1 magas és majdnem teljes, jobbrészfa: h-2 magas és teljes v balrészfa: h-1 magas és teljes, jobbrészfa: h-1 magas, majdnem teljes)- „balról töltjük fel”,
· heap tulajdonságú(üres v gyökérben lévő kulcs>mindkét gyerekében és mind2 részfája heap tul);
törlés(gyökeret- utolsót gyökérbe- gyökér>mind2 gyerek?- helyreállítás: gyökér és nagyobbik gyerek cseréje- bal részfa helyreállítása: balrészfa györér és nagyobbik gyerek cseréje),
ideje: gyökéreltávolítás,utolsó elem gyökérbe: O(1), csere: O(h)=O(log n)(össz: O(log n);

[image: image92.png]

[image: image93.png]P Aktimeret - Maxmeret

P ARmeret - Ps. Akimeret |
P TIPS Akimere] = ujelem:
Szulo = Ps.Aktmeret /2:
Gyerek ;= Ps Akimeret:

Szulo >~ | and then Ps-T[Szalo] P T[Gyerek]

Csere(Ps.T[Saulo], PS T [Gyerek]:

Gyerek:- Szulo:
Szulo:= Saulo’2

rete:

[image: image94.png]P Akmere 20

TraaTem:-Ps (1]
PS.T1J=Ps.T(Ps.Aktmeret]
Ps_Aktmeret:~Ps. Akimerel|
Sullyeszi(Ps):

Crest

beszúrás(köv üres pozícióba helyezzük jobb szélen- felfele, amíg>szülő), ideje: max h csere: O(h)=O(log n);

[image: image95.png]T e
Pl < Masrs T

e
r T

TR
i

N T P

P TP T

Consbs o PTlir2):

=<

[image: image96.png]Feloszt(A, p. 1)
(Gyorsrendezeés (4, p, 4-1)
Gyorsrendezes (4, a#, 1)

- Reprezentáció: láncolt lista(din allokált csomópontok és mutatók) v tömb(mivel majdnem teljes fa, ezért k csomópont gyerekei: 2k, 2k+1, k szülője: k/2, ha k>n, akkor nem létezik);

Kupacrendezés: szúrd be az elemeke egy Ps prioritásos sorba, amíg sor ki nem ürül- vedd ki Ps-ből max elemet és eredményt sorba;
[image: image97.png]Strizsa:=p: sir_elem:=A[p]: bal:=p: jobb:r
bl < jobo.
Al st dlem

bal bal 1
A[obbT— Sr_elem

Jobb-jobi-T
N jobb. 4

Csere(A[bal], Afjobb]) skip

A[D:=AJjobb]: A[jobb]:= sir_ele: return o

műv:
· Empty: hely foglalása, Aktmeret:=0;
· IsEmpty: return (Aktmeret=0);
· [image: image98.png]piver:

Insert:
[image: image99.png]

· DelMax:
[image: image100.png]+esgne [right] [lefticn cor cne e

· Sullyeszt:

hatékonyság: hatékony, minden elem beszúrása: O(n*log n), minden elem eltávolítása: O(n*log n)(O(n*log n);
8. Gyorsrendezés (quicksort)
hatékony, C.A.R.Hoare készítette, 1960; Oszd meg és uralkodj algoritmus egy példája; fázisai:
· partíciós(oszd a munkát 2 részre, strázsa=pivot választása- minden elem tőle jobbra nagyobb és tőle balra kisebb),
· rendezési(uralkodj a részeken, ua algoritmus mindkét félre);

[image: image101.png]e) {

- Implementáció: p..low, q..pivot, r..high; strázsa választása- bal,jobb végét beállítani- mozgatni jelzéseket(bal,jobb), amíg szembetalálkoznak- azon belül: mozgasd bal jelzőt, amíg pivotnál <= elemekre mutat, ill jobb jelzőt, amíg pivotnál >= elemekre mutat- ha pivot 2 oldalán elemek rossz sorrendben, akkor cseréld ki- tovább mozgatom, ha szembetalálkoznak, akkor cseréld ki pivotot és jobbat;
[image: image102.png]iy ke

SETTITTITIId

[image: image103.png]| Ani

—— oy C(Lkm]
-~

[image: image104.png]| Ani

X IKIKXIX
RO —— o e
T1

[image: image105.png]szkans

ct < v s

ettt | SN | o

wewt i e
o

e

[image: image106.png]Shossza<1

Szétvig(s, SLSD)

MergeSori(S1)

SKIP | Mergesort(s2)

st 51,52, 5)

[image: image107.png]Tombokre:

ki i
MergSortit L)

v

sKkip

he (k2]

MergeSori(a, k. b
MergeSori(é, b+l ¥)

Ossieutat(ATb, ATb 1, ATk]

- analízise:
· felosztás(minden elemet egyszer vizsgál): O(n),
· uralkodás(adatok kétfelé osztása): O(log2 n)(
· összesen(szorzatuk): O(n*log n), de ha adatok (majdnem) rendezettek, akkor minden partíció létrehoz 0 méretű feladatot és n-1 méretűt(minden n időigénye O(n), összesen: n*O(n) = O(n2);
igazság: majdnem egyforma partíciókra, áltagosan O(n*log n);
esélyjavítás: úgy strázsát választani, hogy partíciók egyformák legyenek (első, középső, utolsó, véletlenszerű), rendezett adatoknál középső elem pivotnak választása(O(n*log n) idő);
Összehasonlítás: Quicksort(általában gyorsabb, néha O(n2), átlagosan jó végrehajtási idő, üzleti alkalmazások, információs rendszerek) <-> Heap Sort(általában lassúbb, garantált O(n*log n), real-time rendszerekhez);
9. Összefuttatásos rendezés (mergesort), az összehasonlításos rendezés minimális összehasonlítás száma a legrosszabb esetben (bizonyítás döntési fával)
[image: image108.png]HC o [0
LA I A
709 1|6 10
3 7 A"
517]9 e |10
Y r4 Y
203 4 (5 T E 9|1 1|6 10

[image: image109.png]

[image: image110.png]

Összefuttatásos rendezés: alapja: 2 rendezett sorozat összefuttatása, legyen A[1..k] és B[1..m] 2 rendezett vektor,; pl: 3,5,9,21,23,42 és 4,11,16,29;
[image: image111.png]

[image: image112.png]3

e

rendezés: üres és egyelemű sorozat biztosan rendezett- S[1..n] tömböt szétvágjuk- ezeket külön-külön rendezzük- összefuttatjuk;
- Tömbökre:
MergeSort(A,k,v): if(k>=v){skip – h<-[(k+v)/2]; MergeSort(A,k,h); MergeSort(A,h+1,v); Összefuttat(A[k..h], A[h+1..v], A[k..v]);
[image: image113.png]m Példa:
19669, jan. 15, 1969. jan. 1. 1955. dec. 18, 1955. jan. 15. 191. dec,
1. menet un

s N
2. menet un: /

másik, iteratív stratégia: minden lépésben egyre növekvő (h=1,2,22,23,..,2[log n]-1) lépésközzel, és az ilyen hosszú szomszédos tömbrészleteket fésüljük össze egy segédtömböt használva;
[image: image114.png]rendezetlen blokkok

BB BEaE

Rendezés

| Kozponts

nria

6

hatékonyság:
· összefuttat k és m hosszú sorozat összefésülésekor: M Ö(k,m)= k+m-1, ha 2 sorozat hossza együtt n, akkor M Ö(n)= n-1. közel egyenlő szétvágás- részsorozatokat milyen hosszúra vágja? pl: n=11-re: M Ö= 10+(5+4)+(2+2+2+1)+(1+1+1)=29;
· az egyenlő szétvágások binfája majdnem teljes, fa magassága: h=log2 n, levelekhez nem tartozik összehasonlítás, így h szinten kell összegezni összehasonlítások számát- ezek összege szintenként csökken <=n-1(M Ö(n)<=(n-1)*log n=> Θ(n)=n*log n;;
[image: image115.png]1 blokk

6|8

Rendezések: összehasonlításos rendezőknél időigényről mit tudunk mondani? Alsó becslést adni? cél: elemek melyik sorrendje(permutációja) az igazi sorrend; kezdetben: n!, ha 2 elemet összehasonlítunk- 2 részre osztja sorrendeket (ha x<y, akkor olyan sorrend, ahol x hátrébb, mint y - nem jöhet szóba), k kérdés után: n!/ 2k sorrend;
[image: image116.png]ponti
nria

- a döntési fa modell: összehasonlításokat döntési fáknak tekintjük, amik a rendezés során történt összehasonlításokat ábrázolják, tfh:

· minden elem különböző, belső csúcs: ai:aj pár, ahol 1<= i,j <=n, levél: egy-egy permutáció;
· bo részfa: ai<=aj után szükséges összehasonlítások,
· jo részfa: ai<aj után szükséges összehasonlítások,
· levél: rendezett sorrend;

alsó korlát a legrosszabb esetben:
· Tétel: bármely n elemet rendező döntési fa magassága Ω(n*log2 n);
· Biz: n elemet rendező döntési fa magassága: h, legalább n! levele van(ezek a permutációk), h mélységű binfa leveleinek száma <= 2h (n!<= 2h(h=>log2(n!), Stirling formula alapján: n!>(n/e)n(h>=log2((n/e)n)= n* log2 n - n*log2 e= Ω(n*log2 n);
· következmény: kupac, összefésüléses rendezés aszimptotikusan optimális összehasonlító rendezés,
· Biz: futási idő felső korlátja: Θ(n*log2 n)= Ω(n*log2 n)(nincs lineáris idejű összehasonlító rendezés!;
10. Edényrendezés és radix rendezés
Edényrendezés: tfh tudjuk, hogy bemenő elemek A[1..n] egy m elemű U halmazból kerülnek ki (minden i-re: i e [1..m]); lefoglalunk egy U elemeivel indexelt B tömböt (m db láda, először üres, elemei lehetnek pl láncolt listák);
· működés:
1.fázis: végigolvassuk A-t, s=A[i] elemet B[s] lista végére fűzzük,
2.fázis: növekvő sorrendben végigmegyünk B-n- B[i] listák tartalmát visszaírjuk A-ba;
[image: image117.png]S rendezett

e]s e]

Gsszefuttatis | _ Kizponti
nria

[image: image118.png]Gsszefuttatis | . Kizponti
nria

6o 34

rendezett: 2 blokk =

hatékonyság: B létrehozása: O(m), 1.fázis: O(n), 2.fázis: (n+m)(összesen: O(n+m); gyorsabb, mint ált alsó korlát, ha pl m<=c*n;

- általánosan: legyen K az S sorozat elemeinek típusértékhalmaza, φ:K([0..M-1] fv, amire igaz: ha φ(k1)< φ(k2), akkor k1<k2; legyenek E0,E1..EM-1 edények, melyek éppen olyan sorozatok, mint S (egyes edényekben megmarad S-beli elemek ottani relatív sorrendje);
· cél: egyszeri szétrakás elég legyen- felt: minden edényben lf 1 elem van v egyes edényekben csak azonos elemek v egyes edények rendezettek(ha egyik felt teljesül: tökéletes edényrendezés;
· műveletigénye: Θ(n), ahol n=|S|, pl: nagyon sok embert magasság szerint sorbarakni- minden testmagassághoz egy edény;
· Edenyrend(S): E0,E1..EM-1<-e,e,…e; while(S/=e){Out(S,x); In(Eφ(x),x)} //főprog: S<-konkat(E0,E1..EM-1);

Radix rendezés: tfh összetett kulcsok(több komponensből), t1,…,tk alakú szavak, ahol ti komponens Li rendezett típusból való (lexikografikus rendezés),
[image: image119.png]P

o

4 e

pl: legyen (U;<) XX.sz-i dátumok összessége időrendben: L1={1900, 1901…1999}, L2={jan…dec}, L3=[1,..31}; s1=100, s2=12, s3=31;
· működés: rendezzük a sorozatot az utolsó(k.) komponensek szerint edényrendezéssel- kapott eredményt rendezzük k-1. szerint edényrendezéssel (edény: elemeket mindig lista végére tettük, így ha 2 azonos kulcsú elem közül egyik megelőzi másikat, akkor sorrend rendezés után sem változik(konzervatív rendezés), stb; miért működik jól? Ha X<Y, első i-1 tag megegyezik, de xi<yi, akkor i. komponens szerinti rendezéskor X előre kerül;
· általánosan: e=eded-1…e2e1 számot jobbról balra(alacsony helyiértéktől indulva) pozíciónként szétrakja edényekbe, majd összefűzi edények tartalmát;
i. pozíció: φi fv-t alkalmazzuk: φi(e)= ei, szétrakás és összefűzés után S „i-rendeztt” lesz (jele: x<=i y, ha minden x=xdxd-1…x2x1 és y=ydyd-1…y2y1-ra: x<0 y, x<=i y <-> xi<yi v xi=yi és x<=i-1 y (i>0), ekkor a „d-rendezés” a közönséges rendezés;
· hatékonyság: 2*d-szer megyünk végig az S sorozaton, így T(n)= Θ(d*|S|);
· Radix(S): i<1; while(i<=d){Edényrend(S,φi); i<-i+1};

· Implementáció: S fejelemes láncolt lista, edényeket egy „fej” és „vége” mutató ábrázolja, szétrakás és összefűzés az elemek láncolásával is megoldható, de összefűzéskor nem kell egyes edények részlistáit végigolvasni, hanem egy darabban láncolni;
11. Külső rendezések
- eddig: adatok központi memóriában(hatékonyságot összehasonlítások számában mértük;
- ha adatok háttértárban, akkor futási idő döntő részét I/O(egysége: 1 blokk, ami kx512 byte) utasítások teszik ki(hatékonyság: blokk I/O-k számában mérjük; háttértár: szalag v lemez; igazából csak összefésüléses rendezés(MergeSort) alkalmas;
- összefésüléses rendezés külső tárakon:
· adott S szekvenciális input file, amely n blokkból áll(minden blokk adott számú rekorddal, pl: 1 blokk= 1024 byte, ezen 3 rekord), blokkok tartalma rendezetlen;
· összefésülés iteratív módon (egyes menetek végén egyre nagyobb darabok, azaz egyre több szomszédos blokk lesz rendezett), menetenként váltakozva A,B ill C,D – végül teljes rendezett eredményt S-be;
· működés:
· 1.menet: beolvas S rendezetlen blokkjait- belső rendezővel rendez- kiír felváltva A-ba, ill B-be (még nincs összefésülés);
· 2.menet: sorban beolvas A és B 1-1 blokkját- összefésül- rendezett 2 blokkot felváltva C-be, ill D-be ír (ha nincs párja, akkor 1 blokkot ír ki);
· 3.menet: C-ből, D-ből olvas 2-2- rendezett blokkot- összefésül- felváltva A-ba, ill B-be ír (rendezett 4 blokkok, ha C-ben töredékblokk, akkor A végére);
· 4.menet: C-be A és B 4-4 rendezett blokkjából 8 blokk hosszú rendezett, D-be maradék (most 1 blokk); 5.menet: C 8 blokkját és D 1 blokkját összefésüljük S-be;;
· k hosszú futam: k blokkból álló összefüggő rendezett rész;
[image: image120.png]Pebla: 513 blokk
bl i sk i e, il pbis s
[y

Lt b ik et s eSS 60 o ok
et e
anck o o 1 o e o il

[image: image121.png]L2 3 4 5 6
ASD A 0 29 1) 0
B S 0 3@ 1m0 1
c 52 22 0 18 0

[image: image122.png]Ly LE=2F =30 By =Bt R @z

RS S [527 -(1205)25] = F,= IN5* (13502
16180 06150

14+/5)2 0z aranymetszés ardnya, amely Kielégi az

Ac1-0 egyenletel.

Bt dtrendezve: A%+, amibil teljes indukeioval megmutathats,

hozyn > 2 eseten:

AT SF,S AV

Ha N<F,.,, akkor A% < N,

11 <102, N =g, Mo, A = 1447 b

N 144 % g N 11

[image: image123.png]Inorder-fa-bejirds(x)
Hh e ——
then Inorder-fa-bejiras(belf5])

printkades/x])
Tnorder-fa-hejaras(jobb fx])

[image: image124.png]Faban-keres(x, k)

ifx = NIL ork = kulesf]
then retum x

ik < kules]
then return Faban-Keres(balfx],)
else return Faban-keres(jobb fx], k)

megj: ha n=15-re: páratlan töredék rész mérete: 1,3,7; ha központi memória korlátozott és nem képes befogadni egyre növekvő méretű rendezett részeket(futamok), akkor összefésülést lehet pufferelve (akár blokkonként) végezni, mert összefuttatás egysége a rekord;
- általában:
· 1.menet eredménye: 1 hosszú futamok, 2.menet: 2, 3.menet: 4.,…(k-1).menet: 2(k-2) hosszú futamok, k(utolsó).menet: <= 2(k-1) hosszú egyetlen futam=S;
· (k-1).menetben még 2 futam: 2(k-2)<n, k.menetben: n<=2(k-1)(k-2< log2 n<= k-1(k-1= [log2 n] (felső közelítés jele- csak nekem nincs ilyen…)(
· menetek száma: k= [log2 n]+1, összes blokk I/O száma: 2*n*([log2 n]+1), mivel minden menetben beolvastuk és kiírtuk n blokkot;
Gyorsítási lehetőség:
· nagyobb kezdő futamok:
· ha központi memória lehetővé teszi, akkor 1.menetben: m hosszú blokkokat olvasunk be- ezt rendezzük és így keletkezett m hosszú kezdőfutamot írjuk ki A-ba, ill B-be;
· 2.menet: 2 db m hosszú futamot fésülünk össze- 2*m hosszú futamok; 3.menet: 2*m hosszúakat fésülünk össze- 4*m hosszú futam,…(k-1).menet: 2(k-2)*m, k(utolsó).menet: <= 2(k-1)*m hosszú egyetlen futam=S; 2(k-2)*m< n<= 2(k-1)*m(
· menetek száma: k= [log2 (n/m)]+1, összes blokk I/O száma: 2*n*([log2 (n/m)]+1);
· több, mint kétfelé fésül:
· S fájl mellett 2*m fájllal dolgozunk, pl: m=3, n=13, 1 hosszú kezdőfutamok;
· 1.menet: felváltva A,B,C-be írjuk ki rendezett kezdőfutamokat- 3 futamot fésülünk össze- új futamokat D,E,F-be írjuk- megint A,B,C-be- utolsó menetben: S-be írjuk eredményt;
· 1.menet: 1 hosszú futamok, 2.menet: m,…(k-1).menet: mk-2, k(utolsó).menet: <= mk-1 hosszú egyetlen futam=S;
· mk-2<n és mk-1>=n(k= [logm n]+1= [log2 n/log2 n]+1, összes blokk I/O művelet: 2n*([log2 n/log2 m]+1);
[image: image125.png]Faban-iterativan-keres(x. k)

while x NIL and K« huesfo]
ik < kules
ek
else x jobb/x]
retum x

[image: image126.png]Féban-minimum (T)
x gyoker(T|
while Bal[x] = NIt

do x bal[x]
retum x.

· 3 fájlos rendező:
· m-felé fésülésnél nem 2m db fájlt használunk, hanem csak m+1 db-ot (azaz m=2-nél nem A,B,C,D, hanem csak A,B,C);
· m=2 esetén: 1.menet: S rendezett blokkjait A,B-be;
· 2.menet: A és B blokkjainak összefésülése, de eredményt csak C fájl fogadja, ezért C-be összefésül, amíg A v B ki nem ürül- új menet a két nemüres fájllal…; futamok száma(hossza);
· probléma: 1.menet végén két futamszám különbsége 7-6=1, ez lassan fogy le;
· megoldás: Fibonacci sorozat(0,1,1,2,3,5,8,13, azaz 2 szomszédos elem különbsége nem 1)(1.menet: A-ba, B-be annyi futamot írunk, mint Fibonacci sorozat 2 (alkalmas) szomszédos eleme(leggyorsabb lefutás;
ha N nem Fibonacci szám, akkor levágjuk és félretesszük felesleget- végén összefésüljük v (virtuálisan) kiegészítjük megnövelve input állomány méretét;
[image: image127.png]Faban-maximum (T)
x < gyoker(T]
while jobblx] # NIL

do x <~ jobb/x]
retum x

· lépésszám: |S|= Fn+1(1.menet: Fn, Fn-1, 2.menet: Fn-1, Fn-2,…(n-1).menet: 1, 1, n.menet: 1,0; menetek száma: n;
· cél: kifejezni n-et Fn+1-el (input fájl (közelítő) mérete blokkban), jelölés: N:= Fn+1; n..szükséges menetek száma(hány lépésben ér el Fn+1től 1-ig);
[image: image128.png]Faban-kiivetkez(T. x)

ifjobb/y] = NIL
ihen retum Faban-minimum (jobblx])

v < sk
NG s x ~jobbgy
do xey
¥ Szakfy]

retum y

12. Bináris keresőfák
Keresések: adatok a struktúrákban: kulcs+ mezők(rekordok),
· lehetőségek: minden kulcs kül – azonos, ill rekordok- csak kulcsokat nézzük(k);
· most választjuk: minden k kül, csak k-t nézünk;
· cél: sok adat estén hatékonyan keresni, módosítani, beszúrni, törölni(fákban, táblázatokban;
- szekvenciális(=lineáris): idő: O(n), pl: rendezetlen tömbök, láncolt listák;

- bináris: keresési idő: O(log2 n), pl: rendezett tömbök;
rendezett tömb: elem hozzáadása(pozíció keresése: c1*log2 n, jobbratolás: c2*n, összesen: O(n));
· Szótár(=dictionary): adatszerk, ha értelmezve vannak műveletek: beszúr, keres, töröl, (tól-ig);
· Prioritásos sor: adatszerk, ha értelmezve van előzőeken kívül: min, max, előző, rákövetkező;
· Bináris fa: olyan fa, amelynek csúcspontja max 2 részfára nyílik(fokszáma 2), bejárása: preorder(=gyökérkezdő, gy,b,j), inorder(=gyökérközepű, b,gy,j), postorder(=gyökérvégző, b,j,gy);
reprezentáció: aritmetikai ábrázolás(szintfolytonosan tömbben, ind(bal(c))= 2*ind(c), ind(jobb(c)=2*ind(c)+1), láncolt(mutató bal,jobb gyerekre, szülőre is lehet);
rendezési(=kereső)fa: binfa kialakítása a kül adatelemek között meglévő rendezési relációt követi; felépítés: minden csúcs értéke nagyobb, mint tetszőleges csúcsé bal ágon és kisebb, mint jobb ágon található csúcsok; T fa bármely x csúcsára és bal(x) bármely y csúcsára és jobb(x) bármely z csúcsára: y<x<z; tükrözi őt tartalmazó elemek beviteli sorrendjét;
[image: image129.png]

[image: image130.png]jﬁm?
W

[image: image131.png]40

· inorder: kulcsok rendezett sorozatát kapjuk:
n csúcsú binkerfa bejárási ideje: O(n), mivel kezdőhívás után minden csúcspontja esetén pontosan 2x(rekurzívan) meghívja önmagát(bo és jo részfára);
műv:
keresés: T fában keressük k kulcsú elemet(csúcsot):
· Fában-keres(x,k): if (x=nil or k=kulcs[x]) {then return x}; if(k<kulcs[x]){then return Fában-keres(bal[x],k); else return Fában-keres(Jobb[x],k)};
· Fában-iteratívan-keres(x,k): while(n/=nil és k/=kulcs[x]){do if (k<kulcs[x]){then x<-bal[x]; else x<-jobb[x]}; return x; thf t/=nil, iteratív, ideje: O(h):
· Fában-minimum(T): x<-gyökér[T]; while(bal[x]/=nil){do x<-bal[x]}; return x;
· Fában-maximum(T): x<-gyökér[T]; while(jobb[x]/=nil){do x<-jobb[x]}; return x;
· Fában-következő(T,x): if(jobb[x]/=nil){then return Fában-minimum(jobb[x])}; y<-szülő[x]; while(y/=nil és y=jobb[x]){do x<-y; y<-szülő[x]}; return y;
[image: image132.png]Faba-beszir (T,p)

iz
i
T
else X jobbjx]
B
-
e) .

[image: image133.png]Fabol-toral (T.p)
(feltesszik, hozy P a T-ben egy Ieezi csics)

if bal[p] = NIL vagy jobb{p] = NIL
theny —p 0 vagy | gyerck

else y « Fiban-kovetkezd(T. p) -
irbally] =NIL
then x < hal[y] azy 0 vagy
else X < jobb] mutat
ifx < NIL ~ha vl (e
then szald[x] « szald{y]

1 gyerekére

) eyercke.
efizziik

[image: image134.png]iF szily] =NIL
then gyeker|T] <~ --haa gyokeret 1oroliak
else ify = bal[szlfy]] -y szldjenck meef
then bal[szalg[y]] - x - oldali mutatéjat
else jobblszold]y]] < x - x-re allitjuk
if y <p ~haalog 0rlendd = fiz. wrlendd
then kules{p] « Kules[y] - & a tovibbi mezgk is
retum y

[image: image135.png]

[image: image136.png]

[image: image137.png]

[image: image138.png]

· Beszúrás: kulcs[p]=v; bal[p]=nil, jobb[p]=nil, szülő[p]=nil;
· Törlés: nincs gyereke v egy gyerek v 2 gyerek(átszervezzük fát, legközelebbi rákövetkezőjét kivágjuk, aminek tudjuk, h nincs balgyereke- 1 v 2 típusú törlés- ennek tartalmát p-be):

[image: image139.png]

[image: image140.png]/m,w—m—Z/m

[image: image141.png]

[image: image142.png]

[image: image143.png]

[image: image144.png]

[image: image145.png]« Példa: +

2 w0

ezt szirtuk be

· hatékonyság: minden művelet egy útvonal bejárása fában- O(h) idő alatt, de beszúrásnál,törlésnél változik fa magassága(műveletek ideje is (nem tudom fa átlagos magasságát);
véletlen építésű binkerfa(adott n kül kulcs, ebből binkerfát építünk, minden sorrend egyformán valószínű);
· Tétel: n kulcsú véletlen építésű binkerfa átlagos magassága O(log2 n),
· Biz: tfh véletlen sorrendű adatokból építjük(1,2,..,n), hány összehasonlítással lehet felépíteni? pl: p=5,2,9,3,11,1,6,10,8,7,4; Ö(p)= (1+1)+(2+2+2+2)+(3+3+3)+4=23; határozzuk meg ennek átlagát!
· jelölés: f(n)..n adatból hány összehasonlítással lehet keresőfát építeni,
f(n|k)..először k érték jön(1.elem), tfh minden sorozat egyforma valségű(
f(n)= 1/n* Sum(k=1;n)f(n|k); összehasonlítás: bo: f(k-1), jo: f(n-k)(
f(n)= 1/n* Sum(k=1;n)(k-1+f(k-1)+(n-k)+f(n-k))(
f(0)=0, f(n)= (n-1)+ 2/n* Sum(k=1;n-1)f(k)(f(n)< 2*n*ln n~ 1,39*n*log2 n ..
fa átlagos csúcsmagassága(~Quicksort);
· cél: sorrend megőrzése- forgatással(bal v jobb)- ua inorder bejárás, pl: A,x,B,y,C;
14. AVL fák
1.kiegyensúlyozott fa algoritmus, Adelson-Velskii-Landnis, 1962;
tul: bin rendezőfa, bal és jobb részfák magassága lf eggyel különbözik, részfák AVL-fák;
[image: image146.png]

[image: image147.png]

- AVL-tulajdonság: jelölés: m(f)..f binfa magassága(szintek száma), ha x fa egy csúcsa, akkor m(x)..x gyökerű részfa magassága; egy binkerfa AVL-fa, ha minden x csúcsára teljesül: |m(bal[x])-m(jobb[x])|<=1;
[image: image148.png]

· k-szintű AVL-fa minimális csúcsszáma:
S1=1, S2=2, S3=4, S4=7, S5=12;
összefüggés pontszám és magasság között:
· n adattal felépíthető fa min magassága: majdnem teljes fa;
· n adattal felépíthető f max magassága= adott h szintszámú AVL-fa min pontszáma (egyik részfája: h-1, másik: h-2 szintű), eredeti fa minimalitása miatt mindkét részfa min csúcsszámú;
[image: image149.png]

· rekurzió: Sh=1+Sh-1+Sh-2;
· Tétel: h magasságú AVL-fának legalább Fh+3+1 csúcsa van,
· [image: image150.png]

Biz: legyen Sh lk h magasságú AVL-fa mérete, nyilván: S0=1 és S1=2, valamint Sh=1+Sh-1+Sh-2, TI-val: Sh= Fh+3-1 (3-mal eltolt Fibonacci), ahol Fh+3-1= Fh+2-1+Fh+1-1+1; Fib-ra igaz: Fn= 1/gy(5)* [(1+gy(5)/2)n-(1-gy(5)/2)n](
[image: image151.png]

· újrakiegyensúlyozás beszúrásnál: beszúrás elrontja AVL tul-t; új levéltől felfele haladva újra számoljuk csúcsok címkéit, ha egy x csúcs címkéje ++ v --, akkor x gyökerű (rész)fa forgatásával helyreállítjuk tul-ot;
· műveletigény: O(1);
· Tétel: legyen S egy n csúcsból álló AVL-fa, beszúr(s,S) után lf egy (esetleg dupla) forgatással helyreállítható AVL-tul,
· Biz: előzőekből következik; 4 eset: 1 és 4 tükörkép, 2 és 3 tükörkép; új attribútum: kiegyensúlyozási tényező(-1..bal részfa magasabb, 0..egyforma, +1..jobb részfa magasabb);
· ++,+ szabály: α<x<β<y<γ; új levél γ részfába kerül, beszúrás előtt: h+2 magas fa(forgatás, ismét h+2 magas, ezért feljebb nem kell ellenőrizni;
· --,- szabály tükörképe;
[image: image152.png]

[image: image153.png]

[image: image154.png]

· [image: image155.png]

[image: image156.png]5 B

++,- szabály: α<x<β<z<γ<y<δ; új levél z alatti β v γ részfába kerül, beszúrás előtt: x gyökerű f magassága: h+2, z alatti fák egyformák(dupla forgatás: jobbra, balra, ismét: h+2 magas, ezért feljebb nem kell ellenőrizni;
[image: image157.png]

· újrakiegyensúlyozás törlésnél: mivel az x gyökerű fa magassága csökkent a forgatással, ezért feljebb is elromolhatott az AVL tulajdonság; törölt elem szülőjétől kezdve felfele haladva újra számoljuk a csúcsok címkéit, ha egy csúcs címkéje ++ v --, akkor x gyökerű (rész)fa (esetleg dupla) forgatással helyreállítjuk AVL tulajdonságot; ha x nem a gyökér, akkor feljebblépünk és folytatjuk ellenőrzést;
· Tétel: n pontú AVL-fából való törlés után legfeljebb 1,44*log2 n forgatás helyreállítja AVL tulajdonságot;
· ++,+ szabály: α<x<β<y<γ; törlés α részfában történik, törlés előtt magassága: h+1 (h lesz), x gyökerű fa magassága: h+3 (h+2 lett)(forgatás: magasság: h+2, ezért feljebb ellenőrizni kell;
[image: image158.png]

· ++,- szabály: α<x<β<z<γ<y<δ; törlés α részfában történik, törlés előtt magassága: h+1 (h lesz), x gyökerű fa magassága: h+3 (h+2 lett)(forgatás: magasság: h+2, ezért feljebb ellenőrizni kell;

[image: image159.png]

[image: image160.png]

15. 2-3 fák és B fák
2-3 fák: hatékony keresőfa-konstrukció, egy nemlevél csúcsnak 2 v 3 gyereke lehet;
· def: (lefelé) irányított gyökeres fa, melyre: rekordok fa leveleiben helyezkednek el (kulcs értéke szerint növekvő sorrendben), 1 levél 1 rekordot tartalmaz, minden belső csúcsból 2 v 3 él megy lefelé- 1 v 2 k e U kulcsot tartalmaznak;
· logikailag: 3 gyerekes belső csúcs(m1,m2,m3 mutatók a csúcs részfáira, k1,k2 U-beli kulcsok, k1<k2;
· m1 által mutatott részfa: minden kulcsa kisebb, mint k1;
· m2 részfájában: k1 a lk kulcs, minden kulcsa kisebb, mint k2;
· [image: image161.png]

[image: image162.png]Ez felgytnizhet a ayskéri:

10 sy

i‘[hestkkent!

m3 részfájában: k2 a lk kulcs), ill 2 gyerekes(m1,m2mutatók a csúcs részfáira, m1 által mutatott részfa minden kulcsa kisebb, mint k1;
m2 részfájában: k1 a lk kulcs);
n=0..t=nil v üres gyökér, n=1..kivételesen gyökérnek 1 gyereke van, összefüggés n és h között: 2h<=n<=3h(h<= log2 n;
műv:
- keresés: összehasonlítások száma: 0,1,..,h-1 magasságban: 1 v 2, h magasságban: 1; T(n)<= 2*h+1<= 2*log2 n+1= Θ(log2 n);
- beszúrás: kereséssel meghatározzuk helyét;
· legalsó belső pontnak 2 gyereke van: elfér 3. (felfelé haladva korrigálni kell a megfelelő kulcsot, ha nagyszülőkben 5-nél kisebb nem volt, akkor egy leágazásos elem nem szúrható be);
· [image: image163.png]D —

[image: image164.png]B-fak

1000

legalsó belső pontnak 3 gyereke van: ha szülőnek eleve 3 gyereke volt, akkor itt is csúcsvágás- tovább felfelé- ha úton 2 gyerekes, akkor megáll; ha úton minden belső pontnak 3 gyereke van, akkor a csúcsvágás felgyűrűzik a gyökérig- új gyökeret (h nő!);
[image: image165.png]w ke e e s | pen

2

bk s

- törlés: megkeressük a törlendő elemet;
· kulcs szülőjének 3 gyereke van(neki 2 testvére): korrekció a szülőben;
· törlendő elem szülőjének 2 gyereke van(neki 1 testvére): ha szülőnek van 3 gyerekes testvére, akkor 1 gyereket átad, ha nincs, akkor összevonunk 2 csúcsot- szükség estén folytatjuk felfelé- ez felgyűrűzhet a gyökérig (h csökken);
· művköltség: T(n)=O(h)=O(log2 n);
[image: image166.png]nzl+i=Dy 2"

[image: image167.png]B-FABAN-KERES(x k)
[
whio <] és k> kules[x do
et
ifi <0l 65 k = kcsip]
hen raum (xi)
irlevel]
hen ratum NI
else LEWEZRALOLVAS(c[d)
retum B-FABAN-KERES(c 1K)

[image: image168.png]D H

P

M

BC] [T

[

TKL

[image: image169.png]B-FAT-LETREHOZ(T)

Xe PONTOT-ELHELYEZ()
levellx]e- IGAZ

nixl0

LEMEZRE-R(x)
ayokerTlex

[image: image170.png]Ay
|

PORSTUY

B-fák: R.Bayes, E.McCreight, 1972; 2-3 fa általánosítása; nagy méretű adatbázisok, külső tárakon lévő adatok feldolgozására; több szabvány tartalmazza valamilyen változatát;

· probléma: nem összehasonlítás időigényes, hanem adatok kiolvasása (sokszor 1 adat kiolvasásához több más adatot is kiolvasunk- 1 lapot)(fa csúcsai legyenek lapok,

· költség: lapelérések száma; pl: mágneses háttértár(sáv=track, szektor=blokk 512 byte, lap: 2048 v 4096 byte- átvitel egysége),
· ideje: lemez szektor olvasása(ms) >> memória olvasása(ns);
Műveletek modellezése: legyen x egy objektumra mutató pointer;
· ha obj pillanatnyilag központi memóriában van, akkor mezőire szokásos módon hivatkozhatunk (kulcs[x]) (tfh ekkor Lemezről_olvas(x) nem végez műveletet- NOP);
· ha mágneslemezen van, akkor Lemezről_olvas(x), utána lehet hivatkozni x mezőire- Lemezre_ír(x) menti el a megváltozott mezőjű x objektumot a mágneslemezre;
· művelet tipikus mintája: x<-obj mutatója;
· Lemezről_olvas(x); y mezőit olvasó és módosító műveletek;
· Lemezre_ír(x) (kimarad, ha y egyik mezője sem változott); további x mezőit olvasó műveletek;
· futási idő: Lemezről_olvas(x), Lemezre_ír(x) műv száma határozza meg,
· [image: image171.png]forje-n[x}+1 downto i+1 do
Gpulrlecl

Guldez

forje-nlx dovwnto do
Kulcs[<le-kulesx]

kulos, [xlkules]

nlxd i + 1

LEMEZRE-Riy)
LEMEZRE-R(z}
LEMEZRE-IR(x)

cél: legkevesebb írás, olvasás(B-fa egy csúcsának nagysága a mágneslemez egy lapja méretének felel meg (elágazási tényező: 50 és 2000 között), így fa magassága jelentősen csökken, pl: 2 magasságú B-fa 1001 elágazási faktorral: több, mint 1 Mrd kulcs (ha gyökér állandóan központi memóriában, akkor bármelyik kulcs eléréséhez max 2 lemezművelet kell);
def:
· minden x csúcsnak következő mezői vannak:
· n[x]..csúcsban tárolt kulcsok darabszáma, az n[x] db kulcs (nemcsökkenő sorrendben: kulcs1[x]<= kulcs2[x]<=…<=kulcsn[x][x]),
· levél[x]..logikai változó(igaz, ha x levél, hamis, ha x belső csúcs);
· ha x egy belső csúcs, akkor tartalmazza c1[x], c2[x],..,cn[x]+1[x] mutatókat az x gyerekeire (levél csúcsoknak nincsenek gyerekeik, ci[x] mutatói definiálatlanok);
· a kulcsi[x] értékek meghatározzák a kulcsértékeknek azokat a tartományait, amelyekbe részfák kulcsai esnek (ha ki egy olyan kulcs, amelyik a ci[x] gyökerű részfában van, akkor k1<= kulcs1[x]<= k2<= kulcs2[x]<=..<= kulcsn[x][x]<= kn[x]+1);
· minden levélnek azonos a mélysége(ez a fa magassága); a csúcsokban tárolható kulcsok darabszámára adott alsó és felső korlát (t>=2..minimális fokszám);
· minden nemgyökér csúcsnak legalább t-1 csúcsa van (így minden belső csúcsnak la t gyereke van; ha fa nem üres, akkor gyökérnek la 2 kulcsa kell legyen);
· minden csúcsnak lf 2t-1 kulcsa lehet, tehát egy belső csúcsnak lf 2t gyereke lehet (telített csúcs: pontosan 2t-1 kulcsa van);
magassága:
· Tétel: ha n>=1, akkor minden olyan T n-kulcsos B-fára, amelynek h a magassága és min fokszáma t>=2 teljesül: h<= logt n+1/2,
· [image: image172.png]B-FA-VAGAS-GYEREK(x, i,)
2 PONTOT-ELHELYEZ() - O{1) 8 alat Iofoglalia

lemez eqy lapiat
lovslzle- lovelly]

nlzj-t1
forit tot1 do
Kuleszlekulcsyly]
ifnot levelly]
thenforje-1 o tdo
kool
nlylet1

Biz: ha magassága h, akkor csúcsainak száma min, ha gyökércsúcsnak 1 kulcsa van, minden más csúcsnak t-1 kulcsa van(
ekkor: 2 db 1 mélységű, 2t db 2 mélységű, 2t2 db 3 mélységű,… 2th-1 db h mélységű csúcs, így kulcsok n darabszámára teljesül:
[image: image173.png]B-FABA-BESZUR(T.k}
regyskerT]
ifnirl2et
then s«-PONTOT-ELHELYEZ()
ayskerT] s
lovols}e- HAMIS
nisle-0
alsler
BFAVAGAS-GYEREK(s, 1)
NEN-TELITETT-B-FABA BESZUR(s k)
olse NEM-TELITETT-B-FABA-BESZUR(r,K)

Műveletek (keresés, beszúrás, törlés): a keresőfák, ill 2-3 fák alapján könnyen elképzelhető, felt:
· B-fa gyökere mindig központi memóriában van (így gyökérkulcsra nem kell Lemezről_olvas, de Lemezre_ír kell, ha megváltozik),
· minden olyan csúcs, amely paraméterként szerepel, már központi memóriában van(végrehajtottuk Lemezről_olvas műveletet);
- keresés: minden belső csúcsban n[x]+1 lehetőséget kell megvizsgálni, legyen x a részfa gyökércsúcsára mutató pointer, k..kulcs, amit ebben a részfában keresünk;
· [image: image174.png]NEM-TELITETT-B-FABA-BESZUR(x.k)
i
iflevell
thenwhile 121 és ke kulos] do
Kulosfx] - kulcsx]
i
Kules, [« k
NI & nix] +1
LEMEZRE-R(X)
clse whil 21 6s k< kulcs <] do
Tt
et
LEMEZROL-OLVAS(c,[x])

ideje: Θ(h)= Θ(logtn), mivel n[x]<2t, így while ciklus ideje minden csúcsra: Θ(t), központi egység összes műveleti ideje: Θ(t*h)= Θ(t*logt n);
- létrehozás: B-fát-létrehoz..üres gyökércsúcsot ad, Pont-elhelyez..O(1) idő alatt lefoglalja az új csúcsnak a lemez egy lapját (tfh nincs szükség Lemezről-olvas eljárás meghívására);
· [image: image175.png]ifnfc[x]}=2t-1
then B-FA-VAGAS-GYEREK(X, I, ¢[x])
itk > kules(x]
then i e~ i+1
NEM-TELITETT-B-FABA-BESZUR((c[X].K)

ideje: O(1) lemezművelet, O(1) központi egység idő;
[image: image176.png]AcDE | (K] [No] RSTUV

B heszirdsa utdn

MPX

TEcoh [E] Kol RSTOV

- csúcs szétvágása:
· telített (2t-1 db csúcsot tartalmazó) y csúcsot szétvágjuk középső kulcsa(kulcst[y]) körül két t-1 kulcsú csúcsra;
· a középső csúcs átmegy y szülőjébe (tfh ez még nem volt telített), ha y-nak nincs szülője, akkor fa magassága 1-el nő;
· [image: image177.png]—
TX
ABCDE N0l qrs [0V][
¥ besaris utin
- _
TX
oks [V v

tfh x nem telített belső csúcs, y=ci[x] és y x-nek egy telített gyereke:
[image: image178.png]| Xo [ots v vz
ooltkaz Fat
i Sl O

[image: image179.png]- X

A A e et

Wiotse =N
e X

5] [or] L] I0 [aks llm 7

[image: image180.png]G,G L X
A O e

— X
7 o] Kol [ans vy

- beszúrás: k kulcs beszúrása h magasságú T B-fába egy egymenetes lefelé haladó algoritmussal oldható meg,
· ideje: lemezhozzáférés: O(h), központi egység idő: O(t*h)= O(t*logt n);
[image: image181.png][S
AB bEik | [Ro][ars J[Uv v
3b,
D terlese
AD ors J[uv [y

[image: image182.png]CLPIX

{

AB Eik | [Fo] [QRrs v [y
3a.B torls

/n‘mw
AC K |'\\o

QRS

v v

[image: image183.png]T

T
[l

[image: image184.png]

[image: image185.png]gitése

)

k)

oy

 - törlés: kulcsot nemcsak levélből, hanem tetszőleges csúcsból lehet törölni, ügyelni- csúcs ne legyen túl kicsi (kivéve gyökérben); lehetőségek:
· k kulcs x csúcsban van(x levél);
· 2. k kulcs x csúcsban van(x belső csúcs):
· a) ha x-ben k-t megelőző gyerekeknek(y) legalább t kulcsa van, akkor megkeressük y részfában k-t közvetlenül megelőző k’ kulcsot- rekurzívan töröljük k’-t, és helyettesítjük k-t k’-vel x-ben;
· b) szimmetrikusan, ha z gyerek következik x-beli k után, és z-nek la t kulcsa van, akkor keressük z gyökércsúcsú részfában k-t közvetlenül követő k’ kulcsot- rekurzívan töröljük k’-t és helyettesítsük k-t k’-vel x-ben;
· [image: image186.png]

[image: image187.png]

c) ha mind y-nak, mind z-nek csak t-1 kulcsa van, akkor egyesítjük k-tés z kulcsait y-ba úgy, hogy x-ből töröljük k-t és z-re mutató pointert- ekkor y-nak 2t-1 kulcsa lesz, szabadítsuk fel z-t és rekurzívan töröljük k-t y-ból;
· 3. k kulcs nincs benne x belső csúcsban, akkor határozzuk meg annak a részfának ci[x] gyökércsúcsát, amelyikben benne lehet k (ha egyáltalán szerepel), ha ci[x]-nek csak t-1 csúcsa van, akkor 3.a) v 3.b) szerint járunk el (mivel biztosítani kell, hogy annak a csúcsnak, amelyikre lépünk, la t csúcsa legyen)- rekurzióval megyünk tovább;
· a) ha ci[x]-nek csak t-1 csúcsa van, de van egy közvetlen testvére, amelyiknek la t csúcsa van, akkor vigyünk le ci[x]-be egy kulcsot x-ből és a ci[x] közvetlen bal v jobboldali testvérétől vigyünk fel egy kulcsot x-be és vigyük át a megfelelő gyerek mutatóját a testvérétől ci[x]-be;
· b) ha ci[x]-nek és mindkét közvetlen testvérének t-1 kulcsa van, akkor egyesítsük ci[x]-t az egyik testvérével, majd vigyünk le egy kulcsot x-ből ebbe az egyesített csúcsba, középre(fa magassága csökken;
[image: image188.png]int hash(char *s, int n) {
sat sum - 0,
Whls(-) e - mm b tere;
saturn s & 25,

}

[image: image189.png]

16. Hasító táblák
· eddig: kulcsok összehasonlításán alapultak, végrehajtási idő: O(n) v. O(log n);
· cél: jobbat elérni, pl: személyi szám alkalmas-e kulcsnak (összes kitöltési lehetőség: 74 millió- 10 millió laksora elég 12 millió rekord)(nem alkalmas; kell h fv: minden személyi számhoz rendel egy egészet [0..12*106-1] intervallumból;
· hash-elés: adott K..kulcsok halmaza (K elemeivel azonosított rekordok száma várhatóan jóval kisebb, mint K számossága), ekkor K-t egy alkalmas h fv-el leképezzük az ábrázolás alapját képező kisebb tartományra, legyen ez [0..M-1] intervallum;
· hash-fv: h:K([0..M-1], mivel M<|K], sőt M<<|K|, ezért h nem lehet injektív(kulcsütközés (van olyan k/=k’, amelyre h(k)=h(k’));
· feladat: megoldás kulcsütközésre; hatékonyság: ez a kérdés!;
- közvetlen hozzáférésű táblák:
- legegyszerűbb eset: tfh elemek kulcsai kül egész értékek 0..m-1 intervallumból és m nem túl nagy- használjuk magukat a kulcsértékeket, hogy kiválasszunk egy helyet a T közvetlen hozzáférésű táblában (melyben elemeket tároljuk);
· k kulcsú elem keresése: nézzük meg k indexű elemet(ha van itt érték, akkor megtaláltuk, ha jelző=0, akkor nincs benne),
· ideje: O(1), beszúrás, törlés is- konstans;
· megszorítások: kulcsok egészek, egyediek, kis intervallumból, sűrűn intervallumban (ha ritkásan- sok üres hely értékek között- túl sok helyet használunk el, hogy sebességet nyerjünk- nem hatékony: „hely a sebességért kereskedelem”);
- másik eset: T-ben csak a kulcsok, csak akkor tárolom az egészet, ha kell;
[image: image190.png]

[image: image191.png]Beszaras:
Hasito_beszur(T,k)
10
repeat) hiki
I 701 = NIL
then T k
return

elselei+1
untili=m
error .hasité tablazat talcsordulas™

· megszorítások gyengítése:
· kulcsok egészek: kell egy hash fv(h(kulcs)(egész), ezt kulcsra alkalmazva egy indexet kapunk; ha h minden kulcsot egy egyedi egész értékre képez le 0..m-1 intervallumban, akkor keresés: O(1);
· kulcsok egyediek: hozzuk létre a duplikátumok láncolt listáját, ezt kapcsoljuk táblához; ha egy keresésnek elég akármilyen k kulcsú elem, akkor végrehajtás még mindig O(1); ha elemnek van még valami más megkülönböztető jegye is, aminek meg kell egyeznie, akkor O(ndup_max)-t kapunk, ahol ndul_max duplikátumok ln száma(leghosszabb lista);
[image: image192.png]Hasito_keres(T, k)
o
repeat - h(ki)
T =k
then return j
Tei+t
until T0 = NIL vagy
return NIL

[image: image193.png]Hasito_torsi(T, k)

1o
repeat]« hik.i)
T =k

then T[] - TOROLT
return

[image: image194.png]H:
10
repeat h(ki)
i T0] = NIL vagy T[j) = TOROLT
then T k
return
elseiei+1
untili=m
error ,hasité tablazat tulcsordulds”

beszur(T.K

Hash függvények:
· [image: image195.png]

formája: pl: n-karakteres kulcsot használva;
pl: ez a fv 0..255 egy értékét adja vissza, de tetszőleges fv, ami 0..m-1-ben generál értékeket egy megfelelő (nem túl nagy) m-re jó lesz; hash fv maga O(1);
· kulcsütközés: ha hash fv 2 kül kulcshoz ua címet rendeli, pl: ezzel a hash fv-el: hash(„AB”,2), hash(„BA”,2)-re ua értéket adja;
· cél: táblázat felismerje és feloldja ezt;
· felismerés: tároljuk akt kulcsot az elemmel a hash táblában: számítsuk ki címét k=h(kulcs), ellenőrizzük találatot: if(table[k].key==kulcs) then találat, else „próbáld a következőt”;
- javaslat:
- láncolt listák: minden tábla elemhez egy láncolt listát rendelünk;
· keres: i kulcsú elemet; Láncolt-hasító-keresés(T,i): kiszámítjuk h(i)-t, keressük i kulcsú elemet a T[h(i)] listában, ja null, akkor kulcs nincs a táblázatban;
· beszúr: x-t (ha nincs benne!); Láncolt-hasító-beszúrás(T,x): kiszámítjuk h(x,kulcs)-t, (i=x.kulcs), beszúrunk a T[h(x.kulcs)] lista elejére;
· törlés: hasonlóan T[h(x.kulcs)] listából; mikor jó? Ha tudjuk mennyi lesz max érték;
· [image: image196.png]{ iy

túlcsordulási terület: a láncolt listát a tábla egy spec területén hozzuk lére; tfh h(k)==h(j), k lett először tárolva, hozzáadjuk j-t (kiszámítjuk h(j)-t, megkeressük k-t, megkeressük 1. helyet a túlcsordulási ter-en, betesszük j-t, k pointere erre mutat); keresés: ua, mint láncolt listában;

- nyílt címzés: elemeket a táblában tároljuk;
· keresés: végigmegyünk táblázaton, amíg meg nem találjuk v el tudjuk dönteni, hogy nincs benne;
· beszúrás: kipróbáljuk összes helyet, amíg üreset nem találunk (vmilyen stratégia szerint- beszúrandó kulcs fv-e); kiterjesztjük hash fv ÉT-t kipróbálási számmal (h: K x {0,1..,m-1}({0,1..,m-1}),
· felt: minden k kulcsra: {h(k,0), h(k,1),h(k,2),..,h(k,m-1)} kipróbálási sorozat a {0,1,..,m-1} egy permutációja legyen, így előbb-utóbb minden hely szóba jön; tfh T hasító táblázatban csak kulcsok vannak v nil;
· törlés: nem elég csak nil-t írni, hiszen akkor ezutáni keresés nem találná meg azokat, amelyek később vannak, ezért új szimbólum: törölt; így módosítani kell beszúrást is!!!;

- re-hashing – kettős hashelés: használjunk egy 2.hash fv-t (h’); sok variáció; h(k)==h(j), k lett először tárolva, hozzáadjuk j-t(kiszámoljuk h(j)-t, így megtaláljuk k-t, ismételjük, míg találunk üres helyet- kiszámítjuk h’(j)-t, betesszük j-t);
mező státuszai: üres, foglalt, törölt; keresés: használd h(x)-et, aztán h’(x)-et;
2.hash fv:
· lineáris próbálkozás: h:K({0,1,..,m-1}, h’(k,i)=(h(k)+i) mod m; próbáld ki először T(h(k))-t, aztán vedd a következőt ciklikusan, amíg nem találsz üreset;
· cél: h’ egyenletesen szórja szét kulcsokat;
· hátrány: rossz csomósodások (elsődleges: re-hash kulcsok kitöltik üres helyeket az egyéb kulcsok között és súlyosbítják a kulcsütközés problémáit);
· négyzetes próba: h’(k,i)= (h(k)+c1i+c2i2) mod m az i.próbánál,ahol c1,c2/=0, i=1,..m-1;
· cél: elkerülni elsődleges csomósodásokat;
· probléma: ahhoz, hogy egész táblázatot lefedje, megkötések kellenek c1,c2,m-re, 2.lagos csomósodások (minden kulcs, amelyik ütközik h-ban ua sorozat mentén, először: a=h(j)=h(k), utána: a+c, a+4c, a+9c.. – de ez kisebb probléma);
· dupla hasítás: h’(k,i)=(h1(k)+ i*h2(k) mod m az i. próbánál, i=0,1,..m-1;
· probléma: h2(k) relatív prím kell legyen m (táblázat mérete)-hez képest (lehet pl m-et 2 hatványának, h2-t úgy, hogy mindig ptlan számot adjon vagy m prím és h2 mindig m-nél kisebb poz egész);
· potenciális O(1) keresési idő: ha megfelelő kulcsú h(kulcs)(integer fv-t találunk; „hely a sebességért kereskedelem”;
· problémák: „teljes” hasító táblázatok nem működnek, ütközések elkerülhetetlenek, hash fv csökkenti kulcs információtartalmát, kül feloldási stratégiák(láncolt, túlcsordulási ter, re-hash);
hash fv választása: majdnem minden fv jó, de bizonyos fv-ek egyértelműen jobban; kulcskritérium az ütközések min száma(röviden tartja láncokat, karbantartja O(1) átlagot);
· egyszerű egyenletes hasítás: ideális hash fv: ha P(k)..valsége, hogy k kulcs előfordul, m hely hasító táblán, akkor egyenletes hash fv biztosítja: (vagyis kulcsok száma minden helyre azonos);
ha kulcsok [0,r)-en véletlenszerűen elszórt egészek, akkor h(k)= [mk/ r] (alsó egészrész, csak nincs ilyen jelem…) egy egyenletes hash fv;
legtöbb hash fv megadható: kulcsokat valamely r-re a [0,r)-re képezze le, pl: karakterek ASCII kódja mod 255 a [0,26) v [0,255]-ben ad értéket;

cél: csökkentsül [0,m)-re: kulcsokat egészek egy intervallumára képezzük le: 0<=k<r, ezt csökkentjük;
stratégiák:
· osztás: h(k)= k mod m; m választása: 2-hatványok általában nem jók (h(k)= k mod 2n nem egyforma valószínű minden kombináció), de 2n-hez közeli prímek jó választások, pl: 4000 méretű táblához m= 4093-t;
· szorzó módszer: szorozd a kulcsot egy A konstanssal (0<A<1), vedd ki belőle a tört részt (kA- [kA]) (megint alsó egészrész), szorozd m-el: h(k)=[m*(kA-[kA])] (szokásosan alsó egészrész); most m nem kritikus, és 2 hatvány választható- gyors egy tipikus digitális számítógépen;
· univerzális hashelés: ha rosszakarónk válogatja kulcsokat, tud olyan sorozatot adni, hogy mind n elemre ua legyen h(i) érték- így keresés ideje O(n);
· alapgondolat: hash-fv-t véletlenül, az aktuálisan tárolandó kulcsoktól fglenül választjuk meg (egy gondosan megtervezett fvosztályból futás közben)- jó átlagos teljesítmény (nem lehet olyan bemenet, ami biztosan legrosszabb viselkedést váltja ki);
· legyen H hasító fv-ek véges halmaza, melyek egy adott K kulcsuniverzumot [0,m) tartományban képeznek le;
· H univerzális, ha minden x,y e K, x/=y kulcspárra azoknak h e H hasító fv-eknek száma, amelyre h(x)=h(y) pontosan |H|/m; ez azt is jelenti, hogy egy véletlenül választott h e H hasító fv-re minden x,y e K, x/=y kulcsok közötti kulcsütközés valsége pontosan 1/m (ua, mint {0,1,..m-1} halmazból véletlenül választott h(x) és h(y) egyenlőségének valsége);
· tervezés: univerzális hash fv egy halmaza: válasszunk egy olyan p prímszámot, amely elég nagy, hogy minden kulcs benne legyen a [0..p-1]-ben (p>m); jelölés: Zp={0,1..p-1}, Zp*={1,2,..p-1}, definiáljuk: minden a e Zp*, minden b e Zp, ha,b(k)= ((a*k+b)mond p) mod m; az ilyen fv-ek osztálya: Hp,m={ha,b: a e Zp*, b e Zp};
· Tétel: a hasító fv-ek fenti egyenlőségekkel definiált Hp,m osztálya univerzális;
· betöltési tényező: ütközések nagyon valószínűek; α= n/m (n..elemek száma, m..helyek száma) α betöltési tényezőt alacsonyan kell tartani!; külön láncolás: minden helyhez külön adjuk láncolt listákat (jobb végrehajtás, de több hely);
· általános tervezés:
· tábla méretének megválasztása(méret: m, elemszám: n, ha nagy, akkor csökkenti ütközések valségét, α=n/m ütközések valsége),
· tábla szervezését megválasztani(növekvő gyűjtemény- láncolt listák; relatív statikus méret- túlcsordulási ter v re-hash),
· hash fv választása(egyszerű, gyors),
· adatok vizsgálata a hash függvénnyel
(fix adatok: különböző h,m értékeket adni, amíg max ütközési lánc elfogadható lesz- ismert hatékonyság;
változó adatok: jellemző adatokat választani, kül h,m értékeket adni, amíg max ütközési lánc elfogadható lesz- ált megjósolható hatékonyság);

– 46 –

_1122208568.unknown

_1122209578.unknown

_1223137081.unknown

_1131095869.unknown

_1122276808.unknown

_1122208755.unknown

_1122208908.unknown

_1122208920.unknown

_1122209048.unknown

_1122208887.unknown

_1122208645.unknown

_1122208741.unknown

_1122208621.unknown

_1122194778.unknown

_1122208513.unknown

_1122208554.unknown

_1122208498.unknown

_1122194002.unknown

_1122194649.unknown

_1122193443.unknown

