Komplex számok
(rövid elmélet, és feladatok)
Rövid elméleti összefoglaló

Komplex számok: rendezett számpárok halmaza, ahol a számokat a valós számok halmazából vesszük.
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Ekvivalens jelölés: 
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Műveletek komplex számokkal
Összeadás:
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Kivonás (összeadás ellentettje):


[image: image6.wmf])

,

(

)

,

(

)

,

(

d

b

c

a

d

c

b

a

-

-

=

-

,
[image: image7.wmf])

(

)

(

)

(

)

(

d

b

i

c

a

di

bi

c

a

di

c

bi

a

-

+

-

=

-

+

-

=

+

-

+


Szorzás:
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Reciprok: 
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Osztás (reciprokkal való szorzás):
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Belátható, hogy a komplex számokon értelmezett összeadásra, és szorzásra érvényesek a testaxiómák, így a komplex számok halmaza test.
Komplex szám ábrázolása
A komplex számokat nem lehet a megszokott számegyenesen ábrázolni, mivel az már „betelt” a valósakkal. Ezért a komplex számokat a komplex számsíkon ábrázoljuk. Mivel a komplex számok halmaza izomorf a két dimenziós vektorok halmazával, ezért a komplex számokat két dimenziós vektorokkal szemléltetjük a számsíkon, ahol a vektor két koordinátája a komplex szám valós, és képzetes része.
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Komplex számok alakjai

Algebrai alak:

a+bi

Pl.: 1+i,3-2i, stb.…

Trigonometrikus alak:
Komplex szám abszolút értéke (0-tól mért távolság): 
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Komplex szám argumentuma (valós tengely pozitív felével bezárt szög): 
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Ekkor:
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Ekkor a szám trigonometrikus alakja: 
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Pl.: 
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Exponenciális alak:

Euler formula szerint: 
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(Taylor sorfejtéssel belátható)

Tehát: 
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Szorzás osztás trigonometrikus és exponenciális alakban
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szorzás elvégezve, és addíciós tételeket alkalmazva: 
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Hasonlóan:
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Hatványozás, Moivre-formula

A szorzás szabályait felhasználva egy szám második hatványa:
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És teljes indukcióval belátható a Moivre-formula, egy szám n. hatványára:
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Gyökvonás:
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az a komplex szám, amelyet n-edik hatványra emelve z-t kapunk 
[image: image29.wmf]
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Ilyen számból mindig n db van.
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Egységgyök, primitív egységgyök:

Egy komplex számot n-edik egységgyöknek nevezünk, ha n-edik hatványa éppen 1.
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Primitív egységgyök:

· Amelynek hatványai az összes többi egységgyököt előállítják.

· Amelynek n. hatvány 1, és nincs n-nél kisebb hatványa, ami 1.

· Ahol n, és k relatív prímek.

’i’ hatványai:
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Feladatok:

1.) Adjuk meg a következő komplex számok algebrai alakját!

a) 
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b) 
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c) 
[image: image37.wmf]1

)

1

(

1

1

)

(

2

498

2

498

4

2

1992

2

1992

1994

-

=

-

=

=

=

=

=

=

+

i

i

i

i

i

i

i

z


d)
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e)
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2.) Határozzuk meg a 
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 szám abszolút értékét!
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3.) Oldjuk meg az alábbi egyenletek a komplex számok halmazán.
a) 
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b)
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c)
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d) 
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4.) Mi a geometriai jelentése,
a) ha egy z komplex számot i-vel szorzunk?
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b) ha egy z komplex számot (1+i)-vel szorzunk?

Mivel 
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c) ha vesszük z konjugáltjának a reciprokát (
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: z konjugáltjának reciproka ugyan az, mint z osztva az abszolút értékének négyzetével: 
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5.) Mi a mértani helye azoknak a pontoknak a komplex számsíkon, amelynek megfelelő z komplex számokra (
[image: image53.wmf]bi
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6.) Írjuk fel trigonometrikus, és exponenciális alakban a következő számokat:

a)
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b)
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c)
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d)

[image: image68.wmf]4

45

1

1

arctan

2

1

1

1

2

2

p

q

=

°

=

÷

ø

ö

ç

è

æ

=

=

+

=

+

=

r

i

z



[image: image69.wmf]4

2

)

45

sin

45

(cos

2

p

i

e

i

z

=

°

+

°

=


e)
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f)
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7.) Írjuk át algebrai alakba a következő számokat!

a) 
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9.) Végezzük el a kijelölt műveleteket!
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10.) Végezzük el a számolást trigonometrikus alakban, és írjuk fel a végeredményt algebrai alakban is!
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11.)Végezzük el az alábbi műveleteket!
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12.)
a) A 
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komplex számnak megfelelő vektor forgassuk el 45°-kal, és nyújtsuk háromszorosára! Írjuk fel a kapott vektornak megfelelő komplex szám algebrai alakját!
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13.) Oldjuk meg az alábbi egyenleteket a komplex számok halmazán!
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14.) Számítsuk ki a következő egységgyököket, és döntsük el, melyek ezek között a primitív egységgyökök.
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Ezek közül primitív egységgyök:
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, mivel ezeknek n. hatványa 1 először, ezek hatványai közt szerepel az összes többi egységgyök, és ezek k indexe relatív prím n-nel.
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Ezek közül primitív egységgyök:
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, mivel ezeknek n. hatványa 1 először, ezek hatványai közt szerepel az összes többi egységgyök, és ezek k indexe relatív prím n-nel.
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Ezek közül csak z0 nem egységgyök, hiszen a többi olyan 5-nél kisebb k index, amely nem relatív prím 5-tel, hiszen 5 prím.

d)
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Ezek közül z1,z2,z4,z5,z7,z8 primitív egységgyök, mivel ezeknek n. hatványa 1 először, ezek hatványai közt szerepel az összes többi egységgyök, és ezek k indexe relatív prím n-nel.
15.) Írjuk fel egyszerűbb alakban!
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A törtben csak i hatványai szerepelnek, így észre vehetjük, hogy a számlálóban csupa 1-es áll (10 db). A nevező viszont i hatványaiból álló mértani sort alkot, melynek a kvóciense 
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i megfelelő hatványait behelyettesítve
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16.) Oldjuk meg a következő egyenletrendszert a komplex számok halmazán!
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megszorozva kivonjuk őket egymásból, így z kiesik, és u-t ki tudjuk számolni.
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Mathematica és Matlab parancsok komplex számok számítására:
Alapok:
Matlab: a művelet begépelése után ENTER a futtatáshoz.
Mathematica: a művelet begépelése után SHIFT+ENTER a futtatáshoz.
Matlab: 
[image: image125.wmf]C
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Az i, képzetes egység beépített, így szám beírásnál egyszerűen beleírható a számba.

Pl.: 1+i,2-3i,z = 2+4i(innentől z egyenlő lesz a 2+4i számmal),stb….

Abszolút érték lekérdezése: abs(z) függvénnyel történik.

Argumentum lekérdezése: angle(z) függvénnyel. (radiánban adja vissza)
Valós, és képzetes rész lekérdezése: re(z),im(z)

Mathematica: 
[image: image126.wmf]C

z
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Az i itt is beépített, de csak nagy I betűként jelenti a képzetes egységet, tehát a számbevitel: 1+I,2-3I,z = 2+4I(szintén z = a beírt számmal),stb….

A Mathematica függvényeinél fontos a nagy kezdőbetű, és a [] zárójel. Pl.: Abs[z].

Abszolútérték: Abs[z]

Argumentum: Arg[z](radiánban adja vissza)
Valós, és képzetes rész: Re[z],Im[z]

Műveletek végzése:

Matlab

Hasonlóan működik, mint a legtöbb programozási nyelvben: +,-,*,/,^, és érdemes zárójelbe rakni a különböző számokat, hogy ne legyen kavarodás. Pl.: (1+3i)-(5-3i), az előjel probléma igen gyakori.

Mathematica

Egyszerűsége, hogy a palettáról beírt képletek formailag majdnem olyanok, mint ahogy az füzetbe is írjuk, különbség csak a függvények kezdő nagybetűjében, a [] zárójelben, és a i helyett a I használatában van, de pl. nem kell feltétlenül kirakni a szorzásjelet, elég egy szóközt rakni a szorzandók közé (zárójelezéssel az se kell. Pl.: (1+I)(3-2I)).

Egyenletek megoldása

Matlab

solve(’A megoldandó egyenlet’), pl.: solve(’x^2+1 = 0’)

Ha az egyenlőségjeleket elhagyjuk, akkor automatikusan = 0-ra egészíti ki. (solve(x^2) = solve(x^2=0))

Mathematica

Solve[egyenlet]: itt nem kell az egyenletet ’-ek közé tenni, de az egyenletet be kell teljesen írni, és dupla= kell a két oldal közé: pl.: Solve[x^2==0]

Ábrázolás
Matlab

plot(z,’x’,'MarkerSize',7): egyszerűen kirajzolja egy koordináta rendszerbe a z számot. Az ’x’ célszerű, hogy ne csak egy pont legyen kirajzolva, hanem egy x jelölje a számot. A többi pedig méretre állítja a jelölést.

Célszerű néhány beállítást alkalmazni a kirajzolás után:

hold on: ha újabb számot rajzoltatunk ki, nem tűnik el a régi.

xlabel('Re(z)');ylabel('Im(z)');title('A komplex számsík'); : ábracím, és tengelyfeliratok.
axis([Remin,Remax,Immin,Immax]); : beállítja a tengelyek határait. Érdemes széthúzni, hogy a számok ne a  határvonalakon legyenek.

Mathematica

Itt kicsit nehezebb a dolgunk, mivel a program nem ismeri a komplexek ábrázolását. Viszont pontokat tud rajzolni 2 koordináta alapján.
ListPlot[{ {Re[z1],Im[z1]},{ Re[z2],Im[z2]} },PlotStyle
[image: image127.wmf]®

PlotPoint[0.02]] : így z1, és z2 komplex számokat ki tudja rajzolni. A PlotPoint pedig látható méretűvé teszi a pontokat.
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