
STL konténerek rövid összefoglalo

Amennyiben pontatlanságot hibát találsz kérlek

jelezd!

2016

1



1. Konténerek

Egy konténer általánosan egy tároló ami objektumok egy gyűjteményét(ezek az
elemek) tárolja.

A konténerek szerepe, hogy kezeljék az elemek tároását és tagfüggvényeken
keresztül hozzáférést nyújtanak az elemekhez(direkt módon, vagy iterátorokon
keresztül).

Általánossgban ezek a konténerek nagyon gyakran alkalmazhatóak feladatok
megoldásakor (ezért más nyelvekben is megtalálható a megfelelőjük).

A leggyakoribb konténerek: dinamikus tömbök (vector), sorok (queue), ver-
mek (stack), kupacok (priority queue), láncolt listák (list), fa struktúrák (set),
asszociat́ıv tömbök (map).

A feladathoz a megfelelő konténer választása jelentps előnyökkel járhat(pl
lista vagy vektor használata olyan esetben mikor sokat akarunk keresni az ele-
mek között többszörös futási időt eredményezhet asszociat́ıv tömbök,vagy set
alkalmazásához képest).Itt nem csak a nyújtott funkcionalitást kell figyelem-
be vennünk,hanem azt, hogy az egyes konténerek ezeket a funkciókat mennyi
idő(lépés) alatt tudják teljeśıteni(komplexitás).

Ezek közül a félév során dinamikus tömbökkel, listákkal, set-tel és asszociat́ıv
tömbökkel foglalkozunk.

2. :: iterator

Az STL konténerek esetén az elemekhez való hozzáférés iterátorokon keresztül
történik. Az iterátorok referencia t́ıpusok pointerekhez hasonló működéssel.

Általában konténerektől két iterátort tudunk lekérni:

• Az első elemhez tartozó iterátort (.begin())

• Az utolsó elem utáni iterátort (.end())

vector <T>:: iterator it = myVector.begin ();

list <T>:: iterator it = myList.begin ();

set <T>:: iterator it = mySet.begin ();

map <K,V>:: iterator it = myMap.begin ();

vector <T>:: iterator it = myVector.end();

list <T>:: iterator it = myList.end ();

set <T>:: iterator it = mySet.end ();

map <K,V>:: iterator it = myMap.end ();

Az iterátorokkal végezhető műveletek:

• dereferálás (∗)
∗it jelentése, az iterátorhoz tartozó elemre való hivatkozás(hasonlóan, mint
pointerek esetében). Fontos, hogy ha a dereferált objektum tagfüggvényére,
vagy mezőjére szeretnénk hivatkozni, akkor zárójelet kell használni: (∗it).tagfv();.
Ennek az ı́rásmódnak a rövid́ıtésére szolgál a − > jelölés: it− > tagfv();.

• inkrementálás (++)
Az iterátor inkrementálása a konténerkövetkező elemére álĺıtja a referen-
ciát. it + + vagy + + it.

2



• dekrementálás (−−)
Az inkrementáláshoz hasonló működés, csak az eggyel korábbi elemre
álĺıtja a referenciát.

• advance
Az iterátor értékének növelése több lépéssel. Figyelnünk kell, hogy az
iterátor értéke a növelés után is érvényes legyen!! advance(it, n).

• egyenlőség vizsgálat (==, ! =)
Két iterátor egyenlőségét vizsgálhatjuk vele. Fontos, hogy nem tudunk
egymáshoz viszońıtott helyzetet ellenőrizni iterátorok között, csak egyenlőséget.
Emiatt mint majd látjuk általában egy konténeren a következő képpen
iterálhatunk végig:

for(kontener <T>:: iterator it = myKontener.begin ();

it != myKontener.end (); ++it){

//adott elemek feldolgozasa.

}

3. vector < T >

Szekvenciális adatszerkezet, azaz az elemek között egy sorrend van definiálva.
A vector esetében az elemek amemóriában közvetlenül egymás mellett helyez-
kednek el. Azaz egy tömbben tároljuk az adatainkat. A vector esetében le-
hetőségünk van elemeket dinamikusan hozzáadni, vagy elvenni a tömbből. Ezek
alapján adódik a probléma: lefoglalunk egy adott méretű tömböt a memóriában,
de mi van ha több elemt szeretnénk beszúrni mint amennyi ez az adott méret?
Erre a megoldás a következő: ha megtellik a lefoglalt tömbünk kényetelenek
vagyunk újra lefoglalni egy nagyobbat, majd oda átmásolni az eddigi eleme-
ket (annak érdekében, hogy az alap struktúrátmegtartsuk azaz egymás mel-
lett egy tömbben tárolhassuk az elemeket). Ez rengeteg időt vesz igénybe,
pontosabban n elemű vector esetében O(n) lépés szükséges. Azonban mivel
tudjuk az adott elemek poźıcióját ezért konstans időben tudunk hozzáférni az
elemekhez(O(1)). Hasonlóan a szerkezetből következik, hogy általában, ha nincs
rendezve a tömbünk akkor adott elem megkeresése is O(n) komplexitású.
Elemek törlése esetén a tömbbeli folytonosság fenntartásához a törlendő elem
utáni elemeket egy poźıcióval előrébb kell másolnunk. Azaz a törlés költsége a
törlendő elem utáni elemek számától függ. Így a törlés komplexitása is O(n)(ha
nem fontos az elemek sorrendje akkor lehet jav́ıtani ezen). Hasonlóan működik
az elem beszúrása a vector közepébe.

Tehát vector-t akkor érdemes használni, ha gyakran szeretnénk index alapján
hozzáférni az elemekhez, de lehetőleg ritkán változtatjuk meg az elemek számát
(hiszen mind a törlés mind a beszúrás O(n) idejű).

3.1. Használat

#include <vector >

// konstruktorok:

vector <int > v;

3



// hossz megadasa:

vector <int > v(7);

// hossz es kezdeti ertek:

vector <int > v(7,2);

// bonyolultabb pelda 7*4-es matrix csupa kettessel

vector <vector <int >> v(7,vector <int >(4 ,2));

//c++11 ota lehetoseg elemek felsorolasaval:

vector <int > v = {5, 4, 2, 3, 1};

//elem hozzafuzes a vector vegehez

v.push_back (5);

//elem hozzaferes index alapjan:

v[3];

// utolso elem torlese:

v.pop_back ();

// meret lekerdezese:

size_t size= v.size ();

// annak lekerdezese , hogy urese a vector:

bool urese = v.empty ();

// vector meretenek beallitasa

int meret = 10;

v.resize(meret );

// vector elso es utolso elemehez hozzaferes:

int elso = v.front()

int utolso = v.back()

// vector teljes tartalmanak torlese:

v.clear ();

//elem hozzaferes iteratorokkal:

vector <int >:: iterator it = v.begin ();

vector <int >:: iterator vege = v.end();

// vegigiteralas:

for(size_t i = 0; i < v.size (); i++){

//v[i] feldolgozasa

}

// iteratorral:

for(vector <int >:: iterator it = v.begin ();

it != v.end (); it++){

// (*it) feldolgozasa

cout << *it;

}

//c++11 for each ciklus:

for(int &a : v){

//’a’ lesz v eleme

cout << a;

}

//elem beszurasa az 5. helyre:

vector <int >:: iterator it = v.begin ();

advance(it ,5);

v.insert(it ,4);

//n elem beszurasa:

v.insert(it, n, 3);

4



//elem torlese:

v.erase(it);

// tartomany torlese:

v.erase(elso_iterator , utolso_iterator );

4. list < T >

Szintén szekvenciális adatszerkezet, de itt az elemek memóriában nem egymás
mellett helyezkednek el. Minden elem esetén tudjuk, hogy ki a megelőző és
ki a következő elem. Azaz, ha az i-edik elemet szeretnénk megkeresni, akkor
először az elsőt nézzük onnan tudjuk a másodikat, majd a másodiktól harma-
dikat és ı́gy tovább i lépés szükséges az eléréshez. Azonban a láncolást könnyű
megváltoztatni, azaz ha az elejére szeretnénk elemet hozzáadni, akkor csak az
első elemnek kell megmondani, hogy van őt megelőző elem (és a lista fejét
beálĺıtani az első elemre)ez O(1) időben történik, mı́g a vector esetében ez O(n)
volt.
Ezekből következően az index alapú elemhozzáférés láncolt lista esetében O(n)
idejű. Az elem beszúrás, törlés, hozzáfűzés minden esetben(a poźıció meg-
határozása után)a láncolások beálĺıtásával történik azaz O(1).

4.1. Használat

#include <list >

// konstruktorok:

list <int > first; // empty list of ints

// 4 int 100 ertekkel

list <int > second (4 ,100);

// second alapjan vegigiteralva

list <int > third (second.begin(),second.end ());

// third masolata

list <int > fourth (third);

//c++11 ota lehetoseg elemek felsorolasaval:

list <int > l = {5, 4, 2, 3, 1};

//elem hozzafuzes a vegehez

l.push_back (5);

//elem hozzafuzes az elejehez

l.push_front (4);

// utolso elem torlese:

l.pop_back ();

//elso elem torlese:

l.pop_front ();

// meret lekerdezese:

size_t size= l.size ();

// annak lekerdezese , hogy urese:

bool urese = l.empty ();

//elso es utolso elemehez hozzaferes:

int elso = l.front()

int utolso = l.back()

5



// teljes tartalmanak torlese:

l.clear ();

//elem hozzaferes iteratorokkal:

list <int >:: iterator it = l.begin ();

list <int >:: iterator vege = l.end ();

// iteratorral:

for(list <int >:: iterator it = l.begin ();

it != l.end (); it++){

// (*it) feldolgozasa

cout << *it;

}

//c++11 for each ciklus:

for(int &a : l){

//’a’ lesz v eleme

cout << a;

}

//elem beszurasa az 5. helyre:

list <int >:: iterator it = l.begin ();

advance(it ,5);

l.insert(it ,4);

//n elem beszurasa:

l.insert(it, n, 3);

//elem torlese:

l.erase(it);

// tartomany torlese:

l.erase(elso_iterator , utolso_iterator );

// ertek alapjan elem torlese:

l.remove (5);

5. set < T >

A set elemei egy halmazt alkotnak. A halmazokban minden elem maximum
egyszer szerepelhet és nincs sorrend definiálva az elemek között, ı́gy logikailag
nincs értelme a halmaz elejének és végének. A c++ esetében a set mögött egy fa
struktúra áll. Erről nekünk elegendő annyit tudnunk, hogy az elemhozzáférés,
törlés és beszúrás is O(log(n)) idő alatt történik. A fa struktúra megfelelő
működéséhez szökséges, hogy a tárolni ḱıvánt t́ıpushoz létezzen < operátor (ez
alapján történik a keresés és az elemek tárolása is).

5.1. Használat

#include <set >

// konstruktorok:

set <int > first; // empty set of ints

int myints []= {10 ,20 ,30 ,40 ,50};

set <int > second (myints ,myints +5);

// second alapjan vegigiteralva

set <int > third (second.begin(),second.end ());

6



// third masolata

set <int > fourth (third);

//c++11 ota lehetoseg elemek felsorolasaval:

set <int > s = {5, 4, 2, 3, 1};

// meret lekerdezese:

size_t size= s.size ();

// annak lekerdezese , hogy urese:

bool urese = s.empty ();

// teljes tartalmanak torlese:

s.clear ();

//elem hozzaferes iteratorokkal:

set <int >:: iterator it = s.begin ();

set <int >:: iterator vege = s.end ();

// iteratorral:

for(set <int >:: iterator it = s.begin ();

it != s.end (); it++){

// (*it) feldolgozasa

cout << *it;

}

//c++11 for each ciklus:

for(int &a : s){

//’a’ lesz v eleme

cout << a;

}

//elem beszurasa:

//(ha mar letezik a halmazban az

// adott elem nem hozza letre ujra)

s.insert (4);

//elem torlese:

s.erase(it);

// tartomany torlese:

s.erase(elso_iterator , utolso_iterator );

//elem keresese a halmazban:

set <int >:: iterator it = s.find (4);

//ha nem talalhato meg az adott elem

// akkor az end()-el ter vissza:

bool isInSet = s.find (4) == s.end ();

// annak ellenorzese , hogy az

// adott elem megtalalhato a halmazban:

int n = s.count (4);

// mivel ennek az ereteke 0 vagy 1

// ezert akar logikai ertekkent

//is hasznalhatjuk kozvetlenul:

bool isInSet = s.count (4);

7



6. map < K, V >

A map egy asszociat́ıv tömb. Ennek lényege, hogy a megadott kulcsokhoz
tartozóan tárolunk értékeket. A kulcsoknak egyedieknek kell lenniük (értelem
szerűen az értékek ismétlődhetnek). A set-hez hasonlóan itt is szükséges meǵırni
a < operátort ha saját t́ıpust szeretnénk kulcsként használni. A c++ esetében
a map mögött is egy fa van (piros-fekete fa) ebből következően itt is a beszúrás,
elemelérés, törlés O(log(n)) alatt történhet.

6.1. Használat

#include <map >

// konstruktorok:

map <int ,string > myMap;

myMap [0] = "nullas";

myMap [1] = "egyes";

myMap [6] = "kettes";

// second alapjan vegigiteralva

set <int > third (myMap.begin(),myMAp.end ());

// third masolata

set <int > fourth (third);

//c++11 ota lehetoseg elemek felsorolasaval:

map <int ,string > m1{{1,"012"},{2,"01"},{6,"0121"}};

map <int ,string > m2={{1,"012"},{2,"01"},{6,"0121"}};

// meret lekerdezese:

size_t size= m.size ();

// annak lekerdezese , hogy urese:

bool urese = m.empty ();

// teljes tartalmanak torlese:

m.clear ();

//elem hozzaferes iteratorokkal:

map <int ,string >:: iterator it = m.begin ();

map <int ,string >:: iterator vege = m.end ();

//az iteratorok itt kulcs -ertek parokat jelolnek:

int kulcs = it ->first;

string ertek = it->second;

//elem hozzaferes kulcs alapjan:

m[kulcs ]; // letrehozza ha nincs ilyen kulcs

m.at(kulcs );//hibat dob ha nincs ilyen kulcs

// iteratorral:

for(map <int ,string >:: iterator it = m.begin ();

it != m.end (); it++){

// (*it) feldolgozasa

cout << "kulcs: " << it ->first

<< "ertek: " << it->second;

}

//c++11 for each ciklus:

for(int &a : m){

8



//’a’ lesz m eleme azaz egy pair <K,V>

cout << "kulcs: " << a.first

<< "ertek: " << a.second;

}

//elem beszurasa:

if(m.count(kulcs )){

m[kulcs] = ertek;

}

//elem torlese:

m.erase(it);

// tartomany torlese:

m.erase(elso_iterator , utolso_iterator );

//elem keresese a halmazban:

set <int >:: iterator it = m.find (4);

//ha nem talalhato meg az adott elem

// akkor az end()-el ter vissza:

bool isInMap = m.find (4) == m.end ();

// annak ellenorzese , hogy az

// adott elem megtalalhato a halmazban:

int n = m.count (4);

// mivel ennek az ereteke 0 vagy 1

// ezert akar logikai ertekkent

//is hasznalhatjuk kozvetlenul:

bool isInMap = m.count (4);

9


