
Adatszerkezetek és algoritmusok
Felsőfokú szakirányú továbbképzés

Egyetemi jegyzet

2010

2

Tartalomjegyzék

1. Bevezetés a programozásba 9
1.1. Algoritmusok . 9

1.1.1. Mit jelent programozni? . 9
1.1.2. Mi az algoritmus? . 10
1.1.3. Feladat specifikálása . 11

1.2. Alapfogalmak . 12
1.2.1. Típus, kifejezés, változó . 12

1.3. Vezérlési szerkezetek . 14
1.3.1. Szekvencia . 14
1.3.2. Egyszeres elágazás . 14
1.3.3. Többszörös elágazás . 15
1.3.4. Ciklus(ok) . 16

1.4. Programozási tételek . 18
1.4.1. Összegzés tétele . 19
1.4.2. Számlálás tétele . 19
1.4.3. Lineáris keresés tétele . 20
1.4.4. Maximumkeresés tétele . 21
1.4.5. Az elemenkénti feldolgozásról . 21

1.5. (El)Gondolkodtató feladat . 22
1.6. Típusok . 23

1.6.1. Adatok ábrázolása – fizikai szint . 24
1.6.2. Memória szerveződése . 25
1.6.3. A valós számok a memóriában . 25

1.7. Objektumorientált programozás . 26
1.7.1. Modellezés . 26
1.7.2. Osztályhierarchia . 27
1.7.3. Objektumok és állapotaik . 27
1.7.4. Osztály és példány . 27
1.7.5. Öröklődés . 28

2. Java és Eclipse 29
2.1. Java típusok . 29

2.1.1. Java primitívek . 29
2.1.2. Objektum típusok Javaban . 29
2.1.3. Csomagoló osztályok . 29
2.1.4. Karakterláncok . 30
2.1.5. Tömbök . 30
2.1.6. Műveletek . 32

2.2. Java osztályok . 32

3

2.3. Függvények és metódusok . 35
2.3.1. Paraméterek . 36
2.3.2. Az érték szerinti paraméter átadás és következményei 36

2.4. Változók láthatósága . 37
2.5. További eszközök . 38

2.5.1. Foreach ciklus . 38
2.5.2. Típuskonverzió . 39
2.5.3. Felsorolási típus . 40
2.5.4. IO műveletek Javaban . 40
2.5.5. Beolvasás . 40
2.5.6. Kiírás . 41
2.5.7. Megjegyzések, dokumentációk a kódban 42
2.5.8. Csomagok . 43

2.6. Java . 43
2.6.1. Hogyan működik? . 43

2.7. Eclipse használata röviden . 44
2.8. Rekurzió . 45

3. Absztrakt adatszerkezet 49
3.1. ADT . 50
3.2. ADS . 51
3.3. Adatszerkezetek osztályozása . 51

4. Adatszerkezetek 53
4.1. Verem . 53

4.1.1. ADT leírás . 53
4.1.2. ADT funkcionális leírás . 54
4.1.3. Statikus verem reprezentáció . 54
4.1.4. Dinamikus verem reprezentáció . 57

4.2. Sor . 59
4.2.1. ADT Axiomatikus leírás . 60
4.2.2. Statikus sor reprezentáció . 60
4.2.3. Dinamikus sor reprezentáció . 62

4.3. Lista, Láncolt Lista . 63
4.3.1. Szekvenciális adatszerkezet . 63
4.3.2. Lista adatszerkezet . 65
4.3.3. Absztrakciós szint . 65
4.3.4. Statikus reprezentáció . 66
4.3.5. Dinamikus reprezentáció . 66
4.3.6. Kétirányú láncolt lista megvalósítása 67

4.4. Fa . 71
4.4.1. Hierarchikus adatszerkezetek . 71
4.4.2. Fa adatszerkezet . 72
4.4.3. Bináris fa . 76
4.4.4. Fa reprezentációs módszerek . 78

4.5. Bináris keresési fák . 80
4.5.1. Tulajdonságok . 81
4.5.2. Műveletek . 81

4.6. Kupac (Heap) . 82
4.6.1. Kupac tulajdonság . 82

4

4.6.2. Műveletek . 83
4.6.3. Indexfüggvények . 84

4.7. Használat . 84

5. Algoritmusok 85
5.1. Algoritmusok műveletigénye . 85

5.1.1. Függvények rendje . 85
5.1.2. Sorrend . 86

5.2. Lengyelforma . 87
5.2.1. Lengyelformára alakítás . 89
5.2.2. Lengyelforma kiértékelése . 89
5.2.3. Lengyelforma példa . 90

5.3. Rendezések . 90
5.3.1. Rendezési probléma . 90
5.3.2. Buborék rendezés . 92
5.3.3. Maximum kiválasztásos rendezés . 94
5.3.4. Beszúró rendezés . 96
5.3.5. Gyorsrendezés – Quicksort . 97
5.3.6. Edényrendezés . 99
5.3.7. Kupacrendezés . 101

5

6

Tárgy célja

Ebben a jegyzetben a Pázmány Péter Katolikus Egyetem - Információs Technológiai Karán
esti képzés keretein belül oktatott adatszerkezetek és algoritmusok tantárgy előadásain és
gyakorlatain elhangzott anyagokat igyekeztem összegyűjteni, rendszerezni. Mivel a tárgy
viszonylag rövid idő alatt több alapvető programozáselméleti, algoritmikus és adatstruk-
túrákkal kapcsolatos tudást nyújt, ezért több esetben a törzsanyaghoz további magyará-
zatok tartoznak, a teljesség igénye nélkül. A tárgyat olyanok hallgatják, akik valamilyen
mérnöki (villamosmérnök, informatikai mérnök/szakember) vagy a szakiránynak megfe-
lelő (matematikai, gazdasági) tudással rendelkeznek, ezért néhány esetben igyekeztem
olyan példákat mutatni, amelyek ezekhez a korábbi tanulmányokhoz köthetők.

Az elméleti tudás mellé, párhuzamosan, a JAVA nyelv is ismertetésre kerül alapszin-
ten. A cél, az hogy miniprogramok írására, algoritmikus megtervezésére bárki képes le-
gyen a tárgy elvégzése után. (Természetesen akadnak olyanok is akik korábban már ta-
nultak programozni, más nyelven. A jegyzet elkészítése során igyekeztem nekik is „ked-
vükben járni” egy-egy különbség, csemege említésével.)

Röviden felsorolva a tárgy alapvető célkitűzéseit

• Algoritmikus szemlélet kialakítása, néhány példán keresztül bemutatva a progra-
mozás mibenlétét.
• Programozási alapstruktúrák megismerése, nyelvfüggetlenül, hogy későbbiekben

más szintaktikára is átültethető legyen a tudás. (Természetesen példákhoz a JAVA
nyelvet használjuk a jegyzetben.)
• Java programozási nyelv alapismeretek
• Alapvető adatszerkezetek megismerése valamint implementációja.
• Rendező algoritmusok analitikus vizsgálata, implementációja.

7

8

1. fejezet

Bevezetés a programozásba

1.1. Algoritmusok

1.1.1. Mit jelent programozni?

Legelsőként azt a kérdést járjuk körül, hogy milyen részfeladatokat rejt magában a prog-
ramozás, mint tevékenység. A programozás feladata nemcsak az utasítások kódolását fog-
lalja magában, hanem annál több, a feladat illetve rendszer megtervezésére vonatkozó
problémák megoldását is jelenti.

• Részletes megértés: A feladatot, amit meg kell oldani csak úgy tudjuk a számító-
gép számára érthető formában, programkódként elkészíteni, ha mi saját magunk is
tisztában vagyunk a követelményekkel, a probléma részleteivel. Ez egy sokrétű és
több módszer ismeretét és alkalmazását igénylő feladat, hiszen a problémát gyakran
nem mi magunk találjuk ki, hanem a szoftver „megrendelésre” kell, hogy elkészül-
jön, valaki más elképzelései alapján. (Ezzel részletesebben a szoftvertervezés során
foglalkozunk.)
• Rendszer tervezése: Bonyolultabb esetekben a programunk nem „egy szuszra” fog

elkészülni, hanem több részfeladatból, részprogramból áll össze, amelyeket szintén
meg kell terveznünk. A különböző rendszeregységek és feladataik szintén tervezés
igényelnek. (Itt nemcsak a részek, mint önálló egységek, hanem azok összekapcsoló-
dása, illetve azok elkészülési sorrendje is fontos.)
• Receptkészítés: Az egyes egységek, illetve a program egészére el kell végeznünk az

algoritmusok, módszerek gép számára érthető módon történő leírását. Ez azt jelenti,
hogy az egyes problémák megoldására el kell készítenünk a legapróbb lepésekből
álló sorozatot, amely lépéssorozatot a gép is megért és végrehajt. (Jellemzően ezen
egyszerű utasítások, vagy olyan már előre megírt funkciók, amelyeket szintén elemi
lépésekből állnak össze.)
• Módszer keresése: A probléma megoldásához szükségünk van a megoldás elkészí-

téséhez, kiszámításához módszerekre. Például egy szám négyzetgyökét különböző
közelítő numerikus számításokkal lehet megoldani. Egy másik módszer lehet az,
hogy egy táblázatban eltároljuk az megoldásokat és egy keresési problémává ala-
kítjuk át a négyzetgyök-számítás feladatát. (Természetesen itt megkötésekkel kell
élnünk, mivel az összes lehetséges valós szám és négyzetgyökének párosaiból álló
táblázat végtelen mennyiségű tárhelyet igényelne.)
• Matematika: A számítógép – természetéből fakadóan – többnyire matematikai mű-

veleteket ismer, abból is az alapvetőeket. Az előző példára visszatérve, a négyzetgyök

9

kiszámítására egy lehetséges közelítő módszer a Newton-Rhapson-féle iterációs mód-
szer. Ebben az esetben ismételt műveletekkel egyre pontosabb eredményt kapunk a
számítás során, ami elemi matematikai lépésekből áll. Más feladatok esetén másféle
matematikai modellre, módszerre van szükségünk.

Egy hétköznapi példát vegyünk, amely egy robotot arra utasít, hogy az ebéd elkészí-
téséhez szerezze be az egyik összetevőt, a burgonyát. Természetesen a feladatot egyetlen
utasításban is meg lehet fogalmazni, de ahhoz hogy ezt végrehajtani képes legyen finomí-
tani kell, további lépésekre kell bontani.

• Hozz krumplit!
• Hozz egy kilogramm krumplit!
• Hozz egy kilogramm krumplit most!
• Hozz egy kilogramm krumplit a sarki közértből most!
• Menj el a sarki közértbe, végy egy kosarat, tegyél bele egy kilogramm krumplit, adj

annyi pénzt a pénztárosnak, amennyibe a krumpli kerül, tedd le a kosarat, gyere ki
a közértből, s hozd haza a krumplit.

Nyilván ez sem lesz elég, hiszen a haladással, a fizetéssel és további műveletekkel kap-
csolatosan még finomabb lépésekre kell bontani. (Jelenleg egyetlen robot sem rendelkezik
olyan mesterséges intelligenciával, hogy ezt a problémát önállóan megoldja.)

Amikor egy feladatot megoldunk, egy algoritmust elkészítünk, a megoldás kulcsa a
lépések meghatározásában rejlik. Hasonlóan a bevásárlás példájából az algoritmusunkat
egyre finomabb lépésekre tudjuk felbontani.

1.1.2. Mi az algoritmus?

Az algoritmus olyan lépések sorozata, amely megold egy jól definiált problémát. (Itt ér-
demes azt megjegyezni, hogy a probléma jól definiáltsága olyan kritérium, amelyet nem
minden esetben sikerül teljesíteni. Előfordul, hogy a nem ismerjük jól a problémát, vagy
csak az algoritmus kidolgozása során veszünk észre olyan helyzeteket, amelyeket a feladat
kitűzésénél nem vettek figyelembe.) A következő néhány pontban az algoritmus számító-
gépes vonzatait és tulajdonságait vizsgáljuk.

• A számítógépes algoritmus (elemi) utasítások sorozata a probléma megoldására. Itt
már további lépésekre utasításokra bontjuk a megoldásunkat, a korábbiakban írtak-
kal összhangban.
• Jó algoritmus kritériumai

– Helyesség – vizsgáljuk, hogy a megalkotott algoritmus, a feladatkiírás feltételei
mellett, minden esetre jó megoldást ad-e.

– Hatékonyság – vizsgáljuk, hogy az algoritmus a rendelkezésre álló különböző
erőforrásokkal mennyire bánik gazdaságosan.

• Algoritmus és program kapcsolata, algoritmusok lehetséges leírása

– Pseudo kód – olyan kód, amit az emberek értenek meg, de már a számítógép
számára is megfelelően elemi utasításokat tartalmaz.

– Programnyelvi kód – amelyet begépelve szintaktikailag érvények kódot kapunk,
fordíthatjuk1 és futtathatjuk.

1Az a művelet, amikor a programnyelvi kódot a programozást támogató környezetek, programok a számí-
tógép számára közvetlenül értelmezhető utasításokká, programmá alakítjuk.

10

Algoritmusok helyessége

Egy algoritmus helyes, ha a kitűzött feladatot korrekt módon oldja meg. Azaz a feladatspe-
cifikációban meghatározott megszorításokat figyelembe véve, minden lehetséges esetre,
bemenetre (inputra) megfelelő eredményt, kimenetet (output) szolgáltat. A helyességet
különböző technikákkal lehet bizonyítani, ezek többsége azonban nagyon költséges mód-
szer.

• Ellenpéldával bizonyítás – cáfolat, ez a legegyszerűbb, azonban ellenpélda találása
nem mindig könnyű. Természetesen, amennyiben nem találunk ellenpéldát, az nem
jelenti azt, hogy a kód bizonyosan helyes.
• Indirekt bizonyítás – ellentmondással bizonyítás, ahogyan azt a matematikában

megszoktuk. Ellentmondást keresünk az állítások, eredmények között, amihez ab-
ból a feltételezésből indulunk ki, hogy a megoldásunk helytelen.

• Indukciós bizonyítás – ha n-re helyes megoldást ad és ebből következik az, hogy n+1-
re is helyes megoldást fog adni illetve igaz továbbá, hogy n = 1 helyes a megoldást,
akkor bizonyítottuk, hogy minden lehetséges inputra jól fog működni az algoritmu-
sunk. (Például a faktoriális számítás esetén gondolkodhatunk így.)
• Bizonyított elemek használata – levezetés, olyan részprogramokat használunk, ame-

lyek bizonyítottan jól működnek. A további elemek, részprogramok helyes működé-
sének formális bizonyítása a mi feladatunk.

Algoritmusok hatékonysága

Egy algoritmus hatékony, ha nem használ több erőforrást, mint amennyi föltétlen szüksé-
ges a feladat megoldásához. Ezek az erőforrások legtöbbször a használt memória mennyi-
sége, valamint az idő (processzor használati ideje). Legtöbbször igaz, hogy a futási idő javí-
tásához több memóriára van szükség, valamint kevesebb memóriahasználatot több lépés-
sel tudunk csak elérni. Az alábbi felsorolással összefoglaljuk, hogy milyen módszerekkel
lehetséges a hatékonyságot vizsgálni

• Benchmark – futtatás és időmérés. A módszer csak a megvalósított algoritmusok
esetén használható, tehát előzetes becslést a hatékonyságra nem lehet végezni vele.
• Elemzés, ami az alábbiakat foglalja magában

– Műveletek megszámolása, egy meghatározott (legjobb/legrosszabb/átlagos) eset-
ben mennyi művelet végrehajtására van szükség az eredmény megadásához. A
műveletek számát, az megadott input méretéhez viszonyítva nagyságrendileg
szokás megadni. (Ezt a későbbiekben fogjuk használni.)

– Komplexitás elemzés – az algoritmus bonyolultságának vizsgálata.

1.1.3. Feladat specifikálása

A feladatspecifikáció az alábbi hármasból áll

• Leírom, hogy milyen adat áll rendelkezésre a feladat megoldásához.
• Leírom, hogy milyen adatokat/eredményeket kell kapnom a feladat megoldása végén.
• Leírom, hogy mit kell végeznie a programnak, azaz mi a feladat (Emberi nyelven).

Ezek mindegyike egy-egy feltétel. Például kiköti, hogy a rendelkezésre álló adatok milyen
típusúak, milyen értéktartományból kerülhetnek ki. A megkötések például a helyesség-
vizsgálatkor is fontosak.

11

Példa a négyzetgyök számításra
Bemenet (input): a szám, aminek a négyzetgyökét keressük: x
Kimenet (output): egy olyan szám y, amire igaz, hogy y2 = x illetve

√
x = y

Feladat (program): a program számolja ki a bemenet négyzetgyökét

Miután specifikáltuk a feladatot lehet részletesebben vizsgálni a problémát. Az előző pél-
dánkat folytatva:

• Mit csinálok, ha az x negatív . . .
• Mit csinálok, ha az x pozitív, vagy nulla . . .

Ezekre a kérdésekre, valamint azt, hogy hogyan lehet algoritmikusan megfogalmazni és
leírni keressük továbbiakban a választ.

1.2. Alapfogalmak

Mindenekelőtt néhány alapfogalmat fogunk definiálni.

1.2.1. Típus, kifejezés, változó

Típusnak nevezzük egy megadott értékhalmazt és az azokon értelmezett műveletek
összességét.

Egy programozási nyelvben, algoritmusban minden egyes értéknek van aktuális tí-
pusa. Ez alapján dönthető el, hogy mit jelent az az érték, milyen műveletek érvényesek,
és hogy azokat a műveleteket hogyan kell elvégezni.

Egyszerű esetben, ha a számokra gondolunk ezek a kérdések trivialitások. Bonyolul-
tabb összetett típusok esetén azonban feltétlen vizsgálni kell.

Példák
Egészek: Értékek: 0 . . . 1000 Műveletek: + és −
Logikai: Értékek: igaz, hamis Műveletek: ∧, ∨ és ¬
Karakter: Értékek: a . . .z Műveletek: < (reláció a betűrend szerint)

A kifejezés . . .

• olyan műveleteket és értékeket tartalmaz, amelyek együttesen értelmezhetőek, van
jelentésük.
• esetén is beszélünk típusról, például az 1 + 1 egy szám típusú kifejezés.
• lehet összetett kifejezés, ahol a részkifejezések is érvényes kifejezések. Például 5 +

6 ∗ (7 + 8).

A kifejezéseket szét lehet bontani a kiértékelés szerint. A kiértékeléshez a műveletek
precedenciáját (sorrendjét) kell figyelembe venni, illetve a zárójelezést.

Például
5 + 6 ∗ (7 + 8) (5 + 6) ∗ (7 + 8)

5 + 6 ∗ (7 + 8)
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

(5 + 6)
︸ ︷︷ ︸

∗ (7 + 8)
︸ ︷︷ ︸

︸ ︷︷ ︸

Látható, hogy a zárójelezés hatására megválto-
zik a részkifejezésekre bontás, illetve a kiérté-
kelés is.

12

A változó egy névvel (címkével) jelölt, adott típushoz tartozó elem. A memóriában egy
számára fenntartott területre kerül a változó aktuális értéke. Egy változónak mindig van
aktuális értéke, így nem teljesen ugyanaz, amit a matematikai alapfogalmaink során is-
meretlenként használunk. (Ez fontos, mivel olyankor is van valami értéke, amikor még
nem adtunk neki. Ez az érték azonban előre ismeretlen, futásonként más és más, a me-
móriacella külső hatások miatti, vagy egy előző program után ottmaradt értékét jelenti.)

• A változónak van neve és típusa
• Kifejezésben is szerepelhet: 1+x. Ez csak akkor érvényes, ha létezik olyan + művelet

az x változóhoz, hogy számmal összeadás (Praktikusan x például szám)

Mielőtt használatba veszünk egy változót, jeleznünk kell a változó bevezetését. Ezt hív-
juk deklarációnak. A deklarálás után a programnyelvet értelmező rendszer ismeri a vál-
tozót – addig nem. Minden típusú változónak van egy alapművelete, az értékadás, tehát
értéket bármilyen változónak adhatunk. Azonban ügyelni kell arra, hogy az értékadás,
mint kifejezés helyes legyen. Az értékadás során határozzuk meg, hogy mit tartalmaz-
zon a hozzárendelt memóriacella. Az alábbiakban néhány példát láthatunk Java nyelven
a változók használatára: (Java-ban a programkód folyamának gyakorlatilag tetszőleges
pontján bevezethetünk változókat, nincs szükség azokat egy programblokk elejére tenni.
Mindig a típus neve szerepel először, majd a használni kívánt változók nevei.)

Deklaráció példa – Java nyelven
int x;

int y;

double pi;

Létrehozunk három változót a memóriában, amelyek kezdő értéke ismeretlen, mivel nem
adtuk meg. A változók int illetve double típusúak, amelyek egész valamint racionális
számok. A változók nevei rendre x, y, pi.

Értékadás példa – Java nyelven
x = 10;

y = 10 * x;

pi = 3.14;

Az előzőekben deklarált változók értéket kapnak. Az x értéke egy előre rögzített szám. Az
y értéke azonban már számított érték egy másik változótól függ. Természetesen a program
futása során minden egyes pillanatban ez az érték pontosan meghatározható.

Vegyes típusú kifejezésről akkor beszélünk, ha az egyes részkifejezések típusa kü-
lönböző.

Példa a vegyes típusú kifejezésre
x < 5

Az < operátor (művelet) olyan, hogy (itt) két számot fogad, ám logikai típusú eredményt
ad vissza. (A logikai típus kétféle értéket vehet fel: igaz vagy hamis.) Amit matemati-
kailag megszokhattunk érvényes kifejezésnek, az több esetben nem helyes a programozás
szempontjából. Vegyük az alábbi hibás példát:

Hibás példa

13

2 < x < 5

Ha felbontjuk, akkor a 2 < x eredménye logikai, azonban egy logikai és egy szám között vi-
szont nem értelmezhető a < operátor. Javítani úgy lehet, hogy két logikai kifejezést kötünk
össze egy újabb operátorral.

Hibás példa javítása
(2 < x)&&(x < 5)

Ahol az && operátor a logikai és operátor (∧). Az és akkor és csak akkor igaz, ha mindkét
oldalán levő érték igaz. Az előző példát megvizsgálva csak akkor lesz igaz a teljes kife-
jezés értéke, ha az x egyidejűleg kisebb, mint öt és nagyobb, mint kettő, ami megfelel az
eredeti matematikailag leírt kifejezésnek.

1.3. Vezérlési szerkezetek

A jegyzet ezen részében a programozás során használt elemi szerkezetekkel ismerkedünk
meg. Továbbá a Java nyelven történő használatukkal.

1.3.1. Szekvencia

A szekvencia a legegyszerűbb programkonstrukció. Lényege, hogy a program adott részé-
ben egymás után végrehajtandó utasítások kerülnek felsorolásra, amely a felsorolás rend-
jében kerül majd futtatásra. A legegyszerűbb algoritmusok is tartalmaznak legalább egy
szekvenciát, ami akár egyetlen utasításból is állhat. A szekvenciákban lehetőségünk van
a legtöbb programozási nyelv esetén további szekvenciákat leírni. A belső szekvenciák a
külső számára egyetlen egységként értelmezendőek, tehát ahova lehet programutasítást
vagy lépés írni, ugyanoda szekvencia is elhelyezhető. Vegyük az alábbi példát: (Java-ban
a szekvenciát, hasonlóan a c++-hoz kapcsos zárójelek közé tesszük. Ez hasonlít például a
begin-end párosra.)

Szekvencia példa
{ Szekvencia eleje
int x; Létrejön x
int y; Létrejön y
x = 10; x-be 10 került
y = 10 * x; y-ba x ∗ 10 = 100 került
x = 20; x-be 20 került
} Szekvencia vége

A szekvenciát rajzosan az alábbi módon lehet ábrázolni, struktogrammal:

1.3.2. Egyszeres elágazás

Algoritmusok során előfordul, hogy egy változó értékétől, vagy a műveletek elvég-
zése során az aktuális állapottól függően adódnak teendők. Például egy abszolútér-
téket számító algoritmus attól függően, hogy a bemeneti érték negatív vagy sem
más-más utasítást hajt végre. (Ha a bemenet nagyobb vagy egyenlő nullával, ak-
kor a kimenet a bemenettel lesz egyenlő. Ellenkező esetben meg kell szorozni −1-el.

14

Utasítás 1

Utasítás 2

Utasítás 3

1.1. ábra. Szekvencia struktogram

Abszolútérték számítás – elágazás példa
y = |x|, ha x ≥ 0 akkor y = x, különben y = −1 ∗ x

Az egyszeres elágazás szintaktikája Java nyelven az alábbi (ahol az else előtti utasí-
tás végén, kivéve, ha szekvencia, kötelező a ;)

Egyszeres elágazás – Java
if (logikai feltétel) utasítás else más utasítás

A feltétel logikai típus, bármi lehet. Az if rész után következik egy utasítás, vagy uta-
sításszekvencia, ami akkor fut le, ha a feltétel igaz volt. Az else rész után következik
egy utasítás, vagy utasítás-szekvencia, ami akkor fut le, ha a feltétel hamis volt. Az else
elhagyható!

Egyszeres elágazás – Java – abszolútérték
if (x < 0)

y = -1 * x;

else

y = x;

Az elágazást rajzosan az alábbi módon lehet ábrázolni, struktogrammal illetve folya-
matábrával.

Feltétel

utasítások, ha igaz utasítások, ha hamis

1.2. ábra. Egyszeres elágazás struktogram

1.3.3. Többszörös elágazás

Hasonlóan az egyszeres elágazáshoz itt is a feltételnek megfelelően kell cselekedni. Itt
több lehetséges esetet is fel lehet sorolni:

Többszörös elágazás – Java

15

Feltétel

utasítások utasítások

Ha igaz Ha hamis

1.3. ábra. Egyszeres elágazás struktogram

switch (kifejezés)

{

case 1. eset: utasítás break;

case 2. eset: utasítás break;

default: utasítások break;

}

A case-ek száma tetszőleges. A break elhagyható, ám akkor a következő eset(ek)hez tar-
tozó utasítások is lefutnak („átcsorog”). A default az alapértelmezett eset, elhagyható.
Tekintsük az alább elágazási szerkezetet:

Többszörös elágazás problémája
if (x == 1)

nap = "Hétfő";

else if (x == 2)

nap = "Kedd";

else if (x == 3)

nap = "Szerda";

Ugyanez többszörös elágazással:

Többszörös elágazás problémája
switch (x)

{

case 1: nap = "Hétfő"; break;

case 2: nap = "Kedd"; break;

case 3: nap = "Szerda"; break;

case 4: nap = "Csütörtök"; break;

case 5: nap = "Péntek"; break;

case 6:

case 7: nap = "Hétvége"; break;

default: nap = "Nincs ilyen nap!"; break;

}

1.3.4. Ciklus(ok)

Sokszor a cél elérése érdekében ugyanazt a műveletsort kell többször egymás után elis-
mételni, például a szorzás, faktoriális számítása, szöveg sorainak feldolgozása (hány betű

16

van egy sorban), . . . A ciklusokkal lehetőség van arra, hogy bizonyos szekvenciákat, utasí-
tásokat ismételtessünk.

Elöltesztelő ciklus. Amíg a logikai feltétel igaz, a ciklusmagban található utasítást,
vagy utasítás-szekvenciát ismétli:

Elöltesztelő WHILE ciklus
while (logikai feltétel)

ciklusmag

Elöltesztelő WHILE ciklus – példa
int x = 0;

while (x < 10)

x = x + 1;

(x a ciklusváltozó ebben az esetben, valamint a ciklusmag az x = x + 1). A példakód az
x értékét növeli egyesével kilencig.

Hátultesztelő ciklus. Amíg a logikai feltétel igaz, a ciklusmagban található utasítást,
vagy utasítás-szekvenciát ismétli, de legalább egyszer lefut a ciklusmag. (Fontos, hogy
amíg a feltétel igaz, ellentétben más programozási nyelveken megszokottal.)

Elöltesztelő WHILE ciklus
do

ciklusmag

while (logikai feltétel)

Elöltesztelő esetben, ha a feltétel hamis, egyszer sem fut le. (Először gondolkodunk,
aztán cselekszünk, majd újra gondolkodunk . . .)

Ciklusfeltétel

Ciklusmag

1.4. ábra. Elöltesztelő ciklus struktogram

Hátultesztelő esetben, ha a feltétel hamis, egyszer akkor is lefut. (Először cselekszünk,
aztán gondolkodunk, hogy kell-e újra . . .)

Ciklusfeltétel

Ciklusmag

1.5. ábra. Hátultesztelő ciklus struktogram

17

FOR ciklus. Vegyük a következő WHILE ciklust, ami kiszámolja 210-t.

Elöltesztelő WHILE ciklus
int x = 0;

int y = 1;

while (x < 11)

{

x = x + 1;

y = y * 2

}

Ez a következő módon rövidíthető le:

FOR ciklus
int y = 1;

for (int x = 0; x < 11; x = x + 1)

y = y * 2;

Formálisan:

FOR ciklus
for (inicializálás; logikai feltétel; léptetés)

ciklusmag

Az inicializálás a ciklusba való belépéskor fut le. A logikai feltétel vizsgálata minden egyes
ciklusmag–futtatás előtt megtörténik. A léptetés pedig a ciklusmag lefutása után követ-
kezik. A léptetés után újra kiértékeli a feltételt, és ennek megfelelően lép be a ciklusba.

Pár szó a ciklusról. A ciklusnak mindig van egy kezdeti állapota, egy feltétele és
egy ciklusmagja. Az állapottól függ, hogy egyáltalán belépünk-e a ciklusba. Célsze-
rűen a ciklusmag változtatja az állapotot, vagyis befolyásolja az ismétlődés feltéte-
léül szolgáló állapotot. Könnyen lehetséges egy olyan ciklus írása, amely sosem áll le:

Végtelen ciklus
int x = 0;

int y = 0;

while (x < 10)

{ y = x + 1; }

Mivel az x értéke sosem változik, mindig kisebb lesz, mint 10, azaz örökké ismétlődik
a ciklusmag. A végtelen ciklusok gyakran hibák, vagy hibás módon (például egy olyan
esetben következik be, amire az algoritmus tervezése során nem számítottunk) működő
algoritmusok eredményei. (Persze vannak kivételek, van, hogy a végtelen ciklus hasznos,
például a felhasználó beavatkozására tétlenül vár a program.)

1.4. Programozási tételek

Ismerjük az alapvető programszerkezeteket, a szekvenciát, a ciklust és az elágazást. Ezek
és tetszőleges kombinációjuk segítségével bármilyen program megírására képesek va-

18

gyunk, azaz ezt a sort követő része a jegyzetnek teljesen felesleges is lehetne.
A továbbiakban hasznos konstrukciókkal, bizonyítottan helyesn működő algoritmusok-

kal, adatszerkezetekkel fogunk foglalkozni. Először is a legalapvetőbb „tételnek” nevezett
algoritmusokkal ismerkedünk meg.

1.4.1. Összegzés tétele

Bizonyos, sorban érkező értékek összegzésére szolgál. Például kapunk egy számsorozatot,
aminek az matematikai összegére vagyunk kíváncsiak. A tételben szereplő részek közül
az alábbiak tetszőlegesen cserélhetők más műveletre:

• Kezdőérték – milyen számról kezdjük az összegzést
• Összegzőfüggvény / – operátor (Lehetséges, hogy az elemeket nem összeadni, hanem

összeszorozni akarjuk, vagy az összegzés előtt még valamilyen leképezést (függvényt)
szeretnénk meghívni.

Az összegzés tétele használható

• Átlag
• Összeg (

∑
)

• Szorzat (
∏

)
• Szorzatösszeg
• Vektorszorzat
• Faktoriális
• . . .

számítására.

Összegző – FOR ciklussal
int osszeg = 0;

for (int i = 0; i < értékek száma; i++)

osszeg = osszeg + következő érték;

Összegző – WHILE ciklussal
int osszeg = 0;

int i = 0;

while (i < értékek száma)

{

osszeg = osszeg + függvény(következő érték)

i += 1;

}

1.4.2. Számlálás tétele

Bizonyos, sorban érkező értékek leszámlálására szolgál, valamint a „mennyi?”, „hány?”
kérdések megválaszolása. A tételben szereplő részek közül az alábbiak tetszőlegesen cse-
rélhetők más műveletre:

• Feltétel, azaz hogy mit akarunk összeszámolni

19

• Növelő függvény – mi mennyit ér a számolásban

A számlálás tétele használható

• Osztók számának megállítására
• Szavak leszámlálására egy szövegben
• . . .

Számláló – FOR ciklussal
int szamlalo = 0;

for (int i = 0; i < értékek száma; i++)

if (feltétel(következő érték))

szamlalo++;

Számláló – WHILE ciklussal
int szamlalo = 0;

int i = 0;

while (i < értékek száma

{

if (feltétel(következő érték))

szamlalo++;

i += 1;

}

1.4.3. Lineáris keresés tétele

Bizonyos, sorban érkező értékek között egy bizonyos megkeresésére; a „van-e?”, „hánya-
dik?” kérdések megválaszolása használható. A tételben szereplő részek közül az alábbiak
tetszőlegesen cserélhetők más műveletre:

• Feltétel – amit keresünk

A lineáris keresés tétele tétele használható

• Annak eldöntése, hogy szerepel-e egy érték a sorozatban
• Prímszám (Osztó) keresésére
• . . .

Lineáris keresés
boolean van = false;

int hol = 0;

int i = 0;

while ((i < értékek száma) && !van)

{

if (feltétel(következő érték))

{

hol = i;

van = true;

20

}

i += 1;

}

1.4.4. Maximumkeresés tétele

A „Mennyi a leg. . . ?” kérdés megválaszolásásra használható. (Szélsőértékkeresésre.) Cse-
rélhető a tételben a

• Feltétel, hogy figyelembe vesszük-e az aktuálusan vizsgált értéket
• Reláció – min/max
• Függvény, amivel transzformációt lehet végrehajtani az aktuális értéken.

A maximumkeresés tétele tétele használható

• Minimum-, maximumkeresés
• Zárójelek mélységének számolására
• . . .

Maximumkeresés
int max = függvény(első elem);

int hol = 0;

int i = 0;

while (i < értékek száma)

{

if (max < függvény(következő elem)

{

hol = i;

max = függvény(következő elem);

}

i += 1;

}

A tételekben előfordult új jelölések.

• i++⇔ i = i + 1

• i+=10⇔ i = i + 10

• !logikai változó⇔ Logikai tagadás. (!igaz = hamis);
• boolean⇐ Logikai típus
• true⇐ logikai igaz
• false⇐ logikai hamis

1.4.5. Az elemenkénti feldolgozásról

Az előzőekben ismertetett tételek mindegyike olyan, hogy az adathalmaz, ami rendelke-
zésre áll, egyszeri végigolvasásával eldönthető a feladatban megfogalmazott kérdésre a
válasz. Idetartozik további pár algoritmus például az összefésülés, válogatás, stb.

21

Egy adathalmaz elemenként feldolgozható, ha egyszerre csak pár elemmel dolgozunk
és ha elég egyszer végignézni mindegyiket. (Ezek gyakorlatban a bemenettől lineárisan
időben függő problémákat illetve algoritmusokat jelenti.)

Ugyanakkor vannak olyan problémák, amik így nem megoldhatóak, például a sorozat
növekvő/csökkenő sorrendbe rendezése, egy adathalmaz mediánjának számítása, vagy an-
nak eldöntése, hogy van-e két egyforma elem az adathalmazban. (De az eldönthető, hogy
van-e még egy olyan, mint az első.)

1.5. (El)Gondolkodtató feladat

A feladat egy olyan algoritmus megvalósítása, amely képes megmondani, hogy egy
adott pénzmennyiség milyen címletű és hány érmére váltható fel leggazdaságosab-
ban. Efféle algoritmusokat használnak a postán ahhoz, hogy a pénzes postás a le-
hető legkevesebb, ugyanakkor elégséges mennyiségű címletekkel induljon el reggel.

Gondolkodtató feladat
Bemenet: a felváltandó összeg x
Kimenet: y vektor, ami tartalmazza az egyes érmék darabszámát, illetve n az összes darabszámot
Feladat: a program számolja ki, hogy az x hogyan váltható fel a legkevesebb érmére

Lehetséges megoldás. Egyszerűsítés kedvéért vegyük forintban. Először vizsgáljuk
meg, hogy hány darab 200-as kell, azután a százasoknak megfelelő értéket vonjuk ki a
felváltandó összegből és nézzük meg 50-esekre, és így folytassuk tovább . . .

Mohó algoritmus
int x = 295;

int [] y = {0, 0, 0, 0, 0, 0}

int n = 0;

y[0] = x / 200;

x = x - (y[0] * 200);

y[1] = x / 100;

x = x - (y[0] * 100);

y[2] = x / 50;

x = x - (y[1] * 50);

y[3] = x / 20;

x = x - (y[2] * 20);

y[4] = x / 10;

x = x - (y[3] * 10);

y[5] = x / 5;

Ugyanez ciklussal:

Mohó algoritmus – ciklussal
int x = 295;

int [] y = {0, 0, 0, 0, 0, 0}

int [] c = {200, 100, 50, 20, 10, 5};

int n = 0;

22

for (int i = 0; x < c.length; i = i + 1)

{

y[i] = x / c[i];

x = x - (y[i] * c[i]);

n = n + y[i]

}

Ez az algoritmus hatékonynak tűnik, nagyon keveset lehet már javítani rajta. Azonban
helyes-e?

Forintban nyilvánvalóan, ennek hamar utána tudunk járni, de mi történik, ha az alábbi
érméink vannak: c = (25, 20, 5, 1)? Nézzük meg, mi történik, ha az x = 42. (Ehhez nem
is kell csodaországba mennünk, hiszen van a földön olyan ország, ahol hasonló érmék
vannak.)

Ránézésre látható, hogy két húszas és két egyes érme a helyes megoldás, de vajon az
algoritmusunk is ekként számol? Mohó módon, kezdjük a 25-tel. Kell belőle egy, marad
17. Ezt pedig az érméket felhasználva összesen 5 érmét kell elhasználnunk, tehát a fel-
váltást 6 érmével oldjuk meg. Ez több, mint amit ránézésre megállapítottunk, tehát az
algoritmusunk ebben az esetben aligha nevezhető helyesnek.

Kérdés, hogy akkor mi a megfelelő algoritmus erre a problémára. Lehetséges egy olyan
megoldás, hogy kipróbáljuk az összes érvényes felváltást, megnézve, hogy melyik a legjobb.
Vajon ez a módszer hatékony?

1.6. Típusok

Az előző részben szerepelt egy definíció, miszerint típusnak nevezzük egy megadott érték-
halmazt és az azokon értelmezett műveletek összességét.

A típusokat az alábbiak szerint lehet osztályozni

Típusok

Összetett típusok Elemi típusok

Skalár Mutató

Diszkrét Valós

Felsorolási

Egész

Fixpontos

Lebegőpontos

Iterált

Unió

Direktszotzat

. . .

1.6. ábra. Típusok osztályozása

A típusok elemi vagy összetett típusok. Összetett esetben meglévő elemi típusokból
kiinduló valamilyen konstrukcióról van szó. Például Descartes szorzat esetén két típus
lehetséges elemeinek minden lehetséges párbeli kombinációi lesznek az új típus értékei.
Összetett típusok továbbá olyan konstrukciók mint a tömb vagy vektor, amely (azonos)
elemi típusok sorozatából álló értékek tárolására használhatók.

Elemi típusok esetén megkülönböztetünk:

• Skalárt, amelyek egyetlen érték tárolására képesek. Egy skalár lehet

23

– Diszkrét típus, amely valamilyen felsorolható értékeket tárol. Az egész számok
egy meghatározott intervallumon szintén felsorolhatóak, így ők is a diszkrét
típus csoportjába tartoznak.

– Valós, valamilyen valós (racionális) szám/érték tárolására alkalmas típusok.
Lehetnek fixpontosak, vagy lebegőpontosak, ami a tizedespont rögzítettségére
utal. (Lebegőpontos esetben nincs megkötve, hogy a tizedespont előtti jegyek
például az egész részt a tizedespont utáni rész pedig a törtrészt jelenti. Lebe-
gőpontos számok a x ∗ 10y alakúak, ahol az x és y is tetszőleges szám lehet.
Természetesen a tetszőlegességnek az ábrázolási pontosság korlátot szab.)

• Mutatót, aminek az értékei a memória lehetséges címei. Mutató esetén az érték által
meghatározott memóriaterületen található a számunkra hasznos információ. (Ehhez
a memóriát mint rekeszek sorozatát kell elgondolni, ahol minden rekeszbe kerülhet
érték és az egyes rekeszeknek egyedi sorszámuk van.)

1.6.1. Adatok ábrázolása – fizikai szint

Fizikai szintet a memória két állapot megjegyzésére képest. Ez merevlemez esetén mág-
nesezett/nem mágnesezett vagy memória esetén feszültség alatt levő/feszültségmentes ál-
lapot. Matematikai értelemben a két állapotnak a 1 és 0 értéket feleltetjük meg. Egy po-
zícióban egyetlenegy érték tárolható ez lesz a 0 vagy 1. Ezt nevezzük bitnek. 8 biten lehet
ábrázolni egy bájtot, kettes számrendszerből tízesre átírva ez 0 és 255 közötti számokat
tesz lehetővé, tehát összesen 256 különböző érték. Ezt fogjuk bájnak nevezni. A bájtokat
kettő hatványai szerint szokás további egységekbe foglalni, szélesítendő az ábrázolható
értékek halmazát.

• Két bájt (16 bit): 0 és 65535 között
• Négy bájt (32 bit): 0 és 4294967295 között, (32-bites rendszerekben ezt szónak (word)

is hívják)

A tárolni kívánt érték típusától függ az értékek jelentése, amiket a könnyebbség ked-
véért számokként fogunk fel. Például 16 biten (2 bájton) tárolni lehet:

• Előjel nélküli egész számokat (0 . . . 65535)
• Előjeles egész számokat (−32768 . . . 0 . . . 32767). (Első bit előjelbit)
• Karaktereket (úgynevezett Unicode táblázat alapján). Minden egyes értékhez egy

karaktergrafika rendelhető, amely ebben az esetben a világ összes írásformájára ele-
gendő számú helyet biztosít. (Korábban illetve a kompatibilitás megőrzése érdekében
8 bájton tároltak egy-egy karaktert, ami legföljebb 256 különböző karakternek volt
elég. Könnyen utánajárhatunk annak, hogy ez a teljes latin abc és a hozzá kapcsolódó
számoknak és írásjeleknek sem elég, ha a lehetséges nemzeti ékezetes karaktereket
is szeretnénk tárolni.)
• . . .

Milyen adatokat lehet tárolni a memóriában:

• Logikai értékeket – ahol a logikai változó értéke igaz vagy hamis lehet.
• Racionális számokat, meghatározott tizedes pontossággal
• Karaktersorozatokat (szövegeket)
• Memóriarekeszek címét
• Programutasításokat (az egyes bájtoknak utasítások felelnek meg)
• Dátumot, időt (például eltelt másodpercekben mérve)

24

• Az előzőek sorozatát vektorok formájában
• . . .

A fentiekből látható, hogy a 64-es értéknek megfelelő bináris szám 01000000 sorozat füg-
gően attól, hogy miként értelmezzük több mindent jelenthet. Lehet a „@” karakter. Lehet
a 64, mint szám. Lehet hogy eltelt időt jelent másodpercben.

1.6.2. Memória szerveződése

Pár mondat erejéig a memória logikai szerveződéséről lesz szó. A memória rekeszekre van
osztva, ahol a rekeszek hossza rendszerenként más, manapság például 32/64 bit szokáso-
san egy asztali PC-ben. Egyetlen rekeszben mindig legfeljebb egy érték van, akkor is, ha
a tárolandó érték kevesebb helyen is elférne. (Tehát a logikai változó tárolása is ugyanúgy
egyetlen teljes rekeszt elfoglal.) A programozó (így a gépi utasításokra fordított program)
tudja, hogy melyik rekeszben milyen típusú érték van, hogy kell értelmezni, beleértve a
programkódra vonatkozó információkat. (A rekeszeknek tudunk nevet adni, tulajdonkép-
pen ezek a változók. Ez közvetve feloldódik a rekeszek címére, a program futó kódjában
ténylegesen a cím kerül felhasználásra.) Változókon keresztül a rekeszeket lehet együt-
tesen is kezelni (összefogni). Például tömbök, karaktersorozatok . . . (Amikor egy rekeszbe
egy másik rekesz címét tesszük és a hivatkozottat elérjük azt a referencia feloldásának
nevezzük.)

1.6.3. A valós számok a memóriában

Egyrészt fontos megjegyezni, hogy a valós számok halmazából, csakis a racionális számo-
kat tudjuk adott esetben pontosan tárolni. (Természetesen a tárolás pontosság itt is kor-
lát.) Az irracionális számok (végtelen tizedestört alakúak) pontos tárolására nincs mód. A
racionális számok az X ∗ 2Y alakban ábrázoljuk. Ahol az X és Y értéke kerül tényleges tá-
rolásra. A hosszak például egy 32 bites tárolás esetén 23 bit az X és 8 bit az Y , illetve még
egy bit az előjelbit. Egy IEEE szabvány esetén a lebegőpontos számábrázolás az alábbi
alakot ölti:

• Az X minden esetben 1.

23db
︷ ︸︸ ︷
xxxxxxxxxxxxxxxxxxxxxxx alakú, ahol az x egy bináris

érték
• Az exponens (Y), amely a maradék biteken kerül kódolásra adja meg a kettedes

pont helyét. (A kettedes pont a tizedes pont mintájára képzelendő el, nem feledjük el
ugyanis, hogy itt nem tízes, hanem kettes számrendszerben kell gondolkodni.)
• A vezető egyest valójában nem tároljuk, mivel mindig egy, az előző felírásban a ket-

tedes pont előtti számjegy.

A tárolás következményei

Az előbb leírt tárolási módszerekből könnyen láthatjuk az alábbi gondolatok fontosságát
és érvényességét:

• Nagyon fontos tudni az értékek típusát, mert legbelül a fizikai szinten minden egy-
forma.
• Nem végtelen a precizitás számok esetén, tehát matematikai problémáknál ezt föl-

tétlen figyelembe kell venni.

25

• Nem végtelen az ábrázolható számok intervalluma, azaz ha egy bájton tárolunk és
vesszük azt a kifejezést, hogy 255+1, akkor is kapunk eredményt, mégpedig azt hogy
255 + 1 = 0. Ezt jelenséget túlcsordulásnak hívjuk, van egy párja is alulcsordulás
néven, amihez a 0− 1 = 255 példa tartozik.
• Racionális számoknál ha két eltérő nagyságrendű számot adunk össze, például 23

kettedes jegynél nagyobb a nagyságrendbeli különbség, akkor A 6= 0: A + B = B
előfordulhat, mivel az összeadás után a hasznos jegyekből az A-hoz tartozó értékek
eltárolása lehetetlen adott pontosság mellett. (Ilyen esetben előfordulhat, hogy a pre-
cizitás növelése megoldja a problémát. (Például 32 bites lebegőpontos helyett 64 bites
lebegőpontos számok használata.)
• Nem mindig igaz, pontosságvesztés miatt, hogy (x/y) ∗ y = x, tehát valós számoknál

ne használjunk egyenlőségvizsgálatot.

1.7. Objektumorientált programozás

A típusok megismeréséhez Java nyelven szükséges pár fogalom az objektumorientált prog-
ramozási szemléletből, mivel a Java nyelv az objektumorientált szemléletet követi.

1.7.1. Modellezés

A programozáshoz a valós világot modellezzük, amely során olyan absztrakt fogalmakat
vezetünk be a programozás során amelyek megfeleltethetők a világban található tárgyak-
nak, entitásoknak, fogalmaknak. A modellezéshez az alábbi alapelveket használjuk fel

• Absztrakció – az a szemléletmód, amelynek segítségével a valós világot leegyszerű-
sítjük, úgy, hogy csak a lényegre, a cél elérése érdekében feltétlenül szükséges ré-
szekre összpontosítunk. Elvonatkoztatunk a számunkra pillanatnyilag nem fontos,
közömbös információktól és kiemeljük az elengedhetetlen fontosságú részleteket.
• Megkülönböztetés – az objektumok a modellezendő valós világ egy-egy önálló egysé-

gét jelölik, a számunkra lényeges tulajdonságaik, viselkedési módjuk alapján meg-
különböztetjük.
• Osztályozás – Az objektumokat kategóriákba, osztályokba soroljuk, oly módon, hogy

a hasonló tulajdonságokkal rendelkező objektumok egy osztályba, a különböző vagy
eltérő tulajdonságokkal rendelkező objektumok pedig külön osztályokba kerülnek.
Az objektum-osztályok hordozzák a hozzájuk tartozó objektumok jellemzőit, objektu-
mok mintáinak tekinthetők.

• Általánosítás, specializálás – Az objektumok között állandóan hasonlóságokat vagy
különbségeket keresünk, hogy ezáltal bővebb vagy szűkebb kategóriákba, osztá-
lyokba soroljuk őket.

Objektum példa
Sok embernek van kutyája különböző névvel és jellemző tulajdonságokkal – objektumok
(példányok)
A kutyák, mint egy állatfaj egyedei sok mindenben hasonlítanak is – például mindegyik
tud ugatni

26

1.7.2. Osztályhierarchia

Természetesen, ha szükség van további állatok reprezentálására a program során, akkor
további osztályokat, objektummintákat vezethetünk be. Legyenek ezek például a macskák
a tigrisek és az emuk. A macskákban és a kutyákban lehetnek olyan közös tulajdonságok,
amelyeket egy felsőbb absztrakciós szinten leírhatunk, a háziállatok szintjén. Hasonló
gondolat mentén tudjuk kialakítani az alábbi struktúrát, amelyben a kapcsos zárójellel
jelölt rész az osztályhierarchia, illetve néhány Kutya objektumpéldán is jelölésre került.

Állat

Háziállat Vadállat

Tigris EmuKutyaMacska

Osztályhierarchia

Bodri Morzsi Floki

1.7. ábra. Osztályhierarchia példa

Az objektumorientált nyelvek eszközeivel a fenti ábra teljes egészében megvalósítható,
olyan módon, hogy a Macska osztály minden egyes tulajdonságát örökölni képes a Háziál-
lat osztálynak illetve felfelé a hierarchiában.

1.7.3. Objektumok és állapotaik

Az objektumorientált program egymással kommunikáló objektumok összessége, ahol min-
den objektumnak megvan a feladata. Az objektum információt tárol, kérésre feladatokat
hajt végre; belső állapota van, üzeneten keresztül lehet megszólítani és megváltoztatni;
valamint felelős; feladatainak korrekt elvégzéséért.

Objektum = adattagok + műveletek (függvények)
Az objektumoknak Mindig van egy állapota, amit a mezők (objektumhoz tartozó vál-

tozók) pillanatnyi értékei írnak le. Az objektum műveleteket hajt végre, melyek hatására
állapota megváltozhat. Két objektumnak akkor lesz ugyanaz az állapota, ha az adattagok
értékei megegyeznek.

1.7.4. Osztály és példány

Az osztály (class) olyan objektumminta vagy típus, mely alapján példányokat (objektu-
mokat) hozhatunk létre. A példány (instance) egy osztályminta alapján létrehozott objek-
tum. Minden objektum születésétől kezdve egy osztályhoz tartozik, életciklusa van meg-
születik, él, meghal. Létrehozásához inicializálni kell – speciális művelet, függvény, a neve
konstruktor, ami a változóknak kezdőértéket ad, valamint az objektum működéséhez
szükséges tevékenységek végrehajtja.
Példányváltozó: objektumpéldányonként helyet foglaló változó – minden példánynak
van egy saját.
Osztályváltozó: osztályonként helyet foglaló változó – az osztályhoz tartozó változó.
Példányfüggvény (-metódus): objektumpéldányokon dolgozó metódus, művelet, amely
a meghatározott példány változóit éri el, illetve azokon végezhet műveleteket.

27

Osztályfüggvény (-metódus): osztályokon dolgozó metódus, művelet, amely az osztály-
változókat éri el.
Láthatóság: Lehetőség van arra, hogy bizonyos függvényeket (műveleteket), változókat
az osztályhasználó számára láthatatlanná tegyünk. Ez az (információ elrejtésének alapel-
véhez) tartozik, ahol arról van szó, hogy az objektumot használó számára csak a számára
szükséges elemei legyenek elérhetőek az objektumból. Azaz ne tudja úgy megváltoztatni
az állapotát, hogy azt ne műveleten keresztül tegye, vagy ne tudjon előállítani nem kon-
zisztens (érvényes) állapotot az objektumban.

1.7.5. Öröklődés

Az állat osztálynak vannak bizonyos tulajdonságai (mezői) és függvényei. Amennyiben el-
készítjük a háziállat osztályt, nyilvánvaló, hogy sok olyan tulajdonsága lesz, mint ami az
állatnak. Kézenfekvő az ötlet, hogy ezt a programozás során a OOP-t támogató nyelv is
kezelje. Erre lehetőség az OOP nyelvekben, hogy a háziállat osztályt az állat osztály le-
származottjaként létrehozni, ekkor az összes mezőt és függvényt örökli a háziállat, ami
az állatban megvolt. Természetesen további függvényeket és mezőket vehetünk a háziál-
latba.

(Az öröklődés, dinamikus kötés és polimorfizmus (statikus és dinamikus típus) nagyon messzire elvinne

minket, így elméletben többről nem esik szó. Fontos megjegyezni azonban, hogy a fentebbiek alapelvek, ennél

sokkal színesebb paletta áll rendelkezésre)

28

2. fejezet

Java és Eclipse

2.1. Java típusok

A Java egy objektumorientált nyelv, aminek az a következménye, hogy minden beépített
típus a primitíveket kivéve objektum.

2.1.1. Java primitívek

A primitív típusok eddigi fogalmainkkal jól leírhatóak, minden egyest tárol primitív típusú
értékhez egy dedikált rész tartozik a memóriában. Java nyelven az alábbi primitív típusok
érhetőek el:

• boolean: Logikai típus, lehetséges értéke true – igaz, vagy false – hamis.
• byte: 8-bites előjeles egész.
• short: 16-bites előjeles egész.
• int: 32-bites előjeles egész.
• long: 64-bites előjeles egész.
• float: 32-bites lebegőpontos racionális szám.
• double: 64-bites lebegőpontos racionális szám.
• char: 16-bites Unicode karakter.

2.1.2. Objektum típusok Javaban

Java esetén az objektum típusú változóknak az értéke egy referencia, amely az objektum-
példány helyét (címét) mondja meg a memóriában. Amikor a változót használjuk auto-
matikusan megtörténik a példányra való referálás, tehát a címet közvetlenül nem tudjuk
elérni. Amikor egy értéket adunk egy objektumpéldányt referáló változónak, akkor vagy
egy új példány létrehozásával vagy egy meglévő példányra referáló változóval tudjuk meg-
tenni. (Ez utóbbi esetben ugyanarra a példányra fog két változó hivatkozni.) (Primitív
típusok esetén a változó értéke a ténylegesen tárolt érték.)

2.1.3. Csomagoló osztályok

Az objektumelvű szemlélet miatt a primitív típusoknak Javaban vannak objektum párjaik,
amelyek a következők:

• Boolean: boolean
• Byte: byte

29

• Short: short
• Integer: int
• Long: long
• Float: float
• Double: double
• Character: char

Ezeket csomagoló osztályoknak hívjuk, gyakorlatilag a primitív társukkal felcserélhetőek
a legtöbb esetben. Fontos, hogy nem megváltoztatható az értékük, ami azt jelenti, hogy
az objektumpéldány állapota a létrehozás után állandó. Amennyiben egy csomagoló osz-
tály példányának értékét megváltoztatjuk egy kifejezésben, akkor új példány jön létre a
memóriában és a változó az új példányra fog hivatkozni.

2.1.4. Karakterláncok

Hasznos típus a karakterlánc – String (objektum), amelybe szövegeket lehet eltárolni.
Hasonlóan a csomagoló típusokhoz a karakterláncok sem változtathatóak meg. Amikor új
értéket adunk, akkor egy új példány jön létre, amelyre a korábbi változó fog hivatkozni.

Deklaráció
String s;

Értéket adni idézőjelek között megadott szöveggel lehet:

Értékadás
String s = "Szervusz világ";

Ha idézőjelet szeretnénk belevinni a szövegbe akkor:

Idézőjelek egy karakterláncban
String s = "Szervusz \"szép\" világ";

Karakterek számának lekérdezése egy String esetén

Karakterek száma
String s = "Szervusz világ";

int meret = s.length();

2.1.5. Tömbök

A tömb ahhoz hasonlít, amit matematikában vektornak hívunk. A memóriában folytono-
san több ugyanolyan típusú terület foglalódik le deklarációkor, amelyet indexelten lehet
elérni. 1

Java nyelven egy egészekből álló tömb deklarációja a következőképpen történik:

Deklaráció
1A folytonos memóriaterületen való elhelyezkedés fontos, ugyanis hiába van sok szabad memória, azonban,

ha az nem folytonos nem tudunk maximális méretű tömböt lefoglalni. Megjegyezendő, hogy további korlátok
is vannak a dinamikusan kezelhető memória nagyságára vonatkozóan.

30

tombtipusa [] tombneve;

Egy létrehozott tömb hossza nem változtatható meg a későbbiekben, viszont lehetőség van
újabb, nagyobb deklarációjára. Egy tömbnek értéket adni többféleképpen lehet:

Értékadás – Felsorolással
int [] tombneve;

tombneve = {1,2,3,4,5};

Ugyanakkor létrehozható egy tömb kezdőértékek nélkül is, csak a méret megadásával:

Értékadás – Üres létrehozása
int [] tombneve;

tombneve = new int[10];

Ebben az esetben egy új objektumpéldány kerül létrehozásra, amelynek típusa egy egé-
szekből álló tömb típus.

Illetve a tömb értékadásánál lehetőség van egy másik tömbbel egyenlővé tenni

Értékadás – Másik tömbbel
int [] masiktomb = {0, 1};

int [] egyiktomb = masiktomb;

Fontos, hogy ekkor a memóriában egyetlen tömb lesz csak, ugyanakkor kétféle változónév-
vel lehet elérni, két változó referál rá.

A tömbök tartalmát indexeléssel érjük el, a számozás 0-val kezdődik.

Például
int [] egyiktomb = new int[10];

Az előző tömb esetén 0 . . . 9 indexek érvényesek, a többi kiindexel a tömbből.

Egy tömb méretének megismerését a következő példa mutatja be:

Tömbméret
int tombmerete = egyiktomb.length;

A egy tömb deklarációja során implicit módot egy új típust hozunk létre. Ezzel a típus-
konstrukcióval lehetőség van egy további tömb típusát meghatározni, amelyet a következő
példa mutat be:

Deklaráció
tipus [] [] matrix;

Ebben a példában ezáltal egy kétdimenziós tömböt hoztunk létre. Tovább folytatva többdi-
menziós tömböket is létre lehet hozni, a korlát a memória mérete. (Kétdimenziós vektorok
a mátrixok).

31

2.1.6. Műveletek

A következő műveletek értelmezettek egész típusokon, ahol a sorrend a precedencia sor-
rendjében került leírásra:

• Növelés, csökkentés: ++, --
• Multiplikatív: *, /, % (Szorzás, Maradékos osztás, és maradékos osztás maradéka)
• Additív: +, -
• Bitenkénti eltolás: <<, >> (Balra, jobbra) A bitenkénti eltolás esetén gyakorlatilag

kettővel való szorzásnak (balra) illetve kettővel való osztásnak felel meg (jobbra).
• Bitenkénti műveletek: ∼, &, |, ˆ (Negálás, és, vagy, kizáró vagy)
• Relációs: ==, !=, <, <=, >, >=
• Unáris: +, - (előjelek)
• Értékadás: A változónak új értéket ad = (Kombinálható más művelettel: +=)

Racionális típusok esetén a műveletek:

• Növelés, csökkentés: ++, --
• Multiplikatív: *, /, % (Szorzás, Osztás, és maradékos osztás maradéka. Figyelem itt

az osztás nem maradékos.)
• Additív: +, -
• Relációs: ==, !=, <, <=, >, >=
• Unáris: +, - (előjelek)
• Értékadás: A változónak új értéket ad. =

A következő művelek értelmezettek logikai típusokon:

• Tagadás: !
• Relációs: ==, !=
• Logikai és, vagy: &&, ||
• Értékadás: A változónak új értéket ad. = (Az érték true vagy false)

Karakterláncok esetén pedig az alábbi érvényes műveleteink léteznek.

• Értékadás: A változónak új értéket ad. =
• Összefűzés: + Több különböző karakterláncot fűz össze

A műveletek esetén felmerülő lehetséges problémák a típusra vezethetők vissza bizo-
nyos esetekben. Mivel a műveletek mindig tartoznak egy típushoz is, ezért a típus dönti
el egy kifejezésben, hogy milyen operátor kerül alkalmazásra. Például, ha a 10/3 osztást
szeretnénk elvégezni, akkor azt várjuk el, hogy az eredmény 3.333 . . . legyen. Ezzel szem-
ben Javaban a 10 / 3 = 3, mivel a 10 egész szám, ezért az egészhez tartozó / operátort
veszi, ami a maradékos osztás. Azonban 10D / 3 = 3.3333 ..., ahol a D jelöli, hogy ez
itt egy double típusú, tehát nem egész. (Helyette 10.0-t is írhatunk.)

2.2. Java osztályok

Javaban osztály létrehozására az alábbi szintaxis szerint lehet létrehozni. Ez meghatá-
rozza az osztálynak a lehetséges változóit és műveleteit.

Osztály létrehozása

32

public class osztálynév extends szülő [és még más]

{

public int mezonev;

private String mezonev;

...

public osztályneve (paraméterek)

{ // Konstruktor }

public int fuggvenyneve (paraméterek)

{ ...}

...

}

A mezők és és függvények előtti lehetséges kulcsszavakból néhány:

• public: mindenki számára elérhető a program egészében.
• nincs kulcsszó: adott osztályban, leszármazottjaiban (öröklődés) és a csomagban ér-

hető el.
• protected: csak az adott osztályban és leszármazottjaiban, a csomag többi osztá-

lyában már nem érhető el.
• private: csak az adott osztályban érhető el, a leszármazottakban már nem.
• static-kal jelöljük az osztálymezőt illetve függvényt.
• Ha egy mező final, akkor nem módosítható.
• Ha egy osztály final, akkor nem örökölhető belőle tovább.

(További kulcsszavak az abstract, synhronized, volatile, native . . . , amelyek szá-
munkra most nem relevánsak.)

Az osztályok elemeinek láthatósági szabályozása az eszköz, amivel a külvilág számára
el tudjuk rejteni egy objektum belső szerkezetét, állapotát. Az eddigi példánk folytatása,
a Kutya osztály Java nyelven:

Kutya osztály
public class Kutya extends Allat

{

public String nev;

public String fajta;

public Integer eletkor;

private Date [] oltasok_ideje;

private String [] oltasok_neve;

public Kutya ()

{

oltasok_ideje = new Date[10];

oltasok_neve = new String[10];

}

public void ugat()

{

}

public void megy()

{

}

33

public void oltastkap(String s, Date mikor)

{

}

}

Látható, hogy az oltásokkal kapcsolatos információkat nem lehet közvetlenül módosítani,
csakis egy függvényen keresztül. Ez azért jó, mert így nem lehet olyan állapotot előidézni,
ami szerint a Kutya osztály egy példányának az oltások ideje és az oltások megnevezése
tömb eltérő elemszámú (ami nyilvánvalóan nem érvényes állapot).

Kutya

+Név: String
+Fajta: String
+Életkor: Integer
#Oltások ideje: Date []

#Oltások neve: String []

+ugat(): void
+megy(): void
+oltástkap(mikor:Date,mit:String): void

2.1. ábra. A Kutya osztály UML diagramja

Az előző kutya osztály, mint típus az alábbiak szerint deklarálható

Deklaráció
Kutya bodri;

Ez még csak deklaráció, a tényleges példány létrehozása a new kulcsszóval történik.

Példányosítás
bodri = new Kutya();

A new kulcsszó hatására a memóriában létrejön egy új Kutya objektum, valamint lefut
annak a konstruktora. A korábban említettek szerint, amikor az Object osztály bármely
leszármazottját (legyen az tömb, String, Double, Kutya . . .) deklaráljuk, akkor a vál-
tozó, ami lefoglalásra kerül a memóriában egy referenciát (memóriacímet) tartalmaz
értékként, nem az objektumot magát. Ez referencia alapértelmezésben null, azaz nincs
hozzátartozó objektumpéldány. (Tehát a változó képes egy adott típusú objektumra hivat-
kozni, de éppen nem hivatkozik egyre sem.) Ahhoz hogy hivatkozzon, létre kell hozni egy
új példányt, vagy egy meglévő hivatkozást kell átadni értékként (egy meglévő példányt):

Példányosítás
Kutya morzsi = new Kutya();

Kutya rex = morzsi;

A második miatt egyetlen Kutya példány van a memóriában, csak két névvel is hivat-
kozhatunk rá: morzsi és rex. Egy objektumváltozó értéke Java-ban egy referen-
cia a memóriában! Az olyan objektumpéldányokra amelyekre nincs olyan változó ami
a referenciát tartalmazza úgy kell tekintenünk, mint ami nincs is. (Ez Java esetén au-

34

tomatikusan felszabadításra kerülő memóriaterületet jelent, más nyelveken ez elveszett
memóriaterület.)

Egy objektumpéldány mezőit és tagfüggvényeit a példányon keresztül lehet meghívni.
(Természetesen ez csak a látható elemekre vonatkozik, ahol a láthatóságot a fentebb leírt
kulcsszavak határozzák meg.)

Tagfüggvények, mezők
bodri.ugat();

String kutyaneve = bodri.nev;

Egy osztály osztálymezőit és függvényeit az osztályon keresztül javasolt elérni. (Lehet-
séges egy példányon keresztül is, de az ellentmond a példányfüggetlenségnek.)

Osztálymező
Kutya.ALAPÉRTELMEZETTUGATÁSIHANGERŐ

2.3. Függvények és metódusok

Korábban már több helyen érintőlegesen szó volt róla, ezért most vegyük részleteiben a
függvény fogalmát.

A függvények olyan részprogramok, műveletek, amelyeknek a programokhoz hason-
lóan vannak bemenő paramétereik, valamilyen műveletet végeznek el és egy eredménnyel
térnek vissza. (Ez nagyon hasonlít a matematikai értelemben vett függvény fogalomhoz,
ahol is a bemenetei paraméterekhez egy eredményt rendelünk. Ugyanakkor bizonyos te-
kintetben nagyon különbözik attól, például egy objektumfüggvény az objektum állapotá-
nak megváltoztatására is alkalmas.)

Minden Java programban van egy függvény, a main függvény, ami a program elindulá-
sakor kezd futni. Ha a main függvény futása befejeződik, akkor a program is befejeződik.
A main további függvényeket hív(hat) meg, illetve a függvények is továbbiakat hívhatnak
meg.

A következő main függvény egy i szám négyzetét számolja ki, amely függvényben a
KIIR egy absztrakt parancs, a képernyőre való kiírást jelenti.

Példa main függvényre
public static void main(String [] arguments)

{

int i = 10;

int negyzet = i*i;

KIIR(negyzet);

}

Vegyük az alábbi példaprogramot, amely egy függvény egy tetszőleges háromszög ma-
gasságát számolja ki.

Területszámítás
public double terulet(double oldal, double magassag)

{

return (oldal * magassag) / 2;

35

}

public static void main(String [] arguments)

{

double side = 10;

double height = 8;

double eredmeny = terulet(side, height);

}

Ebben a kódrészletben található egy területszámító függvény, aminek
a neve terulet. A függvénydeklarációnak az alábbi szerkezete van:

Függvényszignatúra
visszatérésitipus fuggvenynev (parameterdeklarációk)

A példa esetén a függvény deklarált paraméterei a double oldal, double

magassag. Ezeket hívjuk formális paramétereknek, Attól formális, hogy a függvényen
belül bármilyen hívás esetén ezekkel a változókkal (változókban) érjük el a függvényhí-
vás aktuális paramétereinek értékét. Az aktuális paraméterek ebben a példában a side,

height, amiknek az értékei rendre 10 és 8. A függvényhívás a double eredmeny =

terulet(side, height); sorban történik, ahol is a paraméterek helyén lévő kifejezé-
sek kiértékelődnek. Ezután átkerül a futtatás a függvényhez, amely végrehajtja az utasí-
tásokat és a return kulcsszó mögötti értéket visszaadja eredményként a hívónak, aminek
hatására ebben az esetben a double eredmeny változó értéke a kiszámított terület lesz.

A függvény visszatérés típusát hívják a függvény típusának is. A függvény neve lehet
bármi, kivéve a nyelv fenntartott szavait. A szignatúra alapján használjuk a függvény,
amiben a paraméterek vesszővel elválasztott változódeklarációk. A szignatúrát (lenyoma-
tot) követi a függvény törzse, ami

• használhatja a bemenő paramétereket, új változókat.
• tartalmaz (legalább) egy return, amit a visszatérési típusnak megfelelő kifejezés

követ – ez lesz a függvény visszatérési értéke.
• egy return utasítással befejeződik, még akkor is, ha van mögötte további utasítás.
• (Annak a függvénynek, aminek nincs visszatérési típusa, void a típusa. A void a

„semmilyen típus”, nem hozható létre belőle példány.)

2.3.1. Paraméterek

A formális paraméterek a függvényszignatúrában vannak deklarálva, új változók! Ezek a
függvény hívásakor felveszik az aktuális paraméterek értékét, Java nyelv esetén érték sze-
rint. Tehát a formális és aktuális paraméter más-más terület a memóriában. A változónév
azonban lehet ugyanaz! A függvények aktuális paraméterei lehetnek további függvényhí-
vások!

A visszatérési érték, a függvény befejeztekor, annak az értékadó utasításnak a jobb
oldala lesz, amiben a függvény neve szerepelt

2.3.2. Az érték szerinti paraméter átadás és következményei

Java nyelven, amikor függvényt hívunk, az aktuális paraméter értéke átmásolódik a for-
mális paramétert jelentő változóba. (Létrejön(nek) a függvényszignatúra szerinti új vál-

36

tozó(k), és az értékük az lesz, ami a függvényhíváskor az aktuális paraméter volt.) Tehát
egy külön változó, aminek pont ugyanaz az értéke.

Az objektumoknak azonban az értéke a referencia, tehát a referencia másolódik át, így
az eredeti objektum egy példányban marad meg, csak kétféle névvel lehet hivatkozni rá.
(Aminek az a következménye, hogy ha a függvény megváltoztatja az objektum állapotát,
akkor az „eredeti” objektumot változtatja meg.

A csomagoló típusok ugyan objektumok, tehát egyetlen példány létezik, mivel változ-
tatáskor új jön létre, a tényleges hatás ugyanaz, mint a primitívek esetén. (Azaz, ha a
függvény megváltoztatja az értékét, akkor az mégsem lesz hatással az eredeti objektumra
nézve.)

Paraméterek példa

public void fuggveny(Double d, int i, Kutya k)

{

d = 5.0;

i = 10;

k.oltastkap("Veszettség", new Date())

}

public static void main()

{

Double dd = 2.0; // Double d = new Double(2.0)

int ii = 10;

Kutya kk = new Kutya();

fuggveny(dd, ii, kk);

}

A main függvényben létrejön egy Double referencia ami egy példányra mutat, aminek
2.0 az értéke. Létrejön egy int, aminek 10 az értéke, valamint egy új Kutya. Ezek mind-
egyike átadódik paraméterként a függvénybe, a következő módon. A Double referencia
átmásolódik, a példány nem, egyetlen van belőle továbbra is. Az ii értéke egy új int-be
másolódik át. A kk referencia is átmásolódik. Megváltoztatjuk a d értékét, ami azt jelenti,
hogy létrejön egy új Double példány és a d erre fog referálni. (Ez a megváltoztathatatlan-
ság miatt van. A dd továbbra is 2.0.) Az i eleve egy másik változó (példány) a memóri-
ában, annak az értéke megváltozik, semmi hatása sincs az ii-re. A k objektum állapotát
egy függvényén keresztül változtatjuk, ez pedig az egyetlen létező példányt módosítja, így
a kk-t is.

2.4. Változók láthatósága

Egy változó láthatósági körének nevezzük azt a részt a programban, ahol az adott vál-
tozó és általa képviselt memóriaterület elérhető, módosítható. Egy változó hatáskörének
nevezzük azt a részt programban, ahol a változó deklarációja érvényben van. Egy függvé-
nyen belül deklarált változó csak a függvényen belül látható és arra terjed ki a hatásköre
is. Egy utasításblokkon belül deklarált változó hasonlóan viselkedik a függvény esetében
leírtakhoz. Az blokkon, függvényen belüli változókat lokális változónak hívjuk.

37

(Léteznek globális változók is, amelyeket több függvényből el lehet érni, használatuk
azonban nem javasolt. (Itt nem az osztályokról van szó, ez programnyelvtől független fo-
galom.)

Ha egy blokkon belül további blokkok vannak, akkor ott is deklarálhatunk új változó-
kat azonos névvel is (a külső blokkokban azonos nevű változók szerepelnek). Ekkor a belső
blokkban található deklaráció elfedi a külső változót, tehát az nem látható. Ugyanakkor
mindkettő érvényes deklarációja van, hatáskörrel rendelkezik.

Példa a hatáskörre
int i = 10;

int j = 100;

{

int i = 50;

}

i++;

j++;

Az első i-nek a teljes példára kiterjed a határköre, azonban a belső részben nem látható.
A második i csak a belső részben látható és a hatásköre is ugyanaz. Nem engedi látni a
külső.

2.5. További eszközök

2.5.1. Foreach ciklus

Az alábbi for ciklus egy tömb elemein lépked végig, a tömb elemeinek összegét kiszámo-
landó (összegzés tétele szerint):

For ciklus – összegzés példa
int [] tomb = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int osszeg = 0;

for (int i = 0; i<tomb.length; i++)

osszeg += tomb[i];

Több programnyelv esetén lehetőség van arra, hogy ezt tömörebben le lehessen írni, az
úgy nevezett foreach ciklusok segítségével.

Foreach ciklus – összegzés példa
int [] tomb = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int osszeg = 0;

for (int aktualis : tomb)

osszeg += aktualis;

Foreach ciklus
for (elemek típusa változó : aminvégigkelllépni)

ciklusmag;

38

A ciklus elején deklarált változó az iterációk során felveszi a bejárni kívánt objektum
összes értékét. Nem használható azonban olyan esetekben, ahol meg kell változtatni az
egyes értékeket. (Például megszorozni a tömb egyes elemeit.)

2.5.2. Típuskonverzió

A különböző típusok között lehetséges konvertálni. A konvertálás történhet implicit, vagy
explicit módon.

Implicit típuskonverzió. Amikor egy operátor kiértékelésénél különböző típusok van-
nak, ugyanakkor egyik szűkítése a másiknak, a nyelv automatikus bővítő konverziót hajt
végre. (Tehát int típusból automatikusan long-ra konvertál, amennyiben erre szükség
van.) Ugyanígy a csomagoló és primitív párok között is automatikus konverzió történik.

int i = 10;

long l = 100;

double d = 200;

dd = 6.6;

(i < l)

(d > l)

(dd = d)

(d = i)

Az összehasonlításhoz szükséges, hogy az i és l változók azonos típusúak legyenek. Ha-
sonlóan igaz ez a többi példára is. Mindig a bővebb típus felé történik a konverzió, tehát a
kisebb bitszámon tároltból nagyobb bitszámú, az egészből lebegőpontos lesz.

Explicit típuskonverzió. Lehetőségünk van „kézzel” kényszeríteni a típuskonverziót –
ezt nevezzük explicit konverziónak.

Explicit típuskonverzió
(újtípus) kifejezés;

Az új típus nevét kell zárójelek között megadni az átkonvertálandó kifejezés elé. Fontos,
hogy a zárójelezések segítségével meg lehet változtatni a konvertálandó részét a kifejezés-
nek. Gyakran használatos eszköz az osztás pontosságának beállítására:

Osztás példa
int i = 10;

double d1 = i / 3; // = 3.0;

double d2 = (double)i / 3; // = 3.33333;

További, függvényekkel támogatott konverzió Java nyelven. A beépített csoma-
goló típusok segítségével lehetőség van karakterlánc és számok közötti konverzióra is.
Ezek azonban már függvényhívások Javaban.

39

Egész karakterláncban
String s = "20";

int i = Integer.parseInt(s);

int i = Integer.parseInt(s, 16); // Hexadecimális

A patseInt második paramétere egy szám amivel megadhatjuk hogy a felismerni kívánt
karaktersorozatot milyen számrendszer szerint értelmezze a függvény. Ha nem adjuk meg
azt a paramétert, akkor automatikusan dönti el az következőket figyelembe véve. Egy
hexadecimális szám a „0x” karakterekkel kezdődik. Ez nyolcas számrendszerbeli szám
esetén mindig van egy nulla a szám elején. (Vezető nulla.)

String-é alakítani is lehet.

Szám karakterlánccá
String s1 = Double.toString(100);

String s2 = Integer.toHexString(10);

2.5.3. Felsorolási típus

Olyan típus definiálható, ahol a lehetséges értékeket saját magunk adjuk meg.

Enum
enum Nap { HÉTFŐ, KEDD, SZERDA, CSÜTÖRTÖK, PÉNTEK, SZOMBAT, VASÁRNAP

}

Nap n = Nap.SZERDA;

Ekkor létezni fog egy Nap nevű típus, ahol pontosan meg van határozva az, hogy milyen
értékeket vehet fel, sőt még egy explicit sorrendiség is létezik az egyes értékek között.
A felsorolási típus használható a többszörös elágazásban, mint eset, valamint a foreach
ciklusokban is a bejárandó kifejezés helyén.

További információ: http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

2.5.4. IO műveletek Javaban

A beolvasásra egy egyszerűsített módszer kerül ismertetésre. A Java úgynevezett folyamo-
kat (Stream) kezel a be- és kimeneti műveletekből. Ezen eszközök rendkívül széles skálája
áll rendelkezésre, ami segítségével a tényleges IO eszköztől függetlenül lehet kezelni a be-
olvasást és kiírást. (Például egy hálózati kapcsolat hasonlóan olvasható és írható, mint
egy USB port, vagy egy fájl.)

2.5.5. Beolvasás

A java.util.Scanner osztállyal lehetséges a konzolról, valamint fájlokból sorokat, il-
letve meghatározott típusú elemeket beolvasni. A Scanner osztály példányosítása:

Scanner
Scanner sc = new Scanner(bemenet)

A bemenet lehet:

40

• Fájl (File).
• IO Csatorna (Konzol, InputStream, FileReader).
• String.

Néhány példa:

Konzolról beolvasás
Scanner sc = new Scanner(System.in);

Fájlból beolvasás
Scanner sc = new Scanner(new File(fájlneve));

A Scanner alkalmas speciális elválasztójelekkel írt fájlok olvasására, reguláris kifejezé-
sek értelmezésére is.

Következő sor olvasása
String s = sc.nextLine();

Következő int olvasása
int i = sc.nextInt();

Van-e következő sor
boolean b = sc.hasNextLine();

Ha nem olyan típus következik a beolvasandó csatornán, amit kérünk, akkor hiba kelet-
kezik.

2.5.6. Kiírás

Míg a System.in a konzolos bemenetet (billentyűzetet) egyedül képviseli, addig kime-
netből hagyományosan kétféle áll rendelkezésre: System.out és System.err. Az első a
szabványos kimenet, a második a szabványos hibakimenet. Mindkettő a képernyőre ír ki,
a látványos különbség, hogy a hibakimenet pirossal jelenik meg. 2

Használatuk:

Szövegkiírás újsor jellel a végén
System.out.println("Szervusz világ");

Szövegkiírás újsor jel nélkül
System.out.print("Szervusz világ");

2Részben történelmi részben praktikussági okai vannak ennek. A Java nyelv és környezet alapvetően kon-
zolos, tehát karakteres bemenettel és kimenettel rendelkezik, amelytől a modern PC-s operációs rendszerek
esetén elszokhattunk. Természetesen ez nem jelenti azt, hogy a Java nyelv esetén nem lehet kényelmes gra-
fikus felhasználói interfészt készíteni.

41

A print() paramétere bármi lehet, a primitíveket a csomagoló osztályon keresztül, a
többi osztályt a toString() tagfüggvény segítségével alakítja át a Java karakterlánccá.
Saját osztály esetében célszerű írni egy toString() függvényt.

toString() példa
public String toString();

{

return "Kutya, név: " + nev + " faj: " + fajta;

}

Ha nincs toString() függvénye egy osztálynak, akkor a szülőosztály (végsősoron az
Object) megfelelő függvényét használja, de az legtöbbször nem informatív, mivel az ob-
jektumreferencia értékét írja ki.

A System.out-hoz hasonló fájl-kimenetet létrehozni a következőképpen lehet:

Fájlba írás példa
PrintStream ps = new PrintStream(

new FileOutputStream(filenév));

Más módszerek is léteznek a fájlok használatára a kimenet / bemenet iránytól, valamint
az írni kívánt egységtől, illetve puffer használatától függően.

Itt röviden megfigyelhető egy példa a Stream-ek használatára.

2.5.7. Megjegyzések, dokumentációk a kódban

Lehetőség van a kódban megjegyzések, kommentek elhelyezésére a következő módon

Egysoros megjegyzés
int i = 0; // számláló

Többsoros megjegyzés
/* Ez itt egy többsoros megjegyzés eleje

közepe

és vége

*/

Ha ezekkel a karakterekkel találkozik a programot értelmező fordító, akkor figyelmen
kívül hagyja az adott szakaszt és nem próbálja meg utasításként értelmezni. Arra jók a
megjegyzések, hogy az emberi olvasó számára nyújtsanak támpontot a programkód funk-
ciójával, az algoritmus működésével kapcsolatban.

Lehetőség van a kódban függvények és osztályok előtt dokumentációs megjegyzések
elhelyezésére. Ezeket a megjegyzéseket JavaDoc kommentnek hívjuk, segítségükkel az
elkészített programról kóddokumentáció hozható létre pár kattintással. A JavaDoc-ban
elhelyezhetőek hivatkozások, html kódok is.

JavaDoc példa
/** Ez itt egy JavaDoc

függvény leírása

42

@author SzerzőNeve

@param egy paraméter leírása

@return visszatérési érték leírása

*/

2.5.8. Csomagok

A különböző osztályokat tartalmazó forrásfájlok, JAVA kódok úgynevezett csomagokba
rendezhetők. Azt, hogy melyik csomagba tartozik egy Java osztály, a fájl elején egy
package kulcsszó mögé írt névvel kell jelezni. (Amikor létrehozzuk Eclipse-ben az osz-
tályt, megkérdezi, hogy milyen csomagba kerüljön.) Az osztályokat mindig a csomag nevén
keresztül lehet elérni:

• programcsomag.Osztály a = new programcsomag.Osztály() – példa a létre-
hozásra
• java.util.Math.sqrt() – osztályfüggvény hívása esetén

Egyazon csomagban levő osztályok látják egymást, nem kell kiírni a csomagnevet!
Amennyiben szeretnénk elérni, hogy ne kelljen más csomagbéli osztályok neve elé ki-

írni minduntalan a csomag nevét, lehetséges importálni (láthatóvá tenni) egy teljes cso-
magot, vagy osztályt egy csomagból. A kulcsszó az import.

• import java.util.Math – csak a Math osztály importálása
• import java.util.* – minden osztály importálása a java.util csomagból

Ezután a Math.sqrt() „közvetlenül” használható. A csomagon belül alcsomagok is létre-
hozhatóak, a *-os import az alcsomagokra nem fog vonatkozni.

2.6. Java

2.6.1. Hogyan működik?

A Java program a számítógépen egy Java Virtuális Gépen fut (JVM), ami lehetővé teszi,
hogy ugyanaz a Java program tetszőleges operációs rendszeren (amire a JVM elkészült,
például Windows, Linux, MacOS) és géparchitektúrán fusson. (Például mobiltelefonon is.)

Az általunk elkészített forráskódból a fejlesztőkörnyezet egy Java bájtkódot készít,
amit a JVM értelmez, és az adott rendszernek megfelelő gépi kódú utasítás-sorozattá ala-
kít át.

Ennek megfelelően a Java környezet eleve két részből áll:

• JVM – virtuális gép, a JRE része (Java Runtime Environment)
• JDK – Java Development Kit (a fejlesztői Java, tartalmaz egy JRE-t is)

Jelenleg a 6-os verzió Update 16 a legfrissebb. JRE-t letölteni a http://www.java.com/ ol-
dalról lehet, de ez csak a programok futtatására elég! (A mobilok esetén ez a virtuális gép
beépített.)

A fejlesztésre alkalmas Java, ami tartalmaz példákat, forráskódokat, teljes JavaDoc-ot,
az a JDK. Többféle verzió áll rendelkezésre:

• Java SE – Standard Edition (Alap verzió, nekünk bőven elég)
• Java EE – Vállalati verzió (Alap + további szolgáltatások)

43

• Java ME – Mobil verzió (Például telefonokra)

A Java SE-t a http://java.sun.com/javase/downloads/?intcmp=1281 oldalról lehet letölteni.
Ezek az eszközök, programok pusztán a megírt forráskód fordítására, futtatására,

(stb.) alkalmasak. Ez természetesen elég lehet, hiszen a kódot egy tetszőleges szövegszer-
kesztővel is meg lehet írni (Jegyzettömb), de sokkal kényelmesebb környezetek is rendel-
kezésre állnak.

A félévben az Eclipse IDE (Integrated Development Environment) programot hasz-
náljuk, ami Java nyelven íródott. (Az egyszerű szövegszerkesztésnél sokkal bonyolultabb
feladatok gyors elvégzésére is alkalmas.) A http://www.eclipse.org/downloads/ oldalról az
Eclipse IDE for Java Developers választandó.

2.7. Eclipse használata röviden

Az Eclipse programot először elindítva egy Welcome képernyőd minket, amit bezárni a
hozzátartozó fülecskén lehet.

Az Eclipse minden egyes indításkor (kivéve, ha másként rendelkezünk a beállítások-
ban) megkérdezi a használni kívánt munkaterület (workspace) nevét. A workspace-ek egy
több projektet összefoglaló, állapotukra emlékező környezetek, több lehet belőlük, azonban
mindegyik egy saját könyvtárban. Hagyjuk, hogy az alapértelmezett könyvtárban lévőt
használja az Eclipse.

Amennyiben sikeresen elindult a program és az üdvözlőképernyőt is becsuktuk az
alábbi ábrához hasonló kép tárul elénk. Az ábra azt mutatja, hogy hogyan kell a menü-
rendszer használatával egy új Java projektet létrehozni.

Új projekt létrehozása során meg kell adnunk a projekt nevét, valamint további para-
métereket, mint például, hogy melyik JRE-t használja a futtatáshoz. A projekt neve tar-
talmazhat ékezetes magyar karaktereket, szóközt, de javasolt inkább a szabványos latin
abc karaktereit használni.

Ha kész a projekt osztályokat hozhatunk létre a varázsló segítségével. Első és legfon-
tosabb osztályunk a main függvény tartalmazó osztály lesz, amire a program futtatásához
feltétlen szükség van. Kattintani a File menüpont New és azon belül New class pontjára
kell.

Megadható létrehozandó osztály neve, módosító kulcsszavak az elérhetőséggel kapcso-
latban. Továbbá, hogy mely csomagba tartozzon. (A csomagokról lesz szó később.) Ide be-
írható nem létező csomag neve is, az Eclipse automatikusan létre fogja hozni a megfelelő
nevű csomagokat. Megadható a szülőosztály neve is, amelyet egy listából is kikereshetünk.
(Superclass) Valamint az interfészek. Az ezt követő opciók sorrendben:

• Létrehozza a main függvényt ebben az osztályban. A létrejött függvény teljesen üres.
• A szülőosztály konstruktorainak megfelelő konstruktorokat létrehoz ebben az osz-

tályban is.
• Az absztrakt, meg nem valósított metódusokat megvalósítja. (Üres függvényként.)

Az öröklődésnél van szerepe.

A létrejött osztályban a main függvényt megszerkesztve a programot elindítani az esz-
köztár megfelelő gombjával lehet, vagy a Run menüpont Run utasításával. (A gomb egy
zöld körben levő háromszög.) Bizonyos esetekben az Eclipse rákérdez, hogy milyen alkal-
mazást akarunk futtatni.

A program futása során létrejövő kimeneteit alapértelmezésben alul lehet olvasni a
Console feliratú fülnél. (Ezek a fülek tetszőlegesen áthelyezhetők, bezárhatók.

44

2.2. ábra. Új Java projekt létrehozása

2.8. Rekurzió

Rekurzív egy függvény, ha a számítás során rész-számításokhoz önmagát hívja meg. Álta-
lában egy egyszerűbb eset visszavezetésére használjuk, vagy a rész-esetek további kibon-
tására. Ennek megfelelően a függvényhívások száma jócskán növekedik egy bonyolultabb
számítás elvégzéséhez.

Például, ha egy faktoriálist szeretnénk kiszámolni, akkor rekurzív függvényhívással
is meg lehet oldani a problémát a következőképpen: Adott n, az ehhez tartozó n! az nem
más, mint n ∗ ((n − 1)!). Azaz a problémát egy szorzássá alakítottuk át, most már csak
az eggyel kisebb szám faktoriálisát kell kiszámolni. Ezt tudjuk folytatni tovább, egészen
addig, amíg n = 0, mivel annak ismert a faktoriálisa.

Rekurziós módszerek esetén, mivel a függvény saját magát hívogatja, nehéz követni,
hogy hol tart. A faktoriális számítása esetén ez nem gond, mivel nincs benne elágazás.
Azonban a legtöbb problémánál elágazások vannak a függvényben.

Azt fontos megjegyezni, hogy egy függvény futása addig nem fejeződik be, amíg nem
futtat egy return utasítást. Addig a belső változói deklaráltak, és van értékük. Amikor
egy függvényt hív, akkor annak a függvénynek is lesz egy saját területe, és így tovább. Te-
hát, ha végiggondoljuk, hogy n = 60 esetre összesen hatvan hívás történik. Minden esetben
lefoglalásra kerül a függvényhez tartozó összes változó és paraméter, valamint némi me-
mória szükséges a függvényállapot tárolására, amelyből a hívás történt. Ez jelentékeny
memóriahasználat a probléma egyszerűségéhez viszonyítva. Faktoriális számítása esetén
lineárisan növekszik a tárigény, azonban vannak olyan problémát, ahol sokkal gyorsabban
fogy el a memória a rekurziós számításnál. (Szemben egy nem-rekurzív megoldással.)

45

2.3. ábra. Új Java projekt létrehozása – Paraméterek

46

2.4. ábra. Új Java osztály létrehozása

2.5. ábra. A main függvény és az eredmény

47

48

3. fejezet

Absztrakt adatszerkezet

Emlékezzünk a típus definíciójára, miszerint a típus a felvehető értékek halmazát és azo-
kon végezhető műveletek összességét jelenti.

Ebben a fejezetben a típus specifikálással és absztrakcióval foglalkozunk, legelőször
áttekintve a típus absztrakció szintjeit.

A reprezentációs szinten a típusértékek ábrázolásáról beszélünk. A legabsztraktabb
szint, amelyen meghatározzuk a típusértékekhez tartozó ábrázoló elemek halmazát, va-
lamint a műveletek kétirányú reprezentációs leképezését. Tehát a típusértékek lehetnek
például a napok: HÉTFŐ, KEDD, SZERDA, CSÜTÖRTÖK, PÉNTEK, SZOMBAT, VASÁR-
NAP. Az ehhez tartozó ábrázoló elemek egy lehetséges esetben a természetes számok 1 és 7
között értelemszerű megfeleltetéssel. A nap típus esetén egy művelet lehetségesen a rákö-
vetkező nap megadása. Ennek a típusértékek halmazán van egy jól definiálható működése,
hogy milyen érték esetén mi lesz a művelet eredménye. Ezt a műveletet kell átültetni a
természetes számok megszorított halmazára. A reprezentációs szinthez tartozó fogalmak:

• ábrázoló elemek H halmaza (típus-szerkezet), a példában ezek a számok.
• az ábrázoló elemek és a típusértékek kapcsolatát leíró leképezés: ρ : H → T, ρ ⊆ H×T

• a típus-invariáns kiválasztja a hasznos ábrázoló elemeket: I : H → L, [I] Ez a leképe-
zés választja ki a számok közül a használandó 1..7 intervallumot.

A leképzést az alábbi ábra szemlélteti: F az eredeti művelet, a felső szint a a műveletet

F művelet specifikációja

DF RF

DS RS

F művelet implementációja
S program

F

F
ρ

3.1. ábra. F művelet leképezése S programra.

49

mint függvényt ábrázolja, ahol az értelmezési tartomány DF és az értékkészlet megha-
tározott RF . Ezzel szemben az alsó szinten leképezés utáni ρ ábrázoló elemek halmazán
működő S program megfelelő halmazait ábrázoljuk.

3.1. ADT

Absztrakt adattípus (abstract data type) a típus-specifikáció (közvetett) megadására szol-
gál. Nem szükséges, hogy egy konkrét programozási környezetben ábrázoljuk a típusérté-
keket, alapvetően matematikai eszközökkel is megadható. ADT leírás esetén elég a műve-
letek programjainak csak a hatását ismerni.

Absztrakt a programozási környezet számára és a megoldandó feladat számára, amely
adattípust a későbbiekben egy kiváltó (konkrét) típussal helyettesítünk.

Az ADT megközelítés a típus szemléletének ez a legmagasabb szintje semmilyen fel-
tételezéssel nem élünk a típus szerkezetéről, megvalósításáról. Ahogyan az előzőekben
említve van, a specifikációban csak tisztán matematikai fogalmakat használhatunk. (Ez a
szint nem a formalizálás mértékétől absztrakt, lehet informálisan is gondolkodni, beszélni
ADT szinten!)

Az ADT leírás részei:

• típusérték-halmaz (milyen lehetséges értékek vannak)
• műveletek (mint leképezések, ahogyan azt az előző ábrán láthattuk)
• megszorítások (értelmezési tartományok, nem minden művelet értelmezhető az

összes lehetséges értéken. Gondoljunk a nullával való osztásra.)
• axiómák, amelyek biztosítják a típus és műveleteinek helyes felépítését és működé-

sét. (Az axiómák alapigazságok, amiknek mindig teljesülnie kell.)

Kérdések, amelyeket a specifikáció során vizsgálni kell, vagy vizsgálni lehet:

• helyesség (ellentmondás-mentesség, az egyes axiómák közötti ellentmondásokat meg
kell szüntetni)
• teljesség a leírt axiómák és specifikációk hiánytalanul leírják a típus és műveleteinek

működését. nehéz bizonyítani)
• redundancia (ugyanazt a tulajdonságot, axiómát nem fogalmaztuk-e meg többféle-

képpen, többször. vizsgálata a működés szempontjából nem fontos)

Például egy ADT funkcionális specifikációja az alábbiakból áll:

• típusérték-halmaz
• műveletek
• állapottér
• paramétertér
• előfeltétel
• utófeltétel

A funkcionális specifikációhoz a típus matematikai reprezentációját használjuk. Ez sem-
milyen módon nem kell, hogy utaljon a típus ábrázolási módjának megválasztására a meg-
valósítás során, teljesen más is lehet, pusztán matematikai eszközöket használunk. (Fon-
tos, hogy leggyakrabban nem így fogjuk ténylegesen megvalósítani, implementálni.)

50

3.2. ADS

Az absztrakt adatszerkezet (abstract data structure) során a típus alapvető – absztrakt –
szerkezetét egy irányított gráffal ábrázoljuk. A gráfban a csúcsok az adatelemek az élek
a rákövetkezési relációk. Tehát adatelemek valamilyen struktúra illetve reláció szerinti
reprezentációját adja meg egy gráf.1

ADS szinten is lehet ábrázolni a műveleteket, mégpedig a műveletek hatása szemlél-
tethető az ADS-gráf változásaival. Egy új adatelem elhelyezése a gráfban növeli a csomó-
pontok számát, valamint új éleket adunk hozzá.

3.3. Adatszerkezetek osztályozása

Az adatszerkezetek osztályozásához legelőbb definiáljuk az adatszerkezet fogalmát a kö-
vetkezőképpen: Az adatszerkezet egy 〈A, R〉 rendezett pár, ahol az A az adatelemek véges
halmaza, valamint az R az A halmazon értelmezett valamilyen reláció (A×A). Itt a reláció
absztrakt fogalomként értendő mindösszesen két adatelem valamely kapcsolatát jelenti.
(Tehát nem a hagyományos értelemben megszokott kisebb < vagy nagyobb > összefüggés-
ről van szó, hiszen általános esetben ezt nem is feltétlen tudjuk definiálni két adatelem
között. Logikai kapcsolatot jelent két adatelem között. Ezt a logikai kapcsolatot jelöljük az
ADS gráf éleivel.)

Az osztályozás többféleképpen lehetséges az adatszerkezetekre nézve:

Az adatelemek típusa szerint.

• Homogén: Az adatszerkezet valamennyi eleme azonos típusú. Például mindegyik
szám.
• Heterogén: Az adatszerkezet elemei különböző típusúak lehetnek. Vegyesen szere-

pelnek különböző típusok, például számok és karakterek.

Az elemek közti R reláció szerint.

• Struktúra nélküli. Az egyes adatelemek között nincs kapcsolat. Nem beszélhetünk
az elemek sorrendjéről (pl. halmaz). (Gyakorlatilag a reláció nem határoz meg vi-
szonyt az elemek között, minden egyes elem egyenrangú, nincs elé-/alárendeltség.)
• Asszociatív címzésű. Az adatelemek között lényegi kapcsolat nincs, ugyanakkor az

adatszerkezet elemei tartalmuk alapján címezhetőek, azaz egy adatelem megtalálá-
sához a tartalmával képzett címzéssel megtalálható a szerkezetben.
• Szekvenciális. A szekvenciális adatszerkezet olyan 〈A, R〉 rendezett pár, amelynél

az R reláció tranzitív lezártja teljes rendezési reláció. Minden egyes adatelempárról
megmondható hogy egymáshoz képest milyen viszonyban állnak. Ez vagy közvetle-
nül történik, mert az R értelmezett a kiválasztott páron, vagy pedig tranzitíven2 A
szekvenciális adatszerkezetben az egyes adatelemek egymás után helyezkednek el
logikai módon, vagyis ez a fizikai reprezentációt nem befolyásolja. Az adatok között
egy-egy jellegű a kapcsolat: minden adatelem csak egy helyről érhető el, és az adott
elemről csak egy másik látható. Az egyes adatelemekről a szomszédjaik megállapít-
hatóak. Két kitüntetett elemről beszélhetünk, ami az első és az utolsó.

1A gráf egy olyan konstrukció, amelyet csomópontok és az azokat összekötő vonalak alkotják. Ez utóbbiakat
hívjuk éleknek. Egy gráf irányított, ha az éleknek van irány, tehát az összekötő vonalak nyilak. Irányított
gráfban az irányítás rákövetkezőségeket definiál.

2Tranzitivitás: Ha a relációban áll b-vel és b relációban áll c-vel, akkor a is relációban áll c-vel.

51

• Hierarchikus. A hierarchikus adatszerkezet olyan 〈A, R〉 rendezett pár, amely-
nél van egy kitüntetett r elem, ez a gyökérelem úgy, hogy r nem lehet végpont 3.
∀a ∈ A \ {r} elem egyszer és csak egyszer végpont, vagyis minden r-en kívüli elem a
relációban egyszer lehet végpont. ∀a ∈ A \ {r} elem r-ből elérhető, azaz minden elem
elérhető az r-ből a relációk követésével. Az adatelemek között egy-sok jellegű kapcso-
lat áll fenn. Minden adatelem csak egy helyről érhető el (egyetlen megelőzője van), de
egy adott elemből akárhány adatelem látható (akárhány rákövetkezője lehet. Ilyen
például a fa, összetett lista, B-fa.).
• Hálós. A hálós adatszerkezet olyan 〈A, R〉 rendezett pár, amelynél az R relációra

semmilyen kikötés nincs. Az adatelemek között a kapcsolat sok-sok jellegű: bárme-
lyik adatelemhez több helyről is eljuthatunk, és bármelyik adatelemtől elvileg több
irányban is mehetünk tovább (Például: általános gráf, irányított gráf).

Az adatelemek száma szerint.

• Statikus. Egy statikus adatszerkezetet rögzített számú adatelem alkot. A feldolgo-
zás folyamán az adatelemek csak értéküket változtathatják, de maga a szerkezet, az
abban szereplő elemek száma változatlan. Következésképpen az adatszerkezetnek a
memóriában elfoglalt helye változatlan a feldolgozás során.
• Dinamikus. Egy dinamikus adatszerkezetben az adatelemek száma egy adott pilla-

natban véges ugyan, de a feldolgozás során tetszőlegesen változhat. Dinamikus adat-
szerkezetek lehetnek rekurzív vagy nem-rekurzív, lineáris vagy nem-lineáris struk-
túrák. Egy adatszerkezet rekurzív, ha definíciója saját magára való hivatkozást tar-
talmaz. Ha egyetlen ilyen hivatkozás van, akkor lineáris a struktúra, ha több, akkor
nem-lineáris. Mivel a dinamikus adatszerkezetek feldolgozása során az adatelemek
száma változik, egy-egy elemnek területet kell lefoglalnunk, illetve a lefoglalt terü-
leteket fel kell szabadítanunk, így felvetődik a tárolóhely újrahasznosításának prob-
lémája.

3A végpont gyakorlatilag itt a reláció jobboldalát jelenti, azaz ha végpont akkor a relációban szereplő két
elem közül a rákövetkezőről van szó. Például az a → b esetén a b a végpont és így a rákövetkező elem.
Értelemszerűen az a a megelőző elem. Az a-ból elérhető a b.

52

4. fejezet

Adatszerkezetek

4.1. Verem

A Verem adatszerkezet olyan, mint egy szűk verem. Belekerülnek sorban az elemek. Az
első legalulra esik, a második rá, és így tovább. „Kimászni” mindig a legfelső tud, és ha
ránézünk felülről, akkor mindig a legfelsőt látjuk csak.

Kutya
Farkas
Medve

Oroszlán
Nyúl
Sün

4.1. ábra. Verem példa

Az előző példában a legelsőként a Kutya kerül ki a veremből, amiután a Farkas fog
látszani a tetején. Legelsőként a Sün került bele és a végén jön ki. A Verem (Stack) egy
LIFO adatstruktúra. (Last In, First Out)

4.1.1. ADT leírás

Az alábbi módon lehet definiálni: A V verem E alaptípus felett jön létre. Műveletei:

• empty: −→ V (Üres verem létrehozása.)
• isEmpty: V → L (Állapot lekérdezése: üres-e.)
• push: V × E → V (Új elem beszúrása.)
• pop: V → V × E (Legfelső elem kivétele a veremből.)
• top: V → E (Legfelső elem lekérdezése.)

Az egyes műveleteknél szerepel, hogy milyen bemenettel rendelkeznek és milyen típusú
kimenetet állítanak elő. Megszorítás, hogy a pop és top műveletek értelmezési tartománya:
V \ {empty}, azaz üres veremből nem lehet kivenni és nem lehet megnézni, hogy mi van a
tetején.

A V jelenti a vermet mint típust. E típusú elemek kerülhetnek a verembe és a fentiek-
ben használt L jelenti a logikai típust.

53

A verem műveletekhez tartozó axiómák, amelyeknek logikai kifejezésként minden
esetben igaznak kell lenniük:

• isEmpty(empty) – Egy üresnek létrehozott verem legyen üres.
• isEmpty(v) → v = empty – Ha egy v veremre a lekérdezés, hogy üres-e igaz, abból

következik, hogy a v az „üresverem”.
• ¬ isempty(push(v,e)) – Ha beteszünk egy elemet egy v verembe, az nem lehet üres

ezután.
• pop(push(v,e)) = (v,e) – Ha beteszünk egy elemet egy v verembe, majd kivesszük akkor

az eredeti vermet és elemet kell kapnunk.
• push(pop(v)) = v – Ha kiveszünk egy elemet a veremből, majd visszatesszük az ere-

deti v vermet kell kapnunk.
• top(push(v,e)) = e – Ha beteszünk egy elemet a verembe, majd megnézzük a verem

tetjét a betett elemet kell látnunk.

4.1.2. ADT funkcionális leírás

Matematikai reprezentáció, miszerint a verem rendezett párok halmaza, ahol az első kom-
ponens a veremben elhelyezett (push) érték, a második komponens a verembe helyezés
(push) időpontja. Megszorítás (invariáns): az időértékek különbözőek. Ez egy jól kezelhető
matematikai modell, azonban nem így implementáljuk, hiszen aligha találni bonyolultabb
implementációs módszert.

A modellhez tartozó függvényekre el kell készíteni a specifikációt, ami a pop esetén az
alábbi:

• A = V × E – állapottér (v és e lesz egy-egy aktuális érték)
• B = V – paramétertér (v′)
• Q = (v = v′ ∧ v′ 6= 0) – előfeltétel, miszerint a bemeneti verem az nem üres.
• R = ((v = v′ \ {(ej , tj)}) ∧ (e = ej) ∧((ej , tj) ∈ v′) ∧ (∀i((ei, ti) ∈ v′ ∧ i 6= j) : tj > ti))

– utófeltétel, a kifejezés szakaszai az alábbiak: A kimenet v és e, ahol a v verem az
eredeti verem, kivéve az ej , tj párt; és az e az ej . Teljesülni kell annak, hogy az ej

és tj pár eredetileg benne volt a veremben, valamint minden más ei és ti párra igaz,
hogy az időindex az kisebb mint tj .

4.1.3. Statikus verem reprezentáció

A statikus reprezentáció esetén a veremben tárolható elemek maximális száma rögzített,
így például használhatunk egy fix méretű tömböt, ami tömbbe fogjuk a verembe betett
elemeket elhelyezni. (Természetesen folyamatosan ügyelni kell arra, hogy a behelyezés és
kivétel a verem szabályoknak megfelelő legyen.) A következő egységei lesznek a Verem
típusnak a reprezentáción belül:

• Max mező, a verem maximális méretét határozza meg, emiatt lesz egy újabb függ-
vény, ami lekérdezi, hogy tele van-e a verem.
• Max méretű tömb, amiben a verembe kerülő elemeket tároljuk.
• Head változó, ami azt mutatja, hogy hol a verem teteje.

A következő szakaszban egy Java nyelven megvalósított statikus verem forráskódját
nézzük meg. Vegyük észre, hogy a Verem osztály megvalósításánál a reprezentációhoz tar-
tozó speciális mezők nem láthatóak az osztályon kívül senki számára. Korábban volt szó

54

arról, hogy egy osztály felelős a saját állapotáért és annak változásért. Egy verem osz-
tálynak a verem axiómák által támasztott követelményeknek kell megfelelniük, amit ér-
vényes állapotokat jelentenek. A megvalósított műveletek ezeket az érvényes állapotokat
fenntartják. Azonban ha kívülről beavatkoznánk és megváltoztatnánk például az index ér-
tékét, akkor helytelen állapotba kerülne az objektum, a verem. Ezen hibák kiküszöbölését
segítik a változók láthatóságának helyes beállításai.

Implementáció statikusan

Az első kódszakaszban elsőként a Verem osztály mezői kerülnek deklarálásra, az előzőek-
nek megfelelően egy int típusú head nevű változó az indexelésre, valamint egy elemek

nevű változó, ami a verembe tehető int értékeket tartalmazó tömb lesz. Az indexelő vál-
tozó a verem reprezentációjára használt tömb azon indexét tartalmazza, ahova következő
betétel során elem kerülhet. (Tehát a legelső szabad pozíciót. A megvalósításnál természe-
tesen lehetséges, hogy a legfelső elfoglalt elemet indexeljük, csak a megfelelő függvények-
ben erre figyelni kell.)

A meződeklarációk után a konstruktor található, ami az empty() üres verem létre-
hozására, illetve a verem kiürítésére használatos függvény. Amikor üres a verem a head

index nulla.

4.2. ábra. Statikus verem kód 1. rész

A push() függvény egy elemet betesz a verembe. A betétel csak akkor történhet meg
ha nincs még tele a verem. Erre van a feltétel vizsgálat, ami hiba esetén a konzolra kiírja
a probléma forrását. Ha azonban nincs tele a verem, akkor a tömbbe beírhatjuk a betenni
kívánt elem értékét, mégpedig a head-edik pozícióba, mivel az jelenti a következő szabad
helyet a tömbben. A head index növelése után készen is van a betétel.

A top() függvény a legfelső elem értékével tér vissza. A legfelső tényleges elem a
head-1-edik pozícióban van, mivel a head a legelső szabad pozíciót tárolja. Amikor üres

55

veremből kérdezzük le a legfelső elemez, akkor is ad vissza a függvény egy értéket, ami
a −1. Az érték-visszaadásra kényszerből kerül sor, az efféle hibakezelés rossz megoldás,
mivel nem tudunk különbséget tenni a hiba és a −1 értéket legfelső elemként tartalmazó
verem teteje között. (Egyelőre nincsen jobb eszköz az ismereteink között, amivel lehetne
orvosolni ezt a problémát.)

4.3. ábra. Statikus verem kód 2. rész

A pop() függvény hasonló a top()-hoz. A különbség csupán annyi, hogy a head index
csökkentésére is szükség van, hiszen kivesszük a veremből az értéket. Megfigyelhető, hogy
az érték tényleges eltüntetésére nem kerül sor. Erre azonban nincsen szükség, hiszen a
tömbben lehet bármi, minket csak az általunk nyilvántartott és betett értékek érdekelnek.
Amennyiben kiveszünk a veremből, akkor az a pozíció a szabad pozíciók közé fog tartozni
a veremben használt tömbben. Ugyanis ha ezen után beteszünk valamit a verembe, az
pont a kivett érték helyére kerül. (A létrehozott változókban is van érték, a memóriacella
aktuális értéke, ami számunkra nem hordoz hasznos információt, gyakorlatilag szemét.
Amikor létrejön a tömb az egyes pozíciókban már eleve lesznek értékek, amikkel ugyanúgy
nem törődünk mint a kivettel.)

Az utolsó szakaszban az üresség és magteltség vizsgálatára kerül sor. Üres a verem, ha
a legelső szabad pozíciót a tömb legelső indexe. Tele a verem, ha a legelső szabad pozíció
kiindexel a veremből. (Megjegyzés: egy n hosszú verem 0 és n− 1 között indexelhető.)

56

4.4. ábra. Statikus verem kód 3. rész

4.5. ábra. Statikus verem kód 4. rész

4.1.4. Dinamikus verem reprezentáció

Dinamikus reprezentáció esetén nem tömbben tároljuk az értékeket, hanem erre a célra
speciálisan létrehozott Elem osztályokban, amik egy láncolatnak lesznek a csomópontjai.
Az Elem osztály tartalmaz egy értéket, valamint egy referenciát egy következő elemre, így
lehet majd tárolni, hogy „mi van a veremben egy érték alatt”. A Head referencia tárolja a
verem elejét, ami ha nem mutat érvényes elemre, akkor üres a verem. A dinamikus repre-
zentáció esetén tetszőleges számú elem elfér a veremben. (Természetesen a memóriakorlát
továbbra is él.)

57

Implementáció dinamikusan

Az első szakaszban a dinamikus verem belső osztálya a Node található meg legelsőként.
A Node tartalmazza egy aktuális csomópont értékét, valamint egy referenciát a következő
Node-ra. A gyors létrehozás érdekében egy két-paraméteres konstruktor a mezőknek ér-
tékeket ad. A dinamikus veremben egy head nevű mező fogja a verem tetejét (azon végét,
ahonnan kivenni és ahova betenni lehet). A head egy Node típusú referencia, ami a verem
létrehozáskor null, azaz nem referál sehova sem. Ez egyben az üresség feltétele is. Akkor
és csak akkor üres a verem ha head null.

4.6. ábra. Dinamikus verem kód 1. rész

Elem betételekor egy új Node létrehozására van szükség. Az új Node rákövetkezője
az aktuális head, így történik a lánc fűzése, valamint az értéke a betenni kívánt érték.
Természetesen az újonnan létrehozott Node lesz a verem új teteje, ezt az értékadással va-
lósítjuk meg. A pop() függvény, hasonlóan a statikus esethez egy vizsgálattal kezdődik.
Ha nem üres a verem, akkor eltároljuk a legfelső Node-ban található értéket egy ideig-
lenes változóba, majd lefűzzük a legfelső csomópontot a veremről, azaz a verem új teteje
a első csomópontot követő Node lesz. Végül visszatér az eltárolt értékkel. Az eltárolásra
azért van szüksége, mert a fűzésnél elveszítjük az egyetlen referenciát a legfelső csomó-
pontra, amiben a hasznos érték található. (Viszont a referenciák elvesztésére is szükség
van, mert ebből tudja a Java környezet, hogy már nem használjuk azt a csomópontot, így
felszabadíthatja a hozzátartozó memóriaterületet.

A top() hasonló a pop()-hoz, éppen csak nem történik meg a lefűzés.

58

4.7. ábra. Dinamikus verem kód 2. rész

4.8. ábra. Dinamikus verem kód 3. rész

4.2. Sor

A Sor adatszerkezet olyan, mint egy várakozás sor, például a postán. Belekerülnek sorban
az elemek. Az első legelőre, a második mögé az elsőnek, és így tovább. (Az alábbi jelölésben
a sor első elemét dőlt, az sorban következő szabad helyet pedig aláhúzott kiemeléssel van
feltüntetve.)

20 30 2 1 0 3 _

Mindig a legelső tud kijönni, tehát a legrégebben bekerül elem. Ez az előző példában
a 20. Ránézvén a soron következő elemet láthatjuk mint első elem. A következő bekerülő
elem a 3 mögé fog kerülni. A Sor (Queue) egy FIFO adatstruktúra. (First In, First Out)

59

4.2.1. ADT Axiomatikus leírás

A Sor ADT axiomatikus leírása: Az alábbi módon lehet definiálni: A S sor E alaptípus
felett jön létre. Műveletei:

• Empty: −→ S (az üres sor konstruktor – létrehozás)
• IsEmpty: S → L (üres a sor?)
• In: S × E → S (elem betétele a sorba)
• Out: S → S × E (elem kivétele a sorból)
• First: S → E (első elem lekérdezése)

Az egyes műveleteknél szerepel, hogy milyen bemenettel rendelkeznek és milyen típusú
kimenetet állítanak elő. Megszorítás, hogy az Out és First értelmezési tartománya: S \
{Empty} azaz üres sorból nem lehet kivenni és nem lehet megnézni, hogy mi van az elején.

4.2.2. Statikus sor reprezentáció

A statikus reprezentáció esetén a sorban tárolható elemek maximális száma rögzített, így
például a veremhez hasonlóan használhatunk egy fix méretű tömböt. A következő egységei
lesznek a Sor típusnak a reprezentáción belül:

• Max mező, a sor maximális méretét határozza meg, emiatt lesz egy újabb függvény,
ami lekérdezi, hogy tele van-e a verem.
• Max méretű tömb, amiben a sorba kerülő elemeket tároljuk.
• Head változó, ami azt mutatja, hogy hol a sor eleje. head ∈ [1, max]

• Tail változó, ami azt mutatja, hogy hol a sor vége, vagyis az első üres helyet tail ∈
[1, max]

Nyilvánvalóan akkor van ténylegesen tele a a sor, ha a statikus reprezentációban hasz-
nált tömb esetén nincs már szabad pozíció a tömbben. Tegyük fel az előzőekben leírt példát
kiindulásnak. Ha kivesszük az első két elemet és továbbiakat teszünk be a végén, az aláb-
biakat kapjuk.

_ 2 1 0 3 9 10 5

Ekkor láthatóan nincs tele teljesen a tömb, ugyanakkor a betételnél kifutunk a tömbből.
Ezt úgy tudjuk orvosolni, ha a tömb lehető legjobb kihasználtsága érdekében körkörösen
fogjuk használni, azaz ha a végén kifut egy index, azt beléptetjük az elején. Tehát egy
újabb elem beszúrása az első tömbpozícióba fog történni az alábbi módon:

123 _ 2 1 0 3 9 10 5

Ezek után pusztán egyetlen problémát kell megoldani. Ugyanis ha beszúrunk még egy
elemet, akkor:

123 321 2 1 0 3 9 10 5

Itt a Head és a Tail indexek pontosan egyeznek, tehát azt mondhatjuk, hogy a tömb tele
van, ha a Head és a Tail ugyanazt az értéket mutatja. (Emlékeztetőül: a Head a soronkö-
vetkező elem indexe, a Tail pedig az első szabad pozíció.) Ugyanakkor, ha mindent kive-
szünk a sorból:

_

60

A sor üres az első szabad pozíció a példát folytatva a harmadik, ugyanakkor a következő
kivehető elem is a harmadik az indexek szerint. Ebből azt a következtetés vonjuk le, hogy
a sor üres, ha a Head és a Tail ugyanazt az értéket tartalmazza.

Így a Head és Tail változó egyenlősége esetén kétféle esemény fordulhat elő, amelyet
nem tudunk megkülönböztetni. A probléma megoldására több lehetőség áll rendelkezésre:

• Vezessünk be még egy jelzőt a reprezentációba, ami mutatja, hogy a sor üres-e, a neve
legyen empt. Kezdetben biztosan igaz, később vizsgáljuk, és megfelelően állítjuk. (Ha
kiveszünk akkor kiürülhet a sor, egyéb esetben nem.)
• Vezessünk be még egy attribútumot a reprezentációba, ami mutatja, hogy hány elem

van a sorban. Ha a számláló az a maximális betehető értékek számával egyenlő,
akkor tele van a sor, különben biztosa nem.

Implementáció statikusan

A kód első részében az előzőeknek megfelelően a változók deklarációja történik, valamint
az empty() konstruktor elkészítése. Üres sor létrejöttekor a head és tail változók az
elemek tömb első pozíciójára vagyis a nulla indexre mutassanak, valamint kezdetben a
sor üres. Az ürességet és teliséget lekérdező függvény pedig figyelembe veszi az ürességet
jelző logikai változót.

4.9. ábra. Statikus sor kód 1. rész

A következő függvény a sorban elemet elhelyező In() függvény. Az elhelyezéskor az
eddigieknek megfelelően ellenőrizzük, hogy a sor nincs-e tele. Az elem behelyezésekor biz-
tosan nemüres sort fogunk kapni. Az elem elhelyezése a tail-edik indexen történik, mivel
az jelenti a következő szabad pozíciót. Ezek után történik a tail index növelés, valamint,
ha a növelést követően kiindexel a tömbből akkor a körkörösség értelmében a nulladik
pozícióra fog mutatni.

A következő függvény a sorból az első elemet kivevő Out() függvény. A visszaadandó
értéket egy ideiglenes változóba kimásoljuk, mivel a return utasítás előtt kell minden

61

4.10. ábra. Statikus sor kód 2. rész

akciót végrehajtani. (Az index megváltoztatása előtt, könnyebb az aktuális visszaadandó
értéket megtalálni.) Az érték megjegyzését követően hasonlóan az In() függvényhez az
index körkörös léptetése történik meg. Majd annak a vizsgálata következik, hogy a kivétel
után üressé vált-e a sor.

4.11. ábra. Statikus sor kód 3. rész

A legutolsó függvény a First, amely a head-edik pozícióban található értékkel tér
vissza.

4.2.3. Dinamikus sor reprezentáció

Dinamikus reprezentáció esetén a veremhez hasonlóan nem tömbben tároljuk az értéke-
ket, hanem erre a célra speciálisan létrehozott Elem osztályokban, amik egy láncolatnak
lesznek a csomópontjai. Az Elem osztály tartalmaz egy értéket, valamint egy referenciát
egy következő elemre, így lehet majd tárolni, hogy „mi van a sorban egy érték után, ki kö-
vetkezik”. A head referencia tárolja a sor elejét, ami ha nem mutat érvényes elemre, akkor

62

4.12. ábra. Statikus sor kód 4. rész

üres a sor. A tail referencia mutatja a sor végét, ahova az új elemek fognak kerülni.

Implementáció dinamikusan

A kód eleje a dinamikus veremhez képest mindösszesen a tail mező deklarációjával egé-
szült ki. A dinamikus sor belső osztálya a Node. Tartalmazza egy aktuális csomópont ér-
tékét, valamint egy referenciát a következő Node-ra. A dinamikus sorban egy head nevű
mező jelzi a sor elejét. A head egy Node típusú referencia, ami a verem létrehozáskor
null, azaz nem referál sehova sem. Ez lesz egyben az üresség feltétele is. Akkor és csak
akkor üres a verem ha head egy null referencia. Szintén referencia a tail, ami a sor
másik végét jelenti, ahova az új elemek érkezéskor bekerülnek. (Természetesen üres sor
esetén a tail is null.

A sorban új elem betételekor az első feladat az új csomópont példányosítása. Függet-
lenül a sor korábbi állapotától egy új csomópontot senki sem fogja követni és az értéke a
beteendő érték. Amennyiben a sor üres volt a betevés előtt a head referencia is az újonnan
betett most egyetlen csomópontra kell, hogy mutasson. Ellenkező esetben ezt nem szabad
megtenni, azonban helyette fűzni kell a meglévő láncot. Azaz a tail által mutatott cso-
mópont következőjeként kell megtenni az új elemet. Utolsó lépésként a beszúrt elemet a
tail-be tesszük, mivel az a vége a sornak.

Az első elem kivétele esetén megjegyezzük a visszatérési értéket, majd a head-et lép-
tetjük, aminek az lesz a következménye, hogy az eddigi head csomópontra vonatkozó refe-
renciánkat elveszítjük és a következő elem lesz a sor eleje. A sor kiürülése esetén a tail-t
is nullra kell állítani, mivel az a specifikációnkban szerepelt. (A head automatikusn null

lesz, mivel az utolsó csomópont rákövetkezője a csomópont példányosítása során null au-
tomatikusan, valamint az utolsó csomópontot biztosan nem követi semmi sem, tehát a
következő csomópontot jelző mezőt nem állítottuk el.) Legvégül visszatér a függvény az
elmentett értékkel.

A First függvény a head referencia által mutatott csomópontban tárolt értékkel tér
vissza.

4.3. Lista, Láncolt Lista

4.3.1. Szekvenciális adatszerkezet

A szekvenciális adatszerkezet olyan 〈A, R〉 rendezett pár, amelynél az R reláció tranzitív
lezártja teljes rendezési reláció. A szekvenciális adatszerkezetben az egyes adatelemek

63

4.13. ábra. Dinamikus sor kód 1. rész

4.14. ábra. Dinamikus sor kód 2. rész

egymás után helyezkednek el. Az adatok között egy-egy jellegű a kapcsolat: minden adat-
elem csak egy helyről érhető el, és az adott elemről csak egy másik látható. Két kitüntetett
elem az első és az utolsó.

Tipikus és legegyszerűbb példa a lista, ahol gondolhatunk egy tennivaló listára, amely-
nek tételei vannak, felvehetünk és törölhetünk tetszőlegeset közülük.

64

4.15. ábra. Dinamikus sor kód 3. rész

4.16. ábra. Dinamikus sor kód 4. rész

4.3.2. Lista adatszerkezet

Homogén adatszerkezet, azaz azonos típusú véges adatelemek sorozata. Lehetséges je-
lölése a L = (a1, a2, . . . an), amennyiben üres listáról beszélünk, úgy az elemszám nulla,
n = 0, vagyis L = ().

A láncolt lista egy olyan adatszerkezet, amelynek minden eleme tartalmaz egy (vagy
több) mutatót (hivatkozást) egy másik, ugyanolyan típusú adatelemre, ami rákövetkező-
séget jelenti a lista esetén. A lánc első elemének a címét a lista feje tartalmazza. A listafej
nem tartalmaz információs részt, azaz tényleges listabeli adatot. A lánc végét az jelzi, hogy
az utolsó elemben a rákövetkező elem mutatója üres.

Kétszeresen láncolt esetben vissza irányban is vannak hivatkozások, tehát a lista egy
eleme mindkét szomszédjára vonatkozóan tartalmaz referenciát, továbbá nemcsak a feje-
lem, hanem a végelem is külön hivatkozással kerül eltárolásra.

4.3.3. Absztrakciós szint

Végiglépkedhetünk a lista elemein, beszúrhatunk és törölhetünk tetszés szerint. Az ábrán
egy egyirányú láncolású lista található, ahol a téglalalp a listafej, az ellipszisek az értékes

65

adatot is tartalmazó láncszemek.

4.17. ábra. Lista intuitív ADS/ADT

4.3.4. Statikus reprezentáció

Statikus reprezentáció esetén egy táblázatot használunk, amiben érték, index párokat
helyezünk el. Az indexek jelentik a rákövetkezőségeket, tehát ez fogja a lista elemei kö-
zötti ligokai sorrendet kialakítani. (A táblázatban elfogalalt pozíció és rákövetkezőség nem
azonos a listában elfoglalt pozícióval és rákövetkezőséggel.) Tudjuk, hogy melyik az első
értéket tartalmazó pozíció, valamint az első szabad helyet tartalmazó pozíció. A szabad he-
lyekből is listát képezünk. Anna kaz elemnek amelyiknek nincs rákövetkezője, az a lista
vége, illetve a szabad helyek listájának vége. Ennek a megoldásnak az az előnye, hogy
a beszúrások és törlések esetén nem kell ügyelünk a lista táblázatbeli folytonosságára,
így hatékonyabb (gyorsabb) és rendelkezésre álló memóriát maradéktalanul kihasználó
megoldást kapunk.

8
6

13
4 5

7
1 7

10
8 0

19
0

Elem: 2 SzH: 3

1 2 3 4 5 6 7 8

4.18. ábra. Lista statikus reprezentáció

4.3.5. Dinamikus reprezentáció

Az elemek láncolását használjuk az első dinamikus reprezentációban, ami az egirányú
láncolás esetén a sor esetén megismert módszerrel gyakorlatilag azonos. Minden elem
referenciát tartalmaz a rákövetkezőjére. A kétirányú láncolás az alábbi ábra mutatja be.

null

4.19. ábra. Lista dinamikus reprezentáció – egyirányú láncolás

Az egirányú láncoláshoz képest a különbség az, hogy mindkét szomszédjára tartalmaz
referenciát egy csomópont.

66

null

null

4.20. ábra. Lista dinamikus reprezentáció – kétirányú láncolás

4.3.6. Kétirányú láncolt lista megvalósítása

A lista állapotváltozói:

• Head: referencia az első elemre. Ami null, ha üres a lista.
• Tail: referencia az utolsó elemre. Ami null, ha üres a lista.
• Akt: egy kiválasztott elemre mutat, lehet léptetni előre és hátra. Amikor üres a lista

akkor null az értéke.

Az Akt segítségével tudjuk a listában tárolt elemeket elérni, lekérdezni, megváltoztatni.
Ezt a referenciát a megvalósított műveleteken keresztül fogjuk befolyásolni, a lista aktu-
álisan vizsgált elemét fogja jelenteni.

Műveletek

• insertFirst(E): az E elemet beszúrja a lista elejére.
• insertLast(E): az E elemet beszúrja a lista végére.
• removeFirst(): az első elemet törli a listából.
• removeLast(): az utolsó elemet törli a listából.
• getAktValue(): az aktuális elem lekérdezése.
• setAktValue(E): az aktuális elem értékének megváltoztatása.
• stepFirst(): az aktuális elemet az elsőre lépteti.
• stepLast(): az aktuális elemet az utolsóra lépteti.
• stepForward(): az aktuális elemet Tail felé lépteti eggyel.
• stepBackward(): az aktuális elemet Head felé lépteti eggyel.
• insertBefore(E): az E elemet beszúrja az aktuális elé.
• insertAfter(E): az E elemet beszúrja az aktuális mögé.
• removeAkt(): az első elemet törli a listából.
• isLast(): lekérdezi, hogy az aktuális a lista végén van-e.
• isFirst(): lekérdezi, hogy az aktuális a lista elején van-e.
• isEmpty: lekérdezi, hogy üres-e a lista.

A műveletek leírása pseudókódban

A konstruktor, ami létrehoz egy üres listát, az össze referencia értékét átállítja null-ra,
ami üres listát fog eredményezni.

Konstruktor
Head←null
Tail←null

67

Akt←null

Akkor üres a lista, ha fej és vég referenciák null értékűek.

isEmpty()

return Head==Tail==null

Az aktuálist jelentő refrencia értékére vonatkozó lekérdezések.

isLast()

return Akt==Tail

isFirst()

return Akt==Head

Az aktuális referencia által mutatott listaelem értékének lekérdezése és beállítása.

getAkt()

HA Akt 6=null AKKOR return Akt.Ertek

setAkt(ujertek)

HA Akt 6=null AKKOR Akt.Ertek←ujertek

Az aktuális referencia léptetésének műveletei:

stepForward()

HA Akt 6=null ÉS ¬isLast() AKKOR Akt←Akt.Kovetkezo

stepBackward()

HA Akt 6=null ÉS ¬isFirst() AKKOR Akt←Akt.Elozo

stepLast()

Akt←Tail

stepFirst()

Akt←Head

A beszúrási műveleteket fokozatosan építjük fel, az egyes eseteket visszavezetve ko-
rábbi esetekre. Kezdjük azzal a függvénnyel, ami a lista elejére szúr be egy új adatot. A
beszúrás esetén mindenképpen létre kell hozni egy új csomópontot, aminek az értékét be
kell állítani. Mivel első elemként kerül beszúrásra ezért a megelőzője biztosan a null, a
rékövetkezője pedig az addigi Head. Azonban ha eredetileg üres volt a lista akkor a Head

és a Tail értékét kell az új csomópontra állítani, míg ha már tartalmazott már (legalább)
egy elemet, akkor a korábban első elemként tárol csomópont megelőzőjeként kell beállítani

68

az aktuálisan beszúrtat, továbbá az újonnan beszúrt lesz a Head.

insertFirst(ertek)

Akt←ujCsomopont←ÚJ Node

ujCsomopont.Ertek←ertek
ujCsomopont.Elozo←null
ujCsomopont.Kovetkezo←Head
HA isEmpty()

AKKOR

Head←Tail←ujCsomopont
KÜLÖNBEN

Head.Elozo←ujCsomopont

Head←ujCsomopont

Az utolsóként való beszúrást teljesen hasonlóan lehet megvalósítani, mint az elsőként
való beszúrást, azonban az üres listába való beszúrást az insertFirst() függvénnyel
oldjuk meg. (Itt a következőség és a megelőzőség felcserélődik az előző függvényhez ké-
pest.)

insertLast(ertek)

HA isEmpty() AKKOR insertFirst(ertek)

KÜLÖNBEN

Akt←ujCsomopont←ÚJ Node

ujCsomopont.Ertek←ertek
ujCsomopont.Elozo←Tail
ujCsomopont.Kovetkezo←null
Tail.Kovetkezo←ujCsomopont
Tail←ujCsomopont

Aktuális elem elé való beszúrás esetén, amennyiben az aktuális az első, vagy üres a
lista visszavezetjük az első beszúró függvényünkre. Az új csomópont létrehozása során
be kell állítanunk az adatot, az új csomópont megelőző és következő csomópontját. A kö-
vetkezője az aktuális maga, hiszen az aktuális elé szúrunk be. A megelőző az aktuális
megelőzője. Az aktuálist megelőző csomópont rákövetkezője lesz az újonnan létrehozott,
valamint az aktuálist megelőzőnek is be kell állítani az új csomópontot. Végül az új cso-
mópontot tesszük meg aktuálisnak.

insertBefore(ertek)

HA isEmpty() VAGY isFirst() AKKOR insertFirst(ertek)

KÜLÖNBEN

ujCsomopont←ÚJ Node

ujCsomopont.Ertek←ertek
ujCsomopont.Elozo←Akt.Elozo
ujCsomopont.Kovetkezo←Akt

Akt.Elozo.Kovetkezo←ujCsomopont
Akt.Elozo←ujCsomopont
Akt←ujCsomopont

A rákövetkezőként való beszúrást megpróbáljuk visszavezetni vagy üres listában való

69

beszúrásra, vagy utolsónak való beszúrásra. Ha egyik sem sikerül, akkor viszont bizto-
san tartalmaz annyi elemet a lista hogy meg tudjuk tenni azt, hogy léptetünk előre és
megelőzőként szúrjuk be így ekvivalens megoldást kapva. (Ez természetesen nem a legha-
tékonyabb, azonban ez a legegyszerűbb.)

insertAfter(ertek)

HA isEmpty() VAGY isLast() AKKOR insertLast(ertek)

KÜLÖNBEN

stepForward()

insertBefore(ertek)

A törlések esetén hasonlóan eseteket vizsgálunk. Elsőként a megfelelő beszúrás pár-
jaként az első elem kitörlését vizsgáljuk. Ilyenkor első feladat az aktuális elemre mutató
referencia léptetése. (Gondoljuk meg, hogy ez minden esetben működik-e. Mi történik, ha
az utolsó elemet töröljük a listából?) A Head referencia léptetése után, ha azt tapasztal-
juk, hogy a Head referencia értéke null, akkor a Tailt is nullra állítjuk, hiszen kiürül
a lista. Ellenkező esetben a Head által mutatott csomópont megelőzőjét állítjuk nullra,
hiszen annak már nincs tényleges megelőzője.

removeFirst()

HA ¬isEmpty() AKKOR

HA isFirst() AKKOR Akt←Head.Kovetkezo
Head←Head.Kovetkezo
HA Head6=null AKKOR

Head.Elozo←null

KÜLÖNBEN

Tail←null

Az utolsó elem törlése. Amennyiben ez az egyetlen elem a listában visszavezetjük az
előző esetre. Ellenkező esetben simán elvégezzük a törlést, nem kell törődnünk azzal, hogy
kiürül a lista, tehát csak az utolsót megelőző elem rákövetkezőkét állítjuk nullra, illetve
a Tail léptetjük eggyel visszafelé.

removeLast()

HA ¬isEmpty() AKKOR

HA Tail==Head AKKOR removeFirst(); VÉGE

HA isLast() AKKOR Akt←Tail.Elozo
Tail←Tail.Elozo
Tail.Kovetkezo←null

Aktuális elem törlése, amennyiben kiürülne a lista, vagy visszavezethető a korábbi
függvényekre meghívjuk azokat a törlő függvényeket. Ha ez nem lehetséges akkor a tör-
lendő elem biztosan közbülső elem, csakis a megelőző csomópont rákövetkezőjét és a rákö-
vetkező csomópont megelőzőjét kell rákövetkezőre és a megelőzőre állítani. (Azaz a meg-
előző rákövetkezője az aktuális rákövetkezője, illetve a rákövetkező megelőzője az aktuális
megelőzője kell, hogy legyen, ahhoz hogy az aktuális elemet kiszedjük a listából.) Továbbá
az aktuális elemet kell egy listabeli elemre állítani.

70

removeAkt()

HA ¬isEmpty() AKKOR

HA isFirst() AKKOR removeFirst(); VÉGE

HA isLast() AKKOR removeLast(); VÉGE

Akt.Elozo.Kovektkezo←Akt.Kovektezo
Akt.Kovetkezo.Elozo←Akt.Elozo

Akt←Akt.Kovetkezo

JAVA kódok

Az alábbiakban a pseudó kódnak megfelelő Java kódok kerülnek ismertetésre.

4.21. ábra. Láncolt lista kód 1. rész

4.4. Fa

Ebben a részfejezetben a hierarchikus adatszerkezetek egyikével a fával, azon belül is a
bináris keresési fával, majd a kupac adatszerkezettel ismerkedünk meg.

4.4.1. Hierarchikus adatszerkezetek

Definíció szerint a hierarchikus adatszerkezetek olyan 〈A, R〉 rendezett pár, amelynél van
egy kitüntetett r elem, ez a gyökérelem, úgy, hogy:

71

4.22. ábra. Láncolt lista kód 2. rész

4.23. ábra. Láncolt lista kód 3. rész

• r nem lehet végpont
• ∀a ∈ A \ {r} elem egyszer és csak egyszer végpont
• ∀a ∈ A \ {r} elem r-ből elérhető

Az adatelemek között egy-sok jellegű kapcsolat áll fenn. Minden adatelem csak egy
helyről érhető el, de egy adott elemből akárhány adatelem látható. A hierarchikus adat-
szerkezetek valamilyen értelemben a szekvenciális adatszerkezetek általánosításai. (Az
elérhetőség ebben az értelemben rákövetkezőségek sorozatát jelenti, valamint a végpont
egy a→ b jellegű kapcsolat esetén a b értéket jelöli, a kezdőpont pedig az a értéket.)

4.4.2. Fa adatszerkezet

A fa egy hierarchikus adatszerkezet, mely véges számú csomópontból áll, és két csomó-
pont között a kapcsolat egyirányú, az egyik a kezdőpont, a másik a végpont, valamint van

72

4.24. ábra. Láncolt lista kód 4. rész

a fának egy kitüntetett csomópontja, ami nem lehet végpont, ami a fa gyökere. Ezen kívül
az összes többi csomópont pontosan egyszer végpont. (Végpont és kezdőpont itt a rákövet-
kezőségi kapcsolatnál a rákövetkezőséget jelölő nyílra vonatkozik. Eszerint csak a gyökér
nem rákövetkezője semminek sem.)

Az előző definíció leírható egy rekurzióval is, azaz a fa definiálása során felhasználjuk
a fa definícióját.

• A fa vagy üres, vagy
• Van egy kitüntetett csomópontja, ez a gyökér.
• A gyökérhez 0 vagy több diszjunkt fa kapcsolódik. Ezek a gyökérhez tartozó részfák.

A fákkal kapcsolatos algoritmusok többsége rekurzív.

Elnevezések és további definíciók

• A fa csúcsai az adatelemeknek felelnek meg.
• Az élek az adatelemek egymás utáni sorrendjét határozzák meg – egy csomópontból

az azt követőbe húzott vonal egy él.
• A gyökérelem a fa első eleme, amelynek nincs megelőzője, az egyetlen csomópont

amibe nincs befutó él.
• Levélelem a fa azon eleme, amelynek nincs rákövetkezője, belőle nem fut ki él.
• Közbenső elem az összes többi adatelem, ami nem gyökér és nem levél.

73

4.25. ábra. Láncolt lista kód 5. rész

4.26. ábra. Láncolt lista kód 6. rész

• Minden közbenső elem egy részfa gyökereként tekinthető, így a fa részfákra bont-
ható: részfa: „t” részfája „a”-nak, ha az „a” gyökere, azaz közvetlen megelőző eleme
„t”-nek, vagy „t” részfája „a” valamely részfájának.
• Elágazásszám: közvetlen részfák száma, azt mondja meg, hogy egy adott csomópont-

ból hány él indul ki.
• A fa szintje a gyökértől való távolságot mutatja.

74

4.27. ábra. Láncolt lista kód 7. rész

– A gyökérelem a 0. szinten van.
– A gyökérelem rákövetkezői az 1. szinten, a rákövetkezők pedig a 2. szinten. . . .

• A fa szintjeinek száma a fa magassága, azaz a legnagyobb számú szint ha 5, akkor a
fa magassága 6.
• Csomópont foka: a csomóponthoz kapcsolt részfák száma, azt mutatja meg ez a szám,

hogy hány él indul ki az adott csomópontból.
• Fa foka: a fában található legnagyobb fokszám.
• Levél: 0 fokú csomópont, nincs belőle kimenő él.
• Elágazás (közbenső vagy átmenő csomópont): 6= 0 fokú csomópont.
• Szülő (ős): kapcsolat (él) kezdőpontja (csak a levelek nem szülők).
• Gyerek (leszármazott): kapcsolat (él) végpontja (csak a gyökér nem gyerek) Ugyan-

azon csomópont leszármazottai egymásnak testvérei. (Hasonlatosan a családfában
megszokott módon.)
• Szintszám: gyökértől mért távolság. A gyökér szintszáma 0. Ha egy csomópont szint-

száma n, akkor a hozzá kapcsolódó csomópontok szintszáma n + 1.
• Útvonal: az egymást követő élek sorozata. Minden levélelem a gyökértől pontosan

egy úton érhető el.
• Ág: az az útvonal, amely levélben végződik.
• Üresfa az a fa, amelyiknek egyetlen eleme sincs.
• Fa magassága: a levelekhez vezető utak közül a leghosszabb. Mindig eggyel nagyobb,

mint a legnagyobb szintszám.
• Minimális magasságú az a fa, amelynek a magassága az adott elemszám és fa-

fokszám esetén a lehető legkisebb. (Valójában ilyenkor minden szintre a maximális
elemszámú elemet építjük be.)
• Egy fát kiegyensúlyozottnak nevezünk, ha csomópontjai azonos fokúak, és minden

szintjén az egyes részfák magassága nem ingadozik többet egy szintnél. Például egy
kétfókú fa esetén a bal részfa és a jonn részfa magassága legfeljebb egyel tér el egy-
mástól tetszóleges csomópont esetén.
• Rendezett fa: ha az egy szülőhöz tartozó részfák sorrendje lényeges, azok rendezet-

75

tek. Ilyenkor valamilyen szabály határozza meg azt, hogy melyik részfában milyen
elemek helyezkedhetnek el.

2

6 4

5 7 0

Gyökér

LevélRészfa

0. szint

2. szint

1. szint

4.28. ábra. Fa elnevezések

4.4.3. Bináris fa

A bináris fa olyan fa, amelynek minde csúcspontjából maximum 2 részfa nyílik (azaz a fa
fokszáma 2). Ebből kifolyólag egy szülő mindig a gyerekek között (és fölött) helyezkedik el.
(Ennek a bejárásoknál lesz szerepe.) Egy bináris fa akkor tökéletesen kiegyensúlyozott, ha
minden elem bal-, illetve jobboldali részfájában az elemek száma legfeljebb eggyel tér el.

Teljesnek nevezünk egy bináris fát, ha minden közbenső elemének pontosan két le-
ágazása van és majdnem teljes: ha csak a levelek szintjén van esetleg hiány. (Tehát ha
lerajzoljuk, akkor a jobb szélén a legutolsó szinten hiányzik néhány levél.

Speciális bináris fák

Kiszámítási- vagy kifejezésfa. Korábban foglalkoztunk kifejezésekkel. Minden kifejezés a
kiértékeléshez szétbontható részkifejezésekre, és annak megfelelően összetevőkre. (Ope-
rátorok és operandusok.) Ezt egy fában is ábrázolni lehet, ahol

• Az a struktúra, amely egy nyelv szimbólumai és különböző műveletei közötti prece-
denciát jeleníti meg.
• Aritmetikai kifejezések ábrázolására használják.
• Minden elágazási pont valamilyen operátort,
• A levélelemek operandusokat tartalmaznak.
• A részfák közötti hierarchia fejezi ki az operátorok precedenciáját, illetve a zárójele-

zést.

A ((10/3)− x) + (5 ∗ y2) kifejezés fája:

76

+

- *

/ x

10 3

5 ^

y 2

4.29. ábra. Kifejezésfa példa

Fa műveletek

Lekérdező műveletek:

• Üres-e a fa struktúra.
• Gyökérelem értékének lekérdezése.
• Meghatározott elem megkeresése, az arra vonatkozó referencia visszaadása.
• A megtalált tetszőleges elem értékének lekérdezése.

Módosító műveletek:

• Üres fa létrehozása – konstruktor.
• Új elem beszúrása.
• Meghatározott elem kitörlése.
• Összes elem törlése.
• Egy részfa törlése.
• Részfák kicserélése egymással.
• Gyökér megváltoztatása.
• Egy meghatározott elem értékének megváltoztatása.

Fa bejárások

A bejárási algoritmusok egy tetszőleges fa összes csomópontján végiglépkednek egy meg-
határozott módszer szerint. Rekurziós módszerek tetszőleges fa esetén:

• Pre-order bejárás. (Először a gyökér kiírása (érintése) majd a részfák ugyanilyen
módszerű bejárása)
• Post-oreder bejárás. (Először a részfák bejárása – bal, majd jobb –, majd legvégül a

gyökér érintése)

Bináris fák esetén még egy bejárási módszer:

• In-order bejárás (Először a balgyerek bejárása, majd a gyökér érintése, azután a jobb-
gyerek bejárása)

77

A bejárások esetén az előző algoritmusok „receptek”. Egy aktuális csomópontban a recept
meghatározza, hogy mi történik. Például inorder esetben a teljes bal részfára alkalmaz-
zuk először a receptet, majd kiírjuk az aktuális csomópont értékét, majd folytatjuk a jobb
részfával.

Például tekintsük az alábbi részfát:

6

4 9

2 0

1 3

7 5

8

4.30. ábra. Példa fa

Preorder
6, 4, 2, 1, 3, 0, 9, 7, 5, 8

Postorder
1, 3, 2, 0, 4, 7, 8, 5, 9, 6

Mivel bináris fa volt a példa ezért lehetséges az inorder bejárás is:

Inorder
1, 2, 3, 4, 0, 6, 7, 9, 8, 5

4.4.4. Fa reprezentációs módszerek

Röviden áttekintünk néhány a fa reprezentálása alkalmas módszert.

Balgyerek-jobbtestvér

Minden csomópont ismeri a szülőjét, egyetlen (legbaloldalibb) gyermekét és a közvetlen
jobbtestvért. Ezzel lehetséges, hogy bármely csomópontnak tetszőleges számú gyereke le-
gyen, amik gyakorlatilag egy láncolt listát alkotnak. Ezeket referenciák segítségével ír-
hatjuk le.

Multilistás ábrázolás

Minden csomópont egy láncolt lista. A lista első eleme tartalmazza az adatot, a többi
csomópont már csak hivatkozásokat a leszármazottakra (gyermekcsomópontokra). Ennek

78

2

null

null

6 4

null

null

5

null

7

null

0

null

null

4.31. ábra. Balgyerek-jobbtestvér reprezentáció

megfelelően kétféle csomópont található, a listák fajtája szerint.

2

4
nullnull

6

5 7 0

null

null null null

4.32. ábra. Multilistás ábrázolás reprezentáció

Aritmetikai reprezentáció

Amennyiben meghatározunk egy felső korlátot a csúcsok fokszámára, úgy lehetséges az
alábbi reprezentációval a fát tárolnunk. Veszünk egy tömböt, amibe sorfolytonosan és így
szintfolytonosan beleírjuk az egyes szinteken található értékeket. A korábbiakban bemu-
tatott bináris fa (ami esetén a fokszám korlát kettő) aritmetikai ábrázolásban: (A teljes
fához képest hiányzó értékek helyét kihagyjuk, hogy a későbbi beszúrás esetén rendelke-
zésre álljon a beszúrandó elemnek a hely.)

6 4 9 2 0 7 5 1 3 - - - - 8 -

4.33. ábra. Aritmetikai ábrázolás

79

Láncolt ábrázolás

Szintén korlátos fokszám esetén használható, a továbbiakban ezt fogjuk a programok so-
rán alkalmazni. Minden csomópont ismeri a szülőjét, valamint a jobb és bal gyerekét,
egy-egy referenciával hivatkozik a megfelelő csomópontokra. További referencia mutat a
gyökérre. (Ez általánosítása a kétirányú láncolt listának, ahol a rákövetkező elem a két
gyerek, a megelőző elem pedig a szülő.)

6

null

4 9

2 0

1 3

null null null null

null null

7 5

8

null null null

nullnull

4.34. ábra. Láncolt ábrázolás

4.5. Bináris keresési fák

Az előző szakaszban a fák fogalmával ismerkedtünk meg, valamint a tudjuk, hogy egy bi-
náris fa azt jelenti, hogy egy csomópontnak legfeljebb két gyereke lehet. Ezekhez tulajdon-
ságokhoz hozzáadva a keresőfa tulajdonságot egy nagyon hasznos konstrukciót kapunk.

Mit is jelent a keresőfa:

• A rendezési fa (vagy keresőfa) olyan fa adatszerkezet, amelynek kialakítása a külön-
böző adatelemek között meglévő rendezési relációt követi.
• A fa felépítése olyan, hogy minden csúcsra igaz az, (bináris esetben) hogy a csúcs

értéke nagyobb, mint tetszőleges csúcsé a tőle balra lévő leszálló ágon és a csúcs ér-
téke kisebb minden, a tőle jobbra lévő leszálló ágon található csúcs értékénél. (Részfa
csúcsainál.)
• A T fa bármely x csúcsára és bal(x) bármely y csúcsára és jobb(x) bármely z csúcsára

y < x < z

A rendezési fa az őt tartalmazó elemek beviteli sorrendjét is visszatükrözi. Ugyan-
azokból az elemekből különböző rendezési fák építhetők fel. Figyeljük meg a példákat:
(A bezúrást úgy végezzük el, hogy mindig elindulunk a gyökérből és aszerint haladunk a
jobbra, vagy balra, hogy a beszúrandó elem kisebb-e vagy nagyobb az aktuálisan vizsgált-
nál. Amennyiben egy olyan helyre jutunk, ahol nincs részfa, akkor a beszúrandó elemet
betesszük oda. Ellenkező esetben haladunk felefé tovább.)

80

Első sorrend
6,3,1,9,7,5,10

Második sorrend
9,7,6,5,10,3,1

6

3 9

1 5 7 10

9

7 10

6

5

3

1

4.35. ábra. Bináris keresőfa felépítése

4.5.1. Tulajdonságok

Inorder bejárással a kulcsok rendezett sorozatát kapjuk. Az algoritmus helyessége a
bináris-kereső-fa tulajdonságból indukcióval adódik.
Egy n csúcsú bináris kereső fa bejárása O(n)1 ideig tart, mivel a kezdőhívás után a fa
minden csúcspontja esetében pontosan kétszer (rekurzívan) meghívja önmagát, egyszer a
baloldali részfára, egyszer a jobboldali részfára. (A rekurziós algoritmus átírható ciklusra
is.)

4.5.2. Műveletek

Keresés. A T bináris keresési fában keressük a k kulcsú elemet (csúcsot). A keresés,
ha létezik a keresett csúcs, akkor visszaadja az elem címét, egyébként null-t. Ennek az
algoritmusnak z algoritmust megadjuk rekurzív és iteratív megoldásban is.

A keresés alapötlete, hogy elindulunk a egy csomópontból (gyökér) megvizsgáljuk, hogy
megtaláltuk-e az keresett értéket, vagy kimentünk-e a fából. (Levél gyereke mindig null.)
Ha egyik sem, akkor eldöntjük a kulcs alapján, hogy a fában merre tovább. Ha a keresett
érték kisebb, mint az aktuális csomópont, akkor balra, különben jobbra haladunk tovább.

Fában-keres(x, k) – rekurzív
1A pontos definícióját lásd a következő fejezetben.

81

HA x = null VAGY k = kulcs[x]

akkor return x

HA k < kulcs[x]

AKKOR RETURN Fában-keres(bal[x], k)

KÜLÖNBEN RETURN Fában-keres(jobb[x], k)

Fában-keres(x, k) – iteratív
CIKLUS AMÍG x 6= NULL ÉS k 6= kulcs[x]

HA k < kulcs[x]

AKKOR x ← bal[x]

KÜLÖNBEN x ← jobb[x]

return x

Minimum keresés. Tegyük fel, hogy T 6=null. Addig követjük a baloldali mutatókat,
amíg NULL referenciát nem találunk. Ez gyakorlatban a legbaloldalibb elemet jelenti a
fában, ami szükségszerűen a legkisebb is.

Fában-minimum (T) – iteratív
x ← gyökér[T]

CIKLUS AMÍG bal[x] 6= null

x ← bal[x]

return x

LefutO(h) idő alatt, ahol h a fa magassága. Hasonlóan megkereshető a maximum érték
is, ami a legjobboldalibb elem.

4.6. Kupac (Heap)

A kupac adatszerkezet bevezetéséhez néhány fogalomra van szükség.
Egy bináris fa teljes, ha a magassága h, és 2h − 1 csomópontja van. Egy h magasságú

bináris fa majdnem teljes, ha üres; vagy a magassága h, és a bal részfája h − 1 magas és
majdnem teljes és jobb részfája h− 2 magas és teljes; vagy a magassága h, és a bal részfája
h− 1 magas és teljes és jobb részfája h− 1 magas és majdnem teljes.

A gyakorlatban, amikor a fát felrajzoljuk a majdnem teljesség az jelenti, hogy a leg-
utolsó szinten jobbról visszafelé hiányozhatnak értékek pont úgy, hogy ha elegendő érték
lenne, az utolsó sor jobb szélén, akkor teljes lenne a fa. A majdnem teljes fákat balról
„töltjük fel”. (Avagy szintenként haladunk a feltöltéssel és balról jobbra . . .)

4.6.1. Kupac tulajdonság

Egy majdnem teljes bináris fa heap (kupac) tulajdonságú, ha üres, vagy a gyökérben lévő
kulcs nagyobb, mint mindkét gyerekében, és mindkét részfája is heap tulajdonságú. Na-
gyon fontos, hogy egy ez másik definíció a bal/jobb gyerek értékére vonatkozóan, a bináris
keresési fához képest!

Reprezentálásuknál kihasználjuk a tömörítettséget és majdnem teljességet így aritme-
tikai reprezentációval tömbben tároljuk az értékeket és az egy indexfüggvény számítja a
szülőt és a gyerekeket.

82

X

K O

A D L M

4.36. ábra. Kupac példa

4.6.2. Műveletek

Gyökér törlése

A gyökér a legnagyobb elem, ami a kupac tulajdonság betartásából következik. Eltávolí-
tása után a legalsó szint legjobboldalibb elemét tesszük fel a helyére, hogy a majdnem tel-
jes tulajdonság megmaradjon. Ezzel azonban elrontjuk kupac tulajdonságot, amit helyre
kell állítani. A helyreállításhoz cseréljük fel a gyökeret a nagyobb gyerekével. Ezzel a
lépéssel a nagyobb gyereket tartalmazó részfában rontottunk el a kupac tulajdonságot.
(Nem feltétlenül romlott el.) Így ismételjük a kupac tulajdonság helyreállítását, amíg
szükséges.

X

K O

A D L M

4.37. ábra. Gyökér törlése

Beszúrás

Amikor beszúrunk, tegyük a következő szabad pozícióra, a legalsó szint legjobboldalibb
elemének tesszük fel a helyére, hogy a majdnem teljesség megmaradjon. Ezzel valószínű-
leg elrontjuk kupac tulajdonságot, amit helyre kell állítani, a törléshez hasonlóan. Cserél-
jük fel az újonnan beszúrtat a szülőjével. Ezt ismételjük egészen a fa tetejéig, vagy amíg
szükséges.

83

K O

A D L

M

4.38. ábra. Gyökér törlése

4.6.3. Indexfüggvények

Indexfüggvények aritmetikai reprezentáció esetén. A tömbben az indexfüggvények segít-
ségével tudjuk megállapítani egy csomópont gyerekének indexét, illetve szülőjének inde-
xét.

Balgyerek(k)

RETURN 2k

Jobbgyerek(k)

RETURN 2k+1

Szülő(k)

RETURN ⌊k/2⌋

Az indexek helyességének végiggondolását az olvasóra bízom. (Amennyiben lerajzoljuk
a reprezentációt és a szerepeket, könnyen megoldásra jutunk.)

4.7. Használat

A kupacot meg lehet konstruálni fejjel lefelé is, amikor is a legkisebb elem van a kupac
tetején.
A kupac például használható elemek rendezéséhez, elsőbbségi sor megvalósításához. Az
elsőbbségi sor egy olyan sor, amikor nemcsak az utolsó pozícióba lehet bekerülni a sor-
ban, hanem fontossági alapon előbbre is. (A fontosság az, ami alapján a kupacban meg-
határozzuk a pozíciót.) A kupac tömbös reprezentációját lineárisan ki lehet olvasni, ami
megfeleltethető egy sornak.

84

5. fejezet

Algoritmusok

5.1. Algoritmusok műveletigénye

Korábban esett szó az algoritmusok hatékonyságáról, ebben a fejezetben három olyan de-
finíciót vezetünk be, amivel összehasonlíthatóvá válnak az algoritmusok műveletigényei,
hatékonysága. Két szempontot lehet figyelembe venni az egyik a lépésszám, vagyis az
program által megkívánt lépések mennyisége, ami közvetlenül a futási időre van hatás-
sal. A másik az algoritmus által igényelt memória mérete. Mindkettőt a bemenő adatok
méretével arányosan lehet vizsgálni, innentől fogva jelentse n a bemenet (input) méretét.
A lépésszám ennek valamilyen függvény lesz f(n).

A hatékonyság vizsgálatánál az f(n)-et vizsgáljuk. Azonban az összehasonlításnál az
alábbi példákat vegyük figyelembe:

• 100n vagy 101n, általában mindegy
• n2 vagy n3 már sokszor nagy különbség, de néha mindegy
• n2 vagy 2n már mindig nagy különbség

Ahhoz, hogy ezt matematikailag is kezelni tudjuk bevezetünk három fogalmat.

5.1.1. Függvények rendje

Ordó

Definíció – Ordó
Ha f(x) és g(x) az R

+ egy részhalmazán értelmezett valós értékeket felvevő függvények,
akkor f = O(g) jelöli azt a tényt, hogy vannak olyan c, k > 0 állandók, hogy |f(x)| ≤ c∗|g(x)|
teljesül, ha x ≥ k.

Ekkor a g aszimptotikus felső korlátja f -nek; „f nagy ordó g”.1

Például
100n + 300 = O(n), hiszen k = 300; c = 101-re teljesülnek a feltételek.
100n + 300 ≤ 101n, ha n ≥ 300

Azt jelenti, hogy az f függvény egy meghatározott „idő” után alatta van biztosan a g
függvény konstans-szorosának.

1Az ordo latin szó, jelentése rend.

85

Omega

Definíció – Omega
Ha f(x) és g(x) az R

+ egy részhalmazán értelmezett valós értékeket felvevő függvények,
akkor f = Ω(g) jelöli azt a tényt, hogy vannak olyan c, k > 0 állandók, hogy |f(x)| ≥ c∗|g(x)|
teljesül, ha x ≥ k.

Ekkor a g aszimptotikus alsó korlátja f -nek.

Például
100n− 300 = Ω(n), hiszen n ≥ 300; c = 99-re teljesülnek a feltételek.

Ez gyakorlatilag megfordítja az előző definícióban meghatározott szerepeket.

Theta

Definíció – Theta
Ha f = O(g) és f = Ω(g) is teljesül, akkor f = Θ(g).

Ekkor a g aszimptotikus éles korlátja f -nek.
Például
100n− 300 = Θ(n), az eddigiek alapján.

5.1.2. Sorrend

Az alább sorrend írható fel a rendek között, ahol is növekvő komplexitással kerültek sor-
ban a függvények.

• Konstans – O(1)

• Loglogaritmukus – O(log log n)

• Logaritmikus – O(log n)

• Lineáris – O(n)

• Linearitmikus (Loglineáris) – O(n log n) = O(log n!)

• Négyzetes – O(n2)

• Köbös – O(n3)

• Polinomiális (Algebrai) – O(nc), ha c > 1

• Exponenciális (Geometriai) – O(cn)

• Faktoriális (Kombinatoriális) – O(n!)

Mindez ábrázolva:
Időben nyilvánvalóan akkor lesz hatékony egy algoritmus, ha a sorrenben minél kisebb

függvény rendjében függ a bemenet méretétől a feldolgozás ideje, vagyi a lépések száma.
Sajnos azonban vannak olyan problémák, amelyeket nem tudunk hatékonyan megoldani,
például lineáris vagy polinomiális időben. (Például létezik a problémák egy olyan osztálya
amelyek „nehéz” feladatoknak számítanak és polinom időben egy megoldásjelölt helyes-
sége dönthető el csupán. Ilyen egy szám prím felbontása is, amikor egy tetszőleges számot
felírunk prímszámok szorzataként.)

86

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

Konstans
LogLog
Log
Lineáris

5.1. ábra. Függvények rendje

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

Lineáris
Loglineáris
Négyzetes
Köbös

5.2. ábra. Függvények rendje

5.2. Lengyelforma

A lengyelforma egy speciális formája a kifejezések felírásának. Az eddigi megszokott
formában az úgynevezett infix módosn írtuk fel a kifejezést. Az infix forma esetén
a műveleti jel (operátor) a műveletben szereplő értékek (operandusok) között szere-
pel. A kifejezéseket a műveleti jel elhelyezésétől függően lehet még postfix, vagy pre-
fix módon leírni. Prefix abban az esetben, ha a az operátor az operandusok előtt
van, illetve postfix, amennyiben az operandusok mögött helyezkedik el az operátor.

Példa infix kifejezésre
a ∗ b + c

87

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

Köbös
Exponenciális

5.3. ábra. Függvények rendje

Példa prefix kifejezésre
ab ∗ c+

Példa infix kifejezésre
+ ∗ abc

Hagyományos módon a matematikában az infix kifejezéseket használ-
juk. J. Lukasewitz lengyel matematikus használta először a post- és pre-
fix jelölés, ezért hívják lengyelformának. Helyes lengyelformát a számító-
gép sokkal könnyebben értékel ki, és egyszerűbb algoritmust lehet írni rá.

Első példa lengyelformára
(a + b) ∗ (c + d) ⇒ ab + cd + ∗

Második példa lengyelformára
(a + b ∗ c) ∗ (d ∗ 3− 4) ⇒ abc ∗+d3 ∗ 4− ∗

A lengyelformának a következő előnyei vannak a feldolgozás során

• A műveletek olyan sorrendben érkeznek, ahogy ki kell értékelni őket, vagyis a szá-
mítások sorrendjében
• A műveletek mindig a operandusok után állnak (postfix), két operandus beolvasása

után rögvest végrehajtható a művelet (és eltárolható az eredmény újabb operandus
gyanánt).
• Vermekkel lengyelformára lehet alakítani és az átalakított kifejezés kiértékelhető.
• Nem tartalmaz zárójeleket, a precedencia a formába beépítetten megtalálható.

88

5.2.1. Lengyelformára alakítás

A lengyelformára alakításnak több, egyszerű szabálya van. A feldolgozása alogritmusa
használ egy x sort, ami a bemenő jeleket tartalmazza. Továbbá egy y sort, amibe az ered-
mény kerül, továbbá egy s segédvermet az átalakításhoz. Attól függően, hogy milyen ka-
rakter érkezik kell az alábbi szabályok közül egyet alkalmazni:

• Nyitózárójel esetén tegyük át a zárójelet az s verembe, az x sorból!
• Operandust írjuk ki a kimeneti y sorba.
• Operátor esetén: legfeljebb egy nyitózárójelig vegyük ki az s veremből a nagyobb

prioritású operátorokat és írjuk ki az y sorba, majd ezt az operátort tegyük be az s
verembe!
• Csukózárójel: a nyitózárójelig levő elemeket egyesével vegyük ki az s veremből és

írjuk ki az y sorba, valamint vegyük ki a nyitózárójelet a veremből!
• Kifejezés végét elérve írjuk ki az s verem tartalmát az y sorba.

5.4. ábra. A lengyelformára alakítás stuktogrammja

5.2.2. Lengyelforma kiértékelése

A lengyelformára hozott kifejezés kiértékeléséhez egy v vermet használunk. Az y sorból
egyesével vesszük az elemeket és az alábbi szabályok szerint járunk el:

• Ha operandus, akkor tegyük át a v verembe.
• Ha operátor, akkor vegyük ki a második operandust, majd az első operandust a v

veremből. Végezzük el a műveletet és tegyük az eredményt a v verem tetejére.

Az algoritmus befejeztével a v veremben egyetlen érték van (ha mindent jól csináltunk) és
az az érték a kifejezés értéke.

89

5.5. ábra. A lengyelforma kiértékelésének stuktogrammja

5.2.3. Lengyelforma példa

A bemutatott példát egy papíron érdemes követni, lépésről-lépésre felírva a kimenet és a
verem állapotát. Vegyük az alábbi kifejezést: (1+2) ∗ (3+4). Amennyiben a szabályok sze-
rint haladunk, legelőször egy nyitózárójellel találkozunk. Ez átkerül a verembe. A számot
kiírjuk a kimenetre, majd a + operátor következik. A veremben a nyitózárójel van tehát
nem veszünk semmit sem, hanem a betesszük a + jelet is verembe. Következik egy csukó-
zárójel, tehát mindent kiveszünk a veremből nyitózárójelig. (Ekkor a kimeneti sorban az
áll, hogy 1 2+.) A szorzás jele bekerül a verem, majd a kifejezés második felével hasonlóan
bánunk el mint az első felével. Azaz a nyitózárójel a ∗ felé kerül a veremben, kiírjuk a
3-at, majd a − is bekerül a verembe, a sorra pedig semmi, hiszen nyitózárójelig nincsen
fontosabb művelet a veremben. A csukózárójel hatására kikerül a − jel. (Ekkor a kimene-
ten az alábbi található: 1 2 + 3 4−.) Mivel a bemeneti kifejezés végére értünk a maradék
szimbólumokat is kiírjuk a veremből, aminek eredménye: 1 2 + 3 4 − ∗. Ez az átalakított
kifejezés.

Ezt követően a kiértékelés menete az alábbiak szerint történik. Két szám érkezik egy-
mást követően, bekerülnek a verembe, jön egy operátor melynek értelmében összeget szá-
molunk és az eredményt tesszük a verembe. (3) Azután szintén jön két szám, így a verem-
ben már három elem lesz: 3 3 4. Ezek után a legfelső kettőm végrehajtjuk a − műveletet.
(3 − 1) Majd a legvégén a ∗ műveletet. A veremben egyetlenegy szám lesz, ami a végered-
mény is egyben: −3.

5.3. Rendezések

Ebben a szakaszban a rendezési problémával ismerkedünk meg, majd néhány jól használ-
ható rendezőalgoritmussal.

5.3.1. Rendezési probléma

A rendezési probléma formálisan a alábbi módon definiálható. Adott a bemenet és a kime-
net:

Bemenet

90

n számot tartalmazó (a1, a2, . . . , an) sorozat

Kimenet
A bemenő sorozat olyan (a′1, a

′

2, . . . , a
′

n) permutációja, hogy a′1 ≤ a′2 ≤ . . . ≤ a′n

Ahol a kimenetben tehát a megadott sorozat elemei szerepelnek valamilyen más sorrend-
ben, ami sorrendre igaz, hogy rendezve van. (Itt a ≤ jel egy absztrakt műveletet jelöl, ami
a rendezés alapjául szolgál, az összehasonlításhoz szükséges.)

A probléma általánosítása, amikor a sorozat, amit rendezni szeretnénk, elemei nem
számok, hanem összetett adatszerkezetek, például osztályok. Minden egyes elem tartal-
maz egy kulcsot, amely kulcs lesz a rendezés alapjául szolgáló adatelem, tehát a ≤ absz-
trakt műveletet terjesztjük ki tetszőleges típusú (an) sorozatokra.

Rendezési reláció

A rendezési reláció definíciója: Legyen U egy halmaz, és < egy kétváltozós reláció U -n. Ha
a, b ∈ U és a < b, akkor azt mondjuk, hogy „a kisebb, mint b”. A < reláció egy rendezés, ha
teljesülnek a következők:

• a ≮ a ∀a ∈ U elemre (< irreflexív) Egy elem önmagánál nem kisebb.
• Ha a, b, c ∈ U , a < b, és b < c, akkor a < c (< tranzitív).
• Tetszőleges a 6= b ∈ U elemekre vagy a < b, vagy b < a fennáll (< teljes).

Ha < egy rendezés U -n, akkor az (U ;<) párt rendezett halmaznak nevezzük.

Példa
Z az egész számok halmaza. A szokásos < rendezés a nagyság szerinti rendezés.

Itt viszont már a szokásos műveletet jelenti a <.
A következőkben néhány következik a rendezésre. Az eredeti sorozat az alábbi eleme-

ket tartalmazza, ahol egy egyes elemek összetett típusok.

Személy = Név ×Magasság × Születés
Abigél Janka Zsuzsi Dávid Dorka

132 128 92 104 70
1996 1998 2001 2000 2002

A rendezés eredménye, amikor a név a kulcs a rendezéshez:

Név szerint
Abigél Dávid Dorka Janka Zsuzsi

132 104 70 128 92
1996 2000 2002 1998 2001

A rendezés eredménye, amikor a születési év a kulcs a rendezéshez:

Születési év szerint
Abigél Janka Dávid Zsuzsi Dorka

132 128 104 92 70
1996 1998 2000 2001 2002

91

A következőekben három négyzetes (lassú) majd két hatékonyabb rendező algoritmusa
kerül ismertetésre.

5.3.2. Buborék rendezés

Egyszerűsítésként rendezzük az A[1 . . . n] tömböt! A tömb elemtípusa tetszőleges T típus,
amire egy teljes rendezés értelmezhető.

Buborék rendezés alapötlete: a tömb elejétől kezdve „felbuborékoltatjuk” a legnagyobb
elemet. Utána ugyanezt tesszük az eggyel rövidebb tömbre, stb. Végül, utoljára még az
első két elemre is végrehajtjuk a „buborékoltatást”. A buborékoltatást során mindig két
elemet vizsgálunk csak és ha rossz sorrendben vannak a tömbben (inverzióban állnak)
akkor felcseréljük.

A sorozat rendezett akkor, ha nincs az elemek között inverzió. Ez a rendezés az inver-
ziók folyamatos csökkentésével rendez.

Buborék rendezés példa – Első futam
Az összehasonlított elemeket ki vannak emelve:

12 5 6 2 10 11 1
5 12 6 2 10 11 1
5 6 12 2 10 11 1
5 6 2 12 10 11 1
5 6 2 10 12 11 1
5 6 2 10 11 12 1
5 6 2 10 11 1 12

Egyetlen menet után a legnagyobb elem felkúszott a tömb végére. A következő lé-
pésben eggyel rövidebb tömbön végezzük el ugyanezt. A következőképpen történik

Buborék rendezés példa – Második futam

5 6 2 10 11 1 12
5 6 2 10 11 1 12
5 2 6 10 11 1 12
5 2 6 10 11 1 12
5 2 6 10 11 1 12
5 2 6 10 1 11 12

A módszert folytatva rendezett tömböt kapunk.

Műveletigény

A műveletigény kiszámításához az alábbi gondolatmenetet követjük:

• Első menetben a tömb hosszának megfelelő összehasonlítás: n

• Legrosszabb esetben ugyanennyi csere, legjobb esetben nincsen csere.
• Az összehasonlítások száma állandó, a legrosszabb esetbeli cserék számával azonos.

92

• Ezt ismételjük eggyel rövidebb tömbre és így tovább:

n + (n− 1) + (n− 2) + . . . + 1 =
n∑

i=1

i =
n(n− 1)

2
= O(n2)

A bemenet számának négyzetes függvénye az algoritmus lépésszáma, ezáltal lefutási
ideje. Ez kellően nagy input esetén nagyon lassú futást eredményez, gondoljunk egy 100000
méretű tömbre például.

Algoritmus

5.6. ábra. Buborékrendezés struktogramja

Csere függvény
public void csere(int[] tomb, int i, int j)

{

int ideiglenes = tomb[i];

tomb[i] = tomb[j];

tomb[j] = ideiglenes;

}

Buborékrendezés
public void buborek(int[] tomb)

{

for (int j = tomb.length-1; j>0; j-)

for (int i = 0; i<j; i++)

if (tomb[i] > tomb[i+1])

csere(tomb, i, i+1)

}

Ez kifejezetten egy olyan algoritmus ami ugyan jó eredményt ad a rendezésre, de en-
nél lassabban csak úgy tudánk megoldani a problémát, ha direkt belekevernénk rendezés
közben.

93

5.3.3. Maximum kiválasztásos rendezés

Ezzel az algoritmussal a buborék rendezéshez képest kevesebb lépéssel hajtjuk végre a
rendezést. A buborék rendezésnél mindig a legnagyobb elemet tesszük fel a tömb végére,
sok csere során. A maximum kiválasztásos rendezés kevesebb cserével, minden egyes fu-
tamban összesen egy cserével oldja meg a feladatot.

Keressük meg a tömbben a legnagyobb elemet és cseréljük fel a tömbben legutolsó
elemmel. Ezután eggyel rövidebb résztömbre ismételjük az eljárást, addig, amíg az 1
hosszú tömböt kell rendeznünk, ami önmagában rendezett.

A maximális elemet lineáris kereséssel találhatjuk meg a tömbben.

Maximum kiválasztásos rendezés példa
A lineáris keresés lépéseit kihagytuk az alábbi példában.

12 5 6 2 10 11 1
1 5 6 2 10 11 12
1 5 6 2 10 11 12
1 5 6 2 10 11 12
1 5 6 2 10 11 12
1 5 6 2 10 11 12
1 5 6 2 10 11 12
1 5 2 6 10 11 12
1 5 2 6 10 11 12
1 2 5 6 10 11 12
1 2 5 6 10 11 12
1 2 5 6 10 11 12
1 2 5 6 10 11 12

Műveletigény

Az összehasonlítások száma a keresésekben, minden egyes lépésben a (rész)tömb hossza,
tehát az előzőekben megmutatott:

O(n2)

A cserék száma, a maximum kiválasztásnak köszönhetően, legfeljebb n tehát

O(n)

Így az algoritmus lépésszáma:

O(n2) +O(n) = O(n2)

Látható, hogy ez is egy négyzetes, azaz lassú rendezési algoritmus. Azonban fontos
megjegyezni, hogy a cserék száma kevesebb, ezáltal futási időben jobb, mint az előző, bu-
borék rendezés.

94

5.7. ábra. Maximum kiválasztásos rendezés struktogrammja

5.8. ábra. Maximum kiválasztásos rendezés struktogrammja

Algoritmusa

Maximum kiválasztásos rendezés
public void maxkiv(int[] tomb)

{

for (int j = tomb.length-1; j>0; j-)

{

int index = 0;

for (int i =1; i<=j; i++)

if (tomb[index] < tomb[i])

index = i;

csere(tomb, index, i)

}

}

Gyakorta alkalmazzuk ezt az algoritmus napi életünkben is, például amikor a kár-

95

tyákat a kezünkben elrendezzük. (Illetve annak kicsit továbbfejlesztett és a következő
algoritmussal kevert változatát.)

5.3.4. Beszúró rendezés

A beszúró rendezés az alábbi ötleten alapul: Tekintsük az tömböt rendezettnek. Egy új
elem beszúrása történjen a megfelelő helyre, így a tömböt rendezettnek tartjuk meg.
Az alapgondolaton túl, tudjuk még, hogy egyetlen elem mindig rendezett. Az elején
vesszük az egész tömb egy részét, a bal oldalról számított 1 hosszú résztömböt. Ebbe a
résztömbbe szúrjuk be a megfelelő helyre a következő elemet, amit a tömb második eleme.
A beszúrás után a rendezett résztömbünk már 2 hosszú. Ebbe is beszúrjuk a következő
elemet és így tovább.

Nézzük meg a következő példát!

Beszúró rendezés példa
Az első elem önmagában rendezett. Ehhez szúrunk be egy másodikat, majd harmadikat,
. . .

12 5 6 2 10 11 1
5 12 6 2 10 11 1
5 6 12 2 10 11 1
2 5 6 12 10 11 1
2 5 6 10 12 11 1
2 5 6 10 11 12 1
1 2 5 6 10 11 12

A beszúráshoz a beszúrandó elem helyét lineáris kereséssel határozzuk meg a tömb
elején kezdve. Amikor megleltük a pozíciót, akkor a maradék elemeket egyesével felfelé
másoljuk, majd beszúrjuk a beszúrandót. (Ehhez a beszúrandót külön eltároljuk.)

Műveletigény

Az összehasonlítások száma a legrosszabb esetet tekintve szintén nem változik, ám az
összehasonlítás szempontjából legrosszabb eset a cserék szempontjából a legjobb eset.

Ennek belátásához vegyünk egy eleve rendezett tömböt. A beszúrás mindig az utolsó
pozícióba fog történni, hiszen sorban vannak, emiatt a cserék száma minimális. Azonban
a lineáris keresés a tömb elejétől végéig összehasonlítja a beszúrandót a tömb elemeivel.
Ez pedig a maximális érték.

A cserék szempontjából legrosszabb esetben a cserék száma szintén O(n2)–el becsül-
hető, amikor tömbben rendezünk. (Láncolt lista esetén például hatékonyabb.)

Algoritmus

Beszúró rendezés
public void maxkiv(int[] tomb)

{

for (int j = 0; j<tomb.lenght-1; j++)

{

96

5.9. ábra. Beszúró rendezés struktogrammja

int elmentve = tomb[j+1];

for (int i=j; (i>=0)&&(tomb[i]>elmentve); i-)

tomb[i+1] = tomb[i];

tomb[i+1] = elmentve;

}

}

Szintén ehhez hasonlót használunk a valós életben is, legtöbbször amikor dolgozatokat
rendezünk pontszám szerint, csak egyidejűleg több elemet szúrunk be általában.

5.3.5. Gyorsrendezés – Quicksort

Az eddigieknél egy lényegesen hatékonyabb, a lépésszámot tekintve nem négyzetes nagy-
ságrendű algoritmussal ismerkedünk meg.

Hatékony rendezési algoritmus – C.A.R. Hoare készítette, 1960-ban. Típusát tekintve
az „Oszd meg és Uralkodj” elvet követi, amelyet a következőképpen kell érteni: Két fázisra
osztható az algoritmus, rekurzívan hívja meg magát a részfeladatokra. (Természetesen a
rekurziót a hatékonyság érdekében ki lehet váltani ciklussal is.) A fázisok

• Partíciós fázis – Oszd a munkát két részre!
• Rendezési fázis – Uralkodj a részeken!

Megosztási fázis. Válassz egy „strázsát” (pivot), egy tetszőleges elemet, majd vá-
lasszunk ennek egy pozíciót úgy, hogy minden elem tőle jobbra nagyobb legyen, és minden
elem tőle balra kisebb legyen!

Uralkodási fázis. Alkalmazd ugyanezt az algoritmust mindkét félre, mint részproblé-
mára.

A megosztást ábrázolva:

97

Kisebb elemek Strázsa Nagyobb elemek

A megosztási fázisban természetesen nem tudunk találni mindig egy olyan elemet, ami
teljesíti a feltételeket. A kiválasztott strázsához képest vizsgáljuk a résztömb többi elemét
és úgy cserélünk fel nehány elemet, hogy a feltétel igazzá váljon.

• Egyszerű pivot választás esetén legyen (rész)tömb balszélső eleme a pivot!
• A résztömb alső és felső felétől induljunk el egy indexszel a tömb közepe felé.
• A bal indexszel lépegetve felfelé megkeressük az első elemet, ami nagyobb mint a

strázsa, tehát rossz helyen áll. Ugyanígy lefelé lépegetve megkeressük az első elemet
ami kisebb mint a strázsa, tehát a jobb oldalon állva rossz helyen áll. A két „rossz”
elemet felcseréljük.
• Addig folytatjuk az előző cserélgetést, amíg a két index össze nem találkozik.
• Ha megvan a bal-indexnél lévő elemet a pivottal felcseréljük.
• Ezek után az egész algoritmust alkalmazzuk a bal résztömbre és a jobb résztömbre.

Egyetlen megosztás során, garantáljuk azt, hogy a pivot elem a rendezés végeredménye
szerinti jó helyre kerül, valamint szétosztjuk az elemeket kétfelé.

Példa

Gyorsrendezés példa
Balszélső a strázsa.

9 5 6 2 10 11 1

Vegyük a két indexet

9 5 6 2 10 11 1

A jobb oldalsó rossz, a bal jó. Ezért a jobb-index változatlan, míg a bal lép felfelé.

9 5 6 2 10 11 1
9 5 6 2 10 11 1
9 5 6 2 10 11 1

Most jön a csere.

9 5 6 2 1 11 10
9 5 6 2 1 11 10

Végül a pivot elemet betesszük a bal helyére.

1 5 6 2 9 11 10

Ezzel a kilenc a helyére került és a tőle balra, majd tőle jobbra levő résztömbökre hajtjuk
végre ugyanezt az algoritmust.

98

Műveletigény

Felosztás: vizsgálj meg minden elemet egyszer O(n)
Uralkodás: az adatok kétfelé osztásaO(log2(n)) – Ez a szétbontások optimális mennyisége.
Összesen a kettő szorzata, ami O(n log2(n)), ez pedig jobb, mint az eddig megismert ren-
dezéseink, de van egy apró gond ugyanis, ha eredetileg egy rendezett sorozatot adunk
bemenetnek, akkor az algoritmusunk minden egyes lépésben felosztja a rendezendő töm-
böt egy 0 és egy n − 1 hosszú tömbre, majd azon folytatja a rendezést. (A bal a pivot és
minden más nagyobb tőle.) Ennek a műveletigénye pedig nO(n), ami egyenlő O(n2)-el.

Tehát azt kaptuk, hogy rossz esetben a gyorsrendezés olyan lassú, mint a buborék
rendezés. Lehet ezen segíteni különböző strázsa választási stratégiával. Minden a pivot
választáson múlik, ugyanis ha tudunk jól úgy pivotot választani, hogy a partíciók mé-
rete közel azonos legyen, akkor hatékonyan működik az algoritmus. Lehet több strázsát
választani, vagy pedig véletlenszerűen választani. (Ami a valószínűségek természetéből
adódóan átlagosan jó eredményt szolgáltat.)

Általánosságban elmondható, hogy a gyorsrendezés kevés művelettel gyorsan rendez,
azonban nem stabil az ideje, tehát viszonylag nagy határok között ingadozik.

Algoritmus

Gyorsrendezés (A, also, felso)

also < felso

q := Feloszt(A, also, felso) SKIP
Gyorsrendezés (A, also, q-1)
Gyorsrendezés (A, q+1, felso)

5.10. ábra. Gyorsrendezés struktogrammja

„Ilyet ember kézzel nem csinál . . . ”

5.3.6. Edényrendezés

Végül egy szintén gyors rendezővel ismerkedünk meg.
Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1 . . . n] elemei) egy m elemű U hal-

mazból kerülnek ki. Például ∀i-re igaz, hogy i ∈ [1 . . . m]. Lefoglalunk egy U elemeivel
indexelt B tömböt (m db ládát), először mind üres. A B segédtömb elemei lehetnek bármi,
például láncolt lista.

Az edényrendezés két fázisból fog állni, először a ládák szerint (azaz, hogy milyen érték
tartozik ahhoz a ládához) kigyűjtjük az elemek, majd sorban visszahelyezzük az eredeti
tömbbe.

Kigyűjtés. Először meghatározzuk rendezendő tömb legkisebb és legnagyobb elemét.
Ezek után lefoglalunk egy megfelelő méretű segédtömböt, amibe az elemeket fogjuk gyűj-
teni. (Ez a tömb a legnagyobb és a legkisebb elem közötti különbség plusz egy.) A se-

99

Feloszt(A, also, felso)

str_elem:=A[also]; bal:=also; jobb:=felso;

bal < jobb

A[also]:=A[bal]; A[bal]:= str_elem; return bal;

A[bal]<= str_elem and bal <felso

A[jobb]>= str_elem and jobb >also
bal:= bal+1

jobb:= jobb-1

bal < jobb

Csere(A[bal], A[jobb]) SKIP

5.11. ábra. Gyorsrendezés struktogrammja

gédtömbbe, fogjuk gyűjteni a rendezendő tömb elemeit, aszerint, hogy melyik rekeszbe
tartoznak.

Összefűzés. A segédtömbbe kigyűjtött elemeket azután sorban visszafűzzük az eredeti
tömbbe, és ezzel kész a rendezés.

Edényrendező – példa

2 2 1 1 5 3 2 5 4

Ebben az esetben látható, hogy a lehetséges értékek 1 és 5 között vannak, ezért egy
5− 1 + 1 = 5 hosszú segédtömböt kell lefoglalni.

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

2

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

2 2

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5
1 2 2

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2 5

100

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2 3 5

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2 2 3 5

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2 2 3 5 5

2 2 1 1 5 3 2 5 4 Segédtömb:
1 2 3 4 5

1 1 2 2 2 3 4 5 5

Ezután az edények tartalmát egyszerű lineáris kiolvasással az eredeti tömbbe helyez-
zük.

Második fázis

1 1 2 2 2 3 4 5 5

Amivel a rendezés be is fejeződött.

Műveletigény

Lépésszám.

• Segédtömb létrehozása: O(m)

• Kigyűjtő fázis O(n)

• Visszarakó fázis O(n + m)

• Összesen O(n + m).

Ez jobb, mint az eddigi rendezőink!, hiszen egy lineáris idejű rendezőt kapunk. Azonban
ennek súlyos ára van! Az edényrendező felhasznál egy segédtömböt, ami bizonyos esetek-
ben akkora, mint az eredeti tömb (esetleg nagyobb is). Tehát a térbeli (memória) komplexi-
tása eddigi rendezőinkhez képest nagyobb. Edényrendező akkor éri meg, ha a rendezendő
értékek értékkészletének halmaza kicsi. Nyilvánvaló, hogy vannak olyan bemenetek, ame-
lyek kétszer már nem férnek el a memóriában.

Edényrendezőt köznapi életben akkor használunk, amikor a pakli kártyát a sorba ren-
dezéshez először színek szerint szétdobáljuk.

5.3.7. Kupacrendezés

A kupac adatszerkezetet rendezőként is lehet alkalmazni. Gondoljuk el, hogy a rendezendő
tömb értékeit egyszerűen beszúrjuk egy kupacba majd kiolvassuk onnan, úgy hogy mindig
eltávolítjuk a gyökeret, mint legkisebb elemet.

Műveletigény

A kupacnál a beszúrás és maximum törlés műveletigénye, legfeljebb a fa magasságával
arányos (O(h)), ami az O(log n)). Ezt megszorozzuk az összes beszúrandó elem számával
ami n beszúrás esetén O(n log n) eredményt ad. Figyelembe véve, hogy egy egyaránt felső
korlátja a beszúrásnak és a kitörlésnek, az kapjuk, hogy rendezés teljes műveletigénye
O(2 ∗ n log n), ami pedig szintén O(n log n).

101

Ez a műveletigény a gyorsrendezővel esik egy rendben. A kupacrendezés azonban sta-
bil lepésszámú rendező, nem függ a rendezés semmitől, úgy mint a gyorsrendezés esetén
a pivot megválasztásától. Általában a gyorsrendezés kevesebb lépéssel dolgozik, azaz va-
lójában gyorsabb, mint a kupacrendezés, azonban a gyorsrendezés képes „elromlani” nem
megfelelő strázsa esetén.

102

