Megoldas 1épései
- #include <iostream>, "using namespace std", csinalok main-t, bemasolom a példakédot
- Projekt struct készitése
- létrehozom a hivatkozott tagfiiggvényeket
> Milyen paramétereket vesznek at a fiiggvények, és mivel térnek vissza (a "semmivel"=void is
valasz...)

FUTTASSUNK!

- milyen adatszerkezetben tarolnam el a dolgot?
> A részfeladatok kulcsembereit a feladat neve alapjan fogom lekérdezni. Egy kulcsember egy
feladatnal csak egyszer szerepelhet, a sorrend mindegy, viszont szeretném gyorsan el6keresni a
kulcsemberek koziil, hogy szerepel-e ott az illet neve. >> map<string, set<string>>
> Egy feladathoz t6bb talalkoz6 is lehetséges, de ugyanazon a napon egy feladathoz maximum
egy talalkozo lehetséges, a feladatokhoz tartozé talalkozokat a feladat neve alapjan akarom lekérni.
Hasznos lenne, ha egyszeriien tudnam el6keresni, hogy adott feladathoz adott napon van-e
talalkoz6. >> map<string, set<int>>
- hozzuk létre a valtozdkat, és irjuk meg a feladat hozzdadasa fiiggvényt!
> Megjegyzés: set helyett mindkét esetben nyugodtan hasznalhatunk vector-t is, csak annak nincs
find fiiggvénye, emiatt nekiink kell manudalisan megirnunk a vector-ban val6 keresést, ami plusz
macera.
> Tipp: map-hez nagyon egyszerli hozzaadni Gj elemet: map_neve[uj_elem_kulcsa] =
uj_elem_erteke;
> Egy Uj lires map-elemet (vagyis, ahol az uj_elem_erteke egy iires valtozo) még egyszeriibb
létrehozni: map_neve[uj_elem_kulcsa];

FUTTASSUNK!

- fontos, hogy a feladat megoldasa kézben folyamatosan tudjuk kovetni, hogy milyen adatokat
tarol az adatszerkezetiink, hogy ha valami hiba van, azt rogton megtalaljuk
- frjuk meg a "teljes_naptar_kiir" fiiggvényben azt, hogy kiirassa a feladatokat!
> frassuk ki a feladatok neveit (minden egyes feladatot tij sorba)!

FUTTASSUNK!

- frjuk meg a "kulcsember" fiiggvényt!
> El6keresem a részfeladatot, ahova be akarom szirni és besztirom a hozza tartozé set-be:
map_neve[feladat_neve].insert(kulcsember_neve);

FUTTASSUNK!

- Ellendrizziik, hogy jol miikodik-e! Bovitsiik ki a "teljes_naptar_kiir" fliggvényt azzal, hogy a
feladatokhoz egy 1j sorban a feladat neve ala kiiratjuk azt is vessz6vel elvalasztva, hogy kik a
kulcsemberei.

FUTTASSUNK!
- Készitsiik el a talalkozok besztrasa fiiggvényt. E16szor ne vizsgaljuk, hogy van-e {itkdzés. Ekkor
pont ugyanugy fog kinézni, mint a kulcsember beszurasa:

map_neve[feladat].insert(talakozo_napja);

FUTTASSUNK!



- Ellendrizziik, hogy jol miikodik-e! Bovitsiik ki a "teljes_naptar_kiir" fliggvényt azzal, hogy a
feladatokhoz megint egy 1j sorba a feladat neve és kulcsemberei utan a harmadik sorba kiiratjuk azt
is vesszovel elvalasztva, hogy mikor vannak talalkozoi.

FUTTASSUNK!

- Na, most jon a neheze. Azt kellene megvizsgalnunk, hogy az "uj_talalkozo" fliggvényben

hozzaadand¢ talalkoz6 iitkdzik-e valamelyik masikkal. Fogalmazzuk meg pontosabban a feladatot!

> Annak a feladatnak, aminek egy taldlkozojat akarjuk beszirni, van-e olyan kulcsembere, akinek
aznap mar van masik talalkozoéja!

> Még a taldlkozo besztrasa el6tt irjuk ki hogy melyik feladatot akarjuk besztrni (én itt nem
sporolnék hosszu szoveget kiirni magamnak, pl, hogy "A ... feladathoz szeretnek beszurni talalkozot
a ... napra", mivel igy atlathatobb szamodra is, hogy mikor mit irsz ki).

> Ezutan menjiink végig feladat kulcsemberein, és irassuk ki 6ket!

FUTTASSUNK!

> Most az minden egyes kiiratott kulcsember neve utan irjuk ki, hogy az adott ember mely
részfeladatokban kulcsember még.
> Ehhez menjiink végig egy ciklussal minden egyes ember esetében az 6sszes feladaton, hogy
ott szerepel-e az adott ember. Mivel set-et valasztottunk, elég egyszerti lesz a keresés: a count és a
find is megfelel nekiink (a count 0-t ad, ha nincs benne, 1-et ha igen, a find pedig egy iteratort ad
vissza, a talalat helyének megfeleld iteratort, ha megtalalta, set_neve.end()-et, ha nem). Ha igen,
akkor irjuk ki a feladat nevét!

FUTTASSUNK!

> Most a kulcsember neve utan kiiratott feladatlista utan (mondjuk zardjelben) irassuk ki, hogy
az egyes feladatokhoz melyik napokon vannak taldlkozok. Ehhez egy tijabb ciklusra lesz sziikség.
(Szomoru modon mar a harmadikat agyazzuk egymasba, de hat ilyen az élet.)

FUTTASSUNK!

> Igazabdl innen mar nyert {igyiink van, mivel csak annyit kell hozzatenni, hogy ha az éppen
kiiratandd nap megegyezik a beszurni kivant talalkozo napjaval, akkor irjunk ki valami
hibatizenetet és 1épjiink ki a return segitségével miel6tt hozzaadnank a talalkozot.

FUTTASSUNK!

> Hogy teljes pontszamu legyen a feladatunk, irjuk at a uj_talalkozo fiiggvény visszatérési
értékét bool-ra, és "return" helyett "return false;" legyen, és szirjunk be a fliggvény végére egy
"return true"-t.

FUTTASSUNK! Kiraly, kész az A feladat

- Akkor mar ra is térhetiink a B feladatra.
> Mit is akarunk? Azt, hogy ha hozzdadok egy kulcsembert egy feladathoz, akkor csekkolja le,
hogy lesz-e iitkdzés a talalkozokban.
> Mikor lehet iitk6zés? Ha az 1j kulcsember valamelyik feladatdhoz tartozik olyan taldlkozé, ami
az adott feladat (amihez az 1j kulcsembert hozza akarom adni) talalkozoéival {itkozik.



> Idézziink el egy olyan esetet a main-ben, amikor iitk6zés lesz. Miutan hozzaadtuk a
talalkozokat, adjunk hozza még egy kulcsembert valamelyik feladathoz tigy, hogy iitk6zés legyen.

> Els6 1épésben irjuk ki a hozzaadando6 kulcsember feladatait. Ezt igy tudom megtenni, hogy
végigmegyek a feladatokat és kulcsembereket tartalmazé adatszerkezeten, és kiiratom a map
kulcsaban tarolt feladatnevet, ha a kulcsemberei kézt megtalalhaté az 4j kulcsember.

> A fiiggvény elején érdemes kiiratni valami segit6 szoveget, pl "Most ...-t szeretnem hozzaadni a
... feladathoz kulcsemberkent".

FUTTASSUNK!

> Most irassuk ki annak a feladatnak a talalkozo6it, amihez hozza akarjuk adni kulcsembert, és
azoknak a feladatoknak is a talalkozéit, amiket az el6bb kikerestiink, vagyis az dj kulcsember eddigi
feladatainak talalkozoit.

FUTTASSUNK!

> Ha ezzel is megvagyunk, akkor mar csak annyit kell tenniink, hogy megvizsgaljuk a
kulcsember eddigi feladatainak talalkozéin végigmend ciklusban, hogy az épp kiiratasra kertiil6
feladat megtalalhat6-e annak a feladatnak a talalkozoéi kozt, amihez hozza akarjunk adni az uj
kulcsembert. Hasznaljuk a find fiiggvényt!

> Ha igen, akkor irjunk ki hibaiizenetet és 1épjiink ki a fiiggvénybdl a return segitségével.

FUTTASSUNK! Juhéé, kész a B feladat is!

- A C feladatban el6szor ki kéne irni mindenkihez a feladatait egy megadott napon, és ha nincs

aznap feladata, akkor a legkozelebbit kéne kikeresni.

> Hozzunk létre egy fiiggvényt a struct-ban, és hivjuk meg a main-bdl.

> Célszerdi itt is segiteni a sajat dolgunkat azzal, hogy a fiiggvényliinket azzal kezdjiik, hogy
kiiratjuk a konzolra, hogy melyik nap teenddit akarjuk lekérdezni.

> Els6 korben irassuk ki az 6sszes embert. Ehhez én célszeriinek latom egy set-be betenni az
osszes kulcsembert, és ha kész van, akkor ezt a set-et kiirni, mivel igy nem kell figyelniink arra,
hogy egy ember tobbszor is szerepel, mivel a set-be csak egyszer fog bekertilni.

FUTTASSUNK!

> Most irjuk ki az egyes emberek utan, hogy milyen feladataik vannak. (Ciklussal végigmegyiink
a feladatokat és kulcsembereket tartalmazé map-en, és kiirjuk a feladat nevét, ha szerepel a
kulcsemberei kozt az adott ember).
FUTTASSUNK!

> frassuk ki a talalkozokat is az egyes feladatokhoz.
FUTTASSUNK!

> Most csak azokat a feladatokat irjuk ki, amiknek az adott napon van taldlkozoja.
FUTTASSUNK!

> Ha a 10.nap teendd6it kérdezziik le, akkor l1atjuk, hogy senkinél nincs kiirva semmilyen feladat.

Ilyenkor mindenkinél a legkozelebbi teend6jét kéne kiirnia. Erdemes tehat a fiiggvényiinket &tirni
ugy, hogy eltaroljuk egy praktikus adatszerkezetbe, hogy kinek mikor vannak feladatai, és utana



ebben az adatszerkezetben keresgélnénk a dolgokat. Az emberek alapjan fogjuk csoportositani a
talalkozokat, és az emberekre egy string alapjan hivatkozunk, tehat a map lesz nekiink j6 ide.
Minden emberhez eltaroljuk a feladatait. A feladatokra szintén string-gel hivatkozunk, emiatt itt
szintén map lesz a nyerd. Az egyes feladatokhoz tartozé talalkozdkat pedig pedig csak siman el kell
tarolnom gy, hogy egy talalkozé csak egyszer szerepel, és szeretném, ha egyszertien ki tudnam
keresni, hogy van-e adott feladatnak taldlkozoja az adott napon, igy a set adja magat. A javasolt
adatszerkezet tehat: map<string, map<string, set<int>>>.

> Csinaljuk egy ilyen lokalis valtozét a fiiggvényiinkon beliil, és toltsiik fol adatokkal. A
korabban megirt kiiratasunkat csak kicsit kell modositanunk: Térjiink vissza ahhoz a verziohoz,
amikor az 6sszes feladat 6sszes talalkozojat kiirattuk, és amikor kiirjuk az adott ember adott
feladatanak adott talalkozo6-id6pontjat, akkor ezt az id6pontot rogtén hozzaadom az
adatszerkezethez a megfelel6 helyre. Amiatt nem kell aggédnunk, hogy mikor adjuk hozza az
embereket, és hozzajuk a feladatokat, mivel a map egy iigyes joszag, ami létre fogja hozni az
embert és a feladatot, ha hivatkozunk ra. fgy tehat egyszerti a feladat, egyetlen sort kell
hozzairnunk: lokalis_valtozonk_neve[ember][feladat].insert(talalkozo_idopontja).

> frassuk is ki a fiiggvény végén, hogy sikeriilt-e helyesen feltélteniink ezt az adatszerkezetet.
frassuk ki embereknént az 6sszes feladatot, és az adott feladatok utan (mondjuk zaréjelben) az
osszes talalkozot. Ehhez 3 egymasba agyazott ciklusra lesz sziikségiink.

FUTTASSUNK!

> Na, most jon a triikk, mivel most csak azokat a talalkozokat szeretnénk kiiratni, amik az adott
napon vannak, de valakinél nincs ilyen, akkor a legkdzelebbi teend6jét kéne kiirni. Egyel6re csak
annyit csinaljuknk, hogy az adatszerkezet kiiratasat annyiban modositjuk, hogy az elején
létrehozunk egy ideiglenes bool valtozét, amibe taroljuk, hogy az adott emberhez talaltunk-e mar az
adott napra taldlkozét. Ez a valtozo legyen kezdetben false, és ha taladlok egy taldlkozdt az adott
emberhez, akkor irjuk ki a feladat nevét és allitsuk ezt a valtozot true-ra.

> Tehat most ugy néz ki ez a rész, hogy végigmegyek az adatszerkezeten egy ciklussal. Ekkor
minden egyegy ciklus-iteracioban kapok egy part, ami tartalmazza az adott ember nevét és a
feladatait. frjuk ki az ember nevét, és egy ciklussal menjiink végig a feladatain. Hasznaljuk a find-ot
vagy count-ot arra, hogy megnézziik, az adott feladatnak van-e a kérdéses napon talalkozoja! (A
korabbi verzioban egy ciklust hasznaltunk arra, hogy végigmenjiink az adott feladat talalkozdin, de
itt most nekiink egyszeriibb ehelyett egy sima parancsot hasznalunk a keresésre) Ha igen, akkor
irassuk ki a feladat nevét, és allitsuk a bool valtozonkat true-ra.

> Ha végigértem egy ember dsszes feladatan, vizsgaljuk meg, hogy a bool tipusu valtozénk
értéke hamis-e. Ha igen, akkor irjuk ki, hogy az nincs feladata az adott embernek aznapra.

FUTTASSUNK!

> Most keressiink ki a legkdzelebbi feladatat, ha nincs teend6je. Végig kell tehat menniink még
egyszer az adott ember 6sszes feladatan, de most a bels6 set-ekben a kérdéses napnal nagyobbat
keresiink. Ezt a keresést meg lehet csinalni ciklussal, de ha figyeltiink gyakorlaton (vagy legalabbis
az 1. csoport gyakorlatan volt ilyen példa), akkor beugrik, hogy volt valami fiiggvény erre a set-ben.
Felmegyiink tehat a cppreference-re, kikeressiik a set-r6l sz616 oldalt és nagy heurkéka-élmény
kozepette felfedezziik, hogy a set-nek van egy fiiggvénye, ami pont arra jo, hogy egy adott kulcshoz
legktzelebbi, de annal nagyobb kulcsu elemet visszaadja.

> Na igen, de most minden egyes feladatnal megkapom, hogy mi a kérdéses naphoz legkdzelebbi
feladat, de hogyan dontom el, hogy ezek koziil melyik a legkdzelebbi? Létrehozok egy ideiglenes
valtozot amibe tarolom az egyes feladatokhoz kikeresett lekdzelebbi talalkozot. Feladatonként egy
id6pontot szeretnék eltarolni, ezért a map<string, int> adja magat szerintem.

> Ha kikerestem mindegyik feladathoz a legkdzelebbi talalkozoét, akkor megvizsgalom, hogy
talaltam-e egyaltalan valamit. Ha nem, akkor kiirom, hogy kés6bb sincs feladata.



> Ha nem iires a map, akkor végrehajtok egy minimum-keresést a map értékei szerint, szépen,
ahogy még BevProg1-bdl tanultuk... A legkisebb értékii kulcs-elem part aztan szépen kiiratom.

FUTTASSUNK! Na, mar tal vagyunk a nehezén!

- Most mar csak a fajlba kimentés és beolvasas van hatra. Csinaljuk meg elGszor a kiiratast!

- Itt most tritkkkdsek lesziink. Ugye, még az A feladatban megirtuk azt, hogy kiirattuk a teljes
naptart a konzolra. Es most itt a fajlba kiiratastnal szoget it a fejiinkbe az, hogy 1am, ezt tok jol
lehetne ujrahasznositani. Megtehetjiik azt is, hogy kimasoljuk az egész teljes_naptar_Kkiir fiiggvényt
és egy fajlba_ment fiiggvény néven kicsit atirjuk, hogy ne a cout-ra irjon, hanem fajlba. De egy
okos programozo ki nem allhatja, ha tok ugyanaz a kod tébbszor szerepel a kodjaban, igy ha szép és
frappans kédot akarunk, akkor azt csinaljuk, hogy atirjuk a teljes_naptar_Kkiir fiiggvényt tigy, hogy a
konzolra és fajlba is tudjon irni. Ez ugy tehetjiik meg, hogy a teljes_naptar_kiir paraméterként
vegye at az, hogy hova irasson ki. Ezt azért tehetjiik meg, mivel a cout és az ofstream egyarant az
ostream osztaly leszarmazottai, ami azt jelenti, hogy a cout-ot és egy fajlvaltozot is el lehet tarolni
egy ostream tipusu valtozoba. (Ez nagyon hasonl6 ahhoz, mint ami a gout és a canvas esetében volt:
ott is el tudtuk tarolni a gout-ot egy canvas tipusu valtozéba, mivel a gout a canvas osztaly
leszarmazottja.) fgy tehat, ha a teljes_naptar_kiir fiiggvény atirjuk tgy, hogy egy ostream& tipusti
valtozot fogadjon paraméterként, aminek mondjuk out legyen a neve (Figyeljiink arra, hogy a
stream tipusu objektumokat MINDIG REFERENCIA SZERINT vessziik at!). Ekkor csak annyit
kell tenniink, hogy atirjuk a teljes_naptar_kiir fiiggvényben a cout-okat siman out-ra. Aztan a main-
ben egyszer uigy hivom meg, hogy paraméterként a cout-ot adom at, utana pedig gy hogy
megnyitom a fajlt még a teljes_naptar_Kkiir fiiggvény meghivasa el6tt és paraméterként a fajlvaltozot
adom at.

FUTTASSUNK! MAGIC! Mikodik!

- Kovetkezzen most a beolvasas. Nézziik meg, hogy mi a formatum a fajlnak, amit kiirattam.
Nalam dgy néz ki, hogy az els6 sorban az van, hogy "Teljes naptar kiiratasa", mivel a konzolra
kiirataskor beleraktam ezt is, hogy jobban latszodjon hogy mik is ezek az adatok. Erre a sorra nem
lesz sziikségiink. Ez utan nalam 3 soros perioduban szerepelnek az adatok: elsé sor a feladat neve,
masodik sorban a hozza tartozo kulcsemberek (a sor elején szerepel, hogy "Kulcsemberei:"), a
harmadik sorban pedig a hozza tartozo talalkozok (a sor elején szerepel, hogy "Talalkozok:").

> Els6 korben tehat hozzunk létre egy beolvasoé fiiggvényt a struct-ban, és a mainbdl hivjuk meg.
Mivel a kiiratast is tigy csinaltuk, hogy a fajlt a main-ben nyitjuk meg, és paraméterként adjuk at,
ezért itt is tegylink igy, az ifstream tipusu valtoz6t még a mainben hozzuk létre, és istream&
objektumként vegyiik at (nem eliras az "f" hianya az istream-bdl, itt ugyanarrol van szé, mint az
ofstream és az ostream esetében, az istream altalanosabb, mint az ifstream, igy akar cin-t is
atadhatnank a fiiggvénynek). A main-ben nyissuk meg a fajlt, amibe kiirattuk az adatokat, és hivjuk
meg a beolvasé fiiggvényt atadva neki ezt a fajlt paraméterként.

> A beolvaso fiiggvénybe pedig kezdetben csak annyit irjunk, hogy -amennyiben nalad is ugy
van, hogy az elsé sor foldsleges- olvassuk be az elsd sort, majd irjunk egy ciklust, ami a fajl végéig
olvas, és a cikluson beliil beolvas harom sort egy string valtozoba, kiirja 6ket a konzolra (nyugodtan
hasznalhatjuk ugyanazt a string véaltozét, nem baj, ha minden egyes beolvasasnal feliilirjuk az el6z6
beolvasast).

> Vizsgaljuk meg a fiiggvényben azt is, hogy sikeres volt-e a fajl megnyitasa.

FUTTASSUNK!
> Most dolgozzuk fel a beolvasott adatokat. A feladat nevét tovabbra is csak siman irassuk ki, de

a kulcsembereknél és talalkozoknal vizsgaljuk meg a beolvasott sorokat. Erre kivaléan alkalmas a
stringstream. Egy kis emlékeztetd a stringstream-rol: 1ényegében felfoghat6 egy virtualis fajlként



(mint amilyenek a plang-os fajlok voltak...), vagyis ugyanugy lehet beléjiik irni, mintha egy fajlba
irnank, és uigy lehet bel6liik olvasni, mintha fajlbdl olvasnank be.

> Tegyiik meg tehat azt, hogy a kulcsembereket tartalmazo6 sort irassuk ki egy stringstream
valtozoba, majd getline segitségével segitségével beolvasom az egyes kulcsembereket vesszoig
olvasva a getline-nal. Ha a sor elejére kiirtad az, hogy "Kulcsemberek:", vagy valami hasonldt (mint
ahogy én is tettem), akkor kezd azzal a sor feldolgozasat, hogy miutan kiirtad a sort a stringstream-
be, olvass be egy sort kettdspontig, és csak utana allj neki beolvasni a tébbi dolgot.

> A beolvasott neveket egyel6re a konzolra irjuk ki.

> FONTOS! A stringstream-et minden egyes hasznalat el6tt tiritsiik ki a clear() parancs
segitségével!

FUTTASSUNK!
> Csinaljuk meg ugyanezt a talalkozokkal is!
FUTTASSUNK!

> Mar csak egy gondunk van: a talalkozokat int-ként akarjuk majd tarolni, de mi most egyeldre
string-ként olvastuk be. At kell tehat konvertalnunk a szoveget szamma vagy az atoi vagy egy ujabb
stringstream segitségével. En személy szerint a stringstream-et szoktam hasznalni.

FUTTASSUNK!

- Lényegében mar kész is vagyunk, mar csak a konzolra kiiratas helyett meg kell hivnunk a mar
megirt fliggvényeinket, mégpedig az uj_reszfeladat, kulcsember, és uj_talalkozo fiiggvényeket.
> Annyit azért még kell valtoztatni a dolgot, hogy a beolvasott feladatot mégiscsak egy kiilén
valtozoban kéne eltarolni, mivel a kulcsember és uj_talalkozo fiiggvényeknél sziikség lesz ra.
> Teszteljiik is a beolvasast. Az adatokat tartalmazé fajlba irjunk bele még egy embert és még egy
talalkozot, és nézziik meg, hogy megjelenik-e a konzolon a futtataskor.

FUTTASSUNK!

> Egy rakas szoveget kapunk a konzolra amiatt, hogy mar beolvastuk fajlbol az adatokat, és
utana a main-ben még egyszer hozzaadjuk a dolgokat. Oldjuk meg a problémat azzal, hogy a
kulcsember és uj_talalkozo fiiggvények elejére beszurunk egy olyan sort, ami megvizsgalja, hogy
az adott kulcsembert/talalkozot hozzaadtam-e mar, és ha igen, akkor kilép egy elegans return
segitségével.



