Vektorterek,altér,lineáris függetlenség
Elméleti összefoglaló

A vektortér, vagy más megfogalmazásban lineáris tér a lineáris algebra egyik legalapvetőbb strukturális fogalma. A vektortér eleme a szokásos geometriai vektorfogalom általánosított formája. A vektorokkal végezhető műveletek legelemibb tulajdonságait axiomatikusan definiálja. A lineáris tér a mi szokásos síkunk és terünk általánosítása többdimenziós terekre. Jelentőségük nem csupán elméleti, a fizikában, informatikában, illetve a matematika számos területén fontos szerepet játszanak.

Formális definíció

Legyen T egy test. Egy V nemüres halmazt vektortérnek nevezünk az T test felett, ha

· V halmazon értelmezve van egy összeadás nevű művelet, V × V → V függvény, 
[image: image1.wmf]"

 u, v 
[image: image2.wmf]Î

 V elempárhoz hozzárendel egy és csak egy V-beli elemet (u+v), valamint

· T és V között értelmezve van egy skalárral való szorzás nevű művelet, T × V → V függvény, 
[image: image3.wmf]"

 λ 
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 T és v 
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 V elempárhoz egyértelműen hozzárendel egy V-beli elemet (λv), úgy, hogy az alábbi azonosságok, úgynevezett vektortér-axiómák teljesülnek:

1. V az összeadásra nézve kommutatív csoportot, Abel-csoportot alkot, azaz az összeadás: 

· asszociatív: 
[image: image6.wmf]"

 u, v, w 
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 V: u + (v + w) = (u + v) + w.

· kommutatív: 
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 u, v 
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 V: u + v = v + u.

· létezik neutrális elem: 0 
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 V, V nullvektora: v + 0 = v, 
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 v 
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 V.
· invertálható: 
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 v 
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 V: 
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 olyan -v 
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 V additív inverz: v + (-v) = 0.

2. Skalárral való szorzás disztributivitási szabályai: 

· 
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 λ 
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 T és u, v 
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 V: λ(u + v) = λu + λv.

· 
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 λ, μ 
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 T és v 
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 V: (λ + μ)v = λv + μv.

· 
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 λ, μ 
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 T és v 
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 V: λ(μv) = (λμ)v.

· 
[image: image26.wmf]"

 v 
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 V: 1v = v, ahol 1 az T test egységeleme.

Példák vektorterekre

A lineáris tér egy nagyon általános fogalom, rengeteg példa van rá a matematikában. Nagyon sok olyan matematikai fejezetben is megjelenik, amit szerteágazóan alkalmaznak a fizika számos területén, például a funkcionálanalízis vagy éppen a differenciálgeometria, hogy csak néhányat említsünk.

· a közönséges síkbeli és térbeli, origóból kiinduló vektorok a valós test felett a szokásos vektorösszeadásra és skalárral való szorzásra nézve,

· a valós szám n-esek 
[image: image28.wmf]¡

felett, a komplex szám n-esek 
[image: image29.wmf]£

felett, és

· általában T n, T felett ( T tetszőleges test ), a szokásos módon értelmezett, komponensenként végzett műveletekre,

· T n × k, T felett, azaz az n×k-as mátrixok T test felett, a mátrixok szokásos, komponensenkénti összeadására és skalárral való szorzására nézve.

· T [x], azaz az T feletti polinomok, T felett, a polinomok összeadására és skalárral való szorzására nézve,

· a legfeljebb n-edfokú polinomok T felett,

· valós számsorozatok a valós test felett a szokásos műveletekre,

· az 
[image: image30.wmf][
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,

ab

intervallumon folytonos 
[image: image31.wmf]¡

-be képező függvények a valós test felett, a szokásos pontonkénti összeadásra, és skalárral való szorzásra nézve,

· az 
[image: image32.wmf][
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intervallumon Riemann-integrálható 
[image: image33.wmf]¡

-be képező függvények a valós számok teste felett, a szokásos pontonkénti összeadásra, valamint a skalárral való szorzásra nézve,

· a komplex számok a valós test felett, a komplex számok körében értelmezett műveletekre,

· a komplex számok a komplex számok teste felett,

· a valós számok a valós számok teste felett,

· a valószínűségi változók a szokásos összeadásra és skalárral való szorzásra nézve.

Def.: Egy T test feletti V vektortér egy nemüres W 
[image: image34.wmf]Î

 V részhalmazát altérnek nevezzük V-ben, ha W maga is vektortér ugyanazon T test felett ugyanazokra a V-beli vektorműveletekre, precízebben ezeknek a műveleteknek W-re történő megszorításaira nézve. Jelölése W ≤ V.
Tétel: Egy T test feletti V vektortérben egy W nemüres részhalmaz akkor és csak akkor altér, ha
1. u,v 
[image: image35.wmf]Î

 W 
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u + v 
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 W
2. u
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 W, 
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 EMBED Equation.DSMT4  [image: image40.wmf]Î

T
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 u
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W teljesül.

Def.:Egy V vektortér véges sok vektoráról akkor mondjuk, hogy lineárisan függetlenek, ha lineáris kombinációjuk csak úgy lehet a nullvektor, ha mindegyik skalár szükségképpen 0. Végtelen sok vektor lineáris függetlenségén azt értjük, hogy közülük bármely véges sok lineárisan független.
A v1,…,vn 
[image: image44.wmf]Î

 V vektorok lineárisan összefüggőek, ha lineárisan nem függetlenek, tehát

[image: image45.png]



nem mind nulla skalár, azaz közülük legalább egy nem nulla, hogy

[image: image46.png]



Feladatok

1. Igazoljuk, hogy a   
[image: image47.wmf](
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       (A, B, C, D tetszőleges valós számok) kifejezések lineáris teret alkotnak.

Igazoljuk, hogy a  
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        független kifejezések által generált 
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)

(

)

z

y

x

K

z

y

x

K

,

,

,

,

2

2

1

1

l

l

+

 kifejezések 
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 az eredeti lineáris tér egy alterét alkotják.

Mi a geometriai jelentése a    
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    egyenletnek, ha 
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két sík egyenlete?

Csak gyakorló, nem volt konzultáción.

2. Jelöljük 
[image: image54.wmf]Z

-vel azon 
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 típusú mátrixok halmazát, amelyek átlójában minden elem zérus. Lineáris tér-e, ha 
[image: image56.wmf]Z

-ben az összeadást és a valós számmal való szorzást a szokásos módon értelmezzük?

A 16, 17 feladat áttanulmányozása során könnyen megoldható.

3. Igazoljuk, hogy az 
[image: image57.wmf]3
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 típusú vektorai 
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 a vektortér egy alterét alkotják. Mely vektorok feszítik ki az alteret?

Volt konzultáción.
4. Igazoljuk, hogy az 
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 típusú vektorai 
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 a vektortér egy alterét alkotják. Mely vektorok feszítik ki az alteret?

Volt konzultáción.
5. A háromdimenziós vektorok terének alterét alkotják-e azok az origóból kiinduló vektorok, amelyek végpontjainak koordinátái mind pozitív számok (a koordinátákat az 
[image: image63.wmf]k
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  bázisra vonatkoztatjuk).

Nem volt konzultáción.
6. Legyen 
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a) 
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b) az 
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 altér dimenziója nem nagyobb, mint az 
[image: image68.wmf]1

L

, illetve az 
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 alterek dimenziója közül a kisebbik, azaz 
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Nem volt konzultáción.
7. Döntsük el, hogy az 
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vektorok lineárisan függetlenek-e!

Nem volt konzultáción.
8. Állapítsuk meg, hogy lineárisan független-e a következő három vektor!
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Nem volt konzultáción.
9. Legyen 
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tér két lineárisan független vektora. Határozzuk meg 
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 EMBED Equation.DSMT4  [image: image80.wmf]33
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b) 
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Hasonlóképpen.

10.  Igazoljuk hogy az 
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vektortér 
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vektorai akkor és csak akkor lineárisan függetlenek, ha az 
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vektorok is lineárisan függetlenek.

Volt konzultáción.

11.  Igazoljuk, hogy ha 
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 vektortér három lineárisan független vektora, akkor

a) 
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 vektorok lineárisan összefüggnek;

b) 
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 vektorok lineárisan összefüggnek.

A fenti vektorok akko r függnek össze lineárisan, ha 
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 olyan x,y,z
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A fenti egyenletrendszerből kijön, hogy ha 
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 teljesül, tehát 
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12.  Legyenek 
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 vektortér lineárisan független vektorai. 

Hogyan kell 
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t megválasztani, hogy az 
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vektorok lineárisan függetlenek, illetve hogyan, hogy lineárisan összefüggők legyenek?

Volt konzultáción.

13.  Bizonyítsuk be, hogy ha az 
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vektorok lineárisan független vektorrendszert alkotnak, akkor az
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 EMBED Equation.3  [image: image106.wmf]n
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vektorokból álló vektorrendszerek is lineárisan függetlenek.

Nem volt konzultáción.

14.  Legyen az 
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 bázisban egy háromszög csúcsaiba mutató három helyvektor 
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 Mik a három vektor koordinátái a 
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bázisra vonatkoztatva?

Nem volt konzultáción.

15.  Keressük meg a háromdimenziós 
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 bázisban adott 
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 vektorok koordinátáit a 
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 bázisra vonatkoztatva!
Nem volt konzultáción.

Freudból példák

16.  Legyen V a pozitív valós számok halmaza és T=
[image: image113.wmf]¡

. Definiáljuk a vektorok közötti összeadást a következőképpen:

u
[image: image114.wmf]Å

v=uv, illetve a skalárral való szorzást 
[image: image115.wmf]l



 EMBED Equation.DSMT4  [image: image116.wmf]e

v=v
[image: image117.wmf]l

. Mutassuk meg, hogy ez a struktúra vektorteret alkot!

Megoldás:

Azt kell belátnunk, hogy az elméleti összefoglalóban lévő szabályoknak eleget tesznek a fent definiált műveletek.

· u
[image: image118.wmf]Å

v=uv 
[image: image119.wmf]Î

 V. Ez igaz, mivel két pozitív szám szorzata is pozitív.

· u
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(v 
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 w) = (u 
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 v) 
[image: image123.wmf]Å

 w
u
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(v w)= (uv) 
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 w

u(v w)=(uv) w . az egyenlőség pedig teljesül.

· u
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v = v
[image: image127.wmf]Å

u
uv=vu az egyenlőség pedig teljesül.
· létezik neutrális elem: 1 
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 V,: v
[image: image129.wmf]Å

1 = 1v, 
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 V.
· v
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 (
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Skalárral való szorzás szabályainak teljesülésének vizsgálata

· λ
[image: image134.wmf]e

 (u 
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 v) = (λ
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v).
λ
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 (uv) = (λ
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u)(λ
[image: image141.wmf]e

v)
uvλ = uλ vλ
uλ vλ= uλ vλ az egyenlőség teljesül

· (λ + μ) 
[image: image142.wmf]e

v = (λ
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v) 
[image: image144.wmf]Å

 (μ
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v)
v(λ + μ) = vλ 
[image: image146.wmf]Å

 v μ
v(λ + μ) = vλ v μ
vλ v μ = vλ v μ az egyenlőség teljesül

· λ
[image: image147.wmf]e

 (μ
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v) = (λμ) 
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v
λ
[image: image150.wmf]e

vμ = vλμ
(vμ ) λ = vλμ
vλμ= vλμ az egyenlőség teljesül

· 1
[image: image151.wmf]e

v= v az egyenlőség teljesül

Mivel minden szabálynak eleget tudtunk tenni, ezért bátran mondhatjuk, hogy vektortérről van szó.

17.  Legyen V a pozitív valós számok halmaza és T=
[image: image152.wmf]¡

. Definiáljuk a vektorok közötti összeadást a hagyományos módon, a skalárral való szorzást, pedig 
[image: image153.wmf]l
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 egy szám alsó egész részét jelöli. Mutassuk meg, hogy ez a struktúra vektorteret alkot!
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Az egyenlősg nem fog teljesülni abban az esetben, ha 
[image: image160.wmf],1
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A struktúra nem alkot vektorteret.
Felhasznált irodalom:

http://hu.wikipedia.org/wiki/Vektort%C3%A9r
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