Komplex számok konzultáció 2007/2008. 1. félév


Komplex számok

- konzultáció - 

I. Elméleti ismétlés:

A halmaz jele: [image: image54.wmf]j

=

arctg

 

H

-

1

L

=

-

45

 

°


Komplex számok kanonikus alakja: z=a+ib ahol i= √-1 az imaginárius egység

      a= Re z  ( ez a valós rész

b= Im z  ( ez az imaginárius rész

[image: image1.png]


                                                                 Argand-diagram







φ: a valós tengely pozitív felétől mért távolság







Trigonometrikus alakja:







|z|= r (cos φ+ i sin φ) 







          x koo.     y koo.

Konjugált: z konjugáltja: [image: image2.png]


=a – ib  => azaz a képzetes tag előjele megváltozik az ellenkezőjére

Műveletek:

· Összeadás: valósak összege + i(képzetesek összege)

(3+2i) + (5 + 3i)= 8 +5i

   ↑                ↑

      egyik szám    másik szám

· Kivonás: valósak különbsége + i(képzetesek különbsége)

      (3+2i) - (5 + 3i)= -2 –i

· Szorzás

     (3+2i)(5 + 3i)= tagonként = 15 + 9i +10i + 6i2 = 15 +19i -6 = 9+ 19i

· Osztás: szorozni kell a nevező konjugáltjával => ha egy komplex számot a konjugáltjával szorzunk, akkor valós eredményt kapunk.
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           Moivre-képlet: trigonometrikus alakban számolunk


     z1z2=r1(cosφ1+isinφ1)r2(cosφ2+isinφ2)=r1r2(cos(φ1+φ2)+isin(φ1+φ2))


     Ugyanígy osztásra is:

[image: image44.png]



                 z1/z2=        (cos(φ1-φ2)+isin(φ1-φ2))           
· Gyökvonás
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A 2kPi-s szorzóra a forgásszögek miatt van szükség, ezzel is számolni kell.

II. Feladatok:
1.) a= 4+2i
b= 5-4i

a) a + b = 4 + 2i + 5 - 4i = 9-2i
b) a - b = 4 + 2i – (5 - 4i) = -1 + 6i
c) ab= (4 + 2i )*( 5 - 4i) = 20 – 16i + 10i -8i2 = 20 – 6i + 8 = 28 – 6i
d) [image: image12.wmf]a
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2.) a= 2-i

b= 3+5i

a) a + b = 2 - i + 3 + 5i = 5-4i
b) a - b = 2 - i –( 3 + 5i) = -1 - 6i
c) ab= (2 - i )(3 + 5i) = 6+10i-3i-5i2 = 6 +7i +5 = 11 + 7i
3.) konjugált:

a= 4+2i  konjugáltja: 4 - 2i

b= 5-4i    konjugáltja: 5 + 4i

4.) osztás a konjugálttal:
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      megoldás:
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  Látható, hogy a számlálóban és a nevezőben is 





mértani sor áll. De még egyszerűbb a feladat, mert 





a számlálóban valójában csak 1-esek állnak.





i2=-1 és a számlálóban ennek a hatványai állnak 0-tól





9-ig váltakozó előjellel, így ez áll ott: 1+1+…+1=10
A nevezőbeli sorozatnak a kvóciense i, tehát alkalmazhatjuk az összegképletet:
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   Tehát:
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5.) Egyenletrendszer:
(2 - 3i)z + (2 - i)u = 1 – i                      /* (1 + 2i) megszorozzuk a sorokat ezekkel tagokkal

(1 + 2i)z + (-2 + 3i)u = -3 -3i               /* (2 – 3i) majd kivonjuk egymásból őket

így ki tudjuk ejteni az egyik ismeretlent: z-t, és csak u-t tartalmazó egyenletünk marad.

Ha u-t megadjuk, utána egyszerű visszahelyettesítéssel kijön z is.

(2 - i)(1 + 2i)u – (-2 + 3i)(2 - 3i)u = (1 - i)(1 + 2i) - (-3 – 3i)(2 – 3i)
u[(2 + 4i - i - 2i2) - (-4 + 6i + 6i - 9i2)] = (1 + 2i - i - 2i2) – (-6 - 6i + 9i + 9i2)
(2 + 3i + 2 + 4 - 12i - 9)u = 18 – 2i 
(-1 - 9i)u = 18 -2i
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6.) Mi lesz azeredmény?
[image: image22.wmf]7
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Az i hatványai egy egységkörön mozognak:

[image: image45.png]A










Hatvány     érték:

0.       i0 =  1

1.       i1 =   i

2.       i2 = -1

3.       i3 =  -i

4.       i0 =  1

5.       i1 =   i

6.       i2 = -1

7.       i3 =  -i

stb.…

Tehát ez alapján le tudjuk egyszerűsíteni a feladatot:
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7.) trigonometrikus alakról algebraira:

z = 7 (cos135+isin135)   φ
       a = r cos φ

       b = r sin φ

mivel r=7 és φ=135 ezért:

[image: image46.png]
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cos135 =               sin135 = 

Tehát az algebrai alak:
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z = -7        +i*7

10.)Kanonikusról trigonometrikusra
      z = 12 - i4√3  
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z=r(cosφ+isinφ) = [image: image50.wmf]z
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          (cos 330  +  i sin 330)  (-30-at is írhatnánk, nem szokás  negatívat, hanem helyette 330-at.)

11.) Gyökvonás
       [image: image51.png]


                       ebből szeretnénk 3. gyököt vonni, hogy mi lesz z?
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      átváltjuk radiánba, úgy számolunk tovább
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   és k=0, 1, 2 mivel 3dik gyököt számolunk








( mindig annyi gyök van, ahányadik 








     gyököt vonunk

   k=0: 
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12.) Ábrázolások
Ábrázold a következő komplex számokat: z = -2 + 3i







   u =  -(3/2)i

Mi a mértani helye a komplex számsík azon z pontjainak melyekre:

           -2< Im(z) < 1  



       1 < |z| < 2
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13.) Igaz-e, hogy 
                                        ?

       A trigonometrikus alakkal érdemes számolni:
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        átírva tehát:
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 Moivre szabály alapján
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         tehát igaz.
14.) (Másodfokú egyenlet) Mik lesznek az egyenlet gyökei?

        2x2 + 2x + 3 = 0
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1

,

2

=

-

2

+

-

�

4

-

2

*

3

*

4

4

=

-

2

+

-

�

4

-

24

4

=

-

2

+

-

�

H

-

1

L

*

20

4

=

[image: image39.wmf]-

2

+

-

2

 

�

5

 

i

4


innen két gyök adódik:
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Ellenőrzés: vissza kell helyettesíteni a gyököket az eredeti egyenletbe!
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