
1. Valós Euklideszi terek 
 
 

1.  Jelölje V a legfeljebb harmadfokú valós együtthatós polinomok vektorterét. Ezen a vektortéren 
definiáljuk azt a függvényt, amely minden polinomhoz a fokszámát rendeli. Norma-e ez a leképezés? 

 
M.o.: 
1. Az igaz, hogy minden polinomhoz pozitív vagy nulla értéket rendel a leképezés, de az nem igaz, hogy csak a 
vektortér nulleleméhez, tehát a nullpolinomhoz rendeli a nulla értéket, mert bármely nem nulla konstans polinom 
fokszáma is nulla! Nem Norma! 
 
 

2. Legyen V = Rn  a valós n dimenziós vektorok tere, és értelmezzük a következő leképezést:     n
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Ez a leképezés metrika vagy sem? 
 
M.o.: 
 

1.   0, yxd  Teljesül, hiszen pozitív számok összegeként értelmezzük. 

Ha yx  akkor minden i-re ii yx  , vagyis 0 ii yx és így   0,
1


n

i
ii yxyxd . 

Ha  yxd , = 0 akkor minden i-re teljesül, hogy 0 ii yx , vagyis ii yx  és így yx   

2. Szimmetrikus, mert:    xydxyyxyxd
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3. Teljesül a háromszög egyenlőtlenség:      zxdzxzyyxzydyxd
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mert valós számokra teljesül, hogy iiiiii zxzyyx    Tehát Metrika! 

 
 

3. Legyen V = Rn  a valós n dimenziós vektorok tere, és értelmezzük a következő leképezést: 

     n
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Skalárszorzatot határoz-e meg ez a leképezés? 
 
 
M.o.: 

1. Pozitív definit:      0,
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Ha 0x  akkor teljesül, hogy     0,
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Ha pedig     0,
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kk xkkxkxxx , abból következik, hogy minden kx = 0  0x  

2. Szimmetrikus:         xykxkykykxyx
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3. Homogén:         yxkxkykyxkyx
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4. Lineáris: 

          
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Tehát Skalárszorzat! 
 

4.    Ha az R4 euklideszi téren a skalárszorzatot a 2.3. feladatban meghatározott módon adjuk meg, akkor 
mekkora az alábbi két vektor által bezárt szög? 
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M.o.: 
 
Szükség van a vektorok skalárszozatára: 

                   70414131312021121,
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A vektorok hosszára/normájára 
 

                  
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A vektorok által bezárt szög: 

1429

7,
cos 

yx

yx    = 69,7° 

 
5. A szokásos 3 dimenziós Euklideszi térben, ahol  321 ,, vvvv   a vektor koordinátái, normát alkot-e a 

következő képlettel definiált leképezés? 

  i
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vvn
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(Megoldás: Nem norma mert nem igaz a pozitív definit tulajdonság.) 
 

 
6. A háromdimenziós valós vektorok terében bevezetjük az alábbi függvényt: 

  
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iiia avuvus  , ahol � egy pozitív komponensű konstans vektor. 

a) Bizonyítsuk be, hogy ��  skalárszorzatot definiál!  

b) Adja meg az ��  skalárszorzat által meghatározott normát és metrikát!  



c) Számítsa ki a ݒ =  12
3

  és ݑ =  −51−3  vektorok skalárszorzatát, a vektorok hosszát és a két vektor távolságát, ha 

� =  21
4

 ! 
7. Legyen P2 a legfeljebb másodfokú polinomok vektortere. Lássuk be, hogy az alábbi függvények 

skalárszorzatot definiálnak: 

a,    
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8. Az alábbi függvények közül melyik határoz meg egy normát az Rn vektortéren? 
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(Megoldás: Norma lesz b, és c, ) 
 

 
9. Az alábbi függvények közül melyik határoz meg egy metrikát az Rn vektortéren? 

 

a, 11 yx     b, jj
n
j yx 1max          c,  n
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d, m(x,y) = azon koordináták száma, amelyekben az x és y vektorok különböznek 
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(Megoldás: Metrika lesz b, c, és d, e,) 
 
 
      10.   Adja meg az alábbi vektorok által bezárt szöget az R4szokásoseuklideszi téren!  

(Skalárszorzat a szokásos:    n
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, , norma a szokásos:  2, ixxxx ) 
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(Megoldás: a, 
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