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Targy célja

Ebben a jegyzetben a PAzmany Péter Katolikus Egyetem - Informéaciés Technolégiai Karan
esti képzés keretein beliil oktatott adatszerkezetek és algoritmusok tantargy eléadasain és
gyakorlatain elhangzott anyagokat igyekeztem 6sszegyujteni, rendszerezni. Mivel a targy
viszonylag rovid id6 alatt tobb alapvet6 programozaselméleti, algoritmikus és adatstruk-
turakkal kapcsolatos tudast nyujt, ezért tobb esetben a torzsanyaghoz tovabbi magyara-
zatok tartoznak, a teljesség igénye nélkiil. A targyat olyanok hallgatjak, akik valamilyen
mérnoki (villamosmérnok, informatikai mérnok/szakember) vagy a szakiranynak megfe-
lel6 (matematikai, gazdasagi) tudassal rendelkeznek, ezért néhany esetben igyekeztem
olyan példakat mutatni, amelyek ezekhez a korabbi tanulmanyokhoz kothetok.

Az elméleti tudas mellé, parhuzamosan, a JAVA nyelv is ismertetésre keriil alapszin-
ten. A cél, az hogy miniprogramok irdasara, algoritmikus megtervezésére barki képes le-
gyen a targy elvégzése utan. (Természetesen akadnak olyanok is akik kordbban mar ta-
nultak programozni, mas nyelven. A jegyzet elkészitése soran igyekeztem nekik is ,ked-
viikben jarni” egy-egy kulonbség, csemege emlitésével.)

Roviden felsorolva a targy alapveté célkittizéseit

e Algoritmikus szemlélet kialakitasa, néhany példan keresztiil bemutatva a progra-
mozas mibenlétét.

e Programozasi alapstruktirak megismerése, nyelvfiiggetleniil, hogy kés6bbiekben
mas szintaktikara is atiiltethet6 legyen a tudas. (Természetesen példakhoz a JAVA
nyelvet hasznaljuk a jegyzetben.)

e Java programozasi nyelv alapismeretek

e Alapveté adatszerkezetek megismerése valamint implementacidja.

e Rendezo6 algoritmusok analitikus vizsgalata, implementacidja.






1. fejezet

Bevezetés a programozasba

1.1. Algoritmusok

1.1.1. Mit jelent programozni?

Legelsoként azt a kérdést jarjuk koriil, hogy milyen részfeladatokat rejt magaban a prog-
ramozas, mint tevékenység. A programozas feladata nemcsak az utasitasok kédolasat fog-
lalja magaban, hanem annal tobb, a feladat illetve rendszer megtervezésére vonatkozo
problémak megoldasat is jelenti.

¢ Részletes megértés: A feladatot, amit meg kell oldani csak ugy tudjuk a szamito-
gép szamara érthet6é formaban, programkédként elkésziteni, ha mi sajat magunk is
tisztaban vagyunk a kovetelményekkel, a probléma részleteivel. Ez egy sokréta és
tobb modszer ismeretét és alkalmazasat igénylo feladat, hiszen a problémat gyakran
nem mi magunk talaljuk ki, hanem a szoftver ,megrendelésre” kell, hogy elkésziil-
jon, valaki mas elképzelései alapjan. (Ezzel részletesebben a szoftvertervezés soran
foglalkozunk.)

e Rendszer tervezése: Bonyolultabb esetekben a programunk nem ,egy szuszra” fog
elkésziilni, hanem tobb részfeladatbél, részprogramboél all 6ssze, amelyeket szintén
meg kell tervezniink. A kiilénboz6 rendszeregységek és feladataik szintén tervezés
igényelnek. (Itt nemcsak a részek, mint 6nallé egységek, hanem azok 6sszekapcsolo-
dasa, illetve azok elkésziilési sorrendje is fontos.)

¢ Receptkészités: Az egyes egységek, illetve a program egészére el kell végezniink az
algoritmusok, médszerek gép szamara értheté médon torténé leirasat. Ez azt jelenti,
hogy az egyes problémak megoldasara el kell késziteniink a legaprébb lepésekbol
allé sorozatot, amely 1épéssorozatot a gép is megért és végrehajt. (Jellemzoen ezen
egyszerd utasitasok, vagy olyan mar elére megirt funkcidk, amelyeket szintén elemi
1épésekbol allnak 6ssze.)

e Modszer keresése: A probléma megoldasahoz sziikségiink van a megoldas elkészi-
téséhez, kiszamitasahoz maddszerekre. Példaul egy szam négyzetgyokét kiilonbozo
kozelit6 numerikus szamitasokkal lehet megoldani. Egy masik médszer lehet az,
hogy egy tablazatban eltaroljuk az megoldasokat és egy keresési problémava ala-
kitjuk at a négyzetgyok-szamitas feladatat. (Természetesen itt megkotésekkel kell
élnink, mivel az Osszes lehetséges valdés szam és négyzetgyokének parosaibdl allé
tablazat végtelen mennyiségi tarhelyet igényelne.)

e Matematika: A szamitogép — természetébol fakadéan — tébbnyire matematikai mii-
veleteket ismer, abbdl is az alapvetéeket. Az el6z6 példara visszatérve, a négyzetgyok
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kiszamitasara egy lehetséges kozelité modszer a Newton-Rhapson-féle iteraciés mod-
szer. Ebben az esetben ismételt miiveletekkel egyre pontosabb eredményt kapunk a
szamitas soran, ami elemi matematikai 1épésekbdél all. Mas feladatok esetén masféle
matematikai modellre, médszerre van sziikkségiink.

Egy hétkoznapi példat vegyiink, amely egy robotot arra utasit, hogy az ebéd elkészi-
téséhez szerezze be az egyik Osszetevot, a burgonyat. Természetesen a feladatot egyetlen
utasitasban is meg lehet fogalmazni, de ahhoz hogy ezt végrehajtani képes legyen finomi-
tani kell, tovabbi 1épésekre kell bontani.

Hozz krumplit!

Hozz egy kilogramm krumplit!

Hozz egy kilogramm krumplit most!

Hozz egy kilogramm krumplit a sarki kozértbol most!

Menj el a sarki kozértbe, végy egy kosarat, tegyél bele egy kilogramm krumplit, adj
annyi pénzt a pénztarosnak, amennyibe a krumpli keriil, tedd le a kosarat, gyere ki
a kozértbol, s hozd haza a krumplit.

Nyilvan ez sem lesz elég, hiszen a haladassal, a fizetéssel és tovabbi mtiveletekkel kap-
csolatosan még finomabb lépésekre kell bontani. (Jelenleg egyetlen robot sem rendelkezik
olyan mesterséges intelligenciaval, hogy ezt a problémat énalléan megoldja.)

Amikor egy feladatot megoldunk, egy algoritmust elkészitiink, a megoldas kulcsa a
1épések meghatarozasaban rejlik. Hasonléan a bevasarlas példajabél az algoritmusunkat
egyre finomabb 1épésekre tudjuk felbontani.

1.1.2. Mi az algoritmus?

Az algoritmus olyan lépések sorozata, amely megold egy jol definialt problémat. (Itt ér-
demes azt megjegyezni, hogy a probléma j6l definidltsaga olyan kritérium, amelyet nem
minden esetben sikeriil teljesiteni. El6fordul, hogy a nem ismerjiik jol a problémat, vagy
csak az algoritmus kidolgozasa sordn vesziink észre olyan helyzeteket, amelyeket a feladat
kitiizésénél nem vettek figyelembe.) A kovetkezé néhany pontban az algoritmus szamitoé-
gépes vonzatait és tulajdonsagait vizsgaljuk.

e A szamitégépes algoritmus (elemi) utasitasok sorozata a probléma megoldasara. Itt
mar tovabbi lépésekre utasitasokra bontjuk a megoldasunkat, a korabbiakban irtak-
kal 6sszhangban.

e J6 algoritmus kritériumai

— Helyesség — vizsgaljuk, hogy a megalkotott algoritmus, a feladatkiiras feltételei
mellett, minden esetre j6 megoldast ad-e.

- Hatékonysag — vizsgaljuk, hogy az algoritmus a rendelkezésre allé kiilonb6z6
er6forrasokkal mennyire banik gazdasagosan.

e Algoritmus és program kapcsolata, algoritmusok lehetséges leirasa

— Pseudo kéd — olyan kéd, amit az emberek értenek meg, de mar a szamitégép
szamara is megfeleléen elemi utasitasokat tartalmaz.

— Programnyelvi k6d — amelyet begépelve szintaktikailag érvények kédot kapunk,
fordithatjuk! és futtathatjuk.

1Az a miivelet, amikor a programnyelvi kédot a programozast tdmogaté kornyezetek, programok a szami-
t6gép szamara kozvetleniil értelmezheté utasitasokka, programma alakitjuk.
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Algoritmusok helyessége

Egy algoritmus helyes, ha a kitizott feladatot korrekt médon oldja meg. Azaz a feladatspe-
cifikacioban meghatarozott megszoritasokat figyelembe véve, minden lehetséges esetre,
bemenetre (inputra) megfelelé6 eredményt, kimenetet (output) szolgaltat. A helyességet
kiilonb6z6 technikdakkal lehet bizonyitani, ezek tobbsége azonban nagyon koltséges maod-
szer.

e Ellenpéldaval bizonyitas — cafolat, ez a legegyszeriibb, azonban ellenpélda talalasa
nem mindig konnyd. Természetesen, amennyiben nem talalunk ellenpéldat, az nem
jelenti azt, hogy a kéd bizonyosan helyes.

e Indirekt bizonyitas — ellentmondassal bizonyitas, ahogyan azt a matematikaban
megszoktuk. Ellentmondast keresiink az allitasok, eredmények kozott, amihez ab-
bél a feltételezésbol indulunk ki, hogy a megoldasunk helytelen.

e Indukeciés bizonyitdas — ha n-re helyes megoldast ad és ebbél kivetkezik az, hogy n+1-
re is helyes megoldast fog adni illetve igaz tovabba, hogy n = 1 helyes a megoldast,
akkor bizonyitottuk, hogy minden lehetséges inputra jol fog miikodni az algoritmu-
sunk. (Példaul a faktorialis szamitas esetén gondolkodhatunk igy.)

e Bizonyitott elemek hasznalata — levezetés, olyan részprogramokat hasznalunk, ame-
lyek bizonyitottan j6l mukodnek. A tovabbi elemek, részprogramok helyes mukodé-
sének formdlis bizonyitasa a mi feladatunk.

Algoritmusok hatékonysaga

Egy algoritmus hatékony, ha nem hasznal t6bb eréforrast, mint amennyi foltétlen sziiksé-
ges a feladat megoldasahoz. Ezek az eréforrasok legtobbszor a hasznilt meméria mennyi-
sége, valamint az id6 (processzor hasznalati ideje). Legtobbszor igaz, hogy a futasi id6 javi-
tasahoz tobb memoriara van sziikség, valamint kevesebb memdériahasznéalatot tobb 1épés-
sel tudunk csak elérni. Az alabbi felsorolassal 6sszefoglaljuk, hogy milyen médszerekkel
lehetséges a hatékonysagot vizsgalni

e Benchmark — futtatas és idémérés. A moédszer csak a megvalésitott algoritmusok
esetén hasznalhato, tehat elozetes becslést a hatékonysagra nem lehet végezni vele.
e Elemzés, ami az aldbbiakat foglalja magaban

— Muveletek megszamolasa, egy meghatarozott (legjobb/legrosszabb/atlagos) eset-
ben mennyi miivelet végrehajtasara van sziikség az eredmény megadasahoz. A
muveletek szamat, az megadott input méretéhez viszonyitva nagysagrendileg
szokas megadni. (Ezt a kés6bbiekben fogjuk hasznalni.)

- Komplexitas elemzés — az algoritmus bonyolultsaganak vizsgélata.

1.1.3. Feladat specifikalasa

A feladatspecifikacié az alabbi harmasbdél all

e Leirom, hogy milyen adat all rendelkezésre a feladat megoldasahoz.
e Leirom, hogy milyen adatokat/eredményeket kell kapnom a feladat megoldasa végén.
e Leirom, hogy mit kell végeznie a programnak, azaz mi a feladat (Emberi nyelven).

Ezek mindegyike egy-egy feltétel. Példaul kikéti, hogy a rendelkezésre allé adatok milyen
tipustak, milyen értéktartomanybdl keriilhetnek ki. A megkotések példaul a helyesség-
vizsgalatkor is fontosak.
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Példa a négyzetgyok szamitasra
Bemenet (input): a szam, aminek a négyzetgyokét keressiik: x
Kimenet (output):  egy olyan szam y, amire igaz, hogy 3> = z illetve \/z = y
Feladat (program): a program szamolja ki a bemenet négyzetgyokét

Miutan specifikaltuk a feladatot lehet részletesebben vizsgalni a problémat. Az el6z6 pél-
dankat folytatva:

e Mit csinalok, ha az = negativ ...
e Mit csindlok, ha az z pozitiv, vagy nulla ...

Ezekre a kérdésekre, valamint azt, hogy hogyan lehet algoritmikusan megfogalmazni és
leirni keressiik tovabbiakban a valaszt.

1.2. Alapfogalmak

Mindenekel6tt néhany alapfogalmat fogunk definialni.

1.2.1. Tipus, kifejezés, valtozo

Tipusnak nevezziik egy megadott értékhalmazt és az azokon értelmezett muveletek
Osszességét.

Egy programozasi nyelvben, algoritmusban minden egyes értéknek van aktualis ti-
pusa. Ez alapjan donthet6 el, hogy mit jelent az az érték, milyen muaveletek érvényesek,
és hogy azokat a muiveleteket hogyan kell elvégezni.

Egyszera esetben, ha a szamokra gondolunk ezek a kérdések trivialitasok. Bonyolul-
tabb Osszetett tipusok esetén azonban feltétlen vizsgalni kell.

Példak )
Egészek: Ertékek: 0...1000 Miveletek: + és —
Logikai: Ertékek: igaz, hamis Mduveletek: A, V és —
Karakter: Ertékek:a ...z Muveletek: < (relacié a bettirend szerint)
A kifejezés ...

e olyan miveleteket és értékeket tartalmaz, amelyek egyiittesen értelmezhetoek, van
jelentésiik.

e esetén is beszéliunk tipusrol, példaul az 1 + 1 egy szam tipusu kifejezés.

e lehet Osszetett kifejezés, ahol a részkifejezések is érvényes kifejezések. Példaul 5 +
6 (7+8).

A kifejezéseket szét lehet bontani a kiértékelés szerint. A kiértékeléshez a miveletek
precedenciajat (sorrendjét) kell figyelembe venni, illetve a zardjelezést.

Példaul
5+6%(7T+8) | (5+6)(T+8)
Lathato, hogy a zaréjelezés hatasara megvalto-
54+6%(7+8) | (5+6)*(7+8) | zik a részkifejezésekre bontds, illetve a kiérté-
kelés is.

N———

12



A valtozé egy névvel (cimkével) jelolt, adott tipushoz tartozé elem. A memoériaban egy
szamara fenntartott teriiletre kerul a valtozé aktualis értéke. Egy valtozonak mindig van
aktualis értéke, igy nem teljesen ugyanaz, amit a matematikai alapfogalmaink soran is-
meretlenként hasznalunk. (Ez fontos, mivel olyankor is van valami értéke, amikor még
nem adtunk neki. Ez az érték azonban elore ismeretlen, futasonként mas és mas, a me-
moriacella kiils6 hatdasok miatti, vagy egy el6z6 program utan ottmaradt értékét jelenti.)

e A valtozénak van neve és tipusa
e Kifejezésben is szerepelhet: 1+ 2. Ez csak akkor érvényes, ha létezik olyan + miivelet
az x valtozohoz, hogy szammal 6sszeadas (Praktikusan z példaul szam)

Miel6tt hasznalatba vesziink egy valtozoét, jelezniink kell a valtozé bevezetését. Ezt hiv-
juk deklardcionak. A deklaralas utan a programnyelvet értelmez6 rendszer ismeri a val-
tozét — addig nem. Minden tipusu valtozéonak van egy alapmuvelete, az értékadas, tehat
értéket barmilyen valtozénak adhatunk. Azonban iigyelni kell arra, hogy az értékadas,
mint kifejezés helyes legyen. Az értékadas soran hatarozzuk meg, hogy mit tartalmaz-
zon a hozzarendelt memdriacella. Az alabbiakban néhany példat lathatunk Java nyelven
a valtozok hasznalatara: (Java-ban a programkod folyamanak gyakorlatilag tetszéleges
pontjan bevezethetiink valtozokat, nincs sziikség azokat egy programblokk elejére tenni.
Mindig a tipus neve szerepel elészor, majd a hasznalni kivant valtozok nevei.)

Deklaracio példa - Java nyelven
int x;

int y;

double pi;

Létrehozunk harom valtozét a memoridban, amelyek kezd6 értéke ismeretlen, mivel nem
adtuk meg. A valtozok int illetve double tipustak, amelyek egész valamint racionalis
szamok. A valtozdk nevei rendre x, y, pi.

Ertékadas példa - Java nyelven

x = 10;
y = 10 » x;
pi = 3.14;

Az elo6z6ekben deklaralt valtozok értéket kapnak. Az x értéke egy elore rogzitett szam. Az
y értéke azonban mar szamitott érték egy masik valtozotol fiigg. Természetesen a program
futasa soran minden egyes pillanatban ez az érték pontosan meghatarozhato.

Vegyes tipusu kifejezésrol akkor beszéliink, ha az egyes részkifejezések tipusa kii-
16nb6z6.

Példa a vegyes tipusu kifejezésre
r<b

Az < operator (muvelet) olyan, hogy (itt) két szamot fogad, am logikai tipust eredményt
ad vissza. (A logikai tipus kétféle értéket vehet fel: igaz vagy hamis.) Amit matemati-
kailag megszokhattunk érvényes kifejezésnek, az tobb esetben nem helyes a programozas
szempontjabél. Vegyiik az alabbi hibas példat:

Hibas példa
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2<x<h

Ha felbontjuk, akkor a 2 < = eredménye logikai, azonban egy logikai és egy szam kozott vi-
szont nem értelmezhet6 a < operator. Javitani ugy lehet, hogy két logikai kifejezést kotiink
Ossze egy ujabb operatorral.

Hibas példa javitasa
(2 < 2)&&(x < b)

Ahol az && operator a logikai és operator (A). Az és akkor és csak akkor igaz, ha mindkét
oldalan levo érték igaz. Az el6zo példat megvizsgalva csak akkor lesz igaz a teljes kife-
jezés értéke, ha az x egyidejilleg kisebb, mint 6t és nagyobb, mint ketté, ami megfelel az
eredeti matematikailag leirt kifejezésnek.

1.3. Vezérlési szerkezetek

A jegyzet ezen részében a programozas soran hasznalt elemi szerkezetekkel ismerkediink
meg. Tovabba a Java nyelven torténé hasznalatukkal.

1.3.1. Szekvencia

A szekvencia a legegyszeribb programkonstrukcié. Lényege, hogy a program adott részé-
ben egymas utan végrehajtando utasitasok keriilnek felsorolasra, amely a felsorolas rend-
jében keriil majd futtatasra. A legegyszerubb algoritmusok is tartalmaznak legalabb egy
szekvenciat, ami akar egyetlen utasitasboél is allhat. A szekvencidkban lehetéségiink van
a legtobb programozasi nyelv esetén tovabbi szekvenciakat leirni. A belsé szekvenciak a
kiils6 szamara egyetlen egységként értelmezendoek, tehat ahova lehet programutasitast
vagy lépés irni, ugyanoda szekvencia is elhelyezhet6. Vegyiik az alabbi példat: (Java-ban
a szekvenciat, hasonléan a c++-hoz kapcsos zaréjelek kozé tessziik. Ez hasonlit példaul a
begin-end parosra.)

Szekvencia példa

{ Szekvencia eleje
int x; Létrejon x
int vy; Létrejon y
x = 10; z-be 10 keriilt
y = 10 * x; | y-ba x*10 =100 keriilt
x = 20; z-be 20 keriilt
} Szekvencia vége

A szekvenciat rajzosan az alabbi médon lehet abrazolni, struktogrammal:

1.3.2. Egyszeres elagazas

Algoritmusok soran eléfordul, hogy egy valtozé értékétol, vagy a miuveletek elvég-
zése soran az aktualis allapottol fiiggoen addédnak teenddék. Példaul egy abszolutér-
téket szamité algoritmus attél fiiggéen, hogy a bemeneti érték negativ vagy sem
mas-mas utasitast hajt végre. (Ha a bemenet nagyobb vagy egyenlé nullaval, ak-
kor a kimenet a bemenettel lesz egyenl6. Ellenkez6 esetben meg kell szorozni —1-el.
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Utasitas 1

Utasitas 2

Utasitas 3

1.1. abra. Szekvencia struktogram

Abszolutérték szamitas — elagazas példa
y = |z|, ha z > 0 akkor y = z, kiilonben y = —1 x x

Az egyszeres elagazas szintaktikaja Java nyelven az alabbi (ahol az else eldtti utasi-
tas végén, kivéve, ha szekvencia, kotelezé a ;)

Egyszeres elagazas — Java
if (logikai feltétel) utasitds else mds utasitds

A feltétel logikai tipus, barmi lehet. Az if rész utan kovetkezik egy utasitas, vagy uta-
sitasszekvencia, ami akkor fut le, ha a feltétel igaz volt. Az else rész utan kovetkezik
egy utasitds, vagy utasitas-szekvencia, ami akkor fut le, ha a feltétel hamis volt. Az else
elhagyhato!

Egyszeres elagazas — Java — abszolutérték
if (x < 0)

y = -1 * x;
else
y = X5

Az elagazast rajzosan az alabbi médon lehet abrazolni, struktogrammal illetve folya-
matabraval.

\ Feltétel /

utasitasok, ha igaf utasitdasok, ha hanyis

1.2. abra. Egyszeres elagazas struktogram

1.3.3. Tobbszoros elagazas

Hasonléan az egyszeres elagazashoz itt is a feltételnek megfeleléen kell cselekedni. Itt
tobb lehetséges esetet is fel lehet sorolni:

Tobbszoros elagazas — Java
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utasitasok utasitasol

Y

1.3. abra. Egyszeres elagazas struktogram

switch (kifejezés)

{

case 1. eset: utasitds break;
case 2. eset: utasitds break;
default: utasitdsok break;

}

A case-ek szama tetszoéleges. A break elhagyhaté, am akkor a kovetkezo eset(ek)hez tar-
tozé utasitasok is lefutnak (,atcsorog”). A default az alapértelmezett eset, elhagyhato.
Tekintsiik az alabb elagazasi szerkezetet:

Tobbszoros elagazas problémaja

if (x == 1)

nap = "Hétfo";
else if (x == 2)
nap = "Kedd";
else if (x == 3)
nap = "Szerda";

Ugyanez tobbszoros elagazassal:

Tobbszoros elagazas problémaja
switch (x)

{

case 1: nap = "Hétfd"; break;

case 2: nap = "Kedd"; break;

case 3: nap = "Szerda"; break;

case 4: nap = "Cslitortok"; break;

case 5: nap = "Péntek"; break;

case 6:

case 7: nap = "Hétvége"; break;

default: nap = "Nincs ilyen nap!"; break;

}

1.3.4. Ciklus(ok)

Sokszor a cél elérése érdekében ugyanazt a muveletsort kell tébbszor egymas utan elis-
mételni, példaul a szorzas, faktoridlis szamitdsa, szoveg sorainak feldolgozasa (hany beti
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van egy sorban), ... A ciklusokkal lehetdség van arra, hogy bizonyos szekvencidkat, utasi-
tasokat ismételtessiink.

Eloltesztel6 ciklus. Amig a logikai feltétel igaz, a ciklusmagban talalhaté utasitast,
vagy utasitas-szekvenciat ismétli:

Eloltesztelo WHILE ciklus
while (logikai feltétel)
ciklusmag

Eloltesztel6 WHILE ciklus - példa

int x = 0;
while (x < 10)
x =x + 1;

(z a ciklusvaltoz6 ebben az esetben, valamint a ciklusmag az x = x + 1). A példakdd az
x értékét noveli egyesével kilencig.

Hatultesztel6 ciklus. Amig a logikai feltétel igaz, a ciklusmagban taldlhaté utasitast,
vagy utasitas-szekvenciat ismétli, de legalabb egyszer lefut a ciklusmag. (Fontos, hogy
amig a feltétel igaz, ellentétben mas programozasi nyelveken megszokottal.)

Eloltesztel6 WHILE ciklus
do

ciklusmag

while (logikai feltétel)

El6ltesztel6 esetben, ha a feltétel hamis, egyszer sem fut le. (El6szor gondolkodunk,
aztan cseleksziink, majd Gjra gondolkodunk ...)

Ciklusfeltétel

Ciklusmag

1.4. abra. Eloltesztelo ciklus struktogram

Hatultesztel6 esetben, ha a feltétel hamis, egyszer akkor is lefut. (E16szor cseleksziink,
aztan gondolkodunk, hogy kell-e djra ...)

Ciklusmag

Ciklusfeltétel

1.5. abra. Hatultesztel6 ciklus struktogram
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FOR ciklus. Vegyiik a kovetkezé6 WHILE ciklust, ami kiszamolja 2'°-t.

Eloltesztelo WHILE ciklus
int x = 0;

int v = 1;

while (x < 11)

{

X + 1;
y * 2

x
Yy
}

Ez a kovetkez6 modon roviditheto le:

FOR ciklus
int v = 1;
for (int x = 0; x < 11; x = x + 1)
y =y * 2;

Formalisan:

FOR ciklus
for (inicializdlds; logikai feltétel; l1éptetés)
ciklusmag

Az inicializalas a ciklusba valé belépéskor fut le. A logikai feltétel vizsgalata minden egyes
ciklusmag—futtatas el6tt megtorténik. A léptetés pedig a ciklusmag lefutasa utan kovet-
kezik. A léptetés utan ujra kiértékeli a feltételt, és ennek megfeleléen 1ép be a ciklusba.

Par sz6 a ciklusrdl. A ciklusnak mindig van egy kezdeti allapota, egy feltétele és
egy ciklusmagja. Az allapottol fugg, hogy egyaltalan belépiink-e a ciklusba. Célsze-
rien a ciklusmag valtoztatja az allapotot, vagyis befolyasolja az ismétlodés feltéte-
1éiil szolgal6 allapotot. Konnyen lehetséges egy olyan ciklus irdasa, amely sosem all le:

Végtelen ciklus
int x = 0;
int y 0;
while

Mivel az = értéke sosem valtozik, mindig kisebb lesz, mint 10, azaz 6rokké ismétlédik
a ciklusmag. A végtelen ciklusok gyakran hibak, vagy hibas médon (példaul egy olyan
esetben kiovetkezik be, amire az algoritmus tervezése soran nem szamitottunk) miikodo
algoritmusok eredményei. (Persze vannak kivételek, van, hogy a végtelen ciklus hasznos,
példaul a felhasznal6é beavatkozasara tétleniil var a program.)

1.4. Programozasi tételek

Ismerjik az alapvet6 programszerkezeteket, a szekvenciat, a ciklust és az elagazast. Ezek
és tetszbleges kombinacigjuk segitségével barmilyen program megirasara képesek va-
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gyunk, azaz ezt a sort koveto része a jegyzetnek teljesen felesleges is lehetne.

A tovabbiakban hasznos konstrukciékkal, bizonyitottan helyesn mikodoé algoritmusok-
kal, adatszerkezetekkel fogunk foglalkozni. Elészor is a legalapvetobb ,tételnek” nevezett
algoritmusokkal ismerkediink meg.

1.4.1. Osszegzés tétele

Bizonyos, sorban érkezé értékek osszegzésére szolgal. Példaul kapunk egy szamsorozatot,
aminek az matematikai 6sszegére vagyunk kivancsiak. A tételben szereplo részek koziil
az alabbiak tetszolegesen cserélhetok mas muveletre:

o Kezd6érték — milyen szamrdl kezdjiik az 6sszegzést

o Osszegzofiiggvény / — operator (Lehetséges, hogy az elemeket nem 6sszeadni, hanem
Osszeszorozni akarjuk, vagy az 6sszegzés elott még valamilyen leképezést (fiiggvényt)
szeretnénk meghivni.

Az 6sszegzés tétele hasznalhaté

Atlag

Osszeg ()
Szorzat ([])
Szorzatosszeg
Vektorszorzat
Faktorialis

szamitasara.

Osszegz6 - FOR ciklussal

int osszeg = 0;
for (int 1 = 0; 1 < értékek szama; i++)
osszeg = osszeg + kdvetkezd érték;

Osszegz6 - WHILE ciklussal

int osszeg = 0;

int 1 = 0;

while (i1 < értékek szama)

{

osszeg = osszeg + fiiggvény (kdvetkezé érték)
i += 1;

}

1.4.2. Szamlalas tétele

Bizonyos, sorban érkez6 értékek leszamlalasara szolgal, valamint a ,mennyi?”, ,hany?”
kérdések megvalaszolasa. A tételben szerepld részek koziil az alabbiak tetszdlegesen cse-
rélhetok mas muveletre:

e Feltétel, azaz hogy mit akarunk 6sszeszamolni
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e Novel6 fliggvény — mi mennyit ér a szamolasban
A szamlalas tétele hasznalhato

e Osztok szamanak megallitasara
e Szavak leszamlalasara egy szovegben

Szamlalé6 - FOR ciklussal

int szamlalo = 0;

for (int 1 = 0; 1 < értékek szdma; 1i++)
if (feltétel (kévetkezd érték))
szamlalo++;

Szamlal6é - WHILE ciklussal

int szamlalo = 0;

int 1 = 0;

while (i < értékek szdma

{

if (feltétel (kévetkezd érték))
szamlalo++;

i += 1;

}

1.4.3. Linearis keresés tétele

Bizonyos, sorban érkezo6 értékek kozott egy bizonyos megkeresésére; a ,,van-e?”, ,hanya-
dik?” kérdések megvalaszolasa hasznalhaté. A tételben szereplo részek koziil az alabbiak
tetszolegesen cserélhet6k mas miiveletre:

o Feltétel — amit keresiink
A linearis keresés tétele tétele hasznalhato6

e Annak eldontése, hogy szerepel-e egy érték a sorozatban
e Primszam (Oszt6) keresésére

Linearis keresés

boolean van = false;

int hol = 0;

int 1 = 0;

while ((1i < értékek szama) && !wvan)

{

if (feltétel (kdvetkezdb érték))
{

hol = 1i;

true;

van
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1.4.4. Maximumkeresés tétele

A ,Mennyi a leg...?” kérdés megvalaszolasasra hasznalhaté. (Széls6értékkeresésre.) Cse-
rélhet6 a tételben a

e Feltétel, hogy figyelembe vessziik-e az aktualusan vizsgalt értéket
e Relacié — min/max
e Fiiggvény, amivel transzformaciot lehet végrehajtani az aktualis értéken.

A maximumkeresés tétele tétele hasznalhaté

e Minimum-, maximumkeresés
o Zarojelek mélységének szamolasara

Maximumkeresés

int max = filiggvény (elsé elem);

int hol = 0;

int 1 = 0;

while (i < értékek szama)

{

if (max < fiiggvény (kSvetkezb elem)

{

hol = 1i;

max = filiggvény (k8vetkezé elem);
}

i += 1;

}

A tételekben el6fordult 1j jelolések.

e it+& i =1 + 1

e i+=10& 1 = 1 + 10

e !logikai vdltozd & Logikai tagadas. (!igaz = hamis);
boolean < Logikai tipus

true < logikai igaz

false < logikai hamis

1.4.5. Az elemenkénti feldolgozasrol

Az eléz6ekben ismertetett tételek mindegyike olyan, hogy az adathalmaz, ami rendelke-
zésre all, egyszeri végigolvasasaval eldontheté a feladatban megfogalmazott kérdésre a
valasz. Idetartozik tovabbi par algoritmus példaul az 6sszefésiilés, valogatas, stb.
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Egy adathalmaz elemenként feldolgozhaté, ha egyszerre csak par elemmel dolgozunk
és ha elég egyszer végignézni mindegyiket. (Ezek gyakorlatban a bemenettél linearisan
idoében fiiggb problémakat illetve algoritmusokat jelenti.)

Ugyanakkor vannak olyan problémak, amik igy nem megoldhatéak, példaul a sorozat
novekvd/csokkeno sorrendbe rendezése, egy adathalmaz medianjanak szamitasa, vagy an-
nak eldontése, hogy van-e két egyforma elem az adathalmazban. (De az eldonthetd, hogy
van-e még egy olyan, mint az elsé.)

1.5. (El)Gondolkodtato feladat

A feladat egy olyan algoritmus megvalésitdsa, amely képes megmondani, hogy egy
adott pénzmennyiség milyen cimleti és hany érmére valthaté fel leggazdasagosab-
ban. Efféle algoritmusokat hasznalnak a postan ahhoz, hogy a pénzes postas a le-
heto legkevesebb, ugyanakkor elégséges mennyiségii cimletekkel induljon el reggel.

Gondolkodtato feladat
Bemenet: afelvaltandé 6sszeg x

Kimenet: y vektor, ami tartalmazza az egyes érmék darabszamat, illetve n az 6sszes darabszamot
Feladat: a program szamolja ki, hogy az x hogyan valthaté fel a legkevesebb érmére

Lehetséges megoldas. Egyszerusités kedvéért vegyiik forintban. Elészor vizsgaljuk
meg, hogy hany darab 200-as kell, azutan a szazasoknak megfelel6 értéket vonjuk ki a
felvaltandé 6sszegbol és nézziik meg 50-esekre, és igy folytassuk tovabb ...

Mohé algoritmus

int x = 295;

int [] v = {0, 0, 0O, O, O, O}
int n = 0;

y[0] = x / 200;

x = x — (y[0] % 200);
yv[1] = x / 100;

x = x — (y[0] % 100);
v[2] = x / 50;

x = x — (y[1] = 50);

y[3] = x / 20;

x = x — (y[2] = 20);

v[4] = x / 10;

x =x - (y[3] = 10);

y[5] = x / 5;

Ugyanez ciklussal:

Moh¢ algoritmus - ciklussal

int x = 295;

int [] v = {0, O, O, O, 0O, O}

int [] ¢ = {200, 100, 50, 20, 10, 5};
int n = 0;

22



for (int i = 0; x < c.length; i =i + 1)
{

y[il = x / cli];

x = x — (y[i] * c[i]);

n=mn+ y[i]
}

Ez az algoritmus hatékonynak tnik, nagyon keveset lehet mar javitani rajta. Azonban
helyes-e?

Forintban nyilvanvaléan, ennek hamar utana tudunk jarni, de mi torténik, ha az alabbi
érméink vannak: ¢ = (25,20,5,1)? Nézziik meg, mi torténik, ha az » = 42. (Ehhez nem
is kell csodaorszagba menniink, hiszen van a foldén olyan orszag, ahol hasonlé érmék
vannak.)

Ranézésre lathato, hogy két huszas és két egyes érme a helyes megoldas, de vajon az
algoritmusunk is ekként szamol? Mohé médon, kezdjilk a 25-tel. Kell belole egy, marad
17. Ezt pedig az érméket felhasznalva 6sszesen 5 érmét kell elhasznalnunk, tehat a fel-
valtast 6 érmével oldjuk meg. Ez tobb, mint amit ranézésre megallapitottunk, tehat az
algoritmusunk ebben az esetben aligha nevezhet6 helyesnek.

Kérdés, hogy akkor mi a megfelel6 algoritmus erre a problémara. Lehetséges egy olyan
megoldas, hogy kiprébaljuk az 6sszes érvényes felvaltast, megnézve, hogy melyik a legjobb.
Vajon ez a médszer hatékony?

1.6. Tipusok

Az el6z6 részben szerepelt egy definicié, miszerint tipusnak nevezziik egy megadott érték-
halmazt és az azokon értelmezett muaveletek 6sszességét.
A tipusokat az alabbiak szerint lehet osztalyozni

lr—\{ Tipusok }—‘

Osszetett tipusok | | Elemi tipusok |

Mutaté

L

Iteralt Skalar

Unié | Diszkrét

Lebegépontos

1.6. abra. Tipusok osztalyozasa

111

Direktszotzat | | Felsorolasi

| Egész

A tipusok elemi vagy Gsszetett tipusok. Osszetett esetben meglévé elemi tipusokbél
kiindulé valamilyen konstrukciérél van szé. Példaul Descartes szorzat esetén két tipus
lehetséges elemeinek minden lehetséges parbeli kombinaciéi lesznek az 4j tipus értékei.
Osszetett tipusok tovabba olyan konstrukciék mint a tomb vagy vektor, amely (azonos)
elemi tipusok sorozatabdél allé értékek tarolasara hasznalhatok.

Elemi tipusok esetén megkiilonboztetiink:

e Skalart, amelyek egyetlen érték tarolasara képesek. Egy skalar lehet
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— Diszkrét tipus, amely valamilyen felsorolhaté értékeket tarol. Az egész szamok
egy meghatarozott intervallumon szintén felsorolhatéak, igy ok is a diszkrét
tipus csoportjaba tartoznak.

— Valés, valamilyen valés (racionalis) szam/érték tarolasara alkalmas tipusok.
Lehetnek fixpontosak, vagy lebegépontosak, ami a tizedespont rogzitettségére
utal. (Lebegdpontos esetben nincs megkotve, hogy a tizedespont elotti jegyek
példaul az egész részt a tizedespont utani rész pedig a tortrészt jelenti. Lebe-
gopontos szamok a z x 10Y alakuak, ahol az x és y is tetszoéleges szam lehet.
Természetesen a tetszolegességnek az abrazolasi pontossag korlatot szab.)

e Mutatét, aminek az értékei a memoria lehetséges cimei. Mutaté esetén az érték altal
meghatarozott memoriateriileten talalhat6 a szamunkra hasznos informéacié. (Ehhez
a memoriat mint rekeszek sorozatat kell elgondolni, ahol minden rekeszbe keriilhet
érték és az egyes rekeszeknek egyedi sorszamuk van.)

1.6.1. Adatok abrazolasa - fizikai szint

Fizikai szintet a memoéria két allapot megjegyzésére képest. Ez merevlemez esetén mag-
nesezett/nem magnesezett vagy memoria esetén fesziiltség alatt levo/fesziilltségmentes al-
lapot. Matematikai értelemben a két allapotnak a 1 és 0 értéket feleltetjiik meg. Egy po-
zicioban egyetlenegy érték tarolhato ez lesz a 0 vagy 1. Ezt nevezziik bitnek. 8 biten lehet
abrazolni egy bdjtot, kettes szamrendszerbdl tizesre atirva ez 0 és 255 kozotti szamokat
tesz lehetové, tehat osszesen 256 kiilonb6zo6 érték. Ezt fogjuk bajnak nevezni. A bajtokat
kett6 hatvanyai szerint szokas tovabbi egységekbe foglalni, szélesitend6 az abrazolhaté
értékek halmazat.

e Két bajt (16 bit): 0 és 65535 kozott
e Négy bajt (32 bit): 0 és 4294967295 kozott, (32-bites rendszerekben ezt szénak (word)
is hivjak)
A tarolni kivant érték tipusatol fiigg az értékek jelentése, amiket a konnyebbség ked-
véért szamokként fogunk fel. Példaul 16 biten (2 bajton) tarolni lehet:

e Elgjel nélkiili egész szamokat (0 ...65535)

e Elojeles egész szamokat (—32768...0...32767). (Elso bit el6jelbit)

e Karaktereket (igynevezett Unicode tablazat alapjan). Minden egyes értékhez egy
karaktergrafika rendelhetd, amely ebben az esetben a vilag osszes irasforméajara ele-
gendo6 szamu helyet biztosit. (Kordabban illetve a kompatibilitds megorzése érdekében
8 bajton taroltak egy-egy karaktert, ami legfoljebb 256 kiilonb6z6é karakternek volt
elég. Konnyen utanajarhatunk annak, hogy ez a teljes latin abc és a hozz4 kapcsol6do
szamoknak és irasjeleknek sem elég, ha a lehetséges nemzeti ékezetes karaktereket
is szeretnénk tarolni.)

e ...
Milyen adatokat lehet tarolni a memoériaban:

e Logikai értékeket — ahol a logikai valtozé értéke igaz vagy hamis lehet.
Racionalis szamokat, meghatarozott tizedes pontossaggal
Karaktersorozatokat (szovegeket)

Memoriarekeszek cimét

Programutasitasokat (az egyes bajtoknak utasitasok felelnek meg)

e Datumot, idét (példaul eltelt masodpercekben mérve)
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e Az elozbek sorozatat vektorok formajaban

A fentiekbél lathaté, hogy a 64-es értéknek megfelel6 binaris szam 01000000 sorozat fiig-
goen attol, hogy miként értelmezziik t6bb mindent jelenthet. Lehet a ,@” karakter. Lehet
a 64, mint szam. Lehet hogy eltelt idét jelent masodpercben.

1.6.2. Memoria szervezodése

Par mondat erejéig a memoria logikai szervezodésérdl lesz sz6. A memoria rekeszekre van
osztva, ahol a rekeszek hossza rendszerenként mas, manapsag példaul 32/64 bit szokaso-
san egy asztali PC-ben. Egyetlen rekeszben mindig legfeljebb egy érték van, akkor is, ha
a tarolando érték kevesebb helyen is elférne. (Tehat a logikai valtozé tarolasa is ugyanagy
egyetlen teljes rekeszt elfoglal.) A programozé (igy a gépi utasitasokra forditott program)
tudja, hogy melyik rekeszben milyen tipusu érték van, hogy kell értelmezni, beleértve a
programkédra vonatkozé informaciékat. (A rekeszeknek tudunk nevet adni, tulajdonkép-
pen ezek a valtozék. Ez kozvetve feloldédik a rekeszek cimére, a program futé kédjaban
ténylegesen a cim keriil felhasznaldsra.) Valtozokon keresztiil a rekeszeket lehet egyiit-
tesen is kezelni (6sszefogni). Példaul tombok, karaktersorozatok ... (Amikor egy rekeszbe
egy masik rekesz cimét tessziik és a hivatkozottat elérjiik azt a referencia feloldasanak
nevezziik.)

1.6.3. A valds szamok a memoriaban

Egyrészt fontos megjegyezni, hogy a valés szamok halmazabdl, csakis a racionalis szamo-
kat tudjuk adott esetben pontosan tarolni. (Természetesen a tarolas pontossag itt is kor-
lat.) Az irraciondlis szamok (végtelen tizedestort alakdak) pontos tarolasara nincs méd. A
raciondlis szdmok az X % 2Y alakban abrazoljuk. Ahol az X és Y értéke keriil tényleges ta-
rolasra. A hosszak példaul egy 32 bites tarolas esetén 23 bit az X és 8 bit az Y, illetve még
egy bit az el6jelbit. Egy IEEE szabvany esetén a lebegépontos szamabrazolas az alabbi
alakot olti:

23db

e Az X minden esetben 1.Tzxxzrrrrrrrxrrrrrrrzzxd alakda, ahol az x egy binaris
érték

e Az exponens (Y), amely a maradék biteken keriil kédolasra adja meg a kettedes
pont helyét. (A kettedes pont a tizedes pont mintajara képzelendé el, nem feledjiik el
ugyanis, hogy itt nem tizes, hanem kettes szamrendszerben kell gondolkodni.)

e A vezeto egyest valgjaban nem taroljuk, mivel mindig egy, az el6z6 felirasban a ket-
tedes pont elétti szamjegy.

A tarolas kovetkezményei

Az eldbb leirt tarolasi moédszerekbo6l konnyen lathatjuk az alabbi gondolatok fontossagat
és érvényességét:

e Nagyon fontos tudni az értékek tipusat, mert legbeliil a fizikai szinten minden egy-
forma.

e Nem végtelen a precizitas szamok esetén, tehat matematikai problémaknal ezt fol-
tétlen figyelembe kell venni.
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e Nem végtelen az abrazolhaté szamok intervalluma, azaz ha egy bajton tarolunk és
vessziik azt a kifejezést, hogy 255+ 1, akkor is kapunk eredményt, mégpedig azt hogy
255 + 1 = 0. Ezt jelenséget tulcsordulasnak hivjuk, van egy parja is alulcsordulas
néven, amihez a 0 — 1 = 255 példa tartozik.

e Racionalis szamoknal ha két eltéré6 nagysagrenda szamot adunk ossze, példaul 23
kettedes jegynél nagyobb a nagysagrendbeli kiilonbség, akkor A # 0: A+ B = B
eléfordulhat, mivel az 6sszeadas utan a hasznos jegyekbol az A-hoz tartozé értékek
eltarolasa lehetetlen adott pontossag mellett. (Ilyen esetben eléfordulhat, hogy a pre-
cizitas novelése megoldja a problémat. (Példaul 32 bites lebegépontos helyett 64 bites
lebegbépontos szamok hasznalata.)

¢ Nem mindig igaz, pontossagvesztés miatt, hogy (x/y) *x y = z, tehat valés szamoknal
ne hasznaljunk egyenléségvizsgalatot.

1.7. Objektumorientalt programozas

A tipusok megismeréséhez Java nyelven sziikséges par fogalom az objektumorientalt prog-
ramozasi szemléletbdl, mivel a Java nyelv az objektumorientalt szemléletet koveti.

1.7.1. Modellezés

A programozashoz a valés vilagot modellezziik, amely soran olyan absztrakt fogalmakat
vezetiink be a programozas soran amelyek megfeleltethetok a vilagban talalhaté targyak-
nak, entitasoknak, fogalmaknak. A modellezéshez az alabbi alapelveket hasznaljuk fel

e Absztrakcié — az a szemléletméd, amelynek segitségével a valés vilagot leegyszeri-
sitjiik, ugy, hogy csak a lényegre, a cél elérése érdekében feltétleniil sziikséges ré-
szekre 6sszpontositunk. Elvonatkoztatunk a szamunkra pillanatnyilag nem fontos,
koz6mbos informaciéktoél és kiemeljiik az elengedhetetlen fontossagu részleteket.

e Megkiilonboztetés — az objektumok a modellezend6 valés vilag egy-egy 6nallé egysé-
gét jelolik, a szamunkra lényeges tulajdonsagaik, viselkedési médjuk alapjan meg-
kiilonboztetjik.

e Osztalyozas — Az objektumokat kategoriakba, osztalyokba soroljuk, oly médon, hogy
a hasonlé tulajdonsagokkal rendelkezo6 objektumok egy osztalyba, a kiilonb6z6 vagy
eltér6 tulajdonsagokkal rendelkezé objektumok pedig kiilon osztalyokba keriilnek.
Az objektum-osztalyok hordozzak a hozzajuk tartozé objektumok jellemzéit, objektu-
mok mintdinak tekinthetok.

e Altaldnosités, specializdlas — Az objektumok kozott allandéan hasonlésagokat vagy
kiilonbségeket keresiink, hogy ezaltal b6vebb vagy sziikebb kategéridakba, oszta-
lyokba soroljuk 6ket.

Objektum példa
Sok embernek van kutyaja kiilonb6z6 névvel és jellemz6 tulajdonsagokkal — objektumok
(példanyok)

A kutyak, mint egy allatfaj egyedei sok mindenben hasonlitanak is — példaul mindegyik
tud ugatni
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1.7.2. Osztalyhierarchia

Természetesen, ha sziikség van tovabbi allatok reprezentdlasara a program soran, akkor
tovabbi osztalyokat, objektummintakat vezethetiink be. Legyenek ezek példaul a macskak
a tigrisek és az emuk. A macskakban és a kutyakban lehetnek olyan k6zos tulajdonsagok,
amelyeket egy felsébb absztrakcidés szinten leirhatunk, a haziallatok szintjén. Hasonlé
gondolat mentén tudjuk kialakitani az alabbi struktiurat, amelyben a kapcsos zaréjellel
jelolt rész az osztalyhierarchia, illetve néhany Kutya objektumpéldan is jelolésre kertiilt.

Osztalyhierarchia

*
[ J

Hazidllat Vadallat

‘ Macska ‘ Kutya ‘ Tigris ‘ Emu

‘ Bodri ‘ Morzsi ‘ Floki

1.7. abra. Osztalyhierarchia példa

Az objektumorientalt nyelvek eszkozeivel a fenti abra teljes egészében megvalésithato,
olyan médon, hogy a Macska osztaly minden egyes tulajdonsagat 6rokolni képes a Hazial-
lat osztalynak illetve felfelé a hierarchidban.

1.7.3. Objektumok és allapotaik

Az objektumorientalt program egymassal kommunikalé objektumok 6sszessége, ahol min-
den objektumnak megvan a feladata. Az objektum informaciét tarol, kérésre feladatokat
hajt végre; bels6 allapota van, iizeneten keresztiil lehet megszélitani és megvaltoztatni;
valamint felelos; feladatainak korrekt elvégzéséért.

Objektum = adattagok + muveletek (fiiggvények)

Az objektumoknak Mindig van egy allapota, amit a mezok (objektumhoz tartozé val-
tozok) pillanatnyi értékei irnak le. Az objektum miiveleteket hajt végre, melyek hatasara
allapota megvaltozhat. Két objektumnak akkor lesz ugyanaz az allapota, ha az adattagok
értékei megegyeznek.

1.7.4. Osztaly és példany

Az osztaly (class) olyan objektumminta vagy tipus, mely alapjan példanyokat (objektu-
mokat) hozhatunk létre. A példany (instance) egy osztalyminta alapjan létrehozott objek-
tum. Minden objektum sziiletésétol kezdve egy osztalyhoz tartozik, életciklusa van meg-
sziiletik, él, meghal. Létrehozasahoz inicializalni kell — specialis miivelet, fliggvény, a neve
konstruktor, ami a valtozoknak kezdo6értéket ad, valamint az objektum mukodéséhez
sziikséges tevékenységek végrehajtja.

Példanyvaltozo: objektumpéldanyonként helyet foglalé valtozé — minden példanynak
van egy sajat.

Osztalyvaltozo: osztalyonként helyet foglal6 valtoz6 — az osztalyhoz tartozé valtozo.
Példanyfiiggvény (-metodus): objektumpéldanyokon dolgozé metédus, miivelet, amely
a meghatarozott példany valtozéit éri el, illetve azokon végezhet muveleteket.
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Osztalyfiuggvény (-metodus): osztalyokon dolgozé metédus, miivelet, amely az osztaly-
valtozokat éri el.

Lathatosag: Lehetéség van arra, hogy bizonyos fiiggvényeket (muveleteket), valtozékat
az osztalyhasznal6 szamara lathatatlanna tegyiink. Ez az (informdcié elrejtésének alapel-
véhez) tartozik, ahol arrdl van sz6, hogy az objektumot hasznalé szamara csak a szamara
sziikséges elemei legyenek elérhetéek az objektumbdl. Azaz ne tudja tgy megvaltoztatni
az allapotat, hogy azt ne muveleten keresztil tegye, vagy ne tudjon eléallitani nem kon-
zisztens (érvényes) allapotot az objektumban.

1.7.5. Oroklédés

Az allat osztalynak vannak bizonyos tulajdonsagai (mezo6i) és fiiggvényei. Amennyiben el-
készitjuk a hdzidllat osztalyt, nyilvanvalé, hogy sok olyan tulajdonsaga lesz, mint ami az
dllatnak. Kézenfekvo az otlet, hogy ezt a programozas soran a OOP-t tamogaté nyelv is
kezelje. Erre lehetoség az OOP nyelvekben, hogy a hdzidllat osztalyt az dllat osztaly le-
szarmazottjaként létrehozni, ekkor az 6sszes mezot és fliggvényt orokli a haziallat, ami
az allatban megvolt. Természetesen tovabbi fliggvényeket és mezoket vehetiink a hdzidl-
latba.

(Az 6roklodés, dinamikus koétés és polimorfizmus (statikus és dinamikus tipus) nagyon messzire elvinne
minket, igy elméletben tobbrél nem esik sz6. Fontos megjegyezni azonban, hogy a fentebbiek alapelvek, ennél

sokkal szinesebb paletta all rendelkezésre)
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2. fejezet

Java és Eclipse

2.1. Java tipusok

A Java egy objektumorientalt nyelv, aminek az a kovetkezménye, hogy minden beépitett
tipus a primitiveket kivéve objektum.

2.1.1. Java primitivek

A primitiv tipusok eddigi fogalmainkkal jol leirhatéak, minden egyest tarol primitiv tipusa
értékhez egy dedikalt rész tartozik a memoriaban. Java nyelven az alabbi primitiv tipusok
érhetdek el:

e boolean: Logikai tipus, lehetséges értéke true — igaz, vagy false — hamis.
e byte: 8-bites el¢jeles egész.

short: 16-bites eldjeles egész.

int: 32-bites eldjeles egész.

long: 64-bites elGjeles egész.

float: 32-bites lebegépontos racionalis szam.

double: 64-bites lebegépontos racionalis szam.

e char: 16-bites Unicode karakter.

2.1.2. Objektum tipusok Javaban

Java esetén az objektum tipusu valtozoknak az értéke egy referencia, amely az objektum-
példany helyét (cimét) mondja meg a memériaban. Amikor a valtozét hasznaljuk auto-
matikusan megtorténik a példanyra valé referalas, tehat a cimet kozvetleniil nem tudjuk
elérni. Amikor egy értéket adunk egy objektumpéldanyt referalé valtozénak, akkor vagy
egy Uj példany létrehozasaval vagy egy meglévé példanyra referalé valtozéoval tudjuk meg-
tenni. (Ez utébbi esetben ugyanarra a példanyra fog két valtozé hivatkozni.) (Primitiv
tipusok esetén a valtozé értéke a ténylegesen tarolt érték.)

2.1.3. Csomagol6 osztalyok

Az objektumelvii szemlélet miatt a primitiv tipusoknak Javaban vannak objektum parjaik,
amelyek a kovetkezok:

e Boolean: boolean
e Byte: byte
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e Short: short
Integer: int
Long: long

e Float: float

e Double: double
e Character: char

Ezeket csomagol6 osztalyoknak hivjuk, gyakorlatilag a primitiv tarsukkal felcserélhetéek
a legtobb esetben. Fontos, hogy nem megvaltoztathaté az értékiik, ami azt jelenti, hogy
az objektumpéldany allapota a létrehozas utan allandé. Amennyiben egy csomagolé osz-
taly példanyanak értékét megvaltoztatjuk egy kifejezésben, akkor 1) példany jon létre a
memoridban és a valtozo6 az 1j példanyra fog hivatkozni.

2.1.4. Karakterlancok

Hasznos tipus a karakterlanc — String (objektum), amelybe szovegeket lehet eltarolni.
Hasonléan a csomagolé tipusokhoz a karakterlancok sem valtoztathatéak meg. Amikor 4j
értéket adunk, akkor egy 1j példany jon létre, amelyre a korabbi valtozé fog hivatkozni.

Deklaracié
String s;

Ertéket adni idézéjelek kozott megadott szoveggel lehet:

Ertékadas

String s = "Szervusz vilag";

Ha idézojelet szeretnénk belevinni a szovegbe akkor:

Idézdjelek egy karakterlancban
String s = "Szervusz \"szép\" vilag";

Karakterek szamanak lekérdezése egy St ring esetén

Karakterek szama
String s = "Szervusz vilag";
int meret = s.length();

2.1.5. Tombok

A tomb ahhoz hasonlit, amit matematikaban vektornak hivunk. A memoériaban folytono-
san tobb ugyanolyan tipusu teriilet foglalédik le deklaraciokor, amelyet indexelten lehet
elérni. !

Java nyelven egy egészekbol allé tomb deklaracigja a kovetkezoképpen torténik:

Deklaracio

1A folytonos memodriateriileten valé elhelyezkedés fontos, ugyanis hidba van sok szabad memdria, azonban,
ha az nem folytonos nem tudunk maximalis méretii tombot lefoglalni. Megjegyezendd, hogy tovabbi korlatok
is vannak a dinamikusan kezelhet6 memoéria nagysagara vonatkozéan.
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tombtipusa [] tombneve;

Egy létrehozott tomb hossza nem valtoztathaté meg a kés6bbiekben, viszont lehet6ség van
ujabb, nagyobb deklaracigjara. Egy tombnek értéket adni tobbféleképpen lehet:

Ertékadas — Felsorolassal
int [] tombneve;
tombneve = {1,2,3,4,5};

Ugyanakkor 1étrehozhaté egy tomb kezd6értékek nélkiil is, csak a méret megadasaval:

Ertékadas — Ures létrehozasa
int [] tombneve;
tombneve = new int[10];

Ebben az esetben egy 1j objektumpéldany keriil 1étrehozasra, amelynek tipusa egy egé-
szekbdl all6 tomb tipus.

Illetve a tomb értékadasanal lehetoség van egy masik tombbel egyenl6vé tenni

Ertékadas - Masik témbbel
int [] masiktomb = {0, 1};
int [] egyiktomb = masiktomb;

Fontos, hogy ekkor a memdriaban egyetlen tomb lesz csak, ugyanakkor kétféle valtozonév-
vel lehet elérni, két valtozo referal ra.

A tombdék tartalmat indexeléssel érjiik el, a szamozas 0-val kezdodik.

Példaul
int [] egyiktomb = new int[10];

Az el6z6 tomb esetén 0. ..9 indexek érvényesek, a tobbi kiindexel a témbbol.

Egy tomb méretének megismerését a kovetkez6 példa mutatja Dbe:

Tombméret
int tombmerete = egyiktomb.length;

A egy tomb deklaracigja soran implicit médot egy 1j tipust hozunk létre. Ezzel a tipus-
konstrukciéval lehetoség van egy tovabbi tomb tipusat meghatarozni, amelyet a kovetkezo
példa mutat be:

Deklaracio
tipus [] [] matrix;

Ebben a példaban ezaltal egy kétdimenziés tombot hoztunk l1étre. Tovabb folytatva tobbdi-
menziés tomboket is 1étre lehet hozni, a korlat a memoéria mérete. (Kétdimenzios vektorok
a matrixok).
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2.1.6. Muveletek

A kovetkezo muveletek értelmezettek egész tipusokon, ahol a sorrend a precedencia sor-
rendjében keriilt leirasra:

e Novelés, csokkentés: ++, ——

e Multiplikativ: *, /, % (Szorzas, Maradékos osztas, és maradékos osztas maradéka)

e Additiv: +, -

e Bitenkénti eltolas: <<, >> (Balra, jobbra) A bitenkénti eltolas esetén gyakorlatilag
kettovel valé szorzasnak (balra) illetve kettovel valo osztasnak felel meg (jobbra).

¢ Bitenkénti miiveletek: ~, ¢, |, ~ (Negalas, és, vagy, kizaré vagy)

e Relacios: ==, '=, <, <=, >, >=

e Unaris: +, — (elgjelek)

o Ertékadads: A valtozénak Uj értéket ad = (Kombinalhaté mas mtivelettel: +=)

Racionalis tipusok esetén a muveletek:

e Novelés, csokkentés: ++, ——

Multiplikativ: «, /, $ (Szorzas, Osztas, és maradékos osztdas maradéka. Figyelem itt
az osztas nem maradékos.)

Additiv: +, -

Relacids: ==, ! =, <, <=, >, >=

Unaris: +, - (elgjelek)

Ertékadas: A valtozénak Uj értéket ad. =

A kovetkezo miivelek értelmezettek logikai tipusokon:

e Tagadas: !

e Relaciods: ==, ! =

¢ Logikali és, vagy: s, | |

Ertékadas: A valtozénak Uj értéket ad. = (Az érték true vagy false)

Karakterlancok esetén pedig az alabbi érvényes miiveleteink léteznek.

o Ertékadas: A valtozénak Uj értéket ad. =
o Osszefiizés: + Tobb kiilonbozé karakterlancot fiiz 6ssze

A muveletek esetén felmeriil6 lehetséges problémak a tipusra vezethetok vissza bizo-
nyos esetekben. Mivel a mtveletek mindig tartoznak egy tipushoz is, ezért a tipus donti
el egy kifejezésben, hogy milyen operator keriil alkalmazasra. Péld4aul, ha a 10/3 osztast
szeretnénk elvégezni, akkor azt varjuk el, hogy az eredmény 3.333... legyen. Ezzel szem-
ben Javaban a 10 / 3 = 3, mivel a 10 egész szam, ezért az egészhez tartoz6 / operatort
veszi, ami a maradékos osztas. Azonban 10D / 3 = 3.3333 ..., ahol aD jeldli, hogy ez
itt egy double tipusu, tehat nem egész. (Helyette 10 . 0-t is irhatunk.)

2.2. dJava osztalyok

Javaban osztaly 1étrehozasara az alabbi szintaxis szerint lehet 1étrehozni. Ez meghata-
rozza az osztalynak a lehetséges valtozoéit és muveleteit.

Osztaly létrehozasa
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public class osztdlynév extends sziilé6 [és még mas]

{

public int mezonev;
private String mezonev;

public osztdlyneve (paraméterek)
{ // Konstruktor }

public int fuggvenyneve (paraméterek)

{

-}

A mezok és és fiiggvények elotti lehetséges kulcsszavakbdl néhany:

public: mindenki szamara elérhetdé a program egészében.

nincs kulcsszo: adott osztalyban, leszarmazottjaiban (6roklédés) és a csomagban ér-
heto el.

protected: csak az adott osztalyban és leszarmazottjaiban, a csomag tobbi oszta-
lyaban mar nem érhet6 el.

private: csak az adott osztalyban érhet6 el, a leszarmazottakban mar nem.
static-kal jel6ljik az osztalymezot illetve fliggvényt.

Ha egy mez6 final, akkor nem moédosithato.

Ha egy osztaly £inal, akkor nem 6rokolheto beléle tovabb.

(Tovabbi kulcsszavak az abstract, synhronized, volatile, native ..., amelyek sza-
munkra most nem relevansak.)

Az osztalyok elemeinek lathatésagi szabalyozasa az eszkoz, amivel a kiilvilag szamara
el tudjuk rejteni egy objektum belsé szerkezetét, allapotat. Az eddigi példank folytatasa,
a Kutya osztaly Java nyelven:

Kutya osztaly
public class Kutya extends Allat

{

public String nev;

public String faijta;

public Integer eletkor;
private Date [] oltasok_ideje;
private String [] oltasok_neve;
public Kutvya ()

{

oltasok_ideje = new Date[1l0];
oltasok_neve = new String[1l0];

}

public void ugat ()

{
}

public void megy ()

{
}
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public void oltastkap(String s, Date mikor)
{
}
}

Lathaté, hogy az oltasokkal kapcsolatos informaciékat nem lehet kozvetleniil médositani,
csakis egy fliggvényen keresztiil. Ez azért j6, mert igy nem lehet olyan allapotot el6idézni,
ami szerint a Kutya osztaly egy példanyanak az oltasok ideje és az oltasok megnevezése
tomb eltér6 elemszamu (ami nyilvanvaléan nem érvényes allapot).

Kutya

+Név: String

+Fajta: String
+Eletkor: Integer
#0ltasok ideje: Date ||
#0ltasok neve: String [|

+ugat(): void
+megy(): void
+oltastkap(mikor:Date,mit:String): void

2.1. abra. A Kutya osztaly UML diagramja

Az el6z6 kutya osztaly, mint tipus az alabbiak szerint deklaralhato

Deklaracio
Kutya bodri;

Ez még csak deklaracio, a tényleges példany létrehozasa a new kulcsszoval torténik.

Példanyositas
bodri = new Kutyal();

A new kulcssz6 hatasara a memoridaban létrejon egy Uj Kutya objektum, valamint lefut
annak a konstruktora. A korabban emlitettek szerint, amikor az Object osztaly barmely
leszarmazottjat (legyen az tomb, String, Double, Kutya ...) deklaraljuk, akkor a val-
tozo, ami lefoglalasra keriil a memoéridban egy referenciat (memdriacimet) tartalmaz
értékként, nem az objektumot magat. Ez referencia alapértelmezésben null, azaz nincs
hozzatartozé objektumpéldany. (Tehat a valtozé képes egy adott tipusi objektumra hivat-
kozni, de éppen nem hivatkozik egyre sem.) Ahhoz hogy hivatkozzon, létre kell hozni egy
4j példanyt, vagy egy meglévo hivatkozast kell atadni értékként (egy meglévo példanyt):

Példanyositas
Kutya morzsi = new Kutyal();
Kutya rex = morzsi;

A masodik miatt egyetlen Kutya példany van a memodriaban, csak két névvel is hivat-
kozhatunk ra: morzsi és rex. Egy objektumvaltozé értéke Java-ban egy referen-
cia a memoriaban! Az olyan objektumpéldanyokra amelyekre nincs olyan valtozé ami
a referenciat tartalmazza ugy kell tekinteniink, mint ami nincs is. (Ez Java esetén au-
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tomatikusan felszabaditasra keriil6 memodriateriiletet jelent, mas nyelveken ez elveszett
memoriateriilet.)

Egy objektumpéldany mezéit és tagfiiggvényeit a példanyon keresztiil lehet meghivni.
(Természetesen ez csak a lathaté elemekre vonatkozik, ahol a lathatésagot a fentebb leirt
kulcsszavak hatarozzak meg.)

Tagfiiggvények, mezok
bodri.ugat () ;
String kutyaneve = bodri.nev;

Egy osztaly osztalymezoit és fiiggvényeit az osztalyon keresztiil javasolt elérni. (Lehet-
séges egy példanyon keresztiil is, de az ellentmond a példanyfiiggetlenségnek.)

Osztalymezo
Kutya.ALAPERTELMEZETTUGATASTHANGERO

2.3. Fuggvények és metodusok

Korabban mar tobb helyen érintélegesen szo6 volt réla, ezért most vegyik részleteiben a
fiiggvény fogalmat.

A fiiggvények olyan részprogramok, miiveletek, amelyeknek a programokhoz hason-
l6an vannak bemené paramétereik, valamilyen miiveletet végeznek el és egy eredménnyel
térnek vissza. (Ez nagyon hasonlit a matematikai értelemben vett fiiggvény fogalomhoz,
ahol is a bemenetei paraméterekhez egy eredményt rendeliink. Ugyanakkor bizonyos te-
kintetben nagyon kiillonbozik attoél, példaul egy objektumfiiggvény az objektum allapota-
nak megvaltoztatasara is alkalmas.)

Minden Java programban van egy fiiggvény, a main fliggvény, ami a program elindula-
sakor kezd futni. Ha a main fliggvény futasa befejezodik, akkor a program is befejezodik.
A main tovabbi fiiggvényeket hiv(hat) meg, illetve a fiiggvények is tovabbiakat hivhatnak
meg.

A kovetkez6é main fliggvény egy ¢ szam négyzetét szamolja ki, amely figgvényben a
KIIR egy absztrakt parancs, a képernyére valé kiirast jelenti.

Példa main fliiggvényre

public static void main(String [] arguments)
{

int 1 = 10;

int negyzet = ixi;

KIIR(negyzet);

}

Vegyiik az alabbi példaprogramot, amely egy fiiggvény egy tetszoleges haromszog ma-
gassagat szamolja ki.

Teriiletszamitas
public double terulet (double oldal, double magassag)
{

return (oldal * magassag) / 2;
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public static void main(String [] arguments)
{

double side = 10;
double height = 8§;
double eredmeny =

}

terulet (side, height);

Ebben a  kédrészletben talalhaté egy  teriiletszamité  fliggvény, aminek
a neve terulet. A fuggvénydeklaracionak az alabbi szerkezete van:

Fiuggvényszignatura
visszatérésitipus fuggvenynev (parameterdeklardciodk)

A példa esetén a fuggvény deklaralt paraméterei a double oldal, double
magassag. Ezeket hivjuk formdlis paramétereknek, Attél formalis, hogy a fliggvényen
beliil barmilyen hivas esetén ezekkel a valtozékkal (valtozékban) érjiik el a fiiggvényhi-
vas aktudlis paramétereinek értékét. Az aktualis paraméterek ebben a példaban a side,
height, amiknek az értékei rendre 10 és 8. A fluiggvényhivas a double eredmeny =
terulet (side, height); sorban torténik, ahol is a paraméterek helyén 1évo kifejezé-
sek kiértékelodnek. Ezutan atkeriil a futtatas a fiiggvényhez, amely végrehajtja az utasi-
tasokat és a return kulcssz6 mogotti értéket visszaadja eredményként a hivénak, aminek
hatasara ebben az esetben a double eredmeny valtozé értéke a kiszamitott teriilet lesz.

A fuggvény visszatérés tipusat hivjak a fliggvény tipusanak is. A fliggvény neve lehet
barmi, kivéve a nyelv fenntartott szavait. A szignatara alapjan hasznaljuk a fliggvény,
amiben a paraméterek vesszovel elvalasztott valtozédeklaraciok. A szignaturat (lenyoma-
tot) koveti a fiiggvény torzse, ami

e hasznalhatja a bemend paramétereket, 1j valtozokat.

tartalmaz (legalabb) egy return, amit a visszatérési tipusnak megfeleld kifejezés
kovet — ez lesz a fliggvény visszatérési értéke.

e egy return utasitdassal befejezodik, még akkor is, ha van mogotte tovabbi utasitas.
(Annak a fiiggvénynek, aminek nincs visszatérési tipusa, void a tipusa. A void a
y,semmilyen tipus”, nem hozhaté 1étre bel6le példany.)

2.3.1. Paraméterek

A formdlis paraméterek a fliggvényszignaturaban vannak deklaralva, 4j valtozok! Ezek a
fiiggvény hivasakor felveszik az aktudlis paraméterek értékét, Java nyelv esetén érték sze-
rint. Tehat a formalis és aktualis paraméter méas-maés teriilet a memdériaban. A valtozonév
azonban lehet ugyanaz! A fiiggvények aktualis paraméterei lehetnek tovabbi fiiggvényhi-
véasok!

A visszatérési érték, a fliggvény befejeztekor, annak az értékado utasitasnak a jobb
oldala lesz, amiben a fiiggvény neve szerepelt

2.3.2. Az érték szerinti paraméter atadas és kovetkezményei

Java nyelven, amikor fiiggvényt hivunk, az aktualis paraméter értéke atmasolodik a for-
malis paramétert jelent6 valtozéba. (Létrejon(nek) a fliggvényszignatura szerinti 4j val-
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tozé(k), és az értékiik az lesz, ami a fliiggvényhivaskor az aktualis paraméter volt.) Tehat
egy kiilon valtozo, aminek pont ugyanaz az értéke.

Az objektumoknak azonban az értéke a referencia, tehat a referencia masolédik at, igy
az eredeti objektum egy példanyban marad meg, csak kétféle névvel lehet hivatkozni ra.
(Aminek az a kovetkezménye, hogy ha a fliiggvény megvaltoztatja az objektum allapotat,
akkor az ,eredeti” objektumot valtoztatja meg.

A csomagolé tipusok ugyan objektumok, tehat egyetlen példany létezik, mivel valtoz-
tataskor 4j jon létre, a tényleges hatas ugyanaz, mint a primitivek esetén. (Azaz, ha a
fliggvény megvaltoztatja az értékét, akkor az mégsem lesz hatassal az eredeti objektumra
nézve.)

Paraméterek példa

public void fuggveny (Double d, int i, Kutya k)

= 5.0;
= 10;
.oltastkap ("Veszettség", new Date())

— A o~

public static void main ()

{

Double dd = 2.0; // Double d = new Double (2.0)
int ii = 10;

Kutya kk = new Kutyal();

fuggveny (dd, ii, kk);

}

A main fuggvényben létrejon egy Double referencia ami egy példanyra mutat, aminek
2.0 az értéke. Létrejon egy int, aminek 10 az értéke, valamint egy 1j Kutya. Ezek mind-
egyike atadodik paraméterként a fliiggvénybe, a kovetkez6 modon. A Double referencia
atmasolddik, a példany nem, egyetlen van beldle tovabbra is. Az ii értéke egy Gj int-be
masolédik at. A kk referencia is atmasolédik. Megvaltoztatjuk a d értékét, ami azt jelenti,
hogy 1étrejon egy 14j Double példany és a d erre fog referalni. (Ez a megvaltoztathatatlan-
sag miatt van. A dd tovabbra is 2.0.) Az i eleve egy masik valtozé (példany) a memori-
aban, annak az értéke megvaltozik, semmi hatasa sincs az ii-re. A k objektum allapotat
egy fliggvényén keresztiil valtoztatjuk, ez pedig az egyetlen 1étez6 példanyt médositja, igy
a kk-t is.

2.4. Valtozok lathatésaga

Egy valtozé lathatésagi korének nevezziik azt a részt a programban, ahol az adott val-
tozo és altala képviselt memodriateriilet elérheté, médosithaté. Egy valtoz6 hataskorének
nevezzik azt a részt programban, ahol a valtozé deklaracigja érvényben van. Egy fiiggvé-
nyen beliil deklaralt valtozo6 csak a fiiggvényen belil lathaté és arra terjed ki a hataskore
is. Egy utasitasblokkon beliil deklaralt valtozé hasonléan viselkedik a fiiggvény esetében
leirtakhoz. Az blokkon, fiiggvényen beliili valtozékat lokdlis vdltozénak hivjuk.
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(Léteznek globalis valtozok is, amelyeket tobb fliggvénybdl el lehet érni, hasznalatuk
azonban nem javasolt. (Itt nem az osztalyokrél van sz6, ez programnyelvtol fiiggetlen fo-
galom.)

Ha egy blokkon beliil tovabbi blokkok vannak, akkor ott is deklaralhatunk dj valtozo-
kat azonos névvel is (a kiils6 blokkokban azonos nevi valtozok szerepelnek). Ekkor a bels6
blokkban talalhaté deklaraci6 elfedi a kiilsé valtozot, tehat az nem lathaté. Ugyanakkor
mindketto érvényes deklaracigja van, hataskorrel rendelkezik.

Példa a hataskorre
int 1 = 10;

int j 100;

{

int i = 50;

}

i++;

Jj++;

Az els6 i-nek a teljes példara kiterjed a hatarkore, azonban a belsé részben nem lathato.
A masodik i csak a bels6 részben lathaté és a hataskore is ugyanaz. Nem engedi latni a
kiilso.

2.5. Tovabbi eszk6zok

2.5.1. Foreach ciklus

Az alabbi for ciklus egy tomb elemein 1épked végig, a tomb elemeinek 6sszegét kiszamo-
land6 (6sszegzés tétele szerint):

For ciklus - 6sszegzés példa

int [] tomb = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int osszeg = 0;

for (int 1 0; i<tomb.length; i++)

osszeg += tomb[i];

To6bb programnyelv esetén lehet6ség van arra, hogy ezt tomorebben le lehessen irni, az
ugy nevezett foreach ciklusok segitségével.

Foreach ciklus - 6sszegzés példa

int [] tomb = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int osszeg = 0;

for (int aktualis : tomb)

osszeg += aktualis;

Foreach ciklus
for (elemek tipusa valtozd : aminvégigkelllépni)
ciklusmag;
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A ciklus elején deklaralt valtozé az iteracidk soran felveszi a bejarni kivant objektum
osszes értékét. Nem hasznalhaté azonban olyan esetekben, ahol meg kell valtoztatni az
egyes értékeket. (Példaul megszorozni a tomb egyes elemeit.)

2.5.2. Tipuskonverzio

A kiilonb6z6 tipusok kozott lehetséges konvertalni. A konvertalas torténhet implicit, vagy
explicit médon.

Implicit tipuskonverzié. Amikor egy operator kiértékelésénél kiilonb6z6 tipusok van-
nak, ugyanakkor egyik sztkitése a masiknak, a nyelv automatikus bovité konverziét hajt
végre. (Tehat int tipusbdél automatikusan long-ra konvertal, amennyiben erre sziikség
van.) Ugyanigy a csomagolé és primitiv parok kozott is automatikus konverzi6 torténik.

int 1 = 10;
long 1 = 100;
double d = 200;
dd = 6.6;

(1 < 1)

(d > 1)

(dd = d)

(d = 1)

Az 6sszehasonlitashoz sziikséges, hogy az i és 1 valtozok azonos tipusuak legyenek. Ha-
sonléan igaz ez a tobbi példara is. Mindig a bévebb tipus felé torténik a konverzié, tehat a
kisebb bitszdmon taroltbdl nagyobb bitszami, az egészbdl lebegbpontos lesz.

Explicit tipuskonverzi6o. Lehetéségiink van ,kézzel” kényszeriteni a tipuskonverziot —
ezt nevezziik explicit konverziénak.

Explicit tipuskonverzié
(ujtipus) kifejezés;

Az 1j tipus nevét kell zaréjelek kozott megadni az atkonvertdalando kifejezés elé. Fontos,
hogy a zardjelezések segitségével meg lehet valtoztatni a konvertalandé részét a kifejezés-
nek. Gyakran hasznalatos eszkoz az osztas pontossaganak beallitasara:

Osztas példa
int 1 = 10;
double dl =i / 3; //
double d2 (double) 1

3.0
3;

/ // = 3.33333;

Tovabbi, fiuggvényekkel tamogatott konverzié Java nyelven. A beépitett csoma-
gol6 tipusok segitségével lehetoség van karakterlanc és szamok kozotti konverzidra is.
Ezek azonban mar fiiggvényhivasok Javaban.
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Egész karakterlancban

String s = "20";

int i = Integer.parselnt(s);

int i = Integer.parselnt (s, 16); // Hexadecimalis

A patseInt masodik paramétere egy szam amivel megadhatjuk hogy a felismerni kivant
karaktersorozatot milyen szamrendszer szerint értelmezze a fiuggvény. Ha nem adjuk meg
azt a paramétert, akkor automatikusan donti el az kovetkezoket figyelembe véve. Egy
hexadecimalis szam a ,,0x” karakterekkel kezdédik. Ez nyolcas szamrendszerbeli szam
esetén mindig van egy nulla a szam elején. (Vezet6 nulla.)

String-é alakitani is lehet.

Szam karakterlancca
String sl = Double.toString(100);
String s2 Integer.toHexString (10) ;

2.5.3. Felsorolasi tipus

Olyan tipus definialhaté, ahol a lehetséges értékeket sajat magunk adjuk meg.

Enum
enum Nap { HETFO, KEDD, SZERDA, CSUTORTOK, PENTEK, SZOMBAT, VASARNAP

}
Nap n = Nap.SZERDA;

Ekkor 1étezni fog egy Nap neva tipus, ahol pontosan meg van hatarozva az, hogy milyen
értékeket vehet fel, s6t még egy explicit sorrendiség is 1étezik az egyes értékek kozott.
A felsorolasi tipus hasznalhaté a tobbszoros elagazasban, mint eset, valamint a foreach
ciklusokban is a bejarandoé kifejezés helyén.

Tovabbi informacié: http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

2.5.4. I0 muveletek Javaban

A beolvasasra egy egyszerusitett médszer keriil ismertetésre. A Java ugynevezett folyamo-
kat (Stream) kezel a be- és kimeneti maveletekbél. Ezen eszko6zok rendkiviil széles skalaja
all rendelkezésre, ami segitségével a tényleges 10 eszko6ztol fiiggetleniil lehet kezelni a be-
olvasast és kiirast. (Példaul egy halézati kapcsolat hasonléan olvashaté és irhaté, mint
egy USB port, vagy egy fajl.)

2.5.5. Beolvasas

A java.util.Scanner osztallyal lehetséges a konzolrél, valamint fajlokbél sorokat, il-
letve meghatarozott tipusu elemeket beolvasni. A Scanner osztaly példanyositasa:

Scanner
Scanner sc = new Scanner (bemenet)

A bemenet lehet:
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e F4jl (File).
e IO Csatorna (Konzol, InputStream, FileReader).
e String.

Néhany példa:

Konzolrol beolvasas
Scanner sc = new Scanner (System.in);

Fajlbol beolvasas
Scanner sc = new Scanner (new File (fajlneve));

A scanner alkalmas specialis elvalasztéjelekkel irt fajlok olvasasara, regularis kifejezé-
sek értelmezésére is.

Kovetkezo sor olvasasa
String s = sc.nextLine();

Kovetkezo int olvasasa
int 1 = sc.nextInt();

Van-e kovetkezo sor
boolean b = sc.hasNextLine () ;

Ha nem olyan tipus kovetkezik a beolvasandé csatornan, amit kérink, akkor hiba kelet-
kezik.

2.5.6. Kiiras

Mig a System.in a konzolos bemenetet (billentytzetet) egyediil képviseli, addig kime-
netbdl hagyomanyosan kétféle all rendelkezésre: System.out és System.err. Az elsé a
szabvanyos kimenet, a masodik a szabvanyos hibakimenet. Mindkett6é a képernyore ir ki,
a latvanyos kiilonbség, hogy a hibakimenet pirossal jelenik meg. 2

Hasznalatuk:

Szovegkiiras ujsor jellel a végén
System.out.println("Szervusz vilag");

Szovegkiiras ujsor jel nélkiil
System.out.print ("Szervusz vilag");

2Részben torténelmi részben praktikusségi okai vannak ennek. A Java nyelv és kornyezet alapvetéen kon-
zolos, tehat karakteres bemenettel és kimenettel rendelkezik, amelytél a modern PC-s operacidés rendszerek
esetén elszokhattunk. Természetesen ez nem jelenti azt, hogy a Java nyelv esetén nem lehet kényelmes gra-
fikus felhasznéaléi interfészt késziteni.
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A print () paramétere barmi lehet, a primitiveket a csomagolé osztalyon keresztiil, a
tobbi osztalyt a toString () tagfiiggvény segitségével alakitja at a Java karakterlancca.
Sajat osztaly esetében célszeri irni egy toString () fiiggvényt.

toString () példa
public String toString();
{

return "Kutya, név: " + nev + " faj: " + fajta;

}

Ha nincs toString () fiiggvénye egy osztalynak, akkor a sziiléosztaly (végsbsoron az
Object) megfelel6 fiiggvényét hasznalja, de az legtobbszor nem informativ, mivel az ob-
jektumreferencia értékét irja ki.

A system.out-hoz hasonlé fajl-kimenetet 1étrehozni a kovetkezoképpen lehet:

Fajlba iras példa
PrintStream ps = new PrintStream/(
new FileOutputStream(filenév));

Mas modszerek is léteznek a fajlok hasznalatara a kimenet / bemenet iranytél, valamint
az irni kivant egységtol, illetve puffer hasznalatatol fiiggéen.
Itt roviden megfigyelheto egy példa a St ream-ek hasznalatara.

2.5.7. Megjegyzések, dokumentaciok a kodban

Lehet6ség van a kédban megjegyzések, kommentek elhelyezésére a kovetkezé médon

Egysoros megjegyzés
int i = 0; // szamléald

Tobbsoros megjegyzés

/+ Ez itt egy tdbbsoros megjegyzés eleje
kozepe

és vége

*/

Ha ezekkel a karakterekkel talalkozik a programot értelmezé forditd, akkor figyelmen
kivil hagyja az adott szakaszt és nem proébalja meg utasitasként értelmezni. Arra jok a
megjegyzések, hogy az emberi olvasé szamara nyudjtsanak tampontot a programkaéd funk-
ci¢javal, az algoritmus miikodésével kapcsolatban.

Lehetoség van a kédban fiiggvények és osztalyok el6tt dokumentaciés megjegyzések
elhelyezésére. Ezeket a megjegyzéseket JavaDoc kommentnek hivjuk, segitségiikkel az
elkészitett programrél kéddokumentacié hozhaté létre par kattintassal. A JavaDoc-ban
elhelyezhetoek hivatkozasok, html kodok is.

JavaDoc példa
/+*% Ez itt egy JavaDoc
figgvény leirédsa
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@Qauthor SzerzdNeve
@param egy paraméter leirédsa
Qreturn visszatérési érték leirésa

*/

2.5.8. Csomagok

A kilonbozé osztalyokat tartalmazé forrasfajlok, JAVA kédok tgynevezett csomagokba
rendezheték. Azt, hogy melyik csomagba tartozik egy Java osztaly, a fajl elején egy
package kulcsszé mogé irt névvel kell jelezni. (Amikor létrehozzuk Eclipse-ben az osz-
talyt, megkérdezi, hogy milyen csomagba keriiljon.) Az osztalyokat mindig a csomag nevén
keresztil lehet elérni:

e programcsomag.Osztaly a = new programcsomag.Osztély () —példa a létre-
hozasra
e java.util.Math.sqrt () — osztalyfiiggvény hivasa esetén

Egyazon csomagban levé osztalyok latjak egymast, nem kell kiirni a csomagnevet!

Amennyiben szeretnénk elérni, hogy ne kelljen mas csomagbéli osztalyok neve elé ki-
irni minduntalan a csomag nevét, lehetséges importalni (lathatéva tenni) egy teljes cso-
magot, vagy osztalyt egy csomagbdl. A kulessz6 az import.

e import java.util.Math —csak a Math osztaly importalasa
e import java.util.x — minden osztaly importalasa a java.util csomagbol

Ezutan a Math.sqgrt () ,kozvetleniil” hasznalhaté. A csomagon beliil alcsomagok is 1étre-
hozhatéak, a *-os import az alecsomagokra nem fog vonatkozni.

2.6. Java
2.6.1. Hogyan mukodik?

A Java program a szamitégépen egy Java Virtualis Gépen fut (JVM), ami lehetévé teszi,
hogy ugyanaz a Java program tetszoleges operaciés rendszeren (amire a JVM elkésziilt,
példaul Windows, Linux, MacOS) és géparchitektiuran fusson. (Példaul mobiltelefonon is.)
Az altalunk elkészitett forrdskédbdl a fejlesztokornyezet egy Java bdjtkédot készit,
amit a JVM értelmez, és az adott rendszernek megfelel6 gépi kédu utasitas-sorozatta ala-
kit at.
Ennek megfelelden a Java kornyezet eleve két részbol all:

e JVM — virtualis gép, a JRE része (Java Runtime Environment)
e JDK — Java Development Kit (a fejlesztéi Java, tartalmaz egy JRE-t is)

Jelenleg a 6-os verzié Update 16 a legfrissebb. JRE-t letélteni a http://www.java.com/ ol-
dalrél lehet, de ez csak a programok futtatasara elég! (A mobilok esetén ez a virtualis gép
beépitett.)

A fejlesztésre alkalmas Java, ami tartalmaz példakat, forraskédokat, teljes JavaDoc-ot,
az a JDK. Tobbféle verzié6 all rendelkezésre:

e Java SE — Standard Edition (Alap verzié, nekiink béven elég)
e Java EE — Vallalati verzié (Alap + tovabbi szolgaltatasok)
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e Java ME — Mobil verzié (Példaul telefonokra)

A Java SE-t a http://java.sun.com/javase/downloads/?intcmp=1281 oldalrdl lehet letolteni.

Ezek az eszkozok, programok pusztan a megirt forraskéd forditasara, futtatasara,
(stb.) alkalmasak. Ez természetesen elég lehet, hiszen a kédot egy tetszdleges sziovegszer-
kesztovel is meg lehet irni (Jegyzettomb), de sokkal kényelmesebb kornyezetek is rendel-
kezésre allnak.

A félévben az Eclipse IDE (Integrated Development Environment) programot hasz-
naljuk, ami Java nyelven irédott. (Az egyszert szovegszerkesztésnél sokkal bonyolultabb
feladatok gyors elvégzésére is alkalmas.) A http://www.eclipse.org/downloads/ oldalrél az
Eclipse IDE for Java Developers valasztando.

2.7. Eclipse hasznalata roviden

Az Eclipse programot el6szor elinditva egy Welcome képernyod minket, amit bezarni a
hozzatartozé fiilecskén lehet.

Az Eclipse minden egyes inditaskor (kivéve, ha masként rendelkeziink a beallitasok-
ban) megkérdezi a hasznalni kivant munkateriilet (workspace) nevét. A workspace-ek egy
tobb projektet 6sszefoglalo, allapotukra emlékez6 kornyezetek, tobb lehet bel6liik, azonban
mindegyik egy sajat konyvtarban. Hagyjuk, hogy az alapértelmezett konyvtarban 1évot
hasznalja az Eclipse.

Amennyiben sikeresen elindult a program és az tidvozloképerny6t is becsuktuk az
alabbi abrahoz hasonlé kép tarul elénk. Az abra azt mutatja, hogy hogyan kell a meni-
rendszer hasznalataval egy 4j Java projektet 1étrehozni.

Uj projekt 1étrehozasa soran meg kell adnunk a projekt nevét, valamint tovabbi para-
métereket, mint példaul, hogy melyik JRE-t hasznalja a futtatashoz. A projekt neve tar-
talmazhat ékezetes magyar karaktereket, szokozt, de javasolt inkabb a szabvanyos latin
abc karaktereit hasznalni.

Ha kész a projekt osztalyokat hozhatunk létre a varazslé segitségével. Elsé és legfon-
tosabb osztalyunk a main fliggvény tartalmazé osztaly lesz, amire a program futtatasahoz
feltétlen sziikség van. Kattintani a File meniipont New és azon beliill New class pontjara
kell.

Megadhaté létrehozandé osztaly neve, médosité kulcsszavak az elérhetoséggel kapceso-
latban. Tovabba, hogy mely csomagba tartozzon. (A csomagokroél lesz szé késobb.) Ide be-
irhaté nem létez6 csomag neve is, az Eclipse automatikusan létre fogja hozni a megfelel6
nevi csomagokat. Megadhaté a sziill6osztaly neve is, amelyet egy listabdl is kikereshetiink.
(Superclass) Valamint az interfészek. Az ezt kovet6 opciok sorrendben:

e Létrehozza a main fiiggvényt ebben az osztalyban. A 1étrejott fliiggvény teljesen iires.

e A szilbosztaly konstruktorainak megfelelé konstruktorokat létrehoz ebben az osz-
talyban is.

e Az absztrakt, meg nem valésitott metédusokat megvalésitja. (Ures fiiggvényként.)
Az orokl6désnél van szerepe.

A létrejott osztalyban a main fliggvényt megszerkesztve a programot elinditani az esz-
koztar megfelel6 gombjaval lehet, vagy a Run meniipont Run utasitasaval. (A gomb egy
zold korben levé haromszog.) Bizonyos esetekben az Eclipse rakérdez, hogy milyen alkal-
mazast akarunk futtatni.

A program futasa soran létrejovo kimeneteit alapértelmezésben alul lehet olvasni a
Console feliratu fiilnél. (Ezek a fiilek tetszolegesen athelyezhetok, bezarhatok.
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2.2. dbra. Uj Java projekt létrehozasa

2.8. Rekurzio

Rekurziv egy fiiggvény, ha a szamitas soran rész-szamitasokhoz énmagat hivja meg. Alta-
laban egy egyszerubb eset visszavezetésére hasznaljuk, vagy a rész-esetek tovabbi kibon-
tasara. Ennek megfeleloen a fliggvényhivasok szama jécskan novekedik egy bonyolultabb
szamitas elvégzéséhez.

Példaul, ha egy faktorialist szeretnénk kiszamolni, akkor rekurziv fliggvényhivassal
is meg lehet oldani a problémat a kovetkezoképpen: Adott n, az ehhez tartozé n! az nem
mas, mint n * ((n — 1)!). Azaz a problémat egy szorzéassa alakitottuk at, most mar csak
az eggyel kisebb szam faktoridlisat kell kiszamolni. Ezt tudjuk folytatni tovabb, egészen
addig, amig n = 0, mivel annak ismert a faktorialisa.

Rekurziés médszerek esetén, mivel a fiiggvény sajat magat hivogatja, nehéz kovetni,
hogy hol tart. A faktorialis szamitasa esetén ez nem gond, mivel nincs benne elagazas.
Azonban a legtobb problémanal elagazasok vannak a fiiggvényben.

Azt fontos megjegyezni, hogy egy fliggvény futdsa addig nem fejezédik be, amig nem
futtat egy return utasitast. Addig a bels6 valtozo6i deklaraltak, és van értékiik. Amikor
egy fuggvényt hiv, akkor annak a fiiggvénynek is lesz egy sajat teriilete, és igy tovabb. Te-
hat, ha végiggondoljuk, hogy n = 60 esetre 6sszesen hatvan hivas torténik. Minden esetben
lefoglalasra keriil a fiiggvényhez tartozé 6sszes valtozé és paraméter, valamint némi me-
moria sziukséges a fiiggvényallapot tarolasara, amelybdl a hivas tortént. Ez jelentékeny
memoriahasznalat a probléma egyszeriiségéhez viszonyitva. Faktoridlis szamitasa esetén
linearisan novekszik a tarigény, azonban vannak olyan problémat, ahol sokkal gyorsabban
fogy el a memoria a rekurziés szamitasnal. (Szemben egy nem-rekurziv megoldassal.)
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Create a Java Project

Create a Java project in the workspace or in an-external location. &

Project name: [Szervuﬂ Vilag| ]
-Contents-

(@ Create new project in workspace
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|RE

(@ Use default JRE (Currently 'java-6-sun-1.6.0.10') Configure [REs...
(") Use a project specific JRE:

() Use an execution envirenment JRE: |w SE-1

Project layout

() Use project folder as root for sources and class files

(@ Create separate folders for sources and class files

Configure default...

‘Working sets

["] Add project to working sets

@ B

Next > |I Finish ]| Cancel ]

2.3. abra. Uj Java projekt létrehozdsa — Paraméterek
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2.5. abra. A main fiiggvény és az eredmény
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3. fejezet

Absztrakt adatszerkezet

Emlékezziink a tipus definicigjara, miszerint a tipus a felveheto értékek halmazat és azo-
kon végezheté muiveletek dsszességét jelenti.

Ebben a fejezetben a tipus specifikalassal és absztrakcioval foglalkozunk, legel6szor
attekintve a tipus absztrakcié szintjeit.

A reprezentacios szinten a tipusértékek abrazolasarél beszéliink. A legabsztraktabb
szint, amelyen meghatarozzuk a tipusértékekhez tartozé abrazolé elemek halmazat, va-
lamint a muveletek kétiranyu reprezenticiés leképezését. Tehat a tipusértékek lehetnek
példaul a napok: HETFO, KEDD, SZERDA, CSUTORTOK, PENTEK, SZOMBAT, VASAR-
NAP. Az ehhez tartoz6 abrazolé elemek egy lehetséges esetben a természetes szamok 1 és 7
kozott értelemszert megfeleltetéssel. A nap tipus esetén egy muvelet lehetségesen a rako-
vetkezo nap megadasa. Ennek a tipusértékek halmazan van egy jol definialhaté mukodése,
hogy milyen érték esetén mi lesz a miivelet eredménye. Ezt a miiveletet kell atiiltetni a
természetes szamok megszoritott halmazara. A reprezentaciés szinthez tartozé fogalmak:

e abrazolé elemek H halmaza (tipus-szerkezet), a példaban ezek a szamok.

e az abrazol6 elemek és a tipusértékek kapcsolatdt leiré leképezés: p: H — T, p C HxT

e atipus-invaridns kivalasztja a hasznos dbrazolé elemeket: I : H — L, [I] Ez a leképe-
zés valasztja ki a szamok koziil a hasznalandé 1..7 intervallumot.

A leképzést az alabbi abra szemlélteti: I az eredeti miivelet, a felsé szint a a miiveletet

‘ F muvelet specifikacigja ‘

F muvelet implementacidja
S program

3.1. dbra. F muvelet leképezése S programra.
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mint fliggvényt abrazolja, ahol az értelmezési tartomany Dy és az értékkészlet megha-
tarozott Rp. Ezzel szemben az als6 szinten leképezés utani p abrazolé elemek halmazan
mukodo S program megfeleléo halmazait abrazoljuk.

3.1. ADT

Absztrakt adattipus (abstract data type) a tipus-specifikacié (kozvetett) megadasara szol-
gal. Nem sziikséges, hogy egy konkrét programozasi kérnyezetben abrazoljuk a tipusérté-
keket, alapvetoen matematikai eszk6zokkel is megadhaté. ADT leiras esetén elég a mtive-
letek programjainak csak a hatasat ismerni.

Absztrakt a programozasi kornyezet szaméara és a megoldando6 feladat szamara, amely
adattipust a késébbiekben egy kivalté (konkrét) tipussal helyettesitiink.

Az ADT megkozelités a tipus szemléletének ez a legmagasabb szintje semmilyen fel-
tételezéssel nem élink a tipus szerkezetéro6l, megvaldsitasarél. Ahogyan az el6zéekben
emlitve van, a specifikaciéban csak tisztan matematikai fogalmakat hasznalhatunk. (Ez a
szint nem a formalizalas mértékétol absztrakt, lehet informalisan is gondolkodni, beszélni
ADT szinten!)

Az ADT leiras részei:

e tipusérték-halmaz (milyen lehetséges értékek vannak)

e miiveletek (mint leképezések, ahogyan azt az el6z6 abran lathattuk)

e megszoritasok (értelmezési tartomanyok, nem minden mitvelet értelmezhet6 az
0sszes lehetséges értéken. Gondoljunk a nullaval valé osztasra.)

e axiomak, amelyek biztositjak a tipus és miiveleteinek helyes felépitését és miikodé-
sét. (Az axiémak alapigazsagok, amiknek mindig teljesiilnie kell.)

Kérdések, amelyeket a specifikacié soran vizsgalni kell, vagy vizsgalni lehet:

e helyesség (ellentmondas-mentesség, az egyes axiomak kozotti ellentmondasokat meg
kell sziintetni)

o teljesség a leirt axiomak és specifikaciok hianytalanul leirjak a tipus és miiveleteinek
mukodését. nehéz bizonyitani)

e redundancia (ugyanazt a tulajdonsagot, axiémat nem fogalmaztuk-e meg tobbféle-
képpen, tobbszor. vizsgdlata a mikodés szempontjdabol nem fontos)

Példaul egy ADT funkcionalis specifikacigja az alabbiakbol all:

e tipusérték-halmaz
muveletek
allapottér
paramétertér
elofeltétel
utoéfeltétel

A funkcionalis specifikaciéhoz a tipus matematikai reprezentacidjat hasznaljuk. Ez sem-
milyen médon nem kell, hogy utaljon a tipus dbrazoldsi médjanak megvalasztasara a meg-
valdsitas soran, teljesen mas is lehet, pusztan matematikai eszk6zoket hasznalunk. (Fon-
tos, hogy leggyakrabban nem igy fogjuk ténylegesen megvalésitani, implementalni.)
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3.2. ADS

Az absztrakt adatszerkezet (abstract data structure) soran a tipus alapveté — absztrakt —
szerkezetét egy iranyitott graffal abrazoljuk. A grafban a csucsok az adatelemek az élek
a rakovetkezési relaciok. Tehat adatelemek valamilyen struktira illetve relacié szerinti
reprezentacigjat adja meg egy graf.!

ADS szinten is lehet abrazolni a muveleteket, mégpedig a miveletek hatasa szemlél-
tethetd az ADS-graf valtozasaival. Egy 1) adatelem elhelyezése a grafban noveli a csomé-
pontok szamat, valamint 1j éleket adunk hozza.

3.3. Adatszerkezetek osztalyozasa

Az adatszerkezetek osztalyozasahoz legel6bb definialjuk az adatszerkezet fogalmat a ko-
vetkezoképpen: Az adatszerkezet egy (A, R) rendezett par, ahol az A az adatelemek véges
halmaza, valamint az R az A halmazon értelmezett valamilyen relécio (A x A). Itt a relacié
absztrakt fogalomként értend6 mindosszesen két adatelem valamely kapcsolatat jelenti.
(Tehat nem a hagyomanyos értelemben megszokott kisebb < vagy nagyobb > 6sszefiiggés-
rol van szé, hiszen altalanos esetben ezt nem is feltétlen tudjuk definidlni két adatelem
kozott. Logikai kapcsolatot jelent két adatelem kozott. Ezt a logikai kapcesolatot jel6ljik az
ADS graf éleivel.)
Az osztalyozas tobbféleképpen lehetséges az adatszerkezetekre nézve:

Az adatelemek tipusa szerint.

e Homogén: Az adatszerkezet valamennyi eleme azonos tipusiu. Példaul mindegyik
szam.

e Heterogén: Az adatszerkezet elemei kiilonbo6z6 tipustak lehetnek. Vegyesen szere-
pelnek kiilonb6zo tipusok, péld4aul szamok és karakterek.

Az elemek kozti R relacié szerint.

e Struktura nélkiili. Az egyes adatelemek kozott nincs kapcsolat. Nem beszélhetiink
az elemek sorrendjérol (pl. halmaz). (Gyakorlatilag a relacié nem hataroz meg vi-
szonyt az elemek kozott, minden egyes elem egyenrangu, nincs elé-/alarendeltség.)

e Asszociativ cimzésu. Az adatelemek kozott 1ényegi kapcsolat nincs, ugyanakkor az
adatszerkezet elemei tartalmuk alapjan cimezhetéek, azaz egy adatelem megtalala-
sahoz a tartalmaval képzett cimzéssel megtaldalhaté a szerkezetben.

e Szekvencialis. A szekvencidlis adatszerkezet olyan (A, R) rendezett par, amelynél
az R reldci6 tranzitiv lezartja teljes rendezési relacié. Minden egyes adatelemparraol
megmondhaté hogy egymashoz képest milyen viszonyban allnak. Ez vagy kozvetle-
niil torténik, mert az R értelmezett a kivalasztott paron, vagy pedig tranzitiven? A
szekvencidlis adatszerkezetben az egyes adatelemek egymas utan helyezkednek el
logikai médon, vagyis ez a fizikai reprezentaciét nem befolyasolja. Az adatok kozott
egy-egy jellegi a kapcsolat: minden adatelem csak egy helyrél érheté el, és az adott
elemrél csak egy masik lathat6. Az egyes adatelemekrél a szomszédjaik megallapit-
hatéak. Két kitiintetett elemrol beszélhetiink, ami az els6 és az utolsé.

A graf egy olyan konstrukcié, amelyet csomépontok és az azokat osszekotéd vonalak alkotjak. Ez utébbiakat
hivjuk éleknek. Egy graf iranyitott, ha az éleknek van irany, tehat az 6sszekoté vonalak nyilak. Irdanyitott
grafban az iranyitas rakovetkezoségeket definial.

2Tranzitivitas: Ha a reldciéban all b-vel és b relaciéban 4ll c-vel, akkor « is reldciéban all c-vel.
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e Hierarchikus. A hierarchikus adatszerkezet olyan (A, R) rendezett par, amely-
nél van egy kitiintetett r elem, ez a gyokérelem tgy, hogy  nem lehet végpont 3.
Va € A\ {r} elem egyszer és csak egyszer végpont, vagyis minden r-en kiviili elem a
relacioban egyszer lehet végpont. Va € A\ {r} elem r-bdl elérhetd, azaz minden elem
elérheto az r-bol a relaciok kivetésével. Az adatelemek kozott egy-sok jellegli kapceso-
lat all fenn. Minden adatelem csak egy helyrol érheté el (egyetlen megelézéje van), de
egy adott elembodl akarhany adatelem lathaté (akarhany rakovetkezdje lehet. Ilyen
példaul a fa, 6sszetett lista, B-fa.).

e Halés. A halés adatszerkezet olyan (A, R) rendezett par, amelynél az R relaciéra
semmilyen kiko6tés nincs. Az adatelemek kozott a kapesolat sok-sok jellegti: barme-
lyik adatelemhez t6bb helyrdl is eljuthatunk, és barmelyik adatelemtdl elvileg tébb
iranyban is mehetiink tovabb (Példaul: altalanos graf, iranyitott graf).

Az adatelemek szama szerint.

e Statikus. Egy statikus adatszerkezetet rogzitett szamu adatelem alkot. A feldolgo-
zas folyaman az adatelemek csak értékiiket valtoztathatjak, de maga a szerkezet, az
abban szerepl6 elemek szama valtozatlan. Kovetkezésképpen az adatszerkezetnek a
memoridban elfoglalt helye valtozatlan a feldolgozas soran.

e Dinamikus. Egy dinamikus adatszerkezetben az adatelemek szama egy adott pilla-
natban véges ugyan, de a feldolgozas soran tetszélegesen valtozhat. Dinamikus adat-
szerkezetek lehetnek rekurziv vagy nem-rekurziv, linearis vagy nem-linearis struk-
turak. Egy adatszerkezet rekurziv, ha definiciéja sajat magara valé hivatkozast tar-
talmaz. Ha egyetlen ilyen hivatkozas van, akkor linearis a struktira, ha tébb, akkor
nem-linearis. Mivel a dinamikus adatszerkezetek feldolgozasa soran az adatelemek
szama valtozik, egy-egy elemnek teriiletet kell lefoglalnunk, illetve a lefoglalt teri-
leteket fel kell szabaditanunk, igy felvetodik a tarolohely djrahasznositasanak prob-
1émaja.

3A végpont gyakorlatilag itt a relacié jobboldalat jelenti, azaz ha végpont akkor a reldciéban szereplé két
qlem koziil a rakovetkezordl van szé. Példaul az a — b esetén a b a végpont és igy a rakovetkezod elem.
Ertelemszertien az a a megel6z6 elem. Az a-bél elérhet6 a b.
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4, fejezet

Adatszerkezetek

4.1. Verem

A Verem adatszerkezet olyan, mint egy szlik verem. Belekeriilnek sorban az elemek. Az
elso legalulra esik, a masodik ra, és igy tovabb. ,Kimaszni” mindig a legfels6é tud, és ha
ranézink feliilr6l, akkor mindig a legfelsét latjuk csak.

Kutya
Farkas
Medve
Oroszlan
Nyul
Siin

4.1. abra. Verem példa

Az el6z6 példaban a legelsoként a Kutya keriil ki a verembél, amiutan a Farkas fog
latszani a tetején. Legelsoként a Siin keriilt bele és a végén jon ki. A Verem (Stack) egy
LIFO adatstruktira. (Last In, First Out)

4.1.1. ADT leiras

Az alabbi médon lehet definidlni: A V verem E alaptipus felett jon 1étre. Muveletei:

empty: — V (Ures verem létrehozésa.)

isEmpty: V — L (Allapot lekérdezése: iires-e.)

push: V x E — V (Uj elem beszurésa.)

pop: V — V x E (Legfels6 elem kivétele a verembél.)
top: V — FE (Legfels6 elem lekérdezése.)

Az egyes muveleteknél szerepel, hogy milyen bemenettel rendelkeznek és milyen tipusu
kimenetet allitanak elé. Megszoritas, hogy a pop és top miveletek értelmezési tartomanya:
V' \ {empty}, azaz iires verembdl nem lehet kivenni és nem lehet megnézni, hogy mi van a
tetején.

A V jelenti a vermet mint tipust. F tipusu elemek keriilhetnek a verembe és a fentiek-
ben hasznalt L jelenti a logikai tipust.
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A verem muveletekhez tartozé axiomak, amelyeknek logikai kifejezésként minden
esetben igaznak kell lennitik:

e isEmpty(empty) — Egy uiresnek 1étrehozott verem legyen tires.

e isEmpty(v) — v = empty — Ha egy v veremre a lekérdezés, hogy tires-e igaz, abbdl
kovetkezik, hogy a v az ,iiresverem”.

e — isempty(push(v,e)) — Ha betesziink egy elemet egy v verembe, az nem lehet iires
ezutan.

e pop(push(v,e)) = (v,e) — Ha betesziink egy elemet egy v verembe, majd kivessziik akkor
az eredeti vermet és elemet kell kapnunk.

e push(pop(v)) = v — Ha kivesziink egy elemet a verembdl, majd visszatessziik az ere-
deti v vermet kell kapnunk.

e top(push(v,e)) = e — Ha betesziink egy elemet a verembe, majd megnézziik a verem
tetjét a betett elemet kell latnunk.

4.1.2. ADT funkcionalis leiras

Matematikai reprezentacio, miszerint a verem rendezett parok halmaza, ahol az els6 kom-
ponens a veremben elhelyezett (push) érték, a masodik komponens a verembe helyezés
(push) idépontja. Megszoritas (invarians): az idoértékek kiilonbozoek. Ez egy jol kezelheto
matematikai modell, azonban nem igy implementaljuk, hiszen aligha talalni bonyolultabb
implementaciés médszert.

A modellhez tartozoé fiiggvényekre el kell késziteni a specifikaciét, ami a pop esetén az
alabbi:

e A=V x E— allapottér (v és c lesz egy-egy aktualis érték)

e B =V — paramétertér (v')

e Q= (v="1" AV #0)— elofeltétel, miszerint a bemeneti verem az nem tres.

R = ((v = v\ {(ej,t)}) A (e = ¢) Allegst;) € ) A (Vil(ew,t) € 0/ Ai # 5) < &5 > 1))
— utéfeltétel, a kifejezés szakaszai az alabbiak: A kimenet v és e, ahol a v verem az
eredeti verem, kivéve az e;,t; part; és az e az e;. Teljesiilni kell annak, hogy az e;
és t; par eredetileg benne volt a veremben, valamint minden maés e; és ¢; parra igaz,
hogy az idéindex az kisebb mint ¢;.

4.1.3. Statikus verem reprezentacio

A statikus reprezentacio esetén a veremben tarolhaté elemek maximalis szama rogzitett,
igy példaul hasznalhatunk egy fix méreti tombot, ami tombbe fogjuk a verembe betett
elemeket elhelyezni. (Természetesen folyamatosan tigyelni kell arra, hogy a behelyezés és
kivétel a verem szabalyoknak megfelel6 legyen.) A kovetkez6 egységei lesznek a Verem
tipusnak a reprezentacion belil:

e Max mezo6, a verem maximalis méretét hatarozza meg, emiatt lesz egy ujabb fiigg-
vény, ami lekérdezi, hogy tele van-e a verem.

e Max méreti tomb, amiben a verembe keriil6 elemeket taroljuk.

e Head valtoz6, ami azt mutatja, hogy hol a verem teteje.

A kovetkezo szakaszban egy Java nyelven megvalésitott statikus verem forraskédjat
nézziik meg. Vegyiik észre, hogy a Verem osztaly megvalésitasanal a reprezentaciéhoz tar-
tozo6 specialis mezok nem lathatéak az osztalyon kiviil senki szamara. Korabban volt sz6
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arrél, hogy egy osztaly felel6s a sajat allapotaért és annak valtozasért. Egy verem osz-
talynak a verem axiomak altal tamasztott kovetelményeknek kell megfelelniiik, amit ér-
vényes allapotokat jelentenek. A megvalésitott muveletek ezeket az érvényes allapotokat
fenntartjak. Azonban ha kiviilrol beavatkoznank és megvaltoztatnank példaul az index ér-
tékét, akkor helytelen allapotba keriilne az objektum, a verem. Ezen hibak kikiiszobolését
segitik a valtozok lathatésaganak helyes beallitasai.

Implementacio statikusan

Az els6 kodszakaszban elsoként a Verem osztaly mezoéi keriilnek deklaralasra, az el6zoek-
nek megfeleléen egy int tipusi head nevl valtozé az indexelésre, valamint egy elemek
nevu valtozé, ami a verembe tehet6 int értékeket tartalmazé tomb lesz. Az indexel6 val-
tozé a verem reprezentacigjara hasznalt tomb azon indexét tartalmazza, ahova kovetkezo
betétel soran elem keriilhet. (Tehat a legels6 szabad poziciét. A megvalésitasnal természe-
tesen lehetséges, hogy a legfelso elfoglalt elemet indexeljik, csak a megfeleld fliiggvények-
ben erre figyelni kell.)

A mezodeklaraciok utan a konstruktor talalhaté, ami az empty () tres verem létre-
hozasara, illetve a verem kiiiritésére hasznalatos fiiggvény. Amikor iires a verem a head
index nulla.

package verem;

public class Verem statikus

// Kovetkezd szabad peoziciot mutatia
private int head;
'/ Tomb amiben az elemek lesznek

h}ivaie int[] elemek;

Jx
* Konstruktor, ami létrehoz egy ures vermet
public Verem statikus()

{
empty();

Ja
“ Egy maximum tiz elemei tarolo verem létrehozasa uresen

public void empty()

head = 0;
elemek = new int[18];

4.2. abra. Statikus verem kéd 1. rész

A push () fiiggvény egy elemet betesz a verembe. A betétel csak akkor torténhet meg
ha nincs még tele a verem. Erre van a feltétel vizsgalat, ami hiba esetén a konzolra kiirja
a probléma forrasat. Ha azonban nincs tele a verem, akkor a tombbe beirhatjuk a betenni
kivant elem értékét, mégpedig a head-edik poziciéba, mivel az jelenti a kovetkez6 szabad
helyet a tombben. A head index névelése utan készen is van a betétel.

A top () fuggvény a legfelsé elem értékével tér vissza. A legfelsé tényleges elem a
head-1-edik poziciéban van, mivel a head a legels6é szabad poziciét tarolja. Amikor iires
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verembol kérdezziik le a legfels6é elemez, akkor is ad vissza a fiiggvény egy értéket, ami
a —1. Az érték-visszaadasra kényszerbol keriil sor, az efféle hibakezelés rossz megoldas,
mivel nem tudunk kiilonbséget tenni a hiba és a —1 értéket legfelsé elemként tartalmazo
verem teteje kozott. (Egyelore nincsen jobb eszkoz az ismereteink kozott, amivel lehetne
orvosolni ezt a problémat.)

* Egyetlen elem betétele a verembe
elem A beteendd elem

s _|'ll

public void push(int elem)

{

if (isFull())

{

System.out.println("Tele van");

1

else
elemek[head] = elem;
head++;

h

Legfelsd elem megtekintése
mi van legfelil

puLlic int topl()

{
if (isEmpty())
{

System.out.println("Ores");

J/ Ez itt csinya nagyen, de most nings mas eszkoz
return -1;

}

else

{
return elemek[head-1]1;

}

4.3. dbra. Statikus verem koéd 2. rész

A pop () fuggvény hasonlé a top () -hoz. A kiilonbség csupan annyi, hogy a head index
csokkentésére is sziikség van, hiszen kivessziik a verembdl az értéket. Megfigyelheto, hogy
az érték tényleges eltiintetésére nem keriil sor. Erre azonban nincsen sziikség, hiszen a
tombben lehet barmi, minket csak az altalunk nyilvantartott és betett értékek érdekelnek.
Amennyiben kivesziink a verembol, akkor az a pozicié a szabad poziciok kozé fog tartozni
a veremben hasznalt tombben. Ugyanis ha ezen utan betesziink valamit a verembe, az
pont a kivett érték helyére keriil. (A 1étrehozott valtozokban is van érték, a memoriacella
aktualis értéke, ami szamunkra nem hordoz hasznos informaciét, gyakorlatilag szemét.
Amikor l1étrejon a tomb az egyes poziciékban mar eleve lesznek értékek, amikkel ugyanugy
nem torédink mint a kivettel.)

Az utolsé szakaszban az iiresség és magteltség vizsgalatara keriil sor. Ures a verem, ha
a legels6 szabad poziciét a tomb legelsé indexe. Tele a verem, ha a legelsé szabad pozicié
kiindexel a veremboél. (Megjegyzés: egy n hossza verem 0 és n — 1 kozott indexelhet6.)
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LegFPISG elem kivétele és visszaadasa
] rn IPGTEI:D elem
o4

public int pop()
{
if (isEmpty())
i
System.out.println("Ures");
// Ez ItL csinya nagyen, de most ningcs mas eszkoz
return -1;
I
else
{
// Meg azt mondia a head, hogy mi a kovetkezd szabad pozicig
head--;
// Most a head az wtalsé foglaltra mutat
return elemek[head];
1/ V.P?7ﬂ+Frt €5 3z is igaz, hegy a8z uj kovetkezo szabaden van,
/7 mivel "kivettunk" eqy slemet
}
}

4.4. abra. Statikus verem kéd 3. rész

/!
Verem urességének vizsgalata

* greturn [res-e
i
public boolean isEmpty()
1
return (head == 8);
}
)
: Hygvnzﬁgalja hogy tele-e a yerem
* @greturn tele-e
Ey
public boolean isFull()
{
return (head == elemek.length);
),

4.5. dbra. Statikus verem kéd 4. rész

4.1.4. Dinamikus verem reprezentacio

Dinamikus reprezentacié esetén nem tombben taroljuk az értékeket, hanem erre a célra
specialisan 1étrehozott Elem osztalyokban, amik egy lancolatnak lesznek a csomépontjai.
Az Elem osztaly tartalmaz egy értéket, valamint egy referenciat egy kovetkezo elemre, igy
lehet majd tarolni, hogy ,,mi van a veremben egy érték alatt”. A Head referencia tarolja a
verem elejét, ami ha nem mutat érvényes elemre, akkor iires a verem. A dinamikus repre-
zentacio esetén tetszoleges szamu elem elfér a veremben. (Természetesen a memoriakorlat
tovabbra is él.)
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Implementacié dinamikusan

Az els6 szakaszban a dinamikus verem belsé osztalya a Node talalhaté meg legels6ként.
A Node tartalmazza egy aktudlis csomépont értékét, valamint egy referenciat a kovetkezo
Node-ra. A gyors létrehozas érdekében egy két-paraméteres konstruktor a mezoknek ér-
tékeket ad. A dinamikus veremben egy head nevi mez6 fogja a verem tetejét (azon végét,
ahonnan kivenni és ahova betenni lehet). A head egy Node tipusu referencia, ami a verem
létrehozaskor null, azaz nem referal sehova sem. Ez egyben az iiresség feltétele is. Akkor
és csak akkor iires a verem ha head null.

package verem;

public class VeremDinamikus

i
class Node
{
public int ertek;
public Node kovetkezo;
public Nodelint ertek, MNode kovetkezo)
{
this.ertek = ertek;
this.kovetkezo = kovetkezo;
}
i

private Node head;

public VeremDinamikus()

{
head = null;
H
public boolean isEmpty()
{
return (head == null):
}

4.6. abra. Dinamikus verem kéd 1. rész

Elem betételekor egy 1j Node létrehozasara van sziikség. Az Gj Node rakovetkezoje
az aktualis head, igy torténik a lanc fazése, valamint az értéke a betenni kivant érték.
Természetesen az tjonnan létrehozott Node lesz a verem 1j teteje, ezt az értékadassal va-
l6sitjuk meg. A pop () fliggvény, hasonléan a statikus esethez egy vizsgalattal kezdodik.
Ha nem iires a verem, akkor eltaroljuk a legfelsé Node-ban talalhaté értéket egy ideig-
lenes valtozéba, majd leftizziik a legfelsé csomoépontot a veremrol, azaz a verem 1uj teteje
a els6 csomépontot kivetd Node lesz. Végiil visszatér az eltarolt értékkel. Az eltarolasra
azért van sziiksége, mert a flizésnél elveszitjilkk az egyetlen referenciat a legfelsé csomoé-
pontra, amiben a hasznos érték talalhaté. (Viszont a referencidk elvesztésére is sziikség
van, mert ebbél tudja a Java kérnyezet, hogy mar nem hasznaljuk azt a csomépontot, igy
felszabadithatja a hozzatartozé memoriateriiletet.

A top () hasonlé a pop () -hoz, éppen csak nem torténik meg a leflizés.
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public void push({int elem)

{
// A head referencia értéke egy olyan 41 csomdpont lesz.
// amiben a beszirandd eértek szerepel.
/f yalamint a rakpvetkezoje az eddigi head
head = new MNodelelem, head);
}

public int pop()
if (isEmpty())
{ 2
System.err.println{"Ures a verem - hiba");

/7 Meg mindig csdnya
return -1;

1
else
{ . . . .
// Wegjegyezzik a wisszatérési értéket
int visszaterni = head.ertek;
// Wegvaltpztatjuk a head grieket a kovetkezore -> kivesszik
head = head.kovetkezo;
return visszaterni;
1
1
4.7. abra. Dinamikus verem kéd 2. rész
public int top()
{
if (isEmpty())
{ .
System.err.println({"Ures a verem - hiba");
/7 Meg mindig csanya
return -1;
)
else
{
return head.ertek;
T
1
}
4.8. abra. Dinamikus verem kéd 3. rész

4.2, Sor

A Sor adatszerkezet olyan, mint egy varakozas sor, példaul a postan. Belekeriilnek sorban
az elemek. Az elsé legelére, a masodik mogé az elsonek, és igy tovabb. (Az alabbi jelolésben
a sor elso elemét ddlt, az sorban kovetkezo szabad helyet pedig alahizott kiemeléssel van

feltiintetve.)

(20]30[2[1]0[3[_[[]

Mindig a legelsé tud kijonni, tehat a legrégebben bekeriil elem. Ez az el6z6 példaban
a 20. Ranézvén a soron kovetkezo elemet lathatjuk mint els6 elem. A kovetkezo bekeriil6
elem a 3 mogé fog keriilni. A Sor (Queue) egy FIFO adatstruktira. (First In, First Out)
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4.2.1. ADT Axiomatikus leiras

A Sor ADT axiomatikus leirdsa: Az alabbi médon lehet definialni: A S sor E alaptipus
felett jon létre. Muiveletei:

e Empty: — S (az iires sor konstruktor — 1étrehozas)
IsEmpty: S — L (ures a sor?)

e In: § x E — S (elem betétele a sorba)

e Out: S — S x E (elem kivétele a sorbdl)

e First: S — E (els6 elem lekérdezése)

Az egyes muveleteknél szerepel, hogy milyen bemenettel rendelkeznek és milyen tipusu
kimenetet allitanak el6. Megszoritas, hogy az Out és First értelmezési tartomanya: S \
{Empty} azaz iires sorbol nem lehet kivenni és nem lehet megnézni, hogy mi van az elején.

4.2.2. Statikus sor reprezentacio

A statikus reprezentacié esetén a sorban tarolhaté elemek maximalis szama rogzitett, igy
példaul a veremhez hasonléan hasznalhatunk egy fix méretti tombot. A kovetkezo6 egységei
lesznek a Sor tipusnak a reprezentacion beliil:

e Max mezb, a sor maximalis méretét hatarozza meg, emiatt lesz egy ujabb fiiggvény,
ami lekérdezi, hogy tele van-e a verem.

e Max méretii tomb, amiben a sorba keriilé elemeket taroljuk.

e Head valtozd, ami azt mutatja, hogy hol a sor eleje. head € [1, max]

e Tail valtozé, ami azt mutatja, hogy hol a sor vége, vagyis az elsé iires helyet tail €
[1, max]

Nyilvanvaléan akkor van ténylegesen tele a a sor, ha a statikus reprezentaciéban hasz-
nalt tomb esetén nincs mar szabad pozicié a tombben. Tegyiik fel az el6zéekben leirt példat
kiindulasnak. Ha kivessziik az els6 két elemet és tovabbiakat tesziink be a végén, az alab-
biakat kapjuk.

([ [2][1]0[3][9[10]5]

Ekkor lathatéan nincs tele teljesen a tomb, ugyanakkor a betételnél kifutunk a t6mbbol.
Ezt ugy tudjuk orvosolni, ha a tomb leheto legjobb kihasznaltsaga érdekében korkorosen
fogjuk haszndlni, azaz ha a végén kifut egy index, azt beléptetjiik az elején. Tehat egy
ujabb elem beszirasa az elsé tombpoziciéba fog torténni az alabbi médon:

[123] _[2[1]0[3[9[10[5]

Ezek utan pusztan egyetlen problémat kell megoldani. Ugyanis ha beszarunk még egy
elemet, akkor:

(123 [321[2]1[0]3[9]10]5

Itt a Head és a Tail indexek pontosan egyeznek, tehat azt mondhatjuk, hogy a tomb tele
van, ha a Head és a Tail ugyanazt az értéket mutatja. (Emlékeztet6iil: a Head a soronko-
vetkezo6 elem indexe, a Tail pedig az els6 szabad pozicié.) Ugyanakkor, ha mindent kive-
sziink a sorbdl:

HNEEENEEN
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A sor iires az els6 szabad pozicié a példat folytatva a harmadik, ugyanakkor a kivetkezé
kiveheto elem is a harmadik az indexek szerint. Ebbél azt a kovetkeztetés vonjuk le, hogy
a sor iires, ha a Head és a Tail ugyanazt az értéket tartalmazza.

Igy a Head és Tail valtozé egyenlésége esetén kétféle esemény fordulhat elé, amelyet
nem tudunk megkiilonboztetni. A probléma megoldasara tobb lehetéség all rendelkezésre:

e Vezessiink be még egy jelzot a reprezentacioba, ami mutatja, hogy a sor tires-e, a neve
legyen empt. Kezdetben biztosan igaz, késébb vizsgaljuk, és megfeleléen allitjuk. (Ha
kiveszunk akkor kitiriilhet a sor, egyéb esetben nem.)

e Vezessiink be még egy attributumot a reprezentaciéba, ami mutatja, hogy hany elem
van a sorban. Ha a szamlal6 az a maximalis betehet6 értékek szamaval egyenlo,
akkor tele van a sor, kiilonben biztosa nem.

Implementacio statikusan

A kod elsé részében az el6zéeknek megfeleléen a valtozok deklaracigja torténik, valamint
az empty () konstruktor elkészitése. Ures sor létrejottekor a head és tail valtozék az
elemek tomb elsé pozicigjara vagyis a nulla indexre mutassanak, valamint kezdetben a
sor lres. Az lirességet és teliséget lekérdezo fiiggvény pedig figyelembe veszi az uirességet
jelz6 logikai valtozot.

[package sor;

public class SorStatikus
i
private int [] elemek = new int[18];
private int head;
private int tail;
private boolean ures;

public void empty()

i

ures = true;

head = @;

tail = @;
}
public boolean isEmpty()
i

return ures;
1
public boolean isFull()
L

return {{(head == tail) && ('ures));
1

4.9. dbra. Statikus sor kéd 1. rész

A kovetkezo6 fliggvény a sorban elemet elhelyezé In () fiiggvény. Az elhelyezéskor az
eddigieknek megfelel6en ellenoérizziik, hogy a sor nincs-e tele. Az elem behelyezésekor biz-
tosan nemiires sort fogunk kapni. Az elem elhelyezése a t ail-edik indexen torténik, mivel
az jelenti a kovetkezo szabad poziciét. Ezek utan torténik a tail index novelés, valamint,
ha a novelést kovetoen kiindexel a tombbél akkor a korkorosség értelmében a nulladik
poziciora fog mutatni.

A kovetkezo fliiggvény a sorbdl az elsé elemet kivevo Out () fiiggvény. A visszaadandé
értéket egy ideiglenes valtozéba kimaésoljuk, mivel a return utasitas elétt kell minden
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public woid In{int amit)

i
if (isFull({})
{
System.err.println{"Tele wan - nem lehet meg pakolni bele"};
1
else
{
ures = false;
elemek[tail] = amit;
tail++;
if {(tail == elemek.lenagth)
i
tail = @;
1
1
}

4.10. abra. Statikus sor kod 2. rész

akciét végrehajtani. (Az index megvaltoztatasa el6tt, konnyebb az aktualis visszaadandé
értéket megtalalni.) Az érték megjegyzését kovetoen hasonléan az In () fiiggvényhez az
index korkoros 1éptetése torténik meg. Majd annak a vizsgdlata kovetkezik, hogy a kivétel
utan uressé valt-e a sor.

public imt Out(}

i
if (isEmpty{}}
i
System.err.println{"lres - nem lehet kivenni beldle");
return -1;
1
else
{
int ideiglenestarolo = elemek[head];
head++;
if {head == elemek.length)
i
head = B}
1
ures = {head == tail};
return ideiglenestarolo;
1
1

4.11. dbra. Statikus sor kéd 3. rész

A legutolsé fiiggvény a First, amely a head-edik poziciéban talalhaté értékkel tér
vissza.

4.2.3. Dinamikus sor reprezentacio

Dinamikus reprezentaci6 esetén a veremhez hasonléan nem témbben taroljuk az értéke-
ket, hanem erre a célra specialisan létrehozott Elem osztalyokban, amik egy lancolatnak
lesznek a csomépontjai. Az Elem osztaly tartalmaz egy értéket, valamint egy referenciat
egy kovetkez6 elemre, igy lehet majd tarolni, hogy ,,mi van a sorban egy érték utan, ki ko-
vetkezik”. A head referencia tarolja a sor elejét, ami ha nem mutat érvényes elemre, akkor
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public int First{)

{
if (isEmpty(}}

i
System.err.printin{"lres - nem lehet megnézni az elsdt");
return -1;

1

else

i
return elemek[head];

iy

4.12. abra. Statikus sor ké6d 4. rész

ures a sor. A tail referencia mutatja a sor végét, ahova az 1) elemek fognak keriilni.

Implementaciéo dinamikusan

A kéd eleje a dinamikus veremhez képest mindosszesen a tail mez6 deklaracigjaval egé-
szilt ki. A dinamikus sor bels6 osztalya a Node. Tartalmazza egy aktualis csomépont ér-
tékét, valamint egy referenciat a kovetkez6 Node-ra. A dinamikus sorban egy head nevi
mezo6 jelzi a sor elejét. A head egy Node tipusu referencia, ami a verem létrehozaskor
null, azaz nem referal sehova sem. Ez lesz egyben az tiresség feltétele is. Akkor és csak
akkor iires a verem ha head egy null referencia. Szintén referencia a tail, ami a sor
masik végét jelenti, ahova az 1) elemek érkezéskor bekeriilnek. (Természetesen tres sor
esetén a tail is null.

A sorban 1j elem betételekor az elsé feladat az 1j csomépont példanyositasa. Fugget-
leniil a sor korabbi allapotatoél egy 1j csomépontot senki sem fogja kovetni és az értéke a
beteend6 érték. Amennyiben a sor iires volt a betevés elott a head referencia is az Gjonnan
betett most egyetlen csomdpontra kell, hogy mutasson. Ellenkez6 esetben ezt nem szabad
megtenni, azonban helyette flizni kell a meglévé lancot. Azaz a tail altal mutatott cso-
moépont kiovetkezojeként kell megtenni az Gj elemet. Utolsé 1épésként a beszurt elemet a
tail-be tessziik, mivel az a vége a sornak.

Az els6 elem kivétele esetén megjegyezziik a visszatérési értéket, majd a head-et 1ép-
tetjiik, aminek az lesz a kovetkezménye, hogy az eddigi head csomépontra vonatkozo refe-
renciankat elveszitjiik és a kovetkezo6 elem lesz a sor eleje. A sor kiiiriilése esetén a tail-t
is nullra kell allitani, mivel az a specifikacionkban szerepelt. (A head automatikusn null
lesz, mivel az utolsé csomépont rakovetkezdje a csomépont példanyositasa soran null au-
tomatikusan, valamint az utolsé6 csomépontot biztosan nem koéveti semmi sem, tehat a
kovetkez6 csomoépontot jelzd mezot nem allitottuk el.) Legvégiil visszatér a fliggvény az
elmentett értékkel.

A First fiiggvény a head referencia altal mutatott csomépontban tarolt értékkel tér
vissza.

4.3. Lista, Lancolt Lista

4.3.1. Szekvencialis adatszerkezet

A szekvencidlis adatszerkezet olyan (A, R) rendezett par, amelynél az R relécié tranzitiv
lezartja teljes rendezési relacio. A szekvencialis adatszerkezetben az egyes adatelemek
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bﬂckage s0r;

public class SorDinamikus

i

class Node

1
public int ertek;
public Node kovetkezo;
public Node({int ertek, MNode Kovetkezo)
£
this.ertek = ertek;
this.kovetkezo = kovetkezo;
1
¥

private Node head:
private Node tail;

public SorDinamikus({)

{
head = null;
tail = null:;
}
public boolean isEmpty()
i
return {head == null});
¥

4.13. dbra. Dinamikus sor kéd 1. rész

public woid In{int elem)

i

Node ujNode = new Node{elem, null});
// Eredetilea Ores @ sor
if (tail == null}

{
f/ A fej.1s az ui. elemre. Tog mutatni.
head = ujNode;
1
else
i
ff Lanc fRzese
tail.kovetkezo = ujNode;
1

tail = ujNode;

4.14. abra. Dinamikus sor kéd 2. rész

egymas utan helyezkednek el. Az adatok kozott egy-egy jellegli a kapcsolat: minden adat-
elem csak egy helyrol érhet6 el, és az adott elemrdl csak egy masik lathaté. Két kitiintetett
elem az elso és az utolso.

Tipikus és legegyszeribb példa a lista, ahol gondolhatunk egy tennivalé listara, amely-
nek tételei vannak, felvehetiink és torolhetiink tetszolegeset koziilik.
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public int Qut()

i

if (isEmptyi()})

1 :
System.err.println{"Ures a sor - hiba"};
return -1;

i

else

i

Megicgyezzik a wisszateresi erteket
int visszaterni = head.ertek;
'/ Megualtoziatiuk a head gricket a kivetkezore -= kivesszik
head = head.kovetkezo;
// Ha kigral
if (head == null)
i
tail = head;

i
return visszaterni;

¥

1

4.15. dbra. Dinamikus sor kéd 3. rész

public int First({}

i
if (isEmpty()}
{
System.err.println{"0res a sor - hiba");
return -1;
¥
else
i
return head.ertek;
¥
1

4.16. abra. Dinamikus sor kéd 4. rész

4.3.2. Lista adatszerkezet

Homogén adatszerkezet, azaz azonos tipusu véges adatelemek sorozata. Lehetséges je-
l6lése a L = (a1, as,...a,), amennyiben iires listardl beszéliink, dgy az elemszam nulla,
n =0, vagyis L = ().

A lancolt lista egy olyan adatszerkezet, amelynek minden eleme tartalmaz egy (vagy
tobb) mutatot (hivatkozast) egy masik, ugyanolyan tipusu adatelemre, ami rakoévetkezo-
séget jelenti a lista esetén. A lanc els6 elemének a cimét a lista feje tartalmazza. A listafej
nem tartalmaz informaciés részt, azaz tényleges listabeli adatot. A lanc végét az jelzi, hogy
az utolsé elemben a rakiovetkezé elem mutatdja ures.

Kétszeresen lancolt esetben vissza iranyban is vannak hivatkozasok, tehat a lista egy
eleme mindkét szomszédjara vonatkozéan tartalmaz referenciat, tovabba nemcsak a feje-
lem, hanem a végelem is kiilon hivatkozassal keriil eltdarolasra.

4.3.3. Absztrakcios szint

Végiglépkedhetiink a lista elemein, besziurhatunk és torélhetiink tetszés szerint. Az abran
egy egyiranyu lancolasu lista talalhato, ahol a téglalalp a listafej, az ellipszisek az értékes
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adatot is tartalmazé lancszemek.

4.17. abra. Lista intuitiv ADS/ADT

4.3.4. Statikus reprezentacio

Statikus reprezentacié esetén egy tablazatot hasznalunk, amiben érték, index parokat
helyeziink el. Az indexek jelentik a rakovetkezoségeket, tehat ez fogja a lista elemei ko-
zotti ligokai sorrendet kialakitani. (A tablazatban elfogalalt pozici6 és rakovetkez6ség nem
azonos a listaban elfoglalt pozicidval és rakiovetkezoéséggel.) Tudjuk, hogy melyik az elso6
értéket tartalmazoé pozicié, valamint az elsé szabad helyet tartalmazé pozicié. A szabad he-
lyekbol is listat képeziink. Anna kaz elemnek amelyiknek nincs rakovetkezdje, az a lista
vége, illetve a szabad helyek listajanak vége. Ennek a megoldasnak az az elénye, hogy
a beszurasok és torlések esetén nem kell tigyelink a lista tablazatbeli folytonossagara,
igy hatékonyabb (gyorsabb) és rendelkezésre all6 memériat maradéktalanul kihasznalé

megoldast kapunk.

‘ Elem: 2‘ ‘ SZH:3‘

2

8 13 7 10 19
6 4 5 1 7 8 0 0
W — ] [ [

4.18. abra. Lista statikus reprezentacié

4.3.5. Dinamikus reprezentacio

Az elemek lancolasat hasznaljuk az els6 dinamikus reprezentaciéban, ami az egiranyu
lancolas esetén a sor esetén megismert modszerrel gyakorlatilag azonos. Minden elem
referenciat tartalmaz a rakovetkezgjére. A kétiranyu lancolas az alabbi dbra mutatja be.

IN

4.19. abra. Lista dinamikus reprezentaci6 — egyiranyu lancolas

Az egiranyud lancolashoz képest a kiillonbség az, hogy mindkét szomszédjara tartalmaz

referenciat egy csomépont.
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4.20. abra. Lista dinamikus reprezentacié — kétiranyu lancolas

4.3.6. Kétiranyu lancolt lista megvalésitasa

A lista allapotvaltozoéi:

e Head: referencia az elsé elemre. Ami null, ha iires a lista.

e Tail:referencia az utolsé elemre. Ami null, ha iires a lista.

e Akt: egy kivalasztott elemre mutat, lehet 1éptetni elore és hatra. Amikor ures a lista
akkor null az értéke.

Az Akt segitségével tudjuk a listaban tarolt elemeket elérni, lekérdezni, megvaltoztatni.
Ezt a referenciat a megvalésitott miiveleteken keresztiil fogjuk befolyasolni, a lista aktu-
alisan vizsgalt elemét fogja jelenteni.

Muveletek

e insertFirst (E): az E elemet beszurja a lista elejére.
insertLast (E): az E elemet beszurja a lista végére.
removeFirst (): az elsoé elemet torli a listabal.

removeLast () : az utolsé elemet torli a listabal.
getAktValue (): az aktudlis elem lekérdezése.

setAktValue (E): az aktualis elem értékének megvaltoztatasa.
stepFirst (): az aktudlis elemet az elsére 1épteti.

stepLast (): az aktudlis elemet az utolséra lépteti.
stepForward () : az aktualis elemet Tail felé 1épteti eggyel.
stepBackward () : az aktualis elemet Head felé 1épteti eggyel.
insertBefore (E): az F elemet beszirja az aktualis elé.
insertAfter (E): az F elemet beszurja az aktualis mogé.
removeAkt (): az els6 elemet torli a listabol.

isLast (): lekérdezi, hogy az aktualis a lista végén van-e.
isFirst ():lekérdezi, hogy az aktualis a lista elején van-e.

e isEmpty: lekérdezi, hogy iires-e a lista.

A miiveletek leirasa pseudokodban

A konstruktor, ami létrehoz egy iires listat, az 6ssze referencia értékét atallitja null-ra,
ami ures listat fog eredményezni.

Konstruktor
Head<+—null
Tail«null
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Akt<+—null

AKkkor tires a lista, ha fej és vég referencidk null értékuek.

isEmpty ()
return Head==Tail==null

Az aktualist jelent6 refrencia értékére vonatkozo lekérdezések.

isLast ()
return Akt==Tail

isFirst ()
return Akt==Head

Az aktualis referencia altal mutatott listaelem értékének lekérdezése és beallitasa.

getAkt ()
HA Akt#null AKKOR return Akt.Ertek

setAkt (ujertek)
HA Akt#null AKKOR Akt.Ertek«ujertek

Az aktualis referencia léptetésének muiveletei:

stepForward()
HA Akt#null ES —isLast () AKKOR Akt«Akt.Kovetkezo

stepBackward ()
HA Akt#null ES —isFirst () AKKOR Akt«Akt.Elozo

stepLast ()
Akt«Tail

stepFirst ()
Akt+«Head

A beszurasi muveleteket fokozatosan épitjik fel, az egyes eseteket visszavezetve ko-
rabbi esetekre. Kezdjiik azzal a fiiggvénnyel, ami a lista elejére szir be egy 1j adatot. A
beszuras esetén mindenképpen létre kell hozni egy 1j csomépontot, aminek az értékét be
kell allitani. Mivel els6 elemként keriil beszarasra ezért a megel6zdje biztosan a null, a
rékovetkezoje pedig az addigi Head. Azonban ha eredetileg tires volt a lista akkor a Head
és a Tail értékét kell az Gj csomépontra allitani, mig ha mar tartalmazott mar (legalabb)
egy elemet, akkor a korabban els6 elemként tarol csomépont megelézojeként kell beallitani
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az aktudlisan beszurtat, tovabba az djonnan beszurt lesz a Head.

insertFirst (ertek)
Akt+«ujCsomopont«UJ Node
ujCsomopont .Ertek«—ertek
ujCsomopont.Elozo«+null
ujCsomopont .Kovetkezo«Head
HA isEmpty ()

AKKOR
Head«+Tail«ujCsomopont
KULONBEN
Head.Elozo«ujCsomopont
Head«—ujCsomopont

Az utolséként valé beszirast teljesen hasonléan lehet megvalésitani, mint az elséként
val6 beszurast, azonban az tres listaba valé beszurast az insertFirst () fliggvénnyel
oldjuk meg. (Itt a kovetkeziség és a megel6zoség felcserélodik az el6zé fiiggvényhez ké-
pest.)

insertLast (ertek)

HA isEmpty () AKKOR insertFirst (ertek)
KULONBEN

Akt+«ujCsomopont«+UJ Node

ujCsomopont .Ertek«—ertek
ujCsomopont.Elozo«Tail

ujCsomopont .Kovetkezo«+null
Tail.Kovetkezo+«ujCsomopont
Tail«+ujCsomopont

Aktualis elem elé valé besziras esetén, amennyiben az aktualis az elsé, vagy iires a
lista visszavezetjik az elsé beszuré fiiggvényiinkre. Az 4j csomépont létrehozéasa soran
be kell allitanunk az adatot, az Gj csomépont megel6zo és kivetkezé csomépontjat. A ko-
vetkezdje az aktudlis maga, hiszen az aktudlis elé szturunk be. A megel6z6 az aktualis
megel6zoje. Az aktualist megel6z6 csomépont rakovetkezoje lesz az Gjonnan létrehozott,
valamint az aktualist megel6zének is be kell allitani az 4j csomépontot. Végiil az 1j cso-
moépontot tessziikk meg aktualisnak.

insertBefore (ertek)

HA isEmpty () VAGY isFirst () AKKOR insertFirst (ertek)
KULONBEN

ujCsomopont«UJ Node

ujCsomopont .Ertek«—ertek

ujCsomopont .Elozo«Akt.Elozo

ujCsomopont .Kovetkezo+Akt

Akt .Elozo.Kovetkezo«—ujCsomopont

Akt .Elozo+-ujCsomopont

Akt+—ujCsomopont

A rakovetkezoként valé beszurast megprébaljuk visszavezetni vagy iires listaban valé
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beszurasra, vagy utolsénak valé beszurasra. Ha egyik sem sikeriil, akkor viszont bizto-
san tartalmaz annyi elemet a lista hogy meg tudjuk tenni azt, hogy léptetiink elére és
megel6zoként szurjuk be igy ekvivalens megoldast kapva. (Ez természetesen nem a legha-
tékonyabb, azonban ez a legegyszeriibb.)

insertAfter (ertek)

HA isEmpty () VAGY isLast () AKKOR insertLast (ertek)
KULONBEN

stepForward ()

insertBefore (ertek)

A torlések esetén hasonléan eseteket vizsgalunk. Elsoként a megfelelé beszuras par-
jaként az els6 elem kitorlését vizsgaljuk. Ilyenkor els6 feladat az aktualis elemre mutaté
referencia léptetése. (Gondoljuk meg, hogy ez minden esetben mtkodik-e. Mi torténik, ha
az utols6 elemet toréljik a listab6l?) A Head referencia léptetése utan, ha azt tapasztal-
juk, hogy a Head referencia értéke null, akkor a Tailt is nullra allitjuk, hiszen kitiriil
a lista. Ellenkez6 esetben a Head altal mutatott csomépont megeldzéjét allitjuk nullra,
hiszen annak mar nincs tényleges megel6zoje.

removeFirst ()

HA —isEmpty () AKKOR

HA isFirst () AKKOR Akt«Head.Kovetkezo
Head«Head.Kovetkezo

HA Head#null AKKOR

Head.Elozo+null

KULONBEN

Tail«—null

Az utolsé elem torlése. Amennyiben ez az egyetlen elem a listdban visszavezetjilk az
el6z6 esetre. Ellenkez6 esetben siman elvégezziik a torlést, nem kell torédniink azzal, hogy
kitiril a lista, tehat csak az utolsét megel6zo6 elem rakovetkezokét allitjuk nullra, illetve
a Tail léptetjiik eggyel visszafelé.

removelLast ()

HA —isEmpty () AKKOR

HA Tail==Head AKKOR removeFirst (); VEGE
HA isLast () AKKOR Akt«Tail.Elozo
Tail«<Tail.Elozo

Tail.Kovetkezo+null

Aktualis elem torlése, amennyiben kiiriilne a lista, vagy visszavezetheté a korabbi
figgvényekre meghivjuk azokat a torlo figgvényeket. Ha ez nem lehetséges akkor a tor-
lend6 elem biztosan kozbiilsé elem, csakis a megel6zé csomépont rakovetkezojét és a rako-
vetkez6 csomépont megelozojét kell rakovetkezore és a megel6zore allitani. (Azaz a meg-
el6zo6 rakovetkezdje az aktualis rakovetkezoje, illetve a rakovetkez6 megel6zoje az aktualis
megel6zoje kell, hogy legyen, ahhoz hogy az aktualis elemet kiszedjiik a listab6l.) Tovabba
az aktualis elemet kell egy listabeli elemre allitani.
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removeAkt ()

HA —isEmpty () AKKOR

HA isFirst () AKKOR removeFirst (); VEGE
HA isLast () AKKOR removelast (); VEGE
Akt .Elozo.Kovektkezo«Akt .Kovektezo
Akt .Kovetkezo.Elozo«Akt.Elozo
Akt<«—Akt .Kovetkezo

JAVA kédok
Az alabbiakban a pseud6 kodnak megfelelo Java kodok keriilnek ismertetésre.
package lista;

public class LancoltlLista

{
private class Csomopont
{
int Ertek;
Csomopont Kovetkezo;
Csomopont Elozo;
public Csomopont{int wvalue, Csomopont Next, Csomopont Prewv)
{
Ertek = value;
Kovetkezo = Mext:
Elozo = Prev;
by
1
private Csomopont Head;
private Csomopont Tail;
private Csomopont Akt;
public LancoltLista()
{
Head = null;
Tail = null;
Akt = null;
}
4.21. abra. Lancolt lista kod 1. rész
4.4. Fa

Ebben a részfejezetben a hierarchikus adatszerkezetek egyikével a faval, azon beliil is a
binaris keresési faval, majd a kupac adatszerkezettel ismerkediink meg.

4.4.1. Hierarchikus adatszerkezetek

Definici6 szerint a hierarchikus adatszerkezetek olyan (A, R) rendezett par, amelynél van
egy kitiintetett r elem, ez a gyokérelem, ugy, hogy:
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public boolean isEmpty() public int getAkt()

{ . —
return (Head == null); ?f {1isEmpty())
}
return Akt.Ertek;
public boolean isFirst() }
{ else
return (Akt == Head); {
} return -1;
}
public boolean isLast() 1
{
return (Akt == Tail); public void setAkt({int ujertek)
} {
if (!isEmpty())
{
Akt.Ertek = ujertek;
}
1

4.22. abra. Lancolt lista kod 2. rész

public void stepBackward()
i

if (1isEmpty() & !isFirst()) ?“"U‘ yald stapkirst()
Akt = Akt.Elozo; Akt = Head;
} ¥
} public void stepLast()
- : {
¥uh11c void stepForward() AKE = Tails
if (!isEmpty() && !islast()) ¥
{
Akt = Akt.Kovetkezo;
}
1

4.23. abra. Lancolt lista kod 3. rész

e r nem lehet végpont
e Va € A\ {r} elem egyszer és csak egyszer végpont
e Va € A\ {r} elem r-bdl elérhetd

Az adatelemek kozott egy-sok jellegii kapesolat all fenn. Minden adatelem csak egy
helyrol érheto el, de egy adott elembdl akarhany adatelem lathaté. A hierarchikus adat-
szerkezetek valamilyen értelemben a szekvencidlis adatszerkezetek altalanositasai. (Az
elérhetoség ebben az értelemben rakovetkezoségek sorozatat jelenti, valamint a végpont
egy a — b jellegti kapcsolat esetén a b értéket jeloli, a kezdopont pedig az a értéket.)

4.4.2. Fa adatszerkezet

A fa egy hierarchikus adatszerkezet, mely véges szamu csomépontbdl all, és két csomo-
pont k6zott a kapcsolat egyiranyu, az egyik a kezdépont, a masik a végpont, valamint van
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public void insertFirst{int ertek)

i
Csomopont ujCsomopont = new Csomopont{ertek, Head, null);
Akt = ujCsomopont;
if (isEmptyl()}
i
Head = ujCsomopont;
Tail = ujCsomopont;
}
else
i
Head.Elozo = ujCsomopont;
Head = ujCsomopont;
h
b
public void insertLast(int ertek)
i
if (isEmpty())
{
insertFirst{ertek);
h
else
{
Csomopont ujCsomopont = new Csomopont{ertek, null, Tail);
Akt = ujCsomopont;
Tall.Kovetkezo = ujCsomopont;
Tail = ujCsomopont;
Iy
by

4.24. abra. Lancolt lista kod 4. rész

a fanak egy kitiintetett csomépontja, ami nem lehet végpont, ami a fa gyokere. Ezen kiviil
az Osszes tobbi csomépont pontosan egyszer végpont. (Végpont és kezdopont itt a rakovet-
kezo6ségi kapcsolatnal a rakovetkezoséget jelolé nyilra vonatkozik. Eszerint csak a gyokér
nem rakovetkez6je semminek sem.)

Az el6z6 definici6 leirhaté egy rekurziéval is, azaz a fa definidlasa soran felhasznaljuk
a fa definicigjat.

e A fa vagy iires, vagy

e Van egy kitiintetett csomépontja, ez a gyokér.

e A gyokérhez 0 vagy tobb diszjunkt fa kapcsolédik. Ezek a gyokérhez tartozo részfak.

A fakkal kapcsolatos algoritmusok tobbsége rekurziv.

Elnevezések és tovabbi definiciok

e A fa csiicsai az adatelemeknek felelnek meg.

e Az élek az adatelemek egymas utani sorrendjét hatarozzak meg — egy csomépontbol
az azt kévetobe huzott vonal egy él.

o A gyokérelem a fa elsé eleme, amelynek nincs megel6zdje, az egyetlen csomépont
amibe nincs befuté él.

e Levélelem a fa azon eleme, amelynek nincs rakovetkezdje, belole nem fut ki él.

e Kozbensd elem az 6sszes tobbi adatelem, ami nem gyokér és nem levél.
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public void insertBefore(int ertek)

{
if (isEmpty() || isFirst())
{
insertFirst(ertek);
)
else
{
Csomopont ujCsomopont = new Csomopont({ertek, Akt, Akt.Elozo);
Akt.Elozo.Kovetkezo = ujCsomopont;
Akt.Elozo = ujCsomopont;
Akt = ujCsomopont;
b
)
public void insertAfter{int ertek)
{
if (isEmpty(} || isLasti())
{
insertLast(ertek);
b
else
{
stepForward();
insertBefore(ertek);
1
¥
4.25. abra. Lancolt lista kéd 5. rész
$ubli: void removeFirst() public void removelast()
_ {
%f {1isEmpty()) if (lisEmpty())
{
if (isFirst()) if (Tail == Head)
Akt = Head.Kovetkezo; i
Head = Head.Kovetkezo; removeFirst();
if (Head!=null) return;
{ 1
Head.Elozo = null; if {(isLast()}
1 Akt = Tail.Elozo;
else
{ ) Tail = Tail.Elozo;
Tail = null; Tail.Kovetkezo = null;
¥ }
} }

4.26. abra. Lancolt lista kod 6. rész

e Minden kozbensé elem egy részfa gyokereként tekinthetd, igy a fa részfakra bont-
haté: részfa: ,t” részfaja ,a”-nak, ha az ,a” gyokere, azaz kozvetlen megel6z6 eleme
»,t-nek, vagy ,t” részfaja ,a” valamely részfajanak.

e Eldgazdsszdm: kozvetlen részfak szama, azt mondja meg, hogy egy adott csomépont-
b6l hany él indul ki.

e A fa szintje a gyokértol valé tavolsagot mutatja.
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public void removeAkt()

{
if (!isEmpty())
{
if (disFirst({))
{
removeFirst();
return;
1
if (isLast(}}
{
removelast();
return;
}
Akt.Elozo.Kovetkezo = Akt.Kovetkezo;
Akt .Kovetkezo.Elozo = Akt.Elozo;
Akt = Akt.Kovetkezo;
}
1

4.27. dbra. Lancolt lista kod 7. rész

- A gyokérelem a 0. szinten van.
- A gyokérelem rakovetkezoi az 1. szinten, a rakovetkezok pedig a 2. szinten. ...

A fa szintjeinek szama a fa magassdga, azaz a legnagyobb szamu szint ha 5, akkor a
fa magassaga 6.

Csomdpont foka: a csomoéponthoz kapcsolt részfak szama, azt mutatja meg ez a szam,
hogy hany él indul ki az adott csomépontbél.

Fa foka: a faban talalhato6 legnagyobb fokszam.

Levél: 0 fokt csomépont, nincs beléle kimeno é€l.

Eldgazds (kozbenso6 vagy atmeno csomépont): # 0 fokd csomépont.

Sziild (6s): kapcesolat (él) kezdépontja (csak a levelek nem sziilok).

Gyerek (leszdarmazott): kapcsolat (él) végpontja (csak a gyokér nem gyerek) Ugyan-
azon csomopont leszarmazottai egymasnak testvérei. (Hasonlatosan a csaladfaban
megszokott médon.)

Szintszdm: gyokértol mért tavolsag. A gyokér szintszama 0. Ha egy csomépont szint-
szama n, akkor a hozza kapcsol6dé csomépontok szintszama n + 1.

Utvonal: az egymast kovetd élek sorozata. Minden levélelem a gyokértél pontosan
egy uton érheto el.

e Ag: az az utvonal, amely levélben végzodik.

Uresfa az a fa, amelyiknek egyetlen eleme sincs.

Fa magassdga: a levelekhez vezet6 utak koziil a leghosszabb. Mindig eggyel nagyobb,
mint a legnagyobb szintszam.

Minimdlis magassdgi az a fa, amelynek a magassaga az adott elemszam és fa-
fokszam esetén a lehet6 legkisebb. (Valéjaban ilyenkor minden szintre a maximalis
elemszamu elemet épitjiik be.)

Egy fat kiegyenstilyozottnak neveziink, ha csomépontjai azonos fokidak, és minden
szintjén az egyes részfak magassaga nem ingadozik tobbet egy szintnél. Példaul egy
kétfoknu fa esetén a bal részfa és a jonn részfa magassaga legfeljebb egyel tér el egy-
mastol tetszoleges csomépont esetén.

Rendezett fa: ha az egy sziil6hoz tartozé részfak sorrendje lényeges, azok rendezet-
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tek. Ilyenkor valamilyen szabaly hatarozza meg azt, hogy melyik részfaban milyen
elemek helyezkedhetnek el.

Gyoker
0. szint <
Részfa Levél
I
1. szint
2. szint

4.28. abra. Fa elnevezések

4.4.3. Binaris fa

A binaris fa olyan fa, amelynek minde csicspontjabél maximum 2 részfa nyilik (azaz a fa
fokszama 2). Ebbd6l kifolydlag egy sziilo mindig a gyerekek kozott (és folott) helyezkedik el.
(Ennek a bejarasoknal lesz szerepe.) Egy binaris fa akkor tokéletesen kiegyensiilyozott, ha
minden elem bal-, illetve jobboldali részfajaban az elemek szama legfeljebb eggyel tér el.

Teljesnek neveziink egy binaris fat, ha minden kozbens6 elemének pontosan két le-
agazasa van és majdnem teljes: ha csak a levelek szintjén van esetleg hiany. (Tehat ha
lerajzoljuk, akkor a jobb szélén a legutolsé szinten hianyzik néhany levél.

Specialis binaris fak

Kiszamitasi- vagy kifejezésfa. Korabban foglalkoztunk kifejezésekkel. Minden kifejezés a
kiértékeléshez szétbonthaté részkifejezésekre, és annak megfeleléen 6sszetevokre. (Ope-
ratorok és operandusok.) Ezt egy faban is abrazolni lehet, ahol

e Az a struktura, amely egy nyelv szimbélumai és kiillonb6z6 mutveletei kozotti prece-
denciat jeleniti meg.

e Aritmetikai kifejezések abrazolasara hasznaljak.

e Minden elagazasi pont valamilyen operatort,

e A levélelemek operandusokat tartalmaznak.

o A részfak kozotti hierarchia fejezi ki az operatorok precedenciajat, illetve a zaréjele-
zést.

A ((10/3) — x) + (5 * y?) kifejezés faja:
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4.29. abra. Kifejezésfa példa

Fa miuveletek

Lekérdezé muveletek:

e Ures-e a fa struktira.

o Gyokérelem értékének lekérdezése.

e Meghatarozott elem megkeresése, az arra vonatkozé referencia visszaadasa.
e A megtalalt tetszbleges elem értékének lekérdezése.

Modosité muveletek:

e Ures fa létrehozasa — konstruktor.
e Uj elem besztrésa.

e Meghatarozott elem kitorlése.
Osszes elem torlése.

Egy részfa torlése.

Részfak kicserélése egymassal.
Gyokér megvaltoztatasa.
Egy meghatarozott elem értékének megvaltoztatasa.

Fa bejarasok

A bejarasi algoritmusok egy tetszoleges fa 6sszes csomépontjan végiglépkednek egy meg-
hatarozott médszer szerint. Rekurziés modszerek tetszoleges fa esetén:

e Pre-order bejaras. (Eloszor a gyokér kiirdasa (érintése) majd a részfak ugyanilyen
modszera bejarasa)

e Post-oreder bejaras. (Eloszor a részfak bejarasa — bal, majd jobb —, majd legvégiil a
gyokér érintése)

Binaris fak esetén még egy bejarasi modszer:

e In-order bejaras (Elészor a balgyerek bejarasa, majd a gyokér érintése, azutan a jobb-
gyerek bejarasa)
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A bejarasok esetén az el6z6 algoritmusok ,receptek”. Egy aktualis csomépontban a recept
meghatarozza, hogy mi torténik. Példaul inorder esetben a teljes bal részfara alkalmaz-
zuk elészor a receptet, majd kiirjuk az aktualis csomépont értékét, majd folytatjuk a jobb
részfaval.

Példaul tekintsiik az alabbi részfat:

4.30. abra. Példa fa

Preorder
6,4,2,1,3,0,9,7,5,8

Postorder
1,3,2,0,4,7,8,5,9,6

Mivel binaris fa volt a példa ezért lehetséges az inorder bejaras is:

Inorder
1,2,3,4,0,6,7,9,8,5

4.4.4. Fa reprezentacios modszerek

Réviden attekintiink néhany a fa reprezentalasa alkalmas médszert.

Balgyerek-jobbtestvér

Minden csomépont ismeri a sziil6jét, egyetlen (legbaloldalibb) gyermekét és a kozvetlen
jobbtestvért. Ezzel lehetséges, hogy barmely csomépontnak tetszoleges szamu gyereke le-
gyen, amik gyakorlatilag egy lancolt listat alkotnak. Ezeket referencidak segitségével ir-
hatjuk le.

Multilistas abrazolas

Minden csomoépont egy lancolt lista. A lista els6é eleme tartalmazza az adatot, a tobbi
csomépont mar csak hivatkozasokat a leszarmazottakra (gyermekcsomépontokra). Ennek
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null

null

null

null

5

7

0

null

null

null

null

4.31. abra. Balgyerek-jobbtestvér reprezentacio

megfeleloen kétféle csomopont talalhaté, a listak fajtaja szerint.

null

4

S

7

0

null

null

null

null

null

Aritmetikai reprezentacio

Amennyiben meghatarozunk egy fels6 korlatot a csiicsok fokszamara, ugy lehetséges az
alabbi reprezentaciéval a fat tarolnunk. Vesziink egy tombot, amibe sorfolytonosan és igy
szintfolytonosan beleirjuk az egyes szinteken talalhaté értékeket. A korabbiakban bemu-
tatott binaris fa (ami esetén a fokszam korlat kett) aritmetikai abrazolasban: (A teljes
fahoz képest hianyzé értékek helyét kihagyjuk, hogy a kés6ébbi besziras esetén rendelke-
zésre alljon a besziurandé elemnek a hely.)

4.32. abra. Multilistas abrazolas reprezentacié

(614[9[2[0[7[5[1[8]-]-[-[-[8]-]

4.33. abra. Aritmetikai abrazolas
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Lancolt abrazolas

Szintén korlatos fokszam esetén hasznalhato, a tovabbiakban ezt fogjuk a programok so-
ran alkalmazni. Minden csomépont ismeri a sziil§jét, valamint a jobb és bal gyerekét,
egy-egy referenciaval hivatkozik a megfelelé6 csomépontokra. Tovabbi referencia mutat a
gyokérre. (Ez altalanositasa a kétiranyud lancolt listanak, ahol a rakiévetkezé elem a két
gyerek, a megel6z6 elem pedig a sziild.)

null

null

null

null

null

null |

null

4.34. abra. Lancolt abrazolas

4.5. Binaris keresési fak

Az el6z6 szakaszban a fak fogalmaval ismerkedtiink meg, valamint a tudjuk, hogy egy bi-

naris fa azt jelenti, hogy egy csomépontnak legfeljebb két gyereke lehet. Ezekhez tulajdon-

sagokhoz hozzaadva a keresofa tulajdonsagot egy nagyon hasznos konstrukciét kapunk.
Mit is jelent a keresofa:

e A rendezési fa (vagy keresofa) olyan fa adatszerkezet, amelynek kialakitasa a kiilon-
b6z6 adatelemek kozott meglévo rendezési relaciot koveti.

e A fa felépitése olyan, hogy minden cstcsra igaz az, (binaris esetben) hogy a csucs
értéke nagyobb, mint tetszoleges csicsé a tole balra 1évo leszallé agon és a cstcs ér-
téke kisebb minden, a tole jobbra 1évé leszall6 Agon talalhaté csucs értékénél. (Részfa
csucsainal.)

e AT fabarmely x cstcsara és bal(z) barmely y csticsara és jobb(x) barmely z csicsara
y<zr<z

A rendezési fa az 6t tartalmazé elemek beviteli sorrendjét is visszatiikrozi. Ugyan-
azokbdl az elemekbdl kiilonbozé rendezési fak épithetok fel. Figyeljiikk meg a példakat:
(A bezurast ugy végezziik el, hogy mindig elindulunk a gyokérbél és aszerint haladunk a
jobbra, vagy balra, hogy a besziurandé elem kisebb-e vagy nagyobb az aktudlisan vizsgalt-
nal. Amennyiben egy olyan helyre jutunk, ahol nincs részfa, akkor a beszirandé elemet
betessziik oda. Ellenkezo6 esetben haladunk felefé tovabb.)
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Elso6 sorrend
6,3,1,9,7,5,10

Masodik sorrend
9,7,6,5,10,3,1

4.35. abra. Binaris keresofa felépitése

4.5.1. Tulajdonsagok

Inorder bejarassal a kulcsok rendezett sorozatat kapjuk. Az algoritmus helyessége a
binaris-keresé-fa tulajdonsagbdl indukciéval adédik.

Egy n cstcsu bindris keresé fa bejarasa O(n)! ideig tart, mivel a kezdéhivas utan a fa
minden csucspontja esetében pontosan kétszer (rekurzivan) meghivja 6nmagat, egyszer a
baloldali részfara, egyszer a jobboldali részfara. (A rekurziés algoritmus atirhaté ciklusra
is.)

4.5.2. Muveletek

Keresés. A T binaris keresési faban keressiik a k kulcsu elemet (csticsot). A keresés,
ha létezik a keresett csucs, akkor visszaadja az elem cimét, egyébként null-t. Ennek az
algoritmusnak z algoritmust megadjuk rekurziv és iterativ megoldasban is.

A keresés alapotlete, hogy elindulunk a egy csomépontbdl (gyokér) megvizsgaljuk, hogy
megtalaltuk-e az keresett értéket, vagy kimentiink-e a fabdl. (Levél gyereke mindig null.)
Ha egyik sem, akkor eldontjiik a kulcs alapjan, hogy a faban merre tovabb. Ha a keresett
érték kisebb, mint az aktualis csomépont, akkor balra, kiilonben jobbra haladunk tovabb.

Faban-keres (x, k) -rekurziv

A pontos definiciéjat lasd a kévetkezd fejezetben.
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HA x = null VAGY k = kulcs|[x]

akkor return x

HA k < kulcs[x]

AKKOR RETURN Faban-keres (bal[x], k)
KULONBEN RETURN Faban-keres (jobb[x], k)

Faban-keres (x, k) —iterativ

CIKLUS AMIG x # NULL ES k # kulcs[x]
HA k < kulcs|[x]

AKKOR x <« bal [x]

KULONBEN x <« jobb[x]

return x

Minimum keresés. Tegyiik fel, hogy T #null. Addig kovetjiik a baloldali mutatékat,
amig NULL referenciat nem talalunk. Ez gyakorlatban a legbaloldalibb elemet jelenti a
faban, ami sziikségszerien a legkisebb is.

Faban-minimum (T) - iterativ
X — gyokér|[T]

CIKLUS AMIG bal[x] # null
X <« bal[x]

return x

Lefut O(h) id6 alatt, ahol i a fa magassdga. Hasonléan megkereshet6 a maximum érték
is, ami a legjobboldalibb elem.

4.6. Kupac (Heap)

A kupac adatszerkezet bevezetéséhez néhany fogalomra van sziikség.

Egy bindris fa teljes, ha a magassaga h, és 2" — 1 csomépontja van. Egy h magassagu
binaris fa majdnem teljes, ha iires; vagy a magassaga h, és a bal részfaja h — 1 magas és
majdnem teljes és jobb részfaja h — 2 magas és teljes; vagy a magassaga h, és a bal részfaja
h — 1 magas és teljes és jobb részfaja h — 1 magas és majdnem teljes.

A gyakorlatban, amikor a fat felrajzoljuk a majdnem teljesség az jelenti, hogy a leg-
utolsé szinten jobbrdl visszafelé hidnyozhatnak értékek pont tgy, hogy ha elegendé érték
lenne, az utolsé sor jobb szélén, akkor teljes lenne a fa. A majdnem teljes fakat balrol
Ltoltjik fel”. (Avagy szintenként haladunk a feltéltéssel és balrél jobbra ...)

4.6.1. Kupac tulajdonsag

Egy majdnem teljes binaris fa heap (kupac) tulajdonsagu, ha iires, vagy a gyokérben 1év6
kulcs nagyobb, mint mindkét gyerekében, és mindkét részfaja is heap tulajdonsagi. Na-
gyon fontos, hogy egy ez masik definicié a bal/jobb gyerek értékére vonatkozoéan, a binaris
keresési fahoz képest!

Reprezentaldasuknal kihasznaljuk a tomoritettséget és majdnem teljességet igy aritme-
tikai reprezentaciéval tombben taroljuk az értékeket és az egy indexfiiggvény szamitja a
sziilét és a gyerekeket.
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4.36. abra. Kupac példa

4.6.2. Muveletek
Gyokér torlése

A gyokér a legnagyobb elem, ami a kupac tulajdonsag betartasabél kovetkezik. Eltavoli-
tasa utan a legalsé szint legjobboldalibb elemét tessziik fel a helyére, hogy a majdnem tel-
jes tulajdonsag megmaradjon. Ezzel azonban elrontjuk kupac tulajdonsagot, amit helyre
kell allitani. A helyreallitashoz cseréljiik fel a gyokeret a nagyobb gyerekével. Ezzel a
lépéssel a nagyobb gyereket tartalmazé részfaban rontottunk el a kupac tulajdonsagot.
(Nem feltétleniil romlott el.) Igy ismételjiik a kupac tulajdonsag helyreallitasat, amig

sziikséges.
| l.
4.37. abra. Gyokér torlése
Beszuras

Amikor beszurunk, tegyik a kovetkezo szabad poziciora, a legalsé szint legjobboldalibb
elemének tessziik fel a helyére, hogy a majdnem teljesség megmaradjon. Ezzel valészint-
leg elrontjuk kupac tulajdonsagot, amit helyre kell allitani, a torléshez hasonléan. Cserél-
jik fel az djonnan beszurtat a sziilgjével. Ezt ismételjik egészen a fa tetejéig, vagy amig
sziikséges.
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4.38. abra. Gyokér torlése

4.6.3. Indexfiggvények

Indexfiiggvények aritmetikai reprezentacié esetén. A tombben az indexfiiggvények segit-
ségével tudjuk megallapitani egy csomépont gyerekének indexét, illetve sziil6jének inde-
xét.

Balgyerek (k)
RETURN 2k

Jobbgyerek (k)
RETURN 2k+1

Szuld (k)
RETURN |k/2]

Az indexek helyességének végiggondolasat az olvaséra bizom. (Amennyiben lerajzoljuk
a reprezentaciot és a szerepeket, konnyen megolddsra jutunk.)

4.7. Hasznalat

A kupacot meg lehet konstrudlni fejjel lefelé is, amikor is a legkisebb elem van a kupac
tetején.

A kupac példaul hasznalhaté elemek rendezéséhez, elsébbségi sor megvalésitasahoz. Az
elsébbségi sor egy olyan sor, amikor nemcsak az utolsé poziciéba lehet bekeriilni a sor-
ban, hanem fontossagi alapon el6bbre is. (A fontossag az, ami alapjan a kupacban meg-
hatarozzuk a poziciét.) A kupac tombos reprezentaciéjat linearisan ki lehet olvasni, ami
megfeleltethet6 egy sornak.
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5. fejezet

Algoritmusok

5.1. Algoritmusok muveletigénye

Korabban esett sz6 az algoritmusok hatékonysagardl, ebben a fejezetben harom olyan de-
finiciét vezetiink be, amivel 6sszehasonlithatéva valnak az algoritmusok miiveletigényei,
hatékonysaga. Két szempontot lehet figyelembe venni az egyik a lépésszam, vagyis az
program altal megkivant 1épések mennyisége, ami kozvetleniil a futédsi idére van hatas-
sal. A masik az algoritmus altal igényelt memoria mérete. Mindkettét a bemené adatok
méretével aranyosan lehet vizsgalni, innentdl fogva jelentse n a bemenet (input) méretét.
A 1épésszam ennek valamilyen fiiggvény lesz f(n).

A hatékonysag vizsgalatanal az f(n)-et vizsgdljuk. Azonban az 6sszehasonlitasnal az
alabbi példakat vegyiik figyelembe:

e 100n vagy 101n, altalaban mindegy
e n? vagy n® mar sokszor nagy kiilonbség, de néha mindegy
e n? vagy 2" mar mindig nagy kiilénbség

Ahhoz, hogy ezt matematikailag is kezelni tudjuk bevezetiink harom fogalmat.

5.1.1. Fiiggvények rendje
Ordo

Definicié - Ordé
Ha f(z) és g(x) az R egy részhalmazan értelmezett valés értékeket felvevo fiiggvények,
akkor f = O(g) jeloli azt a tényt, hogy vannak olyan ¢, £ > 0 allanddk, hogy | f(x)| < cx|g(z)|
teljesiil, ha = > k.

Ekkor a g aszimptotikus felsé korlatja f-nek; ,fnagy ordé g”.!

Példaul
100n + 300 = O(n), hiszen k = 300; ¢ = 101-re teljesiilnek a feltételek.
100n + 300 < 101n, ha n > 300

Azt jelenti, hogy az f fuggvény egy meghatarozott ,id6” utan alatta van biztosan a g
fliiggvény konstans-szorosanak.

1Az ordo latin sz6, jelentése rend.
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Omega

Definicié - Omega

Ha f(z) és g(x) az R egy részhalmazan értelmezett valés értékeket felvevo fiiggvények,
akkor f = Q(g) jeloli azt a tényt, hogy vannak olyan ¢, £ > 0 allandék, hogy | f(x)| > cx|g(x)]
teljesiil, ha = > k.

Ekkor a g aszimptotikus als6 korlatja f-nek.

Példaul
100n — 300 = (n), hiszen n > 300; ¢ = 99-re teljesiilnek a feltételek.

Ez gyakorlatilag megforditja az el6z6 definicibban meghatarozott szerepeket.

Theta

Definicio - Theta
Ha f = O(g) és f = Q(g) is teljesil, akkor f = ©(g).

Ekkor a g aszimptotikus éles korlatja f-nek.

Példaul
100n — 300 = ©(n), az eddigiek alapjan.

5.1.2. Sorrend

Az alabb sorrend irhaté fel a rendek kozott, ahol is novekvo komplexitassal keriiltek sor-
ban a fuggvények.

e Konstans — O(1)

Loglogaritmukus — O(loglogn)

Logaritmikus — O(log n)

Linearis — O(n)

Linearitmikus (Loglinearis) — O(nlogn) = O(logn!)
Négyzetes — O(n?)

Kobos — O(n?)

Polinomidlis (Algebrai) — O(n¢), hac > 1

e Exponencidlis (Geometriai) — O(c")

e Faktorialis (Kombinatoridlis) — O(n!)

Mindez abrazolva:

Idében nyilvanvaléan akkor lesz hatékony egy algoritmus, ha a sorrenben minél kisebb
fliggvény rendjében fiigg a bemenet méretétdl a feldolgozas ideje, vagyi a 1épések szama.
Sajnos azonban vannak olyan problémak, amelyeket nem tudunk hatékonyan megoldani,
példaul linearis vagy polinomialis id6ben. (Példaul 1étezik a problémak egy olyan osztalya
amelyek ,nehéz” feladatoknak szamitanak és polinom idében egy megoldasjelolt helyes-
sége donthet6 el csupan. Ilyen egy szam prim felbontasa is, amikor egy tetszéleges szamot
felirunk primszamok szorzataként.)
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5.1. abra. Fuggvények rendje

10

25

20~

5.2. Lengyelforma

A lengyelforma egy specidlis formaja a kifejezések felirasanak. Az eddigi megszokott
formaban az tugynevezett infix moédosn irtuk fel a kifejezést. Az infix forma esetén
a muveleti jel (operator) a miiveletben szereplé értékek (operandusok) kozott szere-
pel. A kifejezéseket a muveleti jel elhelyezésétol fiiggéen lehet még postfix, vagy pre-
fix moédon leirni. Prefix abban az esetben, ha a az operator az operandusok eldtt
van, illetve postfix, amennyiben az operandusok mogott helyezkedik el az operator.

— | ingaris

e | 0glinedris
Négyzetes

— KObOS

5.2. abra. Fuggvények rendje

Példa infix kifejezésre

axb+c

87



1000

900 |- h

800 — K ObOS o i
m—— Exponencidlis

700 B

600 |- h

500 B

400 h

300 B

200 h

100 Bl

5.3. abra. Fuggvények rendje

Példa prefix kifejezésre
ab * c+

Példa infix kifejezésre
+ * abc

Hagyomanyos médon a matematikdban az infix Kkifejezéseket
juk. J. Lukasewitz lengyel matematikus hasznalta eloszor a post-
fix jelolés, ezért hivjak lengyelformanak. Helyes lengyelformat a
gép sokkal konnyebben értékel ki, és egyszertibb algoritmust lehet

hasznal-
és pre-
szamito-
irni ra.

Elso6 példa lengyelformara
(a+b)*x(c+d) = ab+cd+

Masodik példa lengyelformara
(a+bxc)*(d«3—4) = abcx+d3*4—x

A lengyelformanak a kovetkezo elényei vannak a feldolgozas soran

mitasok sorrendjében

A muveletek olyan sorrendben érkeznek, ahogy ki kell értékelni 6ket, vagyis a sza-

A muveletek mindig a operandusok utan allnak (postfix), két operandus beolvasasa

utan rogvest végrehajthaté a muvelet (és eltarolhaté az eredmény tjabb operandus

gyanant).
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5.2.1. Lengyelformara alakitas

A lengyelformara alakitasnak tobb, egyszerii szabalya van. A feldolgozasa alogritmusa
hasznal egy x sort, ami a bemen¢ jeleket tartalmazza. Tovabba egy y sort, amibe az ered-
mény keriil, tovabba egy s segédvermet az atalakitashoz. Attdl fiiggéen, hogy milyen ka-
rakter érkezik kell az alabbi szabalyok koziil egyet alkalmazni:

e Nyitézaragjel esetén tegyiik at a zardjelet az s verembe, az x sorbél!

e Operandust irjuk ki a kimeneti y sorba.

e Operator esetén: legfeljebb egy nyitézardgjelig vegyiik ki az s verembol a nagyobb
prioritasu operatorokat és irjuk ki az y sorba, majd ezt az operatort tegyiik be az s
verembe!

e Csukoézaréjel: a nyitézardjelig levé elemeket egyesével vegyiik ki az s verembol és
irjuk ki az y sorba, valamint vegyiik ki a nyitézaréjelet a verembdl!

o Kifejezés végét elérve irjuk ki az s verem tartalmat az y sorba.

s.empty(); vempty(): // A kimeneti sor és az ideiglenes verem kidritése
not x.isEmpty()
e = ¥X.0ut()
e 5zam?
y.In{e) e=(" e=")" e Operator
s.pushie) s.top!="{" s.top!="{" ES prec(s.top) != precie)
yIn(s.pop() ES Is.isEmty()
s.pop() y.n(s.pop())
s.push(e)
Is.isEmpty()
y.In{s.pop())

5.4. abra. A lengyelforméara alakitas stuktogrammja

5.2.2. Lengyelforma kiértékelése

A lengyelformara hozott kifejezés kiértékeléséhez egy v vermet hasznalunk. Az y sorbél
egyesével vessziik az elemeket és az alabbi szabalyok szerint jarunk el:

e Ha operandus, akkor tegyiik at a v verembe.
e Ha operator, akkor vegyiik ki a masodik operandust, majd az els6 operandust a v
verembol. Végezziik el a miiveletet és tegyiik az eredményt a v verem tetejére.

Az algoritmus befejeztével a v veremben egyetlen érték van (ha mindent j6l csindltunk) és
az az érték a kifejezés értéke.
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v.empty(), z =0
not y.isEmpty()
e = y.Oul()
e Szam?
v.push(e)
op2=v.pop()
opl=v.pop()
eredmeny = opl X op2
v.push(eredmeny)
z=v.pop()

5.5. abra. A lengyelforma kiértékelésének stuktogrammja

5.2.3. Lengyelforma példa

A bemutatott példat egy papiron érdemes kévetni, 1épésrol-1épésre felirva a kimenet és a
verem allapotat. Vegyiik az alabbi kifejezést: (1 +2) « (3 +4). Amennyiben a szabalyok sze-
rint haladunk, legel6szor egy nyitézardgjellel talalkozunk. Ez atkeriil a verembe. A szamot
kiirjuk a kimenetre, majd a + operator kivetkezik. A veremben a nyitézardjel van tehat
nem vesziink semmit sem, hanem a betessziik a + jelet is verembe. Kovetkezik egy csuko-
zardjel, tehat mindent kivesziink a verembdl nyitézaréjelig. (Ekkor a kimeneti sorban az
all, hogy 12+.) A szorzas jele bekeriil a verem, majd a kifejezés masodik felével hasonléan
banunk el mint az elsé felével. Azaz a nyitézaréjel a x felé keriil a veremben, kiirjuk a
3-at, majd a — is bekeriil a verembe, a sorra pedig semmi, hiszen nyitézaréjelig nincsen
fontosabb muvelet a veremben. A csukézargjel hatasara kikeriil a — jel. (Ekkor a kimene-
ten az alabbi talalhaté: 12 + 34—.) Mivel a bemeneti kifejezés végére értiink a maradék
szimbélumokat is kiirjuk a verembél, aminek eredménye: 12 + 34 — x. Ez az atalakitott
kifejezés.

Ezt kovetoen a kiértékelés menete az alabbiak szerint torténik. Két szam érkezik egy-
mast kivetden, bekeriilnek a verembe, jon egy operator melynek értelmében 6sszeget sza-
molunk és az eredményt tessziik a verembe. (3) Azutan szintén jon két szam, igy a verem-
ben mar harom elem lesz: 33 4. Ezek utan a legfelsé kettom végrehajtjuk a — miiveletet.
(3 — 1) Majd a legvégén a * muveletet. A veremben egyetlenegy szam lesz, ami a végered-
mény is egyben: —3.

5.3. Rendezések

Ebben a szakaszban a rendezési problémaval ismerkediink meg, majd néhany jol hasznal-
hat6 rendezoalgoritmussal.
5.3.1. Rendezési probléma

A rendezési probléma formalisan a alabbi médon definialhaté. Adott a bemenet és a kime-
net:

Bemenet
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n szamot tartalmazé (a1, aq, ..., a,) sorozat

Kimenet

A bemeno sorozat olyan (a},d, ..., a),) permutacigja, hogy o} < a), <...<a]

n

Ahol a kimenetben tehat a megadott sorozat elemei szerepelnek valamilyen mas sorrend-
ben, ami sorrendre igaz, hogy rendezve van. (Itt a < jel egy absztrakt mtveletet jel6l, ami
a rendezés alapjaul szolgal, az 6sszehasonlitashoz sziikséges.)

A probléma 4ltalanositasa, amikor a sorozat, amit rendezni szeretnénk, elemei nem
szamok, hanem osszetett adatszerkezetek, példaul osztalyok. Minden egyes elem tartal-
maz egy kulesot, amely kulcs lesz a rendezés alapjaul szolgal6 adatelem, tehat a < absz-
trakt muveletet terjesztjik ki tetszoleges tipusu (a,,) sorozatokra.

Rendezési relacio

A rendezési relacio definicigja: Legyen U egy halmaz, és < egy kétvaltozos relacié U-n. Ha
a,b € U és a < b, akkor azt mondjuk, hogy ,,a kisebb, mint ”. A < relaci6 egy rendezés, ha
teljesiilnek a kovetkezok:

e a £ aVa € U elemre (< irreflexiv) Egy elem 6nmagéanal nem kisebb.
e Haa,b,ceU,a<b,ésb<c, akkor a < ¢ (< tranzitiv).
e Tetszdleges a # b € U elemekre vagy a < b, vagy b < a fennall (< teljes).

Ha < egy rendezés U-n, akkor az (U; <) part rendezett halmaznak nevezzik.

Példa
7 az egész szamok halmaza. A szokasos < rendezés a nagysag szerinti rendezés.

Itt viszont mar a szokasos muveletet jelenti a <.
A kovetkezokben néhany kovetkezik a rendezésre. Az eredeti sorozat az alabbi eleme-
ket tartalmazza, ahol egy egyes elemek 6sszetett tipusok.

Személy = Név x Magassag x Sziiletés
Abigél | Janka | Zsuzsi | David | Dorka
132 128 92 104 70
1996 | 1998 | 2001 | 2000 | 2002

A rendezés eredménye, amikor a név a kulcs a rendezéshez:

Név szerint
Abigél | David | Dorka | Janka | Zsuzsi

132 104 70 128 92
1996 | 2000 | 2002 | 1998 | 2001

A rendezés eredménye, amikor a sziiletési év a kulcs a rendezéshez:

Sziiletési év szerint
Abigél | Janka | David | Zsuzsi | Dorka

132 128 104 92 70
1996 | 1998 | 2000 | 2001 | 2002
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A kovetkezoekben harom négyzetes (lassi) majd két hatékonyabb rendezé algoritmusa
keril ismertetésre.

5.3.2. Buborék rendezés

Egyszerisitésként rendezziik az A[l...n| tombot! A tomb elemtipusa tetszoleges T tipus,
amire egy teljes rendezés értelmezheto.

Buborék rendezés alapotlete: a tomb elejétol kezdve ,felbuborékoltatjuk” a legnagyobb
elemet. Utana ugyanezt tessziik az eggyel rovidebb tombre, stb. Végiil, utoljara még az
els6é két elemre is végrehajtjuk a ,buborékoltatast”. A buborékoltatast soran mindig két
elemet vizsgalunk csak és ha rossz sorrendben vannak a témbben (inverziéban allnak)
akkor felcseréljiik.

A sorozat rendezett akkor, ha nincs az elemek kozott inverzié. Ez a rendezés az inver-
ziok folyamatos csokkentésével rendez.

Buborék rendezés példa - Els6 futam
Az 6sszehasonlitott elemeket ki vannak emelve:

[(12]5]6]2[10[11]1
5[12[6]2 10111
(5[6[12]2[10 111
5621210111
1
1
2

|
|
|

5/6[2]10]12] 11
5/6[2]10]11]12
(5]6]2[10]11]1]1

|

Egyetlen menet utan a legnagyobb elem felkiuszott a tomb végére. A kovetkezod 1é-
pésben eggyel rovidebb tombon végezziik el ugyanezt. A kiovetkezoképpen torténik

Buborék rendezés példa - Masodik futam

10 | 11 12
1011112

~

A modszert folytatva rendezett tombot kapunk.

Miiveletigény
A muveletigény kiszamitasahoz az alabbi gondolatmenetet kovetjiik:

e Els6 menetben a tomb hosszanak megfelel6é 6sszehasonlitas: n
e Legrosszabb esetben ugyanennyi csere, legjobb esetben nincsen csere.
e Az 6sszehasonlitasok szama allandé, a legrosszabb esetbeli cserék szamaval azonos.
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e Ezt ismételjiik eggyel rovidebb tombre és igy tovabb:

n—1)

n+(n—1)+(n—2)+...+lzzn:i:n( — =0’
=1

A bemenet szaméanak négyzetes fiiggvénye az algoritmus lépésszama, ezaltal lefutasi
ideje. Ez kell6en nagy input esetén nagyon lassu futast eredményez, gondoljunk egy 100000
méreta tombre példaul.

Algoritmus

—_
=

I
(]

]

11

i<j-1

A[i] € A[i+1]?

J_ Csere(A[i]. A[i+1])

1 1+1

] -1

5.6. abra. Buborékrendezés struktogramja

Csere fuggvény

public void csere(int[] tomb, int i, int j)
{

int ideiglenes = tomb[i];

tomb[i] = tomb[]j];

tomb[j] = ideiglenes;

}

Buborékrendezés

public void buborek (int[] tomb)

{

for (int j = tomb.length-1; 3>0; j-)
for (int i = 0; i<3j; 1i++)

if (tomb[i] > tomb[i+1])

csere (tomb, i, i+1)

}

Ez kifejezetten egy olyan algoritmus ami ugyan j6 eredményt ad a rendezésre, de en-
nél lassabban csak ugy tudank megoldani a problémat, ha direkt belekevernénk rendezés
kozben.

93



5.3.3. Maximum kivalasztasos rendezés

Ezzel az algoritmussal a buborék rendezéshez képest kevesebb 1épéssel hajtjuk végre a
rendezést. A buborék rendezésnél mindig a legnagyobb elemet tessziik fel a tomb végére,
sok csere soran. A maximum kivalasztasos rendezés kevesebb cserével, minden egyes fu-
tamban Osszesen egy cserével oldja meg a feladatot.

Keressiik meg a tombben a legnagyobb elemet és cseréljiikk fel a tombben legutolsé
elemmel. Ezutan eggyel rovidebb résztombre ismételjik az eljarast, addig, amig az 1
hossza tombot kell rendezniink, ami 6nmagaban rendezett.

A maximalis elemet linearis kereséssel talalhatjuk meg a tombben.

Maximum kivalasztasos rendezés példa
A linearis keresés 1épéseit kihagytuk az alabbi példaban.

[12][5]6[2]10]11] 1]
1[5]/6[2]10]11]12
1[5]6[2]10]11]12
1[5]/6[2]10]11]12

[1]5]6[2]10]11][12]

(1]5]6[2]10]11]12]

[1]5]6[2][10]11]12]

(1]5]2[6][10]11]12]

[1]5][2]6]10]11[12]

[1]2]5]6]10]11]12]

(1]2]5]6]10]11]12]

[1][2][5]6]10]11]12]

(1]2][5[6]10]11][12]

Miuiveletigény

Az 6sszehasonlitasok szama a keresésekben, minden egyes 1épésben a (rész)tomb hossza,
tehat az el6zé6ekben megmutatott:

O(n?)
A cserék szama, a maximum kivalasztasnak készonhetéen, legfeljebb n tehat
O(n)
Igy az algoritmus lépésszéama:
O(n?) + O(n) = O(n?)
Lathato, hogy ez is egy négyzetes, azaz lassu rendezési algoritmus. Azonban fontos
megjegyezni, hogy a cserék szama kevesebb, ezaltal futasi idében jobb, mint az el6z6, bu-

borék rendezés.
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K

j=2

Maxkiv(A[l.j], ind, max)

Csere(Alind], A[3])

] <g-1

5.7. abra. Maximum kivalasztdasos rendezés struktogrammja

1 1;1md « 1; max « A[l]

1<]

A[1+1] > max?

ind « 1+1:

max « A[i+1] ><

1 «—1+1

5.8. abra. Maximum kivalasztasos rendezés struktogrammja

Algoritmusa

Maximum kivalasztasos rendezés
public void maxkiv (int[] tomb)
{

for (int j = tomb.length-1; 3>0; j-)
{

int index = 0;

for (int i =1; i<=3j; i++)

if (tomb[index] < tomb[i])
index = 1i;

csere (tomb, index, 1)

}

}

Gyakorta alkalmazzuk ezt az algoritmus napi életiinkben is, példaul amikor a kar-

95



tyakat a keziinkben elrendezziik. (Illetve annak kicsit tovabbfejlesztett és a kovetkezo
algoritmussal kevert valtozatat.)

5.3.4. Beszuro rendezés

A beszuré rendezés az alabbi 6tleten alapul: Tekintsiik az tombot rendezettnek. Egy 4j
elem beszurasa torténjen a megfelelé helyre, igy a tombot rendezettnek tartjuk meg.

Az alapgondolaton tul, tudjuk még, hogy egyetlen elem mindig rendezett. Az elején
vessziik az egész tomb egy részét, a bal oldalrél szamitott 1 hossza résztombot. Ebbe a
résztombbe szurjuk be a megfelelo helyre a kovetkezo elemet, amit a tomb masodik eleme.
A beszuras utan a rendezett résztombiink mar 2 hosszi. Ebbe is beszurjuk a kivetkezé
elemet és igy tovabb.

Nézziik meg a kovetkezo6 példat!

Beszuroé rendezés példa
Az els6 elem 6nmagaban rendezett. Ehhez szirunk be egy masodikat, majd harmadikat,

(12 5[6]2[10[11[1]
(5]12]6]2[10]11]1]
(5[6]12]2]10]11]1]
(2[5]6]12[10]11[1 |
(2[5]/6]10[12 ] 11]1 |
(2]5][6[10[11[12] 1]
[1]2][5[6]10]11][12]

A beszurashoz a besziurandé elem helyét linearis kereséssel hatarozzuk meg a tomb
elején kezdve. Amikor megleltiik a poziciét, akkor a maradék elemeket egyesével felfelé
masoljuk, majd beszirjuk a beszirandét. (Ehhez a besziurandét kiilon eltaroljuk.)

Miiveletigény

Az o6sszehasonlitasok szama a legrosszabb esetet tekintve szintén nem valtozik, am az
osszehasonlitas szempontjabdl legrosszabb eset a cserék szempontjabél a legjobb eset.

Ennek belatasahoz vegyiink egy eleve rendezett tombot. A besziuras mindig az utolsé
poziciéba fog torténni, hiszen sorban vannak, emiatt a cserék szdma minimalis. Azonban
a linearis keresés a tomb elejétdl végéig 6sszehasonlitja a beszirandét a tomb elemeivel.
Ez pedig a maximalis érték.

A cserék szempontjabél legrosszabb esetben a cserék szama szintén O(n?)—el becsiil-
het6, amikor tombben rendeziink. (Lancolt lista esetén példaul hatékonyabb.)

Algoritmus

Beszuro rendezés
public void maxkiv (int[] tomb)

{
for (int j = 0; j<tomb.lenght-1; Jj++)
{
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5.9. abra. Beszur6 rendezés struktogrammja

int elmentve = tomb[j+1];

for (int i=7j; (i>=0)&&(tomb[i]>elmentve); i-)
tomb[i+1] = tomb[i];

tomb[i+1l] = elmentve;

}

}

Szintén ehhez hasonlét hasznalunk a valés életben is, legtobbszor amikor dolgozatokat
rendeziink pontszam szerint, csak egyidejtleg tobb elemet sziurunk be altalaban.

5.3.5. Gyorsrendezés — Quicksort

Az eddigieknél egy lényegesen hatékonyabb, a 1épésszamot tekintve nem négyzetes nagy-
sagrendu algoritmussal ismerkediink meg.

Hatékony rendezési algoritmus — C.A.R. Hoare készitette, 1960-ban. Tipusat tekintve
az ,0szd meg és Uralkodj” elvet koveti, amelyet a kovetkezoképpen kell érteni: Két fazisra
oszthat6 az algoritmus, rekurzivan hivja meg magat a részfeladatokra. (Természetesen a
rekurziét a hatékonysag érdekében ki lehet valtani ciklussal is.) A fazisok

o Particiés fazis — Oszd a munkat két részre!
e Rendezési fazis — Uralkodj a részeken!

Megosztasi fazis. Valassz egy ,strazsat” (pivot), egy tetszdleges elemet, majd va-
lasszunk ennek egy poziciét gy, hogy minden elem téle jobbra nagyobb legyen, és minden
elem todle balra kisebb legyen!

Uralkodasi fazis. Alkalmazd ugyanezt az algoritmust mindkét félre, mint részproblé-
mara.
A megosztast abrazolva:
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] Kisebb elemek \ Strazsa \ Nagyobb elemek ‘

A megosztasi fazisban természetesen nem tudunk talalni mindig egy olyan elemet, ami
teljesiti a feltételeket. A kivalasztott strazsahoz képest vizsgaljuk a résztomb tobbi elemét
és ugy cseréliink fel nehany elemet, hogy a feltétel igazza valjon.

e Egyszeri pivot valasztas esetén legyen (rész)tomb balszéls6 eleme a pivot!

e A résztomb alsé és fels6 felétél induljunk el egy indexszel a tomb kozepe felé.

e A bal indexszel 1épegetve felfelé megkeressiik az elsé elemet, ami nagyobb mint a
strazsa, tehat rossz helyen all. Ugyanigy lefelé 1épegetve megkeressiik az els6 elemet
ami kisebb mint a strazsa, tehat a jobb oldalon allva rossz helyen all. A két ,rossz”
elemet felcseréljik.

e Addig folytatjuk az el6z6 cserélgetést, amig a két index 6ssze nem talalkozik.

e Ha megvan a bal-indexnél 1évo elemet a pivottal felcseréljiik.

e Ezek utan az egész algoritmust alkalmazzuk a bal résztémbre és a jobb résztombre.

Egyetlen megosztas soran, garantaljuk azt, hogy a pivot elem a rendezés végeredménye
szerinti j6 helyre keriil, valamint szétosztjuk az elemeket kétfelé.

Példa

Gyorsrendezés példa
Balszélso a strazsa.

(9[5[6[2[10[11]1]

Vegyiik a két indexet

(915621011 1]

A jobb oldalsé rossz, a bal j6. Ezért a jobb-index valtozatlan, mig a bal 1ép felfelé.

9/5/6|2(10|11|1

95621011 |1

(9[5[6]2]10[11[1]
Most jon a csere.

(9562 [1[11]10]

(9][5[6[2]1]11]10|

Végiil a pivot elemet betessziik a bal helyére.

[1]5][6[2]9f11]10]

Ezzel a kilenc a helyére keriilt és a tole balra, majd téle jobbra levé résztombokre hajtjuk
végre ugyanezt az algoritmust.
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Miiveletigény

Felosztas: vizsgalj meg minden elemet egyszer O(n)
Uralkodas: az adatok kétfelé osztasa O(log,(n)) — Ez a szétbontasok optimélis mennyisége.
Osszesen a kett6 szorzata, ami O(nlogy(n)), ez pedig jobb, mint az eddig megismert ren-
dezéseink, de van egy apr6 gond ugyanis, ha eredetileg egy rendezett sorozatot adunk
bemenetnek, akkor az algoritmusunk minden egyes lépésben felosztja a rendezend6 tom-
bot egy 0 és egy n — 1 hosszui tombre, majd azon folytatja a rendezést. (A bal a pivot és
minden més nagyobb téle.) Ennek a muveletigénye pedig nO(n), ami egyenlé O(n?)-el.

Tehat azt kaptuk, hogy rossz esetben a gyorsrendezés olyan lassi, mint a buborék
rendezés. Lehet ezen segiteni kiilonb6z6 strazsa valasztasi stratégiaval. Minden a pivot
valasztason maulik, ugyanis ha tudunk jél dgy pivotot valasztani, hogy a particick mé-
rete kozel azonos legyen, akkor hatékonyan mitikoédik az algoritmus. Lehet tobb strazsat
valasztani, vagy pedig véletlenszeriien valasztani. (Ami a valészintiségek természetébol
adédéan atlagosan j6 eredményt szolgaltat.)

Altalanossagban elmondhaté, hogy a gyorsrendezés kevés muvelettel gyorsan rendez,
azonban nem stabil az ideje, tehat viszonylag nagy hatarok kozott ingadozik.

@dezés (A, also, felso)

I
N adso < feso Y

Algoritmus

g:= Feoszt(A, also, felso) SKIP
Gyorsrendezés (A, also, g-1)
Gyorsrendezés (A, q+1, felso)

5.10. abra. Gyorsrendezés struktogrammja

Lllyet ember kézzel nem csindl ...”

5.3.6. Edényrendezés

Végiul egy szintén gyors rendezével ismerkediink meg.

Tegyiik fel, hogy tudjuk, hogy a bemené elemek (A[1...n| elemei) egy m elema U hal-
mazbdl keriilnek ki. Példaul Vi-re igaz, hogy i € [1...m]. Lefoglalunk egy U elemeivel
indexelt B tombot (m db ladat), el6szor mind iires. A B segédtomb elemei lehetnek barmi,
példaul lancolt lista.

Az edényrendezés két fazisbol fog allni, eldszor a ladak szerint (azaz, hogy milyen érték
tartozik ahhoz a ladahoz) kigyujtjik az elemek, majd sorban visszahelyezziik az eredeti
tombbe.

Kigytijtés. Eloszor meghatarozzuk rendezendé tomb legkisebb és legnagyobb elemét.
Ezek utan lefoglalunk egy megfelel6 méreti segédtombot, amibe az elemeket fogjuk gyj-
teni. (Ez a tomb a legnagyobb és a legkisebb elem ko6zotti kiillonbség plusz egy.) A se-
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Feloszt(A, also, felso)

str_elem:=A[als0]; bal:=al so; jobb:=felso;

bal < jobb

Albal]<=str_elem and bal <felso

bal:= bal+1
A[jobb]>= str_elem and jobb >also
jobb:=jobb-1
N\ bal <jobb
Csere(A[bal], A[jobb]) SKIP

Alalso]:=A[bal]; A[bal]:= str_elem; return bal;

5.11. abra. Gyorsrendezés struktogrammja

gédtombbe, fogjuk gyljteni a rendezendd tomb elemeit, aszerint, hogy melyik rekeszbe

tartoznak.

Osszefiizés. A segédtombbe kigytjtott elemeket azutdn sorban visszafiizziik az eredeti

tombbe, és ezzel kész a rendezés.

Edényrendezo - példa

(2]2[1]1][5[3]2[5]4]

Ebben az esetben lathaté, hogy a lehetséges értékek 1 és 5 kozott vannak, ezért egy

5 —1+ 1 =5 hosszu segédtombot kell lefoglalni.

(2]2[1[1]5]3]2][5]4]Segédtomb:

(2]2[1[1]5]3]2][5]4]Segédtomb:

(2]2[1[1]5]3]2][5]4]Segédtomb:

(2[2]1]1]5][3][2]5]4|Segédtomb:

12][2]1[1]5[3][2]5]4|Segédtomb:

12]2]1[1]5][3][2]5]4|Segédtomb:
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1 2 13|4|5
11|22 5
1 2 3145

1112223 5

(2]2[1]1]5[3]2]5]4 |Segédtsmb:

w

(2]2[1]1]5[3]|2]5]4|Segédtsmb:

1] 2 [3]4] 5
’2‘2‘1\1\5\3\2\5\4‘Segedtomb:11 595913 55

1] 2 [3/4]5
’2‘2‘1\1\5\3\2\5\4‘Segedtomb:11 5553 455

Ezutan az edények tartalmat egyszert linearis kiolvasassal az eredeti tombbe helyez-
zik.

Masodik fazis

Amivel a rendezés be is fejezodott.

Miiveletigény

Lépésszam.

Segédtomb létrehozasa: O(m)
Kigyujto fazis O(n)
Visszaraké fazis O(n + m)
Osszesen O(n + m).

Ez jobb, mint az eddigi rendez6ink!, hiszen egy linearis idejii rendezoét kapunk. Azonban
ennek sulyos ara van! Az edényrendezoé felhasznal egy segédtombot, ami bizonyos esetek-
ben akkora, mint az eredeti tomb (esetleg nagyobb is). Tehat a térbeli (memoéria) komplexi-
tasa eddigi rendezéinkhez képest nagyobb. Edényrendezé akkor éri meg, ha a rendezend6
értékek értékkészletének halmaza kicsi. Nyilvanvalé, hogy vannak olyan bemenetek, ame-
lyek kétszer mar nem férnek el a memoridban.

Edényrendezot kéznapi életben akkor hasznalunk, amikor a pakli kartyat a sorba ren-
dezéshez elészor szinek szerint szétdobaljuk.

5.3.7. Kupacrendezés

A kupac adatszerkezetet rendezéként is lehet alkalmazni. Gondoljuk el, hogy a rendezendé
tomb értékeit egyszerien beszurjuk egy kupacba majd kiolvassuk onnan, gy hogy mindig
eltavolitjuk a gy6keret, mint legkisebb elemet.

Miveletigény

A kupacnal a beszuras és maximum torlés miiveletigénye, legfeljebb a fa magassagaval
aranyos (O(h)), ami az O(logn)). Ezt megszorozzuk az 6sszes beszirandé elem szamaval
ami n beszuras esetén O(nlogn) eredményt ad. Figyelembe véve, hogy egy egyarant fels6
korlatja a beszurasnak és a kitorlésnek, az kapjuk, hogy rendezés teljes miiveletigénye
O(2 * nlogn), ami pedig szintén O(nlogn).
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Ez a muveletigény a gyorsrendezével esik egy rendben. A kupacrendezés azonban sta-
bil lepésszamu rendezd, nem fiigg a rendezés semmitol, gy mint a gyorsrendezés esetén
a pivot megvalasztasatol. Altaldban a gyorsrendezés kevesebb 1épéssel dolgozik, azaz va-
lojaban gyorsabb, mint a kupacrendezés, azonban a gyorsrendezés képes ,elromlani” nem
megfelel6 strazsa esetén.
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