STL konténerek rovid osszefoglalo
Amennyiben pontatlansagot hibat talalsz kérlek
jelezd!

2016



1. Konténerek

Egy konténer altaldanosan egy tdrol6 ami objektumok egy gytijteményét(ezek az
elemek) tarolja.

A konténerek szerepe, hogy kezeljék az elemek tarodsat és tagfiiggvényeken
keresztiil hozzaférést nyijtanak az elemekhez(direkt médon, vagy iterdtorokon
keresztil).

Altalénossgban ezek a konténerek nagyon gyakran alkalmazhatdak feladatok
megolddsakor (ezért mds nyelvekben is megtaldlhaté a megfeleldjiik).

A leggyakoribb konténerek: dinamikus témbok (vector), sorok (queue), ver-
mek (stack), kupacok (priority_queue), ldncolt listak (list), fa strukturdk (set),
asszociat{v tombdk (map).

A feladathoz a megfelel§ konténer vilasztésa jelentps elényokkel jarhat(pl
lista vagy vektor haszndlata olyan esetben mikor sokat akarunk keresni az ele-
mek kozott tobbszoros futasi idét eredményezhet asszociativ tombok,vagy set
alkalmazdsdhoz képest).Itt nem csak a nyujtott funkcionalitdst kell figyelem-
be venniink hanem azt, hogy az egyes konténerek ezeket a funkciékat mennyi
id6(1épés) alatt tudjék teljesiteni(komplexitds).

Ezek koziil a félév sordn dinamikus tombokkel, listakkal, set-tel és asszociativ
tombokkel foglalkozunk.

2.

s terator

Az STL konténerek esetén az elemekhez val6é hozzaférés iterdtorokon keresztiil
torténik. Az iteratorok referencia tipusok pointerekhez hasonlé miikodéssel.
Altaldban konténerektél két iterdtort tudunk lekérni:

Az els6 elemhez tartozé iterdtort (.begin())

Az utolsé elem utani iterdtort (.end())

<T>::iterator it = myVector. O
<T>::iterator it = myList. ON
<T>::iterator it = mySet. O
<K,V>::iterator it = myMap. QN

<T>::iterator it = myVector. O ;
<T>::iterator it = myList. QN
<T>::iterator it = mySet. O
<K,V>::iterator it = myMap. O

Az iteratorokkal végezhetoé miiveletek:

dereferédlas (x)

xit jelentése, az iterdtorhoz tartozé elemre valé hivatkozéds(hasonléan, mint
pointerek esetében). Fontos, hogy ha a dereferalt objektum tagfiiggvényére,

vagy mezdjére szeretnénk hivatkozni, akkor zardjelet kell haszndlni: (xit).tagfv();.
Ennek az frdsmddnak a roviditésére szolgdl a — > jelolés: it— > tagfv();.

inkrementdlas (++)
Az iterdtor inkrementaldsa a konténerkovetkezd elemére &llitja a referen-
ciat. it + + vagy + + it.



e dekrementélds (——)
Az inkrementalashoz hasonlé miikodés, csak az eggyel korabbi elemre
allitja a referenciat.

e advance
Az iterator értékének novelése tobb 1épéssel. Figyelniink kell, hogy az
iterdtor értéke a novelés utdn is érvényes legyen!! advance(it,n).

e cgyenldség vizsgdlat (==,! =)
Két iterator egyenloségét vizsgdlhatjuk vele. Fontos, hogy nem tudunk

egymashoz viszonitott helyzetet ellendrizni iteratorok kozott, csak egyenléséget.

Emiatt mint majd latjuk altaldban egy konténeren a kovetkezd képpen
iteralhatunk végig:

for (kontener<T>::iterator it = myKontener. O
it != myKontener. O; ++it){
//adott elemek feldolgozasa.

3. vector < T >

Szekvencidlis adatszerkezet, azaz az elemek kozott egy sorrend van definidlva.
A vector esetében az elemek amemoridban kozvetleniil egymas mellett helyez-
kednek el. Azaz egy tombben taroljuk az adatainkat. A wector esetében le-
het6ségiink van elemeket dinamikusan hozzaadni, vagy elvenni a tombbdél. Ezek
alapjan adodik a probléma: lefoglalunk egy adott méretii tombdot a meméridban,
de mi van ha t6bb elemt szeretnénk beszirni mint amennyi ez az adott méret?
Erre a megoldds a kovetkezé: ha megtellik a lefoglalt tombiink kényetelenek
vagyunk tujra lefoglalni egy nagyobbat, majd oda atmaésolni az eddigi eleme-
ket (annak érdekében, hogy az alap strukturdtmegtartsuk azaz egymds mel-
lett egy tombben tdrolhassuk az elemeket). Ez rengeteg id6t vesz igénybe,
pontosabban n elemi vector esetében O(n) 1épés sziikséges. Azonban mivel
tudjuk az adott elemek pozicidjat ezért konstans idében tudunk hozzaférni az
elemekhez(O(1)). Hasonldan a szerkezetbdl kovetkezik, hogy dltaldban, ha nincs
rendezve a tombiink akkor adott elem megkeresése is O(n) komplexitdsu.
Elemek torlése esetén a tombbeli folytonossdg fenntartdsahoz a torlend6 elem
utdni elemeket egy poziciéval elérébb kell mésolnunk. Azaz a torlés koltsége a
térlendd elem uténi elemek szamatdl fiigg. Igy a torlés komplexitésa is O(n)(ha
nem fontos az elemek sorrendje akkor lehet javitani ezen). Hasonléan miikédik
az elem beszurédsa a vector kozepébe.

Tehat vector-t akkor érdemes hasznalni, ha gyakran szeretnénk index alapjan
hozzéaférni az elemekhez, de lehetdleg ritkan valtoztatjuk meg az elemek szaméat
(hiszen mind a torlés mind a beszirds O(n) idejii).

3.1. Hasznalat

#include <vector>
//konstruktorok:
<int> v;



//hossz megadasa:

vector<int> v (7);

//hossz es kezdeti ertek:

vector<int> v(7,2);

//bonyolultabb pelda 7*4-es matrix csupa kettessel
vector<vector<int>> v(7,vector<int>(4,2));
//c++11 ota lehetoseg elemek felsorolasaval:
vector<int> v = {5, 4, 2, 3, 1};

//elem hozzafuzes a vector vegehez
v.push_back (5);

//elem hozzaferes index alapjan:

vI[3];

//utolso elem torlese:

v.pop_back ();

//meret lekerdezese:

size_t size= v.size();

//annak lekerdezese, hogy urese a vector:

bool urese = v.empty();
//vector meretenek beallitasa
int meret = 10;

v.resize (meret);

//vector elso es utolso elemehez hozzaferes:
int elso = v.front ()

int utolso = v.back()

//vector teljes tartalmanak torlese:
v.clear ();

//elem hozzaferes iteratorokkal:

vector<int>::iterator it = v.begin();
vector<int>::iterator vege = v.end();
//vegigiteralas:
for(size_t i = 0; i < v.size(); i++){
//v[i] feldolgozasa
}
//iteratorral:
for(vector<int>::iterator it = v.begin();
it !'= v.end(); it++){
// (xit) feldolgozasa
cout << *it;
}

//c++11 for each ciklus:
for (int &a : v){
//’a’ lesz v eleme
cout << a;

}
//elem beszurasa az 5. helyre:
vector<int>::iterator it = v.begin();

advance (it ,5) ;
v.insert (it ,4);
//n elem beszurasa:
v.insert(it, n, 3);




//elem torlese:

v.erase (it);

//tartomany torlese:
v.erase(elso_iterator, utolso_iterator);

4. list <T >

Szintén szekvencidlis adatszerkezet, de itt az elemek memdridban nem egymas
mellett helyezkednek el. Minden elem esetén tudjuk, hogy ki a megel6z6 és
ki a kovetkezd elem. Azaz, ha az i-edik elemet szeretnénk megkeresni, akkor
el6szor az els6t nézziik onnan tudjuk a masodikat, majd a masodiktél harma-
dikat és igy tovabb i 1épés sziikséges az eléréshez. Azonban a lancolast konny(
megviéltoztatni, azaz ha az elejére szeretnénk elemet hozzaadni, akkor csak az
els6 elemnek kell megmondani, hogy van 6t megeléz6 elem (és a lista fejét
beéllitani az elsé elemre)ez O(1) id6ben torténik, mig a vector esetében ez O(n)
volt.

Ezekbél kévetkezben az index alapi elemhozzéférés lancolt lista esetében O(n)
ideji. Az elem beszirds, torlés, hozzaflizés minden esetben(a pozicié meg-
hatdrozdsa utdn)a lancoldsok beéllitdsdval torténik azaz O(1).

4.1. Haszndlat

#include <list>

//konstruktorok:

list<int> first; // empty list of ints
// 4 int 100 ertekkel

list<int> second (4,100);

// second alapjan vegigiteralva
list<int> third (second.begin(),second.end());
// third masolata

list<int> fourth (third);

//c++11 ota lehetoseg elemek felsorolasaval:
list<int> 1 = {5, 4, 2, 3, 1};

//elem hozzafuzes a vegehez
l.push_back(5);

//elem hozzafuzes az elejehez
1.push_front (4);

//utolso elem torlese:

1l.pop_back();

//elso elem torlese:

1.pop_front ();

//meret lekerdezese:

size_t size= 1l.size();

//annak lekerdezese, hogy urese:

bool urese = l.empty();

//elso es utolso elemehez hozzaferes:
int elso = 1.front ()

int utolso = 1l.back()




//teljes tartalmanak torlese:

l.clear ();

//elem hozzaferes iteratorokkal:
list<int>::iterator it = 1l.begin();
list<int>::iterator vege = l.end();
//iteratorral:

for(list<int>::iterator it = l.begin();

it != 1l.end(); it++){
// (xit) feldolgozasa
cout << *xit;
}
//c++11 for each ciklus:
for(int &a : 1){
//’a’ lesz v eleme
cout << a;

}
//elem beszurasa az 5. helyre:
list<int>::iterator it = l.begin();

advance (it ,5) ;

l.insert (it ,4);

//n elem beszurasa:

l.insert(it, n, 3);

//elem torlese:

l.erase(it);

//tartomany torlese:
l.erase(elso_iterator, utolso_iterator);
//ertek alapjan elem torlese:

1l.remove (5);

5. set < T >

A set elemei egy halmazt alkotnak. A halmazokban minden elem maximum
egyszer szerepelhet és nincs sorrend definidlva az elemek kozott, igy logikailag
nincs értelme a halmaz elejének és végének. A c++ esetében a set mogott egy fa
struktura all. Errdl nekink elegend6 annyit tudnunk, hogy az elemhozzaférés,
torlés és beszurds is O(log(n)) id6 alatt torténik. A fa struktira megfeleld
miikddéséhez szokséges, hogy a tarolni kivant tipushoz létezzen < operdtor (ez
alapjdn torténik a keresés és az elemek téroldsa is).

5.1. Hasznalat

#include <set>

//konstruktorok:

set<int> first; // empty set of ints

int myints[]l= {10,20,30,40,50};

set<int> second (myints,myints+5);

// second alapjan vegigiteralva

set<int> third (second.begin(),second.end());




// third masolata
set<int> fourth (third);
//c++11 ota lehetoseg elemek felsorolasaval:
set<int> s = {5, 4, 2, 3, 1};
//meret lekerdezese:
size_t size= s.size();
//annak lekerdezese, hogy urese:
bool urese = s.enpty();
//teljes tartalmanak torlese:
s.clear ();
//elem hozzaferes iteratorokkal:
set<int>::iterator it = s.begin();
set<int>::iterator vege = s.end();
//iteratorral:
for(set<int>::iterator it = s.begin();
it !'= s.end(); it++){
// (xit) feldolgozasa
cout << *it;
}
//c++11 for each ciklus:
for(int &a : s){
//’a’ lesz v eleme
cout << a;
}
//elem beszurasa:
// (ha mar letezik a halmazban az
// adott elem nem hozza letre ujra)
s.insert (4);
//elem torlese:
s.erase (it);
//tartomany torlese:
s.erase(elso_iterator, utolso_iterator);
//elem keresese a halmazban:
set<int>::iterator it = s.find(4);
//ha nem talalhato meg az adott elem
//akkor az end()-el ter vissza:
bool isInSet = s.find(4) == s.end();
//annak ellenorzese, hogy az
//adott elem megtalalhato a halmazban:
int n = s.count (4);
//mivel ennek az ereteke 0 vagy 1
//ezert akar logikai ertekkent
//is hasznalhatjuk kozvetlenul:
bool isInSet = s.count (4);




6. map < K,V >

A map egy asszociativ témb. Ennek lényege, hogy a megadott kulcsokhoz
tartozéan térolunk értékeket. A kulcsoknak egyedieknek kell lenniiik (értelem
szeriien az értékek ismétlédhetnek). A set-hez hasonldan itt is sziikséges megirni
a < operatort ha sajat tipust szeretnénk kulcsként hasznélni. A c++ esetében
a map mogott is egy fa van (piros-fekete fa) ebbdl kovetkezdben itt is a beszuras,
elemelérés, torlés O(log(n)) alatt torténhet.

6.1. Hasznalat

#include <map>
//konstruktorok:
map<int,string> myMap;

myMap [0] = "nullas";
myMap [1] = "egyes";
myMap [6] = "kettes";

// second alapjan vegigiteralva

set<int> third (myMap.begin() ,myMAp.end());

// third masolata

set<int> fourth (third);

//c++11 ota lehetoseg elemek felsorolasaval:
map<int,string> mi{{1,"012"},{2,"01"},{6,"0121"}};
map<int,string> m2={{1,"012"},{2,"01"},{6,"0121"}};
//meret lekerdezese:

size_t size= m.size();

//annak lekerdezese, hogy urese:

bool urese = m.empty ();

//teljes tartalmanak torlese:

m.clear ();

//elem hozzaferes iteratorokkal:
map<int,string>::iterator it = m.begin();
map<int,string>::iterator vege = m.end();

//az iteratorok itt kulcs-ertek parokat jelolnek:
int kulcs = it->first;

string ertek = it->second;

//elem hozzaferes kulcs alapjan:

m[kulcs]; //letrehozza ha nincs ilyen kulcs

m.at (kulcs);//hibat dob ha nincs ilyen kulcs

//iteratorral:
for (map<int,string>::iterator it = m.begin();
it != m.end(); it++){
// (xit) feldolgozasa
cout << "kulcs: " << it->first
<< "ertek: " << it->second;
}
//c++11 for each ciklus:
for(int &a : m){




//’a’ lesz m eleme azaz egy pair<K,V>

cout << "kulcs:y" << a.first
<< "ertek:," << a.second;

}
//elem beszurasa:
if(m.count (kulcs)){

m[kulcs] = ertek;
}
//elem torlese:
m.erase (it);
//tartomany torlese:
m.erase (elso_iterator, utolso_iterator);
//elem keresese a halmazban:
set<int>::iterator it = m.find(4);
//ha nem talalhato meg az adott elem
//akkor az end()-el ter vissza:
bool isInMap = m.find(4) == m.end();
//annak ellenorzese, hogy az
//adott elem megtalalhato a halmazban:
int n = m.count (4);
//mivel ennek az ereteke 0 vagy 1
//ezert akar logikai ertekkent
//is hasznalhatjuk kozvetlenul:
bool isInMap = m.count (4);




